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ABSTRACT

We study stability of gas accretion in active galactic nuclei (AGNs). Our grid-based simulations cover a radial range
from 0.1 to 200 pc, which may enable linking the galactic/cosmological simulations with small-scale black hole
(BH) accretion models within a few hundreds of Schwarzschild radii. Here, as in previous studies by our group,
we include gas radiative cooling as well as heating by a sub-Eddington X-ray source near the central supermassive
BH of 108 M�. Our theoretical estimates and simulations show that for the X-ray luminosity, LX ∼ 0.008 LEdd,
the gas is thermally and convectively unstable within the computational domain. In the simulations, we observe
that very tiny fluctuations in an initially smooth, spherically symmetric, accretion flow, grow first linearly and
then nonlinearly. Consequently, an initially one-phase flow relatively quickly transitions into a two-phase/cold–hot
accretion flow. For LX = 0.015 LEdd or higher, the cold clouds continue to accrete but in some regions of the hot
phase, the gas starts to move outward. For LX < 0.015 LEdd, the cold phase contribution to the total mass accretion
rate only moderately dominates over the hot phase contribution. This result might have some consequences for
cosmological simulations of the so-called AGN feedback problem. Our simulations confirm the previous results
of Barai et al. who used smoothed particle hydrodynamic (SPH) simulations to tackle the same problem. Here,
however, because we use a grid-based code to solve equations in one dimension and two dimensions, we are able to
follow the gas dynamics at much higher spacial resolution and for longer time compared with the three-dimensional
SPH simulations. One of the new features revealed by our simulations is that the cold condensations in the accretion
flow initially form long filaments, but at the later times, those filaments may break into smaller clouds advected
outward within the hot outflow. Therefore, these simulations may serve as an attractive model for the so-called
narrow-line region in AGNs.
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1. INTRODUCTION

Physics within the central parsecs of a galaxy is domi-
nated by the gravitational potential of a compact supermas-
sive object. In a classical theory of spherical accretion by
Bondi (1952), the Bondi radius RB determines the zone of the
gravitational influence of a central object and it is given by
RB ≈ 150(MBH/108 M�)(T∞/105K)−1 pc, where MBH is the
central object mass and T∞ is the temperature of the uniform
surrounding medium. At radii smaller than the Bondi radius, the
interstellar medium (ISM), or at least a part of it, is expected to
turn into an accretion flow.

Physics of any part of a galaxy is complex. However near
the Bondi radius, it is particularly so because there, several
processes compete to dominate not only the dynamical state
of matter but also other states such as thermal and ionization.
Therefore, studies of the central parsec of a galaxy require in-
corporation of processes and their interactions that are typically
considered separately in specialized areas of astrophysics, e.g.,
black hole (BH) accretion, physics of the ISM, and physics
of galaxy formation and evolution. One of the main goals of
studying the central region of a galaxy is to understand var-
ious possible connections between a supermassive black hole
(SMBH) and its host galaxy.

Electromagnetic radiation provides one such connections.
For example, the powerful radiation emitted by an active
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galactic nucleus (AGN), as it propagates through the galaxy,
can heat up and ionize the ISM. Subsequently, accretion could
be slowed down, stopped or turned into an outflow if the ISM
becomes unbound. Studies of heated accretion flows have a
long history. Examples of early and key works include Ostriker
et al. (1976), Cowie et al. (1978), Mathews & Bregman (1978),
Stellingwerf (1982), Bisnovatyi-Kogan & Blinnikov (1980),
Krolik & London (1983), and Balbus & Soker (1989).

The accretion flows and their related outflows are very com-
plex phenomena. It is likely that several processes are respon-
sible for driving an outflow, i.e., not just the energy of the
radiation, as mentioned above, but also, for example, the mo-
mentum carried by the radiation. Therefore, our group explored
combined effects of the radiation energy and momentum on the
accretion flows and on producing outflows (e.g., Proga 2007;
Proga et al. 2008; Kurosawa & Proga 2008, 2009a; Kurosawa
& Proga 2009b; Kurosawa et al. 2009). These papers reported
on results from simulations carried out using Eulerian finite
difference codes where effects of gas rotation and other com-
plications such non-spherical and non-azimuthal effects were
included (see, e.g., Janiuk et al. 2008).

To identify the key processes determining the gas properties
(here, we are mainly concerned with thermal properties) and
to establish any code limitations in modeling an accretion
flow, in this paper we adopt a relatively simple physical setup.
Namely, the modeled system consists of a central SMBH of
mass MBH = 108 M� and a spherical shell of gas inflowing
to the center. The simulations focus on regions between 0.1
and 200 pc from the central object, where the outer boundary
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is outside of RB. The key difference compared with the Bondi
problem is an assumption that the central accretion flow is a
point-like X-ray source. The X-rays illuminate the accreting gas
and the gas itself is allowed to cool radiatively under optically
thin conditions. To keep the problem as simple as possible, the
radiation luminosity is kept fixed instead of being computed
based on the actual accretion rate for an assumed radiation
efficiency (see also Kurosawa & Proga 2009b).

To model the presented problem, one needs to introduce extra
terms into the energy equation to account for energy losses and
gains. The thermal and dynamical stability of an optically thin
gas that is radiatively heated and cooled, in particular, has been
analyzed in a great detail by Field (1965). Therefore, to study
thermal properties of accretion flows or dynamical properties of
thermally unstable gas, it is worthwhile to combine the Bondi
(1952) and Field (1965) theories. Our setup is very similar to
that used in the studies in the 1970s and 1980s that we mentioned
above. Some kind of complexity and time variability in a heated
accretion flow is expected based on the 1-D results from the
early work.

A dynamical study of the introduced physical problem re-
quires resolving many orders of magnitude of the radial distance
from the BH. Our goal is not only to cover the largest radial span
possible but also to resolve any small-scale structure of the in-
falling gas. This is a challenging goal. To study the dynamics
of gas in a relatively well-controlled computer experiment, we
use the Eulerian finite difference code ZEUS-MP (Hayes et al.
2006).

We systematically address numerical requirements to ade-
quately treat the problem of thermally unstable accretion flows.
We introduce an accurate heating–cooling scheme that incor-
porates all relevant physical processes of X-ray heating and
radiative cooling. Low optical thickness is assumed, which de-
couples fluid and radiation evolution. We resolve three orders
of magnitude in the radial range by using a logarithmic grid
where the logarithm base is adjusted to the physical conditions.
We solve hydrodynamical equations in one and two spatial di-
mensions (1-D and 2-D). We follow the flow dynamics for a
long timescale in order to investigate the nonlinear phase of gas
evolution. Notice that most of the earlier work in the 1970s and
1980s, focused on linear analysis of stability and early stages of
evolution of the solutions, and considered only 1-D cases.

As useful as our group’s past studies are, we keep in mind that
any result should be confirmed by using more than one technique
or approach. Therefore, Barai et al. (2012; see also Barai et al.
2011) began a parallel effort to model accretion flows including
the same physics but instead of performing simulations using
a grid based code, the smoothed particle hydrodynamic (SPH)
GADGET-3 code was used (Springel 2005). Overall, the 3-D
SPH simulations presented by Barai et al. (2012) showed that
despite this very simple setup, accretion flows heated by even a
relatively weak X-ray source (i.e., with the luminosity around
1% of the Eddington luminosity) can undergo a complex time
evolution and can have a very complex structure. However,
the exact nature and robustness of these new 3-D results has
not been fully established. Barai et al. (2012) mentioned some
numerical issues, in particular, artificial viscosity and relatively
poor spacial resolution in SPH, because of the usage of linear
length scale (as opposed to logarithmic grid in ZEUS-MP),
limit ability to perform a stability analysis where one wishes to
introduce perturbations to an initially smooth, time-independent
solution with well-controlled amplitude and spatial distribution
(SPH simulations have intrinsic limitations in realizing a smooth

flow). Therefore, the robustness and stability of the solutions
found in the SPH simulations are hard to access due to
mixing of physical processes and numerical effects. Here, we
aim at clarifying the physics of these flows and measure the
role of numerical effects in altering the effects of physical
processes.

Our ultimate goal is to provide insights that could help to
interpret observations of AGNs. We explore the conditions under
which the two phase, hot and cold, medium near an AGN can
form and exist. Such two-phase accretion flows can provide
a hint to explain the modes of accretion observed in galactic
nuclei, but also to explain the formation of broad and narrow
lines that define AGNs. We also measure the so-called covering
and filling factors and other quantities in our simulations in order
to relate the simulation to the origin of the broad- and narrow-
line regions (BLRs and NLRs, respectively). The connection
of this work to the galaxy evolution and cosmology is that
we resolve lower spatial scales, and hence can probe what
physical processes affect the accretion flow. In our models, we
can directly observe where the hot phase of accretion turns into
a cold one or where an eventual outflow is launched. In most
of the current simulations of galaxies (e.g., Di Matteo et al.
2012, and references therein), these processes are assumed or
modeled by simple, so-called sub-resolution, approximations
because, contrary to our simulations, the resolution is too low
to capture the flow properties on adequately small scales.

The article is organized as follows. In Section 2, we
present the basic equations describing the physical problem. In
Section 3, we show the details of the numerical setup. Results
are in Sections 4 and 5. We summarize the results in Section 6.

2. BASIC EQUATIONS

We solve equations of hydrodynamics:

Dρ

Dt
+ ρ∇ · v = 0 (1)

ρ
Dv
Dt

= −∇P + ρg (2)

ρ
D

Dt

(
e

ρ

)
= −P∇ · v + ρL, (3)

where D/Dt is Lagrangian derivative and all other symbols
have their usual meaning. To close the system of equations, we
adopt the P = (γ − 1)e equation of state where γ = 5/3.
Here, g is the gravitational acceleration near a point mass object
in the center. The equation for the internal energy evolution
has an additional term ρL, which accounts for gas heating and
cooling by continuum X-ray radiation produced by an accretion
flow near the central SMBH. The heating/cooling function
contains four terms, which are (1) Compton heating/cooling
(GCompton), (2) heating and cooling due to photoionization and
recombination (GX), (3) free–free transitions cooling (Lb), and
(4) cooling via line emission (Ll) and it is given by (Blondin
1994; Proga et al. 2000)

ρL = n2(GCompton + GX − Lb − Ll) (erg cm−3 s−1), (4)

where

GCompton = kbσTH

4πmec2
ξTX

(
1 − 4T

TX

)
(5)

2



The Astrophysical Journal, 767:156 (15pp), 2013 April 20 Mościbrodzka & Proga

GX = 1.5 × 10−21ξ 1/4T −1/2

(
1 − T

TX

)
(6)

Lb = 25πe6

√
27hmec2

√
2πkbT

mec2
(7)

Ll = 1.7 × 10−18 exp

(
−1.3 × 105

T

)
ξ−1T −1/2 − 10−24, (8)

where TX is the radiative temperature of X-rays and T is the
temperature of gas. We adopt a constant value TX = 1.16×108 K
(E = 10 keV) at all times. The numerical constants in
Equations (6) and (8) are taken from an analytical formula fit
to the results from a photoionization code XSTAR (Kallman
& Bautista 2001). XSTAR calculates the ionization structure
and cooling rates of a gas illuminated by X-ray radiation using
atomic data. The photoionization parameter ξ is defined as

ξ ≡ 4πFX

n
= LX

nr2
= fXLEdd

nr2
= fXLEddmpμ

ρr2
(erg cm s−1),

(9)
where FX is the radiation flux, n = ρ/(μmp) is the number
density, and μ is a mean molecular weight. Given the definition
of ξ , notice that L is a function of thermodynamic variables but
also strongly depends on the distance from the SMBH.

The luminosity of the central source LX is expressed in units
of the Eddington luminosities, fX ≡ LX/LEdd. The reference
Eddington luminosity for an SMBH mass considered in this
work is

LEdd ≡ 4πGMBHmpc

σTH
= 1.25 × 1046

(
M

108 M�

)
(erg s−1).

(10)

3. METHOD AND INITIAL SETUP

To solve Equations (1)–(3), we use the numerical code
ZEUS-MP (Hayes et al. 2006). We modify the original version
of the code; in particular, we use a Newton–Raphson method to
find roots of Equation (3) numerically at each time step. We have
successfully tested the numerical method against an analytical
model with heating and cooling. We describe the numerical
code tests in the Appendix, showing the thermal instability (TI)
development in the uniform medium.

We solve equations in spherical-polar coordinates. Our com-
putational domain extends in radius from 0.1 to 200 pc. The use-
ful reference unit is a radius of the innermost stable circular orbit
of a central BH: r∗ = 6GMBH/c2. We assume the fiducial mass
of the BH MBH = 108 M� for which r∗ = 8.84 × 1013 cm. The
computational domain in these units ranges from ri = 3484.2r∗
to ro = 6.9683 × 106r∗ (or ri = 6.610−4RB and ro = 1.3RB ,
where RB = 152 pc). Since ri is relatively large in comparison
with the BH horizon we cannot model here the compact regions
near the BH where X-ray emission is produced. Instead we pa-
rameterize the X-ray luminosity using fX , so that LX = fXLEdd.
We solve equations for five values, fX = 0.0005, 0.008, 0.01,
0.015, and 0.02 (these numbers correspond to models later la-
beled as A, B, C, D, and E).

As initial conditions for the A model (lowest luminosity), we
use an adiabatic, semi-analytical solution from Bondi (1952).
For higher luminosities, the integration of equations starts from
last data from a model with one level lower luminosity provided
that the lower fX solution is time independent. The procedure
is adopted in order to increase the luminosity in a gradual

manner rather than suddenly.2 Only for steady state solutions
(with assumption that the mass accretion rate is constant from
ri to r∗) the efficiency of conversion of gravitational energy into
radiation η is related to fX as

η

ηr

= fX

ṁ
, (11)

where ṁ is a mass accretion rate in Eddington units (ṀEdd =
LEdd/ηrc

2 and ηr = 0.1 is a reference efficiency) and it is
measured from the model data. In our steady state models,
ṁ ≈ 1, therefore the energy conversion efficiency in these cases
is approximately η = 0.1fX.

Our boundary conditions put constraints on density at ro,
setting it to ρo = 10−23 g cm−3. For other variables, we use
an outflow type of boundary conditions at the inner and outer
radial boundary. In 2-D models, our computational domain
extends in θ ∈ (0◦, 90◦). At the symmetry axis and at the
equator, we use appropriate reflection boundary conditions.
The numerical resolution used depends on the number of
dimensions, i.e., in 1-D Nr = 256, 512, 1024, 2048, and 4096,
in 2-D (Nr,Nθ ) = (256, 64), (512, 128), and (1024, 256). The
spacing of the radial grid is set as dri/dri+1 = 1.023, 1.01,
1.0048, 1.002, and 1.0008 for Nr = 256, 512, 1024, 2048, and
4096, respectively. The number of grid points in the second
dimension is chosen so that the linear size of the grid zone in all
directions is similar (i.e., riΔθj ≈ Δri).

4. RESULTS: 1-D MODELS

4.1. 1-D Steady Solutions

We begin with presenting the basic characteristics of 1-D
solutions. Table 1 shows a list of all our 1-D simulations. Each
simulation was performed until tf = 20 Myr, equivalent to
4.7 dynamical timescales at the outer boundary ro = 200 pc
(tdyn = tff = √

r3
o /2GMBH = 4.21 Myr). Only some of the

numerical solutions settled down to a time-independent state
at tf . We focus on analyzing two representative solutions that
are steady state at tf : 1D256C and 1D256D, with the X-ray
luminosity of the former fX = 10−2, and of the latter fX =
1.5 × 10−2. Note that these solutions were obtained using the
lowest resolution. We find these two solutions instructive in
showing the thermal properties of the gas.

Figure 1 presents the overall structure of model 1D256C and
D (models C and D in the left and right columns, respectively).
Panels from top to bottom in Figure 1 display: radial profiles of
gas density, gas temperature overplotted with the Mach number
(red line with the labels on the right-hand side of the panels), the
net heating/cooling rate plotted together with the contribution
from each physical process (see Equation (4)), the entropy S,
and gas temperature as a function of ξ , respectively. In the
bottom panels, the red line indicates the T–ξ relation for radiative
equilibrium (i.e., solvingL(ξ, T ) = 0 for each T). The green line
indicates a T –ξ relation for a gas being adiabatically compressed
due to the geometry of the spherical accretion (T ∝ ξ 2), while
the blue line for a constant pressure gas (T ∝ ξ 1).

2 We also decouple LX from Ṁ in order to avoid introducing additional
parameters into the equations. While coupling these quantities, not only does a
radiative efficiency of gravitational to radiative energy have to be assumed, but
one also needs to know how to calculate the mass accretion rate at the very
compact region far below ri = 0.1 pc. Another reason for decoupling LX and
Ṁ is that we are interested in carrying out a stability analysis and perturb a
steady state solutions with all model parameters fixed.
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Table 1
List of 1-D Solutions

Model ID fX Nr tf 〈Ṁ〉t 〈χ〉r,t 〈τX,sc〉t Max Comment
(Myr) (M� yr−1) (τX,sc)

1D256A 5 × 10−4 256 20 2.0 3.9 0.44 0.49 s
1D512A 5 × 10−4 512 20 2.0 6.1 0.45 0.51 s
1D1024A 5 × 10−4 1024 20 2.0 6.8 0.46 0.52 s
1D2048A 5 × 10−4 2048 20 2.0 6.8 0.46 0.53 s
1D4096A 5 × 10−4 4096 20 2.0 6.8 0.46 0.53 s

1D256B 8 × 10−3 256 20 1.8 0 0.1 0.12 s
1D512B 8 × 10−3 512 20 1.8 0 0.1 0.13 s
1D1024B 8 × 10−3 1024 20 1.8 0 0.1 0.13 s
1D2048B 8 × 10−3 2048 20 1.9 0 0.1 1.7 s
1D4096B 8 × 10−3 4096 20 1.95 0.05 0.13 5.8 ns

1D256C 1 × 10−2 256 20 1.7 0 0.09 0.09 s
1D512C 1 × 10−2 512 20 1.8 0 0.09 0.09 s
1D1024C 1 × 10−2 1024 20 1.8 0 0.11 10.4 s
1D2048C 1 × 10−2 2048 20 1.8 0.11 0.13 9.3 ns

1D256D 1.5 × 10−2 256 20 1.5 0.7 0.2 24 s
1D512D 1.5 × 10−2 512 20 1.5 1.9 0.23 28 ns
1D1024D 1.5 × 10−2 1024 20 2.1 5.8 0.55 61 ns

1D256E 2 × 10−2 256 20 1.23 4.1 0.2 30 ns

Notes. Columns from left to right are: model ID, fX—dimensionless luminosity, Nr—numerical resolution in
radial direction, tf —final time of the simulation, 〈Ṁ〉t —time-averaged mass accretion rate, 〈χ〉—a ratio of cold
to hot mass accretion rate averaged over radii less than 1020 cm and simulation time (cold phase is any gas
with temperature T < 105 K), 〈τX,sc〉θ,t —angle and time-averaged optical depth, Max(τX,sc)—maximum optical
depth recorded during the simulation, and comments (s—reached a steady state solution at tf , ns—non-steady
state solution at tf ).

The 1D256C and D solutions differ mainly in the position
of the sonic point and in the fact that the model 1D256D
is strongly time dependent for a short period of time during
its initial evolution (see below). However, for the most part
the solutions share several common properties. In particular,
in both solutions, the gas is nearly in radiative equilibrium at
large radii, whereas at small radii (below r ≈ 2 × 1019 cm,
where T > 2 × 106 K) they depart from equilibrium quite
significantly. In the inner and supersonic parts of the solutions,
T scales with ξ as if gas was under constant pressure. At large
radii where the solutions are nearly in the radiative equilibrium,
the net heating/cooling is not exactly zero. One can identify, four
zones where either cooling or heating dominates. In the most
inner regions where the gas is supersonic, adiabatic heating is
very strong and the dominant radiative process is cooling by
free–free emission. At the outer radii, the cooling in lines and
heating by photoionization dominates. For models considered
in this paper, the Compton cooling is the least important.

Inspecting the bottom panels in Figure 1, one can suspect the
gas is in the middle section of the computational domain to be
thermally unstable because the slope of the T –ξ relation (in the
log–log scale) is larger than 1. Notice also that in both solutions
the entropy is a non-monotonic function of radius. The regions
where the entropy decreases with increasing radius correspond
to the regions where there is net heating and the Schwarzschild
criterion indicates convective instability at these radii. We
therefore conclude that both solutions could be unstable. We
first check the thermal stability of our solutions more formally.

4.2. Thermal Stability of Steady Accretion Flows

The linear analysis of the growth of thermal modes under
the radiative equilibrium conditions (L(ρ0, T0) = 0) has been

examined in detail by Field (1965; see the Appendix for basic
definitions). In Figure 2, in the top panels (left and right columns
correspond again to model 1D256C and D, respectively), we
show the radial profiles of various mode timescales. The
timescales, τ = 1/n, are calculated using definitions (A2)
and (A3). The growth timescale of short-wavelength, isobaric
condensations τTI = −1/Np is positive (thermally unstable
zone marked with the dotted line) in a limited radial range
between about 10 and 100 pc. The location of the thermally
unstable zone depends on the central source luminosity, and
it moves outward with increasing fX . The long-wavelength,
isochoric perturbations are damped, at all radii, on timescales
of τv = −1/Nv (faster than TI development). The short
wavelength nearly adiabatic, acoustic waves are damped as well,
and τac = −2/(Nv − Np). In Figure 2, the dashed line is the
accretion timescale τacc = r/v. Within the thermally unstable
zone, τTI is short compared with τacc, in both models.

Balbus (1986), Balbus & Soker (1989), and Mathews &
Bregman (1978; and also Krolik & London 1983) extended the
analysis by Field (1965) to spherical systems with gravity, in the
more general case of when initially the gas is not in the radiative
equilibrium. Their approximate solution gives the formula
for linear evolution of the short-wavelength, isobaric, radial
perturbation as it moves with smooth background accretion flow
(Equation (23) in Balbus 1986 or Equation (4.12) in Balbus &
Soker 1989). Since the two presented solutions are close to
radiative equilibrium, the approximate formula for the growth
of a co-moving perturbation given by Balbus & Soker (1989)
reduces to

δ(r) = δρ

ρ
= δs exp

(∫ rf

rs

−Np(r ′)
v(r ′)

dr ′
)

, (12)
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Figure 1. Structure of 1-D accretion flow in run 1D256C (left column,
fX = 1 × 10−2) and 1D256D (right column, fX = 1.5 × 10−2). Each panel
is a snapshot taken at t = 20 Myr. Panels from top to bottom show: density,
temperature with Mach number (Mach number scale is on the right-hand side),
heating/cooling rates, and entropy S. The dashed vertical line in top panels
marks the position of the sonic point. In the panel with heating/cooling rates,
the black solid line is a net heating/cooling and color lines indicate particular
physical process included in the calculations: Compton heating (red line),
photoionization heating (green line), bremsstrahlung cooling (magenta line),
and cooling through line emission (blue line). The bottom panels display the
gas temperature as a function of photoionization parameter; color lines indicate
gas in radiative equilibrium (red), constant pressure conditions (blue), and free-
fall compression (green).

(A color version of this figure is available in the online journal.)

where Np(r ′) is a locally computed growth rate of a short-
wavelength, isobaric perturbation as defined in the Appendix or
Field (1965), r ′ is radius where Np(r ′) < 0, and δs is an initial
amplitude of a perturbation at some starting radius r = rs . Using
Equation (12), the isobaric perturbation amplification factors
are δ/δs ≈ 1010, 1016, 1019, and 1033, for models 1D256A, B,
C, and D, respectively. Notice that these amplification factors
are calculated for the asymptotic, maximum physically allowed
growth rate, n = −Np, which might not be numerically
resolved.

To quantify the role of TI in our simulations, we ought to
address the following question. What is the minimum amplitude
and wavelength of a perturbation in our computer models? The
smallest amplitude variability is due to machine precision errors,
εmachine ≈ 10−15 (for a double float computations). The typical λ
of these numerical fluctuations are of the order of the numerical
resolution, Δri . The discretization of the computational domain
affects the TI growth rates in our models in two ways: (1)
the numerical grid refinement limits the size of the smallest
fragmentation that can be captured; and (2) the rate at which
the condensation grows in the numerical simulations depends
on number of points resolving a condensation. As shown
in the Appendix, the perturbation of a given λ has to be
resolved by 20 or more grid points. A wavelength λ0 for which
n = −0.9973 × Np is shown in Figure 3 together with Δri as a
function of radius for models with Nr = 256, 512, 1024, 2048,
and, 4096 grid points. In low-resolution models, we marginally
resolve λ0. We therefore expect the TI fragmentations to grow
slower than theoretical estimates. Reduction of the growth rate
due to these numerical effects even by a factor of a few is
enough to suppress variability because of the strong exponential
dependence.

Thermal mode evolution depends not only on the numerical
effects but also other processes affecting the flow. Figure 4
shows the comparison of timescales of physical processes
involved: the compression due to geometry of the inflow and
stretching due to accretion dynamics. We expect that any
eventual condensation formed from the smooth background
that leaves the thermally unstable zone, would accrete with
supersonic background velocity. From the continuity equation,
the co-moving density evolution is a balance of two terms
(1/ρ)(Dρ/Dt) = −2v/r − ∂v/∂r , i.e., the compression and
tidal stretching. The amplitude of condensation grows in regions
where there is compression due to geometry and decreases
in regions where fluid undergoes acceleration—it stretches
the perturbation. In the models 1D256D and C interior of
the TI zone, the evolution of the perturbation is dominated
by compression because the compression timescale is the
shortest.

4.3. Convective Stability of Steady Accretion Flows

In this subsection, we examine in more detail convective
stability of our solutions. In Figure 2 (middle panels), we
compare the accretion timescale τacc and the Brunt–Väisälä
timescale τBV = (1/ωBV) associated with the development
of convection. The frequency ωBV is defined as ω2

BV ≡
((−1/ρ)∂P/∂r)∂ ln S/dr . The convectively unstable regions
are marked as solid lines (ω2

BV > 0). The convectively un-
stable zones overlap with the thermally unstable zones. Since
τacc � τBV, convective motions might not develop, at least at
the linear stage of the development of TI.

In the bottom panels of Figure 2, we show the logarithmic
derivatives of d ln T/d ln ξ that could be used to graphically
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Figure 2. Left and right panels correspond, respectively, to runs 1D256C and D. Top panels show the instability growth rates in comparison to the accretion timescale
(τacc = r/v, dashed line). The timescale for the short-wavelength isobaric mode growth is displayed as the dotted line while the damping rate as solid line (τNp ). The
other two lines show the long-wavelength isochoric mode damping rate τNv (heavy line) and the effective acoustic waves damping timescale τNv (light line). Middle
panel: the dashed line is τacc and solid line is tBV = 1/ωBV, where ω2

BV > 0 is the Brunt–Väisälä oscillation frequency for a spherical system. Solid lines show the
regions that are convectively unstable. The dotted line indicates region where ω2

BV < 0 and oscillations are possible. Bottom panels: the derivative d ln T/d ln ξ as
a function of radius is shown as a solid line. (d ln T/d ln ξ )ad for an adiabatic inflow is marked as dotted line, and dashed line is the same derivative for radiative
equilibrium conditions. The horizontal line indicates slope of 1.

(A color version of this figure is available in the online journal.)

assess the stability of the flow. This can be done by comparing
the derivatives (the slopes of the ln T – ln ξ relation) for three
cases: model data (solid line where T and ξ are taken directly
from the simulations), purely adiabatic inflow (dotted line,
assuming that the velocity profile is same as in the numerical
solution), and radiative equilibrium conditions (dashed line).
In particular, the regions where the solid line is above the red
line correspond to the potentially thermally unstable zones. The
regions where the dotted line is below the solid line correspond
with the zone where the flow is potentially convectively unstable.
The conclusion regarding the flow stability is consistent with the
conclusion reached by analyzing the timescales shown in the top
and middle panels of Figure 2.

4.4. Other Physical Consequences of Radiative Heating
and Cooling-obscuration Effects

The growth of the TI leads to the development of dense cold
clouds (shells in 1-D models; e.g., variable phase in model
1D256D). The enhanced absorption in the dense condensations
may make them optically thick. Here, we check whether the
time-dependent models are self-consistent with our optically
thin assumption. Figure 5 shows the amount of energy absorbed
and emitted by the gas (heating and cooling rates integrated
over a volume at each time moment) in comparison to the
luminosity of the central source in models 1D256C and D.
Solid lines show the net rate of the energy exchange between
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Figure 3. Grid spacing (red solid lines) in models with Nr = 256, 512, 1024, 2048, and 4096 points and λ0 (black, dotted line) as a function of radius in models
1D256C (left panel) and D (right panel).

(A color version of this figure is available in the online journal.)

Figure 4. Timescales in 1D stationary models 1D256C (left panel) and 1D256D (right panel): accretion timescale (τacc, dashed line), compression timescale (τc , solid
line), tidal stretching timescale (τs , dot-dashed line), and condensation growth timescale (τTI, dotted line).

radiation and matter (cooling function L integrated over the
simulation volume) while dashed lines indicate the intrinsic
absorption and emission (heating and cooling terms used in L
are integrated independently). The net heating–cooling rate is
mostly much lower than unity, reflecting the fact that in the
steady state the gas is nearly in radiative equilibrium. During
a variable phase (part of model 1D256D), the energy absorbed
by the accretion flow (black solid line) becomes comparable to
the X-ray luminosity of the central BH. During this variable
phase, the optical thickness of accreting shells can increase up
to τX,sc ≈ 20 where the majority contribution to opacity is due
to photoionization absorption. The average optical thickness
increases in models with higher resolution, indicating that
the flow is more variable and condensations are denser. This
increase in optical depth is related to shells condensating much
faster in runs with higher resolutions. The dense condensations
falling toward the center could reduce the radiation flux in the
accretion flow at larger distances. It is beyond the scope of the
present paper to investigate the dependence of the flow dynamics
on the optical thickness effects and we leave it to the future study.

Significant X-ray absorption is related also to transfer of
momentum from the radiation field to the gas. To estimate the

importance of the momentum exchange between radiation and
matter, one can compute a relative radiation force:

fforce ≡ σsc + σX

σTH
fX, (13)

where σX is the energy averaged X-ray cross-section. The
momentum transfer is significant when fforce > 1. Using our
expression for the heating function due to X-ray photoionization
σX/σTH = HX/n/FX = 2.85 × 104ξ−3/4T −1/2 (see Section 2).
Even for a dense cold shell fforce is at most 0.1 (in case when
τmax ≈ 60). Therefore, radiation force is not likely to directly
launch an outflow. However, the situation may change when
optical effects are taken into account.

4.5. Ṁ Evolution

We end our presentation of 1-D results with a few comments
on the time evolution of the mass accretion rate, Ṁ . Figure 6
displays Ṁ versus time measured for all of our 1-D models.
One can divide the solutions into two subcategories: steady
and unsteady, where Ṁ varies from small fluctuations to large
changes. For a given fX , the time behavior of the solution depends
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Figure 5. Fraction of central illuminating source radiative energy intrinsically absorbed (upper panels) and emitted (bottom panels) by gas per second as a function
of time. We show the steady state solutions 1D256C and 1D256D in left and right panels, respectively. Solid lines show the net absorption/emission and dashed lines
indicate the intrinsic absorption and emission.

(A color version of this figure is available in the online journal.)

on the resolution, due to effects described above. In the variable
models, a fraction of the accretion proceeds in a form of a
cold phase defined as all gas with T < 105 K. Column 6 in
Table 1 shows the ratio of cold to hot mass accretion rates, χ ,
computed by averaging Ṁ’s over the radius and simulation time.
We average Ṁ’s over r < 100 pc because the cadence of our
data dumps is comparable to the dynamical timescale at 100 pc.
The larger the luminosity is, the more matter will be accreted
via the cold phase. However, the maximum value of χ is of the
order of a few, so the dominance of the cold gas is not too strong.

5. RESULTS: 2-D MODELS

5.1. Seeding the TI

To investigate the growth of instabilities in 2-D, we solve
Equations (1)–(3) for the same parameters MBH and fX as in
Section 4, but on a 2-D, axisymmetric grid with θ angle changing
from 0◦to 90◦. We use three sets of numerical resolutions
described in Section 3. To set initial conditions in axisymmetric
models, we copy the solutions found in 1-D models onto the 2-D
grid. In case of time-independent 1-D models, our starting point,
is the data from t = tf . We checked, for example, that the runs
2D256x64A, B, C, and D (which are 2-D version of models
1D256A, B, C, and, D) are time independent at all times as
expected. In the case of higher resolution models, for which the

1-D, steady state models do not exist, we adopt quasi-stationary
data from the 1-D run early evolution (at t of a fraction of
an Myr), during which the flow is already relaxed from its
initial conditions but the TI fluctuations are not yet developed.
Models that are time varying in 1-D, in 2-D develop dynamically
evolving spherical shells, as expected, also indicating that our
numerical code retains symmetry in higher dimensions.

To break the symmetry in 2-D models, we perturb the smooth
solutions adopted as initial conditions. The perturbation of a
smooth flow is seeded everywhere and has a small amplitude
randomly chosen from a uniform distribution. The new density
at each point is ρ = ρ0(1+Amp×rand), where rand is a random
number rand ∈ (−1, 1) and maximum amplitude Amp = 10−3.
To seed the isobaric, divergence free fluctuations other (than
ρ) hydrodynamical variables are left unchanged. The amplitude
magnitude Amp is chosen to be much higher in comparison with
εmachine, in order to investigate the development and evolution
of strongly nonlinear TI on relatively short timescales, starting
directly from a linear regime. The list of all perturbed, 2-D
models is given in Table 2.

5.2. Formation of Clouds, Filaments, and Rising Bubbles

For luminosities LX < 0.015 LEdd, the 2-D models show
similar properties to the 1-D models. The gas is thermally and
convectively unstable within the computational domain, and
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Figure 6. Mass accretion rate in 1-D solutions for fX = 0.0005, 0.08, 0.01, and 0.015. Different colors shows Ṁ for various number of grid points: Nr = 256 (blue),
512 (red), 1024 (green), 2048 (magenta), and 4096 (black).

(A color version of this figure is available in the online journal.)

Table 2
List of 2-D Solutions

Model ID fX Nr Nθ tf 〈Ṁ〉 〈fVol〉t 〈χ〉r,t 〈τX,sc〉θ,t Max Final State
(Myr) (M� yr−1) (τX,sc)

2D256x64A 5 × 10−4 256 64 20 2.0 1 × 10−6 0 0.45 0.46 Smooth

2D256x64B 8 × 10−3 256 64 15.4 2.04 1 × 10−6 10−6 0.1 0.99 Smooth
2D512x128B 8 × 10−3 512 128 20 1.95 1 × 10−4 0.02 0.11 4.7 Clouds
2D1024x256B 8 × 10−3 1024 256 1.83 1.84 1.5 × 10−3 0.39 0.19 24. Clouds

2D256x64C 1 × 10−2 256 64 11.8 1.94 7 × 10−5 0.15 0.11 2.5 Smooth
2D512x128C 1 × 10−2 512 128 20 1.88 5 × 10−4 0.09 0.13 17.3 Clouds
2D1024x256C 1 × 10−2 1024 256 1.12 1.95 4 × 10−3 0.5 0.24 70 Clouds

2D256x64D 1.5 × 10−2 256 64 12 1.57 5 × 10−3 0.3 0.14 37.8 Clouds
2D512x128D 1.5 × 10−2 512 128 11 1.6 3 × 10−3 0.43 0.12 13.2 Outflow, filaments

Notes. Columns from left to right are: model ID, fX—dimensionless luminosity, Nr, Nθ —numerical resolution in radial and tangential direction, tf —final time of the
simulation, 〈Ṁ〉t —time-averaged mass accretion rate, 〈fVol〉t —time-averaged volume filling factor, χ—a ratio of cold to hot mass accretion rate averaged over radii
less than 1020 cm and simulation time (cold phase is any gas with temperature T < 105 K), 〈τX,sc〉θ,t —angle and time-averaged optical depth, Max(τX,sc)—maximum
optical depth recorded during the simulation, and comments. In the beginning of all runs, the accretion flow becomes unsteady due to randomly seeded perturbations,
at tf the flow either returns to the original, unperturbed, smooth state (globally stable solutions), or remains unsteady with coexisting, two-phase medium (cold clouds
embedded in a warm gas). Only in one model a large-scale outflow forms (model 2D512x128D).
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Figure 7. Density, temperature, and velocity magnitude with velocity direction (left, middle, and right columns, respectively) in model 2D512x128D at t = 3, 6, and
12 Myr (upper, middle, and bottom rows, respectively). Each panel shows inner parts of the flow at r � 100 pc.

(A color version of this figure is available in the online journal.)

we observe that very tiny fluctuations in an initially smooth,
spherically symmetric, accretion flow grow first linearly and
then nonlinearly. Since the symmetry is broken, the cold phase
of accretion forms many small clouds. For LX = 0.015 LEdd or
higher, the cold clouds continue to accrete but in some regions
a hot phase of the gas starts to move outward.

In Figure 7, we show three snapshots of representative 2-D
model 2D512x128D at various times (t = 3, 6, and 11.8 Myr).
This model has the best resolution and the highest luminosity
for which we are able to start the evolution from nearly steady
state conditions. Columns from left to right show density,
temperature, and total gas velocity overplotted with the arrows
indicating the direction of flow. Initially (at t = 3 Myr), the
smooth accretion flow fragments into many clouds, which are
randomly distributed in space. The cooler, denser regions are
embedded in a warm background medium. The colder clouds
are stretched in the radial direction and they have varying sizes.
This initial phase of the evolution is common for all models in
Table 2.

The phase where many cold clouds accrete along with the
warm background inflow is transient. At a later stage (t = 6 Myr,
middle panels), model 2D512x128D shows a systematic outflow

in the form of rising, hot bubbles. The outflow is caused by
the pressure imbalance between the cold and hot matter and
buoyancy forces. The hot bubbles expand at speeds of a few
hundred km s−1. Despite the outflow, the accretion is still
possible. During the rising bubble phase, the smaller clouds
merge and sink toward the inner boundary as streams/filaments.
However, even this phase is relatively short lived. The bottom
panels in Figure 7 show the later phase of evolution when
some of the filaments occasionally break into many clouds
(this process takes place between 10 and 50 pc). These “second
generation” clouds occasionally flow out together with a hot
bubble. Along the X-axis, we see an inflow of a dense filament.

To quantify the properties of clumpy accretion flow, we
measure the volume filling factor of a cold gas fvol, defined
as

fVol = Vcloud/Vtot, (14)

where Vcloud is the volume occupied by gas of T < 105 K, and
Vtot is the total volume of the computational domain. In model
2D512x128D, the time-averaged fVol is 〈fVol〉 = 3 × 10−3.
The time evolution of fvol within 60 pc is shown in Figure 8
(black, solid line). The fVol is variable and at the moment of the
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Figure 8. Evolution of the volume filling factor fvol in models 2D512x128D
(black, solid line) and 2D256x64D (dashed, blue line).

(A color version of this figure is available in the online journal.)

outflow formation, fVol suddenly decreases by a factor of about
four. For comparison, fVol calculated during run 2D256x64D
is also shown (blue, dashed line). Run 2D256x64D has the
same physical parameters as 2D512x128D, however, no outflow
forms. In the latter case, fvol is less variable and larger. In
Table 2, we gather the time-averaged 〈fVol〉 for all 2-D solutions.
Measuring fVol allows us to quantify whether the perturbed
accretion flow returns to its original, smooth state. We find
that this happens when the 〈fVol〉 ≈ 10−5 or smaller (models
2D256x64A, B, and C).

5.3. Ṁ Evolution

Figure 9 presents Ṁ through the inner boundary measured as
a function of time. In most cases (except model 2D256x64A),
Ṁ becomes stochastic instantly, with spikes corresponding to
the accretion of colder but denser clouds similar to those in
Figure 7 (upper panels). Similar to 1-D models, one can divide
the solution into two types: steady and unsteady state. In the
latter, Ṁ fluctuates on various levels depending on fX .

Table 2 lists several characteristics of our 2-D simulations,
for example, the ratio 〈χ〉t averaged over time. In 2-D models,
this variable is smaller in comparison with 1-D due to the
geometry of the clouds. The maximum value of 〈χ〉t is less than
unity. This indicates that multi-dimensional effects (specifically
development of convection) promote hot phases accretions. We
plan to investigate this issue in the future by carrying out
3-D simulations.

We find that a large-scale outflow forms only in run
2D512x128D. But even in this case, the Ṁ is not significantly
affected by the outflow. Figure 10 shows the mass outflow rate
(dashed line), inflow rate (dotted lines), and total mass flow rate
(solid line) as a function of radius. The same types of lines show
Ṁ for various times of the simulation (t = 3, 6, and 11.8 Myr,
green, blue, and black lines, respectively) and they are averaged
over θ angle. The rising bubble originates at about 10 pc in
this case. We anticipate that large-scale outflow is common and
significant for high luminosity cases (i.e., for fX > 0.02).

5.4. Obscuration Effects

Here, we again check whether the cloud opacity might af-
fect our results. The averaged optical thickness of the fila-
ments and clouds is similar (see Table 2, Columns 8 and 9). In
Figure 11, we show how much energy is absorbed and emit-
ted in run 2D512x128D during the evolution. The figure shows
the intrinsic absorption and emission integrated over the en-
tire computational domain. We next calculate 〈τX,cs〉 (optical
thickness due to absorption, averaged over angles and times)
and the maximum value of τX,cs that occurred during the evo-
lution. In the case of the largest optical depth of τ ≈ 70 (in
run 2D1024x256C), the radiation force coefficient from Equa-
tion (13): fforce ≈ 0.2 which, as in 1-D models, is small but
might not be negligible. Therefore, we are planning to explore
the effects of optical depth in a follow-up paper.

6. SUMMARY AND DISCUSSIONS

In this work, we show the evolution of TIs in gas accreting
onto an SMBH in an AGN. A simplified assumption made in
this work—in particular, constant X-ray luminosity emitted near
the central SMBH regardless of the Ṁ—allows us to follow the
development of TI from the linear to strongly nonlinear and
dynamical stage up to luminosities of L ≈ 1.5 × 10−2 LEdd.

In our 1-D models, the TI is seeded by numerical errors
that might be non-isobaric and are initially underresolved. In
the initial phase, the TI growth rate is smaller than predicted
by theory. The rate is affected by grid resolution, which leads
to the formation of cold clouds of various sizes and density
contrasts. This is reflected in the mass accretion rate fluctuating
at different amplitude and rate for the same physical conditions
but different resolutions. One cannot avoid dealing with these
numerical difficulties in the numerical models. Nevertheless,
we find the underresolved, 1-D models very useful in quickly
checking where the thermally unstable zone exists and what
type of fluctuation could cause the smooth to turn into a two-
phase medium. For given physical conditions, Figure 3 shows
the wavelength λ0 and Equation (12) gives the amplitude of an
isobaric perturbation required to break the smooth flow into a
two-phase, time-dependent model.

In 2-D models, although the models depend on the resolution
effects in the same way as in 1-D setup, we can observe an
outflow formation. The convectively unstable gas buoyantly
rises and, as found in this work, controls the later evolution
of the two-phase medium and mass accretion rate. Given a
simple setup with a minimum number of processes included, our
models display the three major features needed to explain some
of the AGN observations: cold inflow, hot outflow, and cold,
dense clouds that occasionally escape and advected with the hot
wind. We show that an accretion flow at late, nonlinear stages,
thus most relevant to observations, is dominated by buoyancy
instability not TI. This suggests that the numerical resolution
might not have to be as high as that needed to capture the small-
scale TI modes and it is sufficient to capture significantly larger
and slower buoyancy modes. We plan to check the consistency
of the models with the observations by calculating the synthetic
spectra, including emission and absorption lines based on our
simulation following an approach like the one in Sim et al.
(2012). Here, we only briefly comment on the main outflow
properties and compare them some observations of outflows in
Seyfert galaxies.

The Space Telescope Imaging Spectrograph on board the
Hubble Space Telescope allows us to map the kinematics of the
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Figure 9. Mass accretion rate in 2-D models with initially seeded random perturbations. Various colors code the Ṁ in models calculated with various grid resolutions:
2D256x64 (blue), 512x128 (red), and 1024x256 (green). Results are sensitive to the resolution same as in 1-D models.

(A color version of this figure is available in the online journal.)

NLRs in some nearby Seyfert Galaxies (e.g., for NGC 4151,
Das et al. 2005; NGC 1068, Das et al. 2006; Mrk 3, Crenshaw
et al. 2010; Mrk 573, Fischer et al. 2010; Mrk 78, Fischer
et al. 2011). Position-dependent spectra in [O iii] λ5007 and Hα

λ6563, and the measurements of the outflow velocity profiles
show the following general trend: the outflow has a conical
geometry and the [O iii] emitting gas accelerates linearly up to
some radius and then decelerates. The velocities typically reach
up to about 1000 km s−1 and a turnover radius is on one hundred
to a few hundred parsec scales.

To compare our results with the observations, Figure 12 shows
the radial velocity of hot and cold gas versus the radius at t =
11.8 Myr for model 2D512x128D (the data correspond to a
snapshot shown in the right panels in Figure 7). We reiterate
that our model is quite simplified (e.g., no gas rotation) and
the outer radius is relatively small (i.e., 200 pc). Therefore, our
comparison is only illustrative.

We find that the hot outflow originates at around 10 pc and
accelerates up to about vmax ≈ 200 km s−1, which is comparable
to the escape velocity from 10 pc, vesc = 314 km s−1. At larger
distances, r = 100–200 pc, we see a signature of deceleration
that is consistent with the observations of Seyferts outflows.
We note that the geometry of the simulated flow is affected by
our treatment of the boundaries of the computational domain,
specifically along the pole and the equator where we use
reflection boundary conditions (see Section 3).

The scatter plot also indicates that the cold clouds ap-
pear at about 20–80 pc. Their maximum velocity is about

Figure 10. Model 2D512x128D: in-, out-, and total mass flow rate as a function
of radius for three time moments shown in Figure 7 (green, blue, and black
correspond to t = 3, 6, and 11.8 Myr). The solid lines mark the inflow rates
while the dashed lines mark outflow rates. The dotted line is the total mass flow.

(A color version of this figure is available in the online journal.)
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(A color version of this figure is available in the online journal.)

vmax = 100 km s−1, which is smaller than the velocity of the
hot outflow. The plot does not show a clear indication of a linear
acceleration of the outflowing cold gas. However, it is possible
that the cold clouds, seen in this snapshot, will continue to be
dragged by the hot outflow and eventually will reach higher
velocities.

We also measured the column density of the hot and cold
gas for the same, representative, snapshot at t = 11.8 Myr.
The typical column densities vary with the observer inclination,
NH = 5 × 1022–1024 cm2 for gas T > 105 K, and NH =
1020–1023 cm2 for gas with T < 105 K. This is roughly
consistent with column densities estimated from observations
of AGNs (e.g., for NGC 1068 NH = 1019–1021 cm2; Das et al.
2007 and references therein).

Our results are similar in many respects, to the previous
findings presented in Barai et al. (2012), i.e., the accretion
evolution depends on fX luminosity; we also observe clouds,
filaments, and outflow. The outflow appears at fX = 0.015,
which is consistent with fX = 0.02 found by Barai et al. (2012).
Here, we are able to calculate models for about 10 times longer
in comparison to 3-D SPH models. We confirm the previous
results that the cold phase of accretion rate can be only a few
times larger in comparison to the hot one.

Similar models have been investigated in the past by, e.g.,
Krolik & London (1983). Our work is on one hand a simplified
and on the other hand an extended version of these previous
works. The key extension here is that our new results cover the
nonlinear phase of the evolution. There are two new conclusions
added by our analysis to the previous investigations. The 2-D
models with outflows are possibly governed by other than
TI instabilities, mainly convection. Another nonlinear effect
found in our 1-D and 2-D models is that the fragmentation
of the flow makes it optically thick for photoionization. Further
investigation of shadowing effects is required.

Some sub-resolution models of AGN feedback in galaxy
formation (Di Matteo et al. 2008; Dubois et al. 2010; Lusso
& Ciotti 2011) assume that BH accretion is dominated by
an unresolved cold phase, in order to boost up the accretion
rate obtained in simulations. Our results indicate that the cold
phase accretion is unlikely dominant as even in well-developed
and well-resolved multi-phase cases, the accretion is typically
dominated by a hot phase. However, we note that the cold
phase of our solution might be an upper branch of some more
complicated multi-phase medium (i.e., a mixture of molecular,
atomic, and dusty gas).

This work was intentionally focused on a very limited number
of processes and effects. Its results suggest that the future work
should include a more self-consistent approach not only with
shadowing effects but also with the radiation force. Our next
step would be to investigate the non-axisymmetric effects via
fully 3-D simulations. The latter is challenging and one may not
be able to see very fine details of the gas dynamics as in 2-D
models due to resolution effects.
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Stone, and S. Balbus for discussions and also the Department of
Astrophysical Sciences, Princeton University for its hospitality
during his sabbatical. D.P. also acknowledges the UNLV sabbat-
ical assistance. Authors thank Paramita Barai, Ken Nagamine,
and Ryuichi Kurosawa for their comments on the manuscript.

APPENDIX

GROWTH RATE OF A CONDENSATION MODE IN A
UNIFORM MEDIUM—CODE TESTS

Field (1965) formulated a linear stability analysis of a gas
in thermal and dynamical equilibrium. Here, we briefly recall
his most important equations for our analysis. We disregard the
thermal conduction effects. The dispersion relation derived from
linearized local fluid equations with heating/cooling described
by the L function and perturbed by a periodic, small amplitude
wave given by exp(nt + ikx), is

n3 + Nvn
2 + k2c2

s n + Npk2c2
s = 0, (A1)

where k is the perturbation wave number (k = 2π/λ) and
functions Np and Nv are defined as

Np ≡ 1

cp

(
∂L
∂T

)∣∣∣∣
P

(A2)

and

Nv ≡ 1

cv

(
∂L
∂T

)∣∣∣∣
ρ

(A3)

with cp and cv being the specific heats under constant pressure
and constant volume conditions, respectively, and T is the gas
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Figure 12. Scatter plot of radial velocity of hot the (T > 105 K, smaller red
symbols) and cold (T < 105 K, larger blue symbols) phase of the flow in model
2D512x128D at t = 11.8 Myr (model shown in bottom panels in Figure 7).

(A color version of this figure is available in the online journal.)

temperature. The vertical line means that the derivative is taken
under constant thermodynamical variable condition. Dispersion
Equation (A1) has three roots. In a short-wavelength regime
(λ � 2πNp/cs), two, complex roots correspond to two conjunct
nearly adiabatic sound waves and a third, real one is an isobaric
condensation mode (the gas density and temperature change
in anti-phase so that the pressure remains constant). The sign

of the real part of the root gives the stability criterion. The
sound wave will grow if ∂L/∂T |S < 0 (known as Parker’s
criterion; Parker 1953). The condensation mode will grow
if ∂L/∂T |P < 0 (Field’s criterion). In a short-wavelength
limit, the growth rates asymptote to n = −0.5(Nv − Np)
(for sound waves) and n = −Np (for condensation modes).
Isochoric modes (n → −Nv) and effective acoustic waves are
eigenmodes of long-wavelength perturbations. The perturbation
growth/damp timescale is τTI = 1/n.

We use the above Field (1965) theory to show that our
numerical scheme for solving the modified energy conservation
equation (Equation (3)) together with two other fluid dynamics
equations is accurate. The test calculations are carried out
in 1-D Cartesian coordinates within x ∈ (0, L) range where
L is the size of the computational domain in dimensionless
units. The boundary conditions for all variables are periodic.
In an unperturbed state, the gas density (ρ0 = 1) and internal
energy density (e0 = 1) are constant in the entire computational
domain. The velocity of the gas is set to zero. We assume that
the gas is heated by an external source of radiation and cools
due to free–free transitions. The test cooling function is simple:

L = CρT 1/2 − H. (A4)

The normalization constants H (for heating) and C (for cooling)
are set so that in the unperturbed state the gas is in radiative
equilibrium, i.e., L(ρ0, e0) = 0. In this test, the functions Np
and Nv have explicit, analytical forms

Np ≡ 1

cp

(
∂L
∂T

)∣∣∣∣
P

≡ 1

cp

(
∂L
∂T

∣∣∣∣
ρ

− ρ

T

∂L
∂ρ

∣∣∣∣
T

)

= − 1

2cp

Cρ0T
−1/2

0 (A5)

Figure 13. Left panel: analytical (solid line; third root of Equation (A1)) and numerical (points; calculated with ZEUS-MP) linear growth rates of an eigenmode with
wavelength λ. The initial amplitude of a perturbation is A = 10−3. The numerical solution uses Nx = 64 grid points. Right panel: the condensation mode (density
profile) with λ = 0.1L shown at t = 10T (where T here is a sound crossing time over the computational domain L = 1) when it is resolved by 4, 8, and 16 points. The
dotted line shows the very high resolution of 1600 points for which the condensation mode grows at the expected theoretical rate. Here, the growth rate is as expected
when resolved by at least with 16 points. For lower resolutions, the condensations grow slower than one would expect.

(A color version of this figure is available in the online journal.)
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and

Nv ≡ 1

cv

(
∂L
∂T

)∣∣∣∣
ρ

= 1

2cv

Cρ0T
−1/2

0 = −γNp. (A6)

The numerical values of limiting growth/damp rates are Np =
−0.04, and Nv = 0.067, while the speed of sound is c2

s = 1.11
(γ = 5/3). The domain sound crossing time is much shorter
than the perturbation growth timescale, which allows us to keep
the pressure constant.

Our numerical scheme implemented into the ZEUS-MP
code correctly reproduces the expected growth rates of small
amplitude perturbation of the uniform medium. The perturbation
is an eigenmode of TI, and its properties depend on the
assumed λ. Eigenmodes are realized by first applying a cosine
perturbation to the gas density ρ = ρ0 + Aρ0 cos(kx) and
calculating profiles of e and v from, e.g., Equations (11) and (14)
in Field (1965), for a given k and corresponding theoretical value
of n (given by Equation (A1)). Next, we measure how fast the
perturbation grows while it is in the linear regime. Figure 13 (left
panel) shows the analytical solution of the theoretical dispersion
relation n(λ) (solid line, third root of Equation (A1)), and the
numerical growth rates calculated with ZEUS-MP (points). For
very short λ’s the eigenmode of this root is converging to the
isobaric condensation mode and grows at n = −Np rate, as
expected. The long λ modes grow slower in comparison to the
very short λ condensations, as predicted by theory. For relatively
large λ, the third root changes into an effective acoustic wave,
and it becomes complex with the real part negative meaning
that the waves are damped (see Shu 1992, Equation (41) in the
Problem Set No. 3).

In the second test, we measure the growth rate of a conden-
sation mode that has a finite size (i.e., smaller than the domain
length). We are interested in how many numerical grid points are
required to resolve the correct n. We set λ = 0.1 while L = 1.
Figure 13 (right panel) shows the same time snapshots of the
growing condensation mode density, calculated with various
numerical resolutions. Models with lower resolution evolve
slower. When λ resolved with 16 points it starts converg-

ing to the right solution. We conclude that about 20 or
more grid points per λ are required to resolve the isobaric
condensation.
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