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ABSTRACT

Focused particle transport in a nonuniform large-scale magnetic field is investigated numerically in the case of
isotropic pitch-angle scattering. Evolving particle density profiles and distribution moments are computed from
solutions of a system of stochastic differential equations, equivalent to the original Fokker–Planck equation for
the particle distribution. Conflicting analytical predictions for the transport coefficients in the diffusion limit,
independently calculated by Beeck & Wibberenz and Shalchi, are compared with the numerical results. The
reasons for the discrepancies among the analytical and numerical treatments, as well as the general limitations
of the diffusion model, are discussed. The telegraph equation, derived in a higher-order expansion of the particle
distribution function, is shown to describe the particle transport much more accurately than the diffusion model,
especially ahead of a moving density pulse.
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1. INTRODUCTION

Cosmic-ray transport in turbulent cosmic magnetic fields
is often investigated using the Fokker–Planck equation (e.g.,
Schlickeiser 2011 and references therein). When the parti-
cle pitch-angle distribution is nearly isotropic, a perturbed
Fokker–Planck equation can be integrated over the pitch an-
gle, yielding a simpler diffusion equation for the particle
density (Jokipii 1966; Hasselmann & Wibberenz 1968). The
diffusion approximation should be valid as long as the scale of
density variation is significantly larger than the particle mean
free path. Hasselmann & Wibberenz (1970) derived a theoreti-
cal expression for the coefficient of spatial diffusion κ‖ parallel
to a constant mean magnetic field. The value of κ‖ was shown
to be determined by an appropriate average of the pitch-angle
scattering coefficient in the Fokker–Planck equation. Numeri-
cal studies confirmed the accuracy of the theoretical predictions
based on the diffusion approximation (Kóta et al. 1982).

The original formulation of the diffusion approximation
neglected the adiabatic focusing effect due to a spatially varying
mean magnetic field. Large-scale magnetic fields, however, are
often nonuniform in space plasmas. Unless the particle mean
free path is negligibly small compared with the magnetic field
length scale, adiabatic focusing should strongly modify the
particle transport parallel to the field (Roelof 1969; Earl 1976;
Kunstmann 1979).

Focused transport equations have been used extensively to
model the propagation of energetic particles in interplanetary
space following large solar flares (e.g., Bieber et al. 2002;
Sáiz et al. 2008; Dröge et al. 2010). Notably, Artmann et al.
(2011) employed a focused diffusion model to interpret the
flare electron spectra obtained with the Wind spacecraft. Tautz
et al. (2012) list several other applications of focused particle
transport in astrophysics.

Beeck & Wibberenz (1986) derived the diffusion approxi-
mation taking into account adiabatic focusing (see also Earl
1981). Adiabatic focusing both modifies the parallel diffu-
sion coefficient κ‖ and causes coherent streaming of cosmic-
ray particles, quantified by the coherent speed u. Litvinenko

(2012a, 2012b) revisited and generalized the diffusive limit of
focused particle transport by analyzing a system of stochastic
differential equations equivalent to the Fokker–Planck equation.
Litvinenko (2012b) concluded that, in the limit of vanishing
magnetic helicity, the resulting expressions for κ‖ and u were
those in Beeck & Wibberenz (1986). Independently, Shalchi
(2011) proposed a new method for calculating κ‖, based on the
Kubo (1957) formalism. Shalchi (2011) obtained a formula for
κ‖, which disagreed with the expression in Beeck & Wibberenz
(1986) except in the limit of a constant mean magnetic field.

Concrete values of transport coefficients are of obvious im-
portance in applications. To evaluate the validity of the con-
flicting theoretical results, we present in this paper numerical
solutions of the Fokker–Planck equation. We compute the de-
pendence of the solutions on the strength of adiabatic focusing,
measured by a focusing length L, and we compare the numerical
results with the theoretical predictions of the diffusion approxi-
mation. In order to emphasize the essential points of the analysis,
throughout the paper we consider the Fokker–Planck equation
with isotropic pitch-angle scattering, in which case the theo-
retical formulas for the transport coefficients are particularly
simple. It would be straightforward to incorporate the effects
of non-isotropic scattering, using, e.g., the transport equations
in Litvinenko (2012b). Our goal, however, is to emphasize the
general limitations of the diffusion model, and so we choose to
work with the simplest physically meaningful model.

2. ANALYTICAL ARGUMENTS

2.1. Theoretical Description of Focused Transport

The Fokker–Planck equation for a cosmic-ray distribution
function, which incorporates the effects of pitch-angle scattering
and adiabatic focusing, is given by

∂f0

∂t
+ μv

∂f0

∂z
+

v

2L
(1 − μ2)

∂f0

∂μ
= ∂

∂μ

(
Dμμ

∂f0

∂μ

)
(1)

(e.g., Roelof 1969; Earl 1981). Here f0 is the distribution
function of energetic particles (gyrotropic phase-space density),
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t is time, μ is the cosine of the particle pitch angle, v is the
particle speed, z is the distance along the mean magnetic field
B0, L = −B0/(∂B0/∂z) is the adiabatic focusing length, and
Dμμ is the Fokker–Planck coefficient for pitch-angle scattering.
For simplicity, momentum diffusion is neglected. In practice,
momentum diffusion can be neglected for the transport of solar
energetic particles in interplanetary space (Artmann et al. 2011).

As a concrete illustration, throughout this paper we assume a
constant focusing length, L = const, and isotropic pitch-angle
scattering:

Dμμ = D0(1 − μ2), (2)

where D0 = const. An exact steady solution of Equation (1) is
then given by

f0(μ, z) = const exp

(
μv

2D0L
− z

L

)
(3)

(Kunstmann 1979; Roelof 1969). Physical regimes leading to
isotropic pitch-angle scattering have been analyzed by Shalchi
et al. (2009).

Numerical studies of particle transport often employ the fact
that a system of stochastic differential equations contains the
same information about the evolution of the particle distribution
as the Fokker–Planck equation (e.g., Fichtner et al. 1996; Zhang
1999; Pei et al. 2010; Dröge et al. 2010; Strauss et al. 2011).
In particular, standard application of the Itô calculus (e.g.,
Litvinenko 2012a) shows that Equation (1) in the case of
isotropic pitch-angle scattering and L = const is completely
equivalent to the system

dz = μvdt, (4)

dμ =
[ v

2L
(1 − μ2) − 2D0μ

]
dt +

√
2D0(1 − μ2)dW, (5)

where W (t) represents a Wiener process with zero mean and
variance t (Gardiner 2009).

2.2. The Diffusion Approximation

If the time-dependent angular distribution of energetic parti-
cles remains close to that of the exact Equation (3), integration
of a perturbed Fokker–Planck equation over μ leads to the dif-
fusion approximation for the evolution of the particle density.
As shown by Beeck & Wibberenz (1986), the resulting equation
for the isotropic linear density

F (z, t) = 1

2

∫ 1

−1
ez/Lf0dμ (6)

is as follows:
∂F

∂t
+ u

∂F

∂z
= κ‖

∂2F

∂z2
. (7)

In Equation (7),

u = κ‖
L

(8)

is the coherent speed, and κ‖ is the parallel diffusion coefficient.
Because this mode of particle transport comprises both coherent
streaming and diffusion, Earl (1981) called it pseudo-diffusion.

Note for clarity that the sign of the convective term in
Equation (7) is different from that in Equation (17) in Beeck
& Wibberenz (1986). This is because Beeck & Wibberenz
(1986) used the phase-space density, whereas Equation (7)

is written for the linear density, defined as the number of
particles per line of force per unit distance parallel to B0. The
two descriptions are mathematically equivalent (Earl 1981).
Because the mean magnetic field is proportional to exp(−z/L),
the cross-sectional area of a flux tube scales as exp(z/L),
and so the particle conservation is conveniently expressed as
N (t) = 2

∫
Fdz = const.

Clearly κ‖ is the key parameter controlling the particle
transport. Beeck & Wibberenz (1986) derived an expression
for κ‖ in terms of the pitch-angle scattering rate Dμμ and the
focusing length L. In the limit L → ∞, the expression for
κ‖ reduces to that in Hasselmann & Wibberenz (1970). When
scattering is isotropic, Equation (14) in Beeck & Wibberenz
(1986) yields

κ‖,BW = λ0v

(
coth ξ

ξ
− 1

ξ 2

)
, (9)

where ξ = λ0/L is the focusing parameter, and

λ0 = 3v

8

∫ 1

−1

(1 − μ2)2

Dμμ

dμ = v

2D0
(10)

is the scattering mean free path in the absence of focusing
(e.g., Equation (3) in Beeck & Wibberenz (1986)). By contrast,
a recent calculation by Shalchi (2011) leads to a different
expression for κ‖ = λv/3. Equation (33) for the scattering
length λ in Shalchi (2011) yields

κ‖,S = λ0v

(
1

ξ 2
− tanh ξ

ξ 3

)
. (11)

Clearly the two expressions for the parallel diffusion coefficient
are contradictory, except in the limit of no focusing, ξ → 0,
when both expressions yield

κ‖,0 = 1

3
λ0v = v2

6D0
. (12)

Shalchi (2011) did not discuss the earlier calculations by Earl
(1981) and Beeck & Wibberenz (1986).

Since the diffusion approximation is the standard approxi-
mation for studying the cosmic-ray transport (e.g., Kóta et al.
1982; Schlickeiser & Shalchi 2008; Artmann et al. 2011), the
discrepancy between κ‖,BW and κ‖,S is troubling. To evaluate the
validity of the conflicting theoretical results, below we present
numerical solutions of the Fokker–Planck equation. We com-
pute an evolving spatial density profile F(z, t) and compare the
numerical results with the theoretical predictions of the diffusion
approximation. We also investigate the predicted and computed
dependencies of the solutions on the focusing parameter ξ .

The validity of the diffusion approximation usually requires
that the focusing be sufficiently weak, say ξ < 1. Both
expressions for the parallel diffusion coefficient, however, are
formally valid for an arbitrary ξ . In the next section, we
determine the dependence of our numerical results on the
focusing strength in a sufficiently wide range 0 � ξ � 2,
which simplifies the comparison of the numerical and analytical
results.

3. NUMERICAL RESULTS

3.1. Stochastic Simulations

We solved the Fokker–Planck Equation (1) for a range
of focusing strengths and time intervals by integrating the
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Figure 1. Analytical prediction (solid curve) and numerical results (histogram)
for the density profile F(z, t) at t = 8 in a uniform mean magnetic field (ξ = 0).
The numerical results are obtained by solving Equations (15) and (16) with 106

particles and time step Δt = 0.004.

stochastic differential Equations (4) and (5). We introduced
dimensionless variables by measuring distances in units of the
mean free path λ0 = v/2D0, speeds in units of the constant
particle speed v, and times in units of λ0/v = 1/2D0. The
dimensionless stochastic equations are as follows:

dz = μdt, (13)

dμ =
[

1

2
ξ (1 − μ2) − μ

]
dt +

√
1 − μ2dW, (14)

where we used the identity W (a2t) = aW (t). The only
parameter of the simulation is the dimensionless focusing
strength ξ that we vary in the range 0 � ξ � 2. The parallel
diffusion coefficients are normalized by λ0v = v2/2D0, which
gives the dimensionless κ‖,0 = 1/3 in a uniform mean magnetic
field (ξ = 0).

The stochastic equations are more convenient to work
with than the original Fokker–Planck equation. We solve
Equations (13) and (14) using the Milstein approximation
scheme:

zt+Δt = zt + μtΔt, (15)

μt+Δt = μt +

[
1

2
ξ
(
1 − μ2

t

) − μt

]
Δt +

√
Δt

(
1 − μ2

t

)
εt

− 1

2
μtΔt

(
ε2
t − 1

)
, (16)

where εt is a normal random variable with mean zero and
variance unity (Kloeden & Platen 1999). Particles are reflected
at μ = ±1 to conserve probability at these boundaries. Most
conveniently, particle distribution moments are obtained simply
by evaluating the appropriate sample moments from the particle
simulations.

3.2. Evolving Particle Distributions

The numerical results described in this section correspond to
a delta-functional initial distribution in position and isotropic
pitch-angle distribution, f0(μ, z, t = 0) = δ(z). (A normal-
ization constant is not significant since the original differential
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Figure 2. Analytical predictions and numerical results (histogram) for the
density profile F(z, t) at t = 8 with strong focusing (ξ = 1.5). The numerical
results are obtained by solving Equations (15) and (16) with 106 particles
and time step Δt = 0.004. The analytical moving-pulse profiles, given by
Equation (17), are based on the models of Beeck & Wibberenz (1986; solid
curve) and Shalchi (2011; dashed curve).

equation is linear.) We also verified that an anisotropic distribu-
tion at t = 0 does not alter the numerical results after a brief
transitional period.

We calculated time-dependent density profiles F(z, t) by
binning the particles with any pitch-angle cosine μ in a given
position interval between z and z + Δz, and we compared
the resulting density profiles with the theoretical predictions
of the diffusion approximation. Specifically, the solution of
Equation (7) with a delta-functional initial condition is given
by a moving pulse

F (z, t) = 1

(4πκ‖t)1/2
exp

[
− (z − ut)2

4κ‖t

]
, (17)

where the parameters u and κ‖ are defined by Equation (8), and
either Equation (9) or Equation (11) in dimensionless form.

The transport coefficients calculated by Beeck & Wibberenz
(1986) and by Shalchi (2011) coincide in the case of no focusing,
when ξ = 0, κ‖,0 = 1/3 and u = 0. Figure 1 shows an excellent
agreement between the analytical solution of Equation (17)
(black curve) and numerical results (histogram) in the case of
no focusing at time t = 8. The numerical results are obtained
by solving Equations (15) and (16) with 106 particles and time
step Δt = 0.004. The close agreement reinforces the results
of the earlier numerical studies of diffusive particle transport,
performed by Kóta et al. (1982). We also confirmed that the
diffusion approximation remains accurate at t = 15.

Figure 2 shows the snapshot of a moving density pulse in
the case of strong focusing, ξ = 1.5. The numerical results
(histogram) are obtained by solving Equations (15) and (16)
with 106 particles and time step Δt = 0.004. Interesting
differences among the analytical and numerical profiles emerge.
The diffusive transport model of Beeck & Wibberenz (1986)
(solid curve) clearly predicts the location z = ut of the peak of
the pulse better than the model of Shalchi (2011; dashed curve).
The model of Beeck & Wibberenz (1986) also reproduces the
density profile for z < ut quite well, whereas the profile
based on the model of Shalchi (2011) cannot reproduce the
numerically obtained profile, even if the theoretical profile is
shifted to the right to match the density peak. We confirmed that
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Figure 3. Dimensionless mean speed d〈z〉/dt = 〈μ〉 as a function of time.
For each value of time, 〈μ〉 is computed using the mean pitch-angle cosine of
106 particles. The dimensionless mean speed 〈μ〉 is plotted for ξ = 0 (points),
ξ = 0.5 (crosses), and ξ = 1 (asterisks). The transitional period of a few
scattering times corresponds to the relaxation of the angular distribution to a
steady distribution (see Figure 4).
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Figure 4. Angular particle distributions computed using 106 particle simulations
with ξ = 0.5: the initial uniform distribution (black histogram), the distribution
at t = 2 (blue histogram), and the distribution at t = 8 (red histogram). The
black curve is the exact steady solution h(μ) = A exp(ξμ) from Equation (3),
where the normalization constant is A = ξ/2 sinh(ξ ).

(A color version of this figure is available in the online journal.)

the results are similar for other values of ξ > 0 at t = 8, as well
as at t = 15.

Figure 3 presents the dimensionless mean speed, computed
from the averaged Equation (13), d〈z〉/dt = 〈μ〉, against time.
For each value of time we approximate 〈μ〉 using the mean
pitch-angle cosine of 106 particles. The dimensionless mean
speed 〈μ〉 is plotted for ξ = 0 (points), ξ = 0.5 (crosses), and
ξ = 1 (asterisks). In all cases, a constant value of 〈μ〉 is reached
after a transitional period of a few scattering times.

The transitional period corresponds to the relaxation of
the angular part of the distribution function f0(μ, z, t) to a
steady distribution. Figure 4 presents the angular distribution
computed using 106 particle simulations with ξ = 0.5. The
initial uniform distribution is given (black histogram), together

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

ξ

μ

Figure 5. Limiting value of the dimensionless mean speed d〈z〉/dt = 〈μ〉 as a
function of the focusing strength ξ . For each value of ξ , 〈μ〉 is computed using
the mean pitch-angle cosine of 106 particles at a terminal time T. The terminal
time T is taken to be uniformly distributed between 5 < T < 15. Simulations
use a time step Δt = T/2000. The solid curve is the coherent speed u = ξκ‖,BW
due to Beeck & Wibberenz (1986), and the dashed curve is the coherent speed
u = ξκ‖,S due to Shalchi (2011).

with the distribution at t = 2 (blue histogram) and the
distribution at t = 6 (red histogram). The black curve is an
exact steady analytical solution for the angular distribution,
h(μ) = A exp(ξμ) (Roelof 1969), where the normalization
constant is A = ξ/2 sinh(ξ ). As emphasized by Litvinenko
(2012b), rapid relaxation to the steady angular distribution
h(μ) is a key requirement in the derivation of the diffusion
approximation.

The mean particle speed can be used as a test of the accuracy
of the diffusion approximation. Figure 5 shows the dependence
of the dimensionless mean speed, computed from the averaged
Equation (13), on the focusing parameter ξ . For each value of ξ ,
we compute d〈z〉/dt = 〈μ〉 using the mean pitch-angle cosine
of 106 particles at a terminal time T (black points). To allow
relaxation of the angular distribution to a steady distribution,
we choose a terminal time T, for each individual particle, to be
uniformly distributed between 5 < T < 15. Simulations use
a time step Δt = T/2000. The solid curve is the theoretical
coherent speed u = ξκ‖,BW due to Beeck & Wibberenz (1986),
and the dashed curve is the coherent speed u = ξκ‖,S due to
Shalchi (2011). Figure 5 confirms that the diffusion model of
Beeck & Wibberenz (1986) yields the correct value of the mean
speed for the range of focusing strengths used in the simulations.

Finally, we note that the computed density profile ahead of the
peak at z = ut in Figure 2 is particularly interesting. Since all
particles have finite speed v, the density F(z, t) must vanish for
z > vt (recall that the particle speed v = 1 in our dimensionless
units). Hence the computed profile has a sharp front propagating
to the right, and the particles pile up in the range ut < z < vt .
Obviously these effects cannot be described by the diffusion
approximation that has infinite propagation speed, and so the
asymmetry of the density profile about the peak indicates the
breakdown of the diffusion approximation. We return to this
point in Section 3.4 below.

3.3. Distribution Variance and the
Parallel Diffusion Coefficient

In order to better understand the reason for the disagreement
between our numerical results and the analytical predictions of
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Figure 6. Dependence of the rate of change dvar(z)/2dt of the distribution
variance on time for a uniform magnetic field (ξ = 0). The horizontal line is
the value of the dimensionless parallel diffusion coefficient κ‖,0 = 1/3 of the
diffusion approximation.
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Figure 7. Dependence of dvar(z)/2dt on time for a magnetic field with
strong focusing (ξ = 1.5). The solid line is the parallel diffusion coefficient
κ‖,BW = 0.29 due to Beeck & Wibberenz (1986), and the dashed line is the
parallel diffusion coefficient κ‖,S = 0.18 due to Shalchi (2011).

Shalchi (2011), we now investigate the variance of the particle
distribution, var(z) = 〈z2〉 − 〈z〉2. On differentiating this with
respect to time and using the averaged Equation (13), we get

1

2

d

dt
var(z) = 〈μz〉 − 〈μ〉〈z〉. (18)

We use the right-hand side of this equation to compute the rate
of change of the variance for the evolving particle distribution.

Consider first the limit of no focusing, ξ = 0. Figure 6 shows
that after a brief transitional period when the particle motion is
non-diffusive, dvar(z)/2dt = κ‖,0 = 1/3, and so the variance
is a linear function of time. This is a well-known result of the
diffusion approximation (Kóta et al. 1982). As described above,
the transitional period of a few scattering times corresponds to
the relaxation of the angular distribution to a steady anisotropic
distribution.

Figure 7 shows the temporal behavior of dvar(z)/2dt in the
case of strong focusing, ξ = 1.5. The solid line is the theoretical
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Figure 8. Limiting value of dvar(z)/2dt (with standard errors) as a function of
the focusing strength ξ . For each value of ξ , the points are computed using the
sample covariance of 106 simulations of μ(T ) and z(T ). The terminal time T
and time step Δt are as in Figure 5. The solid curve is the dimensionless parallel
diffusion coefficient κ‖,BW due to Beeck & Wibberenz (1986), and the dashed
curve is the dimensionless parallel diffusion coefficient κ‖,S due to Shalchi
(2011).

prediction κ‖,BW = 0.29 due to Beeck & Wibberenz (1986), and
the dashed line is the theoretical prediction κ‖,S = 0.18 due to
Shalchi (2011). The particle motion is initially non-diffusive,
and then the variance grows linearly with time. It is clear from
Figure 7 that with a high degree of accuracy dvar(z)/2dt = κ‖,S
after a transitional period.

Figure 8 compares the two analytical expressions for the
parallel diffusion coefficient κ‖ with the computed dvar(z)/2dt
for 0 < ξ � 2 (standard errors are also shown). As in
the calculation of the mean speed, we used the terminal
time T, uniformly distributed between 5 < T < 15, and a
time step Δt = T/2000. The solid and dashed curves are
the dimensionless parallel diffusion coefficients predicted by
Beeck & Wibberenz (1986) and Shalchi (2011), respectively.
This figure confirms that dvar(z)/2dt = κ‖,S for the complete
range of focusing strengths (0 � ξ � 2) for which we computed
the particle distributions.

Our numerical results indicate that what Shalchi (2011)
calculated, at least in the case of isotropic scattering, is

κ‖,S = 1

2

d

dt
var(z). (19)

This equation could serve as a correct definition of the diffu-
sion coefficient if the diffusion approximation were sufficiently
accurate for all z. As we demonstrated, however, the approxi-
mation breaks down ahead of a propagating density pulse, as
a consequence of a finite particle speed. We conclude that the
analysis of Beeck & Wibberenz (1986) describes correctly the
location of the density maximum at z = ut and the dispersion
of the cosmic-ray particles for z � ut , whereas the model of
Shalchi (2011), while leading to a formally correct integral char-
acteristic of the distribution, is physically less useful because it
essentially assumes the diffusion approximation to be perfectly
valid everywhere. Neither model is reliable ahead of the den-
sity pulse for z > ut where the diffusion approximation breaks
down.
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Interestingly, the diffusion approximation does appear to be
valid for any z in the case of a uniform mean magnetic field (see
Figure 1). The reason for this appears to be related to the fact that
the coherent speed u vanishes when adiabatic focusing is absent.
Very few particles are predicted to diffuse far from the origin in
this case, which is why the resulting error is small. By contrast,
strong focusing leads to a large value of the coherent speed,
and as illustrated by Equation (17), the diffusion approximation
predicts a much greater number of particles even far ahead of a
propagating density pulse. Since this is physically impossible,
in reality the particles pile up directly ahead of the density peak,
creating a sharp propagating front (Figure 2).

3.4. The Telegraph Equation for Particle Transport

The diffusion approximation for particle density is derived
by separating the particle distribution function into the isotropic
and anisotropic parts and by finding an approximate expression
for the anisotropic part g = f0 − F0 (Beeck & Wibberenz
1986). When perturbation methods are used to get a more
accurate expression for the anisotropic part of the distribution,
the telegraph equation is obtained (Earl 1976; for alternative
expansion techniques, see also Gombosi et al. 1993; Pauls &
Burger 1994).

Solutions of the telegraph equation are characterized by sharp
propagating fronts that resemble those in our simulations. In
order to perform a detailed comparison, we use the telegraph
equation

∂F

∂t
+ τ

∂2F

∂t2
= κ‖,BW

∂2F

∂z2
− u

∂F

∂z
, (20)

where, as before, the coherent speed u = κ‖,BW/L or u =
ξκ‖,BW in our dimensionless variables. The telegraph equation
formally reduces to the diffusion model when τ = 0. It is
important to stress though that in practice τ does not vanish for
any value of ξ . For instance, the reader can check that the results
of Beeck & Wibberenz (1986) can be extended by obtaining a
second iteration for g, which leads to τ ≈ 1 when ξ 	 1.

For an arbitrary focusing strength, we obtain an expression
for τ in terms of ξ as follows. Equation (20) yields

d〈z〉
dt

+ τ
d2〈z〉
dt2

= u, (21)

d〈z2〉
dt

+ τ
d2〈z2〉
dt2

= 2κ‖,BW + 2u〈z〉. (22)

On assuming that d2〈z〉/dt2 = 0 and d2var(z)/dt2 = 0 for
t > τ , the equations are combined to give

1

2

d

dt
var(z) = κ‖,BW − τu2. (23)

Comparing this with Equation (19) yields κ‖,S = κ‖,BW −
τu2. On substituting the expressions for κ‖,BW and κ‖,S from
Equations (9) and (11) and solving for τ , we get

τ = tanh ξ

ξ
, (24)

which appears to be a new result.
Figure 9 compares the numerical results (histogram) and a

solution to Equation (20) (dashed curve) for the density profile
at time t = 8 in the case of strong focusing, ξ = 1.5. The
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Figure 9. Solution of the telegraph equation (dashed curve) and numerical
results (histogram) for the density profile F(z, t) at t = 8 with strong focusing
(ξ = 1.5). The numerical results are obtained by solving Equations (15)
and (16) with 106 particles and time step Δt = 0.004. The telegraph equation
(Equation (20) with τ given by Equation (24)) is solved using finite differences
in space and fourth-order Runge–Kutta in time.

initial conditions for the telegraph equation are F (z, 0) = δ(z)
and ∂tF (z, 0) = 0. An analytical solution of the equation in the
context of focused transport is well known (Earl 1976). Since the
solution is expressed in terms of special functions, however, in
practice it is simpler to solve the telegraph equation numerically.
We solved Equation (20) with τ given by Equation (24), using
finite differences in space z and fourth-order Runge–Kutta in
time (Press et al. 1986). An excellent agreement between the
two density profiles strongly suggests that, wherever possible,
a higher-order model should be used instead of the diffusion
approximation in analysis of cosmic-ray data.

4. DISCUSSION

The diffusion approximation is the standard approximation
for studying the cosmic-ray transport, which is why it is trou-
bling that the expressions for the parallel diffusion coefficient κ‖,
derived by Beeck & Wibberenz (1986) and Shalchi (2011), are
contradictory. Litvinenko (2012a, 2012b) attempted to clarify
the issue by using an independent analytical method to calcu-
late κ‖. In this paper we presented the results of a complementary
numerical approach to the problem.

We computed the distribution function of energetic cosmic-
ray particles by solving a system of stochastic differential
equations, fully equivalent to the Fokker–Planck equation, and
we compared the numerically obtained evolving density profiles
with analytical predictions of the diffusion approximation. In
our stochastic simulations, all the particles are at z = 0 initially,
corresponding to a delta-functional initial condition to the
Fokker–Planck equation. The simulations strongly suggest that
the key reason for the discrepancy of the analytical predictions
and numerical results is that the diffusion approximation works
best near and behind the peak of the particle density profile,
moving with the mean speed u = κ‖/L, but breaks down ahead
of the peak.

We used the numerical solutions to argue that while the
calculation by Shalchi (2011) appears to be mathematically
correct, physically it yields a diffusion model that is less accurate
than that of Beeck & Wibberenz (1986). Specifically, the model
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of Beeck & Wibberenz (1986) predicts more accurately both
the location of the peak of a moving density pulse and the
density profile behind the peak. We traced the superiority
of the Beeck & Wibberenz (1986) model to its accuracy in
describing the local spreading of the particles. By contrast,
the model of Shalchi (2011) turns out to define the parallel
diffusion coefficient in terms of the rate of change of the
variance of the particle distribution. This global approach is
less successful in describing the salient features of the evolving
particle distribution. Thus our numerical results not only test
the accuracy of the conflicting theoretical approaches, but
also illustrate the important distinction between the formal
correctness and physical relevance of the analytical calculations.

We also demonstrated the breakdown of the diffusion ap-
proximation ahead of the moving density pulse. Our numerical
solution is characterized by a sharp propagating front and par-
ticle pile-up just ahead of the peak of the pulse, followed by
a wake. These features, ultimately caused by a finite particle
speed, are consistent with those of the solution of the telegraph
equation, described by Earl (1976). Physically, the superior ac-
curacy of the telegraph equation for particle density is due to
the fact that its derivation takes into account higher-order terms
in an expansion of the particle distribution function, which con-
trol the shape of a moving density pulse. In a new approach,
we used the formula of Shalchi (2011) for the variance of the
particle distribution to calculate the dependence of a coefficient
in the telegraph equation on the magnetic focusing strength,
and we demonstrated an excellent agreement of the solution to
the resulting equation and the computed evolving profile of the
density pulse. This result illustrates the usefulness of the global
approach of Shalchi (2011) for particle transport studies.

Recently Tautz et al. (2012) simulated cosmic-ray transport
with adiabatic focusing. They used a three-dimensional mean
magnetic field and computed test-particle trajectories in a
turbulent magnetic field. The computed mean free paths turned
out to be much greater than the values predicted by Shalchi
(2011). Tautz et al. (2012), however, did not describe the effects
of coherent streaming and diffusion separately. By contrast,
we used the diffusion approximation to interpret our numerical
results, which enabled us to identify the separate effects of
adiabatic focusing on both the parallel diffusion coefficient and
the coherent speed. This is why it is difficult to compare our
results and those of Tautz et al. (2012).

A more general formulation of the diffusion approximation
incorporates the effects of non-isotropic scattering, magnetic
helicity, and adiabatic focusing in a nonuniform large-scale

magnetic field (e.g., Bieber et al. 1987; Bieber & Burger 1990;
Kóta 2000; Litvinenko 2012b). It would be interesting to use
the stochastic numerical techniques of this paper to investigate
the accuracy of the more general diffusion approximation for the
transport of energetic particles in interplanetary space, as well
as generalize the telegraph equation for the particle density for
a more realistic magnetic field geometry.

The authors gratefully acknowledge numerous useful discus-
sions with Profs. I. J. D. Craig and M. S. Wheatland.
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Dröge, W., Kartavykh, Y. Y., Klecker, B., & Kovaltsov, G. A. 2010, ApJ,

709, 912
Earl, J. A. 1976, ApJ, 205, 900
Earl, J. A. 1981, ApJ, 251, 739
Fichtner, H., Le Roux, J. A., Mall, U., & Rucinski, D. 1996, A&A, 314, 650
Gardiner, C. W. 2009, Stochastic Methods: A Handbook for the Natural and

Social Sciences (Berlin: Springer)
Gombosi, T. I., Jokipii, J. R., Kota, J., Lorencz, K., & Williams, L. L. 1993, ApJ,

403, 377
Hasselmann, K., & Wibberenz, G. 1968, ZGeo, 34, 353
Hasselmann, K., & Wibberenz, G. 1970, ApJ, 162, 1049
Jokipii, J. R. 1966, ApJ, 146, 480
Kloeden, P. L., & Platen, E. 1999, Numerical Solutions of Stochastic Differential

Equations (Berlin: Springer)
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In the published version of this paper, we used stochastic simulations to compute various moments (means, variances) of an
evolving cosmic-ray particle distribution. The moments were computed as averages over 106 simulated particle orbits. We regret
that the published version of the paper contained plots of the particle density profiles, which were actually based on a much smaller
number of the orbits (7 × 103). The corrected Figures 1, 2, and 9 are presented here. We confirm that all computed moments were
in fact averages over 106 particle orbits. Therefore, all the other figures in the published version of the paper were accurate. We
emphasize that all conclusions of the paper remain unaltered.
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Figure 1. Analytical prediction (solid curve) and numerical results (histogram) for the density profile F(z, t) at t = 8 in a uniform mean magnetic field (ξ = 0). The
numerical results are obtained by solving Equations (15) and (16) with 106 particles and time step Δt = 0.004.
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Figure 2. Analytical predictions and numerical results (histogram) for the density profile F(z, t) at t = 8 with strong focusing (ξ = 1.5). The numerical results are
obtained by solving Equations (15) and (16) with 106 particles and time step Δt = 0.004. The analytical moving-pulse profiles, given by Equation (17), are based on
the models of Beeck & Wibberenz (1986, solid curve) and Shalchi (2011, dashed curve).
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Figure 9. Solution of the telegraph equation (dashed curve) and numerical results (histogram) for the density profile F(z, t) at t = 8 with strong focusing (ξ = 1.5).
The numerical results are obtained by solving Equations (15) and (16) with 106 particles and time step Δt = 0.004. The telegraph equation (Equation (20) with τ

given by Equation (24)) is solved using finite differences in space and fourth-order Runge–Kutta in time.
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