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ABSTRACT

The motions of small moons through Saturn’s rings provide excellent tests of radial migration models. In theory,
torque exchange between these moons and ring particles leads to radial drift. We predict that moons with Hill radii
rH ∼ 2–24 km should migrate through the A ring in 1000 yr. In this size range, moons orbiting in an empty gap or in
a full ring eventually migrate at the same rate. Smaller moons or moonlets—such as the propellers — are trapped by
diffusion of disk material into corotating orbits, creating inertial drag. Larger moons—such as Pan or Atlas—do not
migrate because of their own inertia. Fast migration of 2–24 km moons should eliminate intermediate-size bodies
from the A ring and may be responsible for the observed large-radius cutoff of rH ∼ 1–2 km in the size distribution
of the A ring’s propeller moonlets. Although the presence of Daphnis (rH ≈ 5 km) inside the Keeler gap challenges
this scenario, numerical simulations demonstrate that orbital resonances and stirring by distant, larger moons (e.g.,
Mimas) may be important factors. For Daphnis, stirring by distant moons seems the most promising mechanism to
halt fast migration. Alternatively, Daphnis may be a recent addition to the ring that is settling into a low inclination
orbit in ∼103 yr prior to a phase of rapid migration. We provide predictions of observational constraints required
to discriminate among possible scenarios for Daphnis.
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1. INTRODUCTION

Migration is the steady radial drift of a massive planet or
satellite through an astrophysical disk (e.g., Lin & Papaloizou
1986; Ward 1997; Artymowicz 2004; Levison et al. 2007;
Papaloizou et al. 2007; Kirsh et al. 2009; D’Angelo et al. 2011;
Lubow & Ida 2011, and references therein). When a planet lies
embedded in a disk of gas or solid particles, it tries to clear
material from its orbit. Clearing by a massive planet creates
wakes inside and outside its orbit. These density perturbations
exert a torque on the planet, which produces an inward or
outward migration through the disk. Analytic and numerical
calculations show that, in many cases, isolated planets migrate
through the disk on a timescale much shorter than the disk
lifetime (Goldreich & Tremaine 1979, 1980; Lin & Papaloizou
1979; Ida et al. 2000; Tanaka et al. 2002; Papaloizou et al. 2007;
Kirsh et al. 2009).

This process provides a popular explanation for the architec-
tures of many planetary systems. Migration plausibly accounts
for the orbits of some “hot Jupiters” very close to their parent
stars (e.g., Masset & Papaloizou 2003; Alexander & Armitage
2009, and references therein) and the compact orbital configura-
tions of several multiplanet systems, including Kepler 11 which
has five super-Earths orbiting within 0.3 AU of a Sun-like star
(Lissauer et al. 2011). In our own solar system, migration ap-
pears to be a key dynamical mechanism for arranging the orbits
of the outer planets (Malhotra 1993; Hahn & Malhotra 1999;
Levison et al. 2007; Morbidelli et al. 2007).

Despite its broad applicability in exoplanetary systems, test-
ing the predictions of migration theory is challenging. In a
young planetary system, growing protoplanets gravitationally
stir particles in the disk and limit the formation of coher-
ent density wakes (Bromley & Kenyon 2011b). For a single
planet, migration through a gaseous disk also depends on the
dynamical and thermal state of the disk (e.g., Paardekooper

et al. 2010, 2011). Real disks contain several planets in a con-
stantly evolving mix of gas and solid particles (e.g., Bromley &
Kenyon 2011a; Youdin & Kenyon 2013, and references therein).
Current calculations only partially address this complexity (e.g.,
Masset & Snellgrove 2001; Morbidelli et al. 2007; D’Angelo
& Marzari 2012). Thus, theory is hard-pressed to derive robust
predictions applicable to observed systems.

Saturn’s rings provide an interesting laboratory in which to
test migration theory. The A ring is a geometrically thin disk of
solid particles with orbital periods shorter than a terrestrial day.
Aside from countless centimeter- to meter-sized particles (e.g.,
Cuzzi et al. 2009), the rings contain many 0.1–1 km moonlets
that could easily migrate through the disk (Tiscareno et al. 2010).
NASA’s Cassini–Huygens missions have also revealed a variety
of density perturbations within the rings (Colwell et al. 2009),
identified a herd of “propeller” moonlets (named for the wakes
of ring particles they create; Tiscareno et al. 2006, 2008), and
discovered the small moons Pan and Daphnis (Showalter 1991;
Porco et al. 2005). Together, these features allow robust tests
of our understanding of gravity and dynamics in a complicated
system of solid particles (see also Cuzzi et al. 2010; Esposito
2010, and references therein).

Previous theoretical analyses of migration in Saturn’s rings
have concentrated on the non-Keplerian, radial motion of pro-
peller moonlets within the A ring (Tiscareno et al. 2010). These
motions may result from interactions between moonlets and
stochastic density fluctuations in the disk (Crida et al. 2010;
Rein & Papaloizou 2010; Pan et al. 2012) or between moon-
lets and ring particles on loosely bound “frog” orbits around
the moonlet (Pan & Chiang 2010, 2012). These phenomena, or
perhaps direct collisions between moonlets and large ring par-
ticles, may cause the observed radial motion in some moonlets.
On the other hand, large-scale ring structure, particularly radial
density waves, may provide torques that suppress radial motion
(Tiscareno 2012). In this picture, the observed non-Keplerian
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orbits come from recent kicks received by moonlets, which then
settle back to their original Keplerian configuration. Fortunately,
each of these theoretical scenarios makes a unique prediction for
the evolution of moonlet orbits. Upcoming Cassini observations
will be able to distinguish among them (Tiscareno 2012).

Here, we focus on other modes of migration for moonlets and
small moons embedded in Saturn’s 17,000 km wide A ring.3

Aside from stochastic interactions, larger moonlets and small
moons like Daphnis are candidates for “fast” migration modes
that satellites experience in a dynamically cold, planetesimal
disk (Ida et al. 2000). Because fast migration is a critical com-
ponent of migration theory in exoplanetary systems, understand-
ing fast modes in Saturn’s rings improves our ability to predict
migration in a broad range of environments.

We begin with a theoretical overview of migration in a particle
disk (Section 2) and then specialize the theoretical estimates
to conditions appropriate for Saturn’s A ring (Section 3). In
Section 4, we confirm the analytic estimates with numerical
simulations, but demonstrate that stochastic effects, resonances
with more distant moons, and stirring by distant moons can
slow down or halt migration of small satellites through the ring.
In Section 5, we examine the migration of Daphnis, which is
located within the Keeler gap. If Daphnis only interacts with
ring particles, its migration should be fast and detectable with
current satellites. However, orbital resonances (e.g., Prometheus
32:31) and stirring by moons out of the ring plane (e.g., Mimas
and Tethys) may have a strong impact on Daphnis’s orbit and
migration rate. Measuring the evolution of Daphnis’s orbit can
constrain these possibilities. We conclude in Section 6 with a
brief summary.

2. MIGRATION IN A PARTICLE DISK

To test migration theory in Saturn’s rings, we develop basic
predictions for an idealized disk of solid particles orbiting a
much more massive planet. For any satellite within the disk,
the Hill radius, rH, defines a spherical surface where the gravity
of the satellite roughly balances the gravity of the planet. This
radius also characterizes the annular width of the satellite’s
corotation zone, an annulus where disk particles on nearly
circular orbits oscillate back and forth in the satellite’s rotating
reference frame (e.g., on horseshoe orbits). Here we take the
half-width of the corotation zone to be XcorH, with Xco = 2
(e.g., Bromley & Kenyon 2011b). When the corotation zone is
full of small particles, migration is not efficient.

Two physical processes set the density of smaller particles in
the corotation zone. The massive satellite gravitationally scatters
smaller particles out of the zone. Viscous spreading drives the
diffusion of smaller particles back into the zone. When scattering
overcomes diffusion, the satellite opens up a physical gap in the
disk. For convenience, we define rgap as the Hill radius of the
smallest satellite capable of clearing out its corotation zone (see
also Lissauer et al. 1981; Rafikov 2001). When the corotation
zone is nearly clear of smaller particles, migration can be very
efficient.

When a satellite has rH > rgap, it undergoes fast migration. In
this situation, the satellite can gravitationally pull corotating
material all the way past its corotation zone, hauling itself
radially inward or outward like a rope climber. In gaseous disks,

3 In the spirit of the definitions in Tiscareno (2013), we use “moonlet” to
describe any of a numerous and perhaps unresolved population with physical
radii of �1 km and “small moon” to refer to the larger objects Daphnis, Pan,
or Altas.

this mode of migration is often called “type III” (Masset &
Papaloizou 2003) to distinguish it from the slow, type I migration
of planets incapable of forming a gap and the intermediate pace
of type II migration of more massive planets surrounded by a
large gap4 (Ward 1997; Bryden et al. 1999).

For more massive satellites with rH � rgap, fast migration
stalls. As the mass of a satellite grows, its Hill radius—and the
width of its corotation zone—also grows. At some point, the
satellite cannot scatter particles out of the corotation zone fast
enough: some disk material remains inside the corotation zone
and interacts with the planet. This interaction reduces the torque
and slows migration. We define rfast as the Hill radius where fast
migration begins to stall. Thus, satellites with rgap < rH < rfast
undergo fast migration.

In physical units, the three critical Hill radii for fast migration
are

rH ≡ a
( m

3M

)1/3
(Hill radius), (1)

rgap ≈ 0.4 (νradaT )1/3

(minimum rH to form a gap), (2)

rfast = 1.7 a

(
a2Σ
M

)1/2

(maximum rH for fast migration). (3)

In these expressions, m is the mass of an object orbiting
with semimajor axis a and period T around a central star or
planet with mass M. The disk has surface density Σ and radial
viscosity νrad.

Deriving rgap and rfast relies on identifying important
timescales in the disk. Rates of migration are set by the satel-
lite’s Keplerian orbital period T. Although an oblate planet and
gravitational perturbations by surrounding massive moons pre-
vent a satellite from executing standard Keplerian orbits, the
Keplerian orbital period is a useful fiducial for all other
timescales. Close encounters between the satellite and parti-
cles occur every synodic period Tsyn, the timescale for particles
on orbits with separation Δa to return to the same orbital phase.
Massive satellites scatter particles away from their orbits, open-
ing a gap of half-width Δa within the disk clearing time, Tclear.
For particle disks, the disk clearing time for a small gap is a few
times larger than Tsyn (e.g., Kirsh et al. 2009). Viscous processes
between disk particles fill gaps on the viscous (or gap-filling)
time Tfill, which depends on the disk’s radial viscosity νrad (e.g.,
Lissauer et al. 1981; Hourigan & Ward 1984).

Physical collisions damp the velocities of disk particles on
the damping timescale Tdamp. Collisional damping is a random-
walk-type process that depends on λrad, the radial distance
between collisions, and floss, the fractional loss of kinetic energy
per particle in a collision (equivalent to the square of the
coefficient of restitution). The mean-free-path λ is related to
the optical depth τ (e.g., Cook & Franklin 1964; Goldreich
& Tremaine 1978). In the low optical depth limit, a ring

4 In a gaseous disk, uncertainties is the disk viscosity (and hence the radial
and vertical gradients in the pressure, temperature, and other physical
variables) make migration calculations very challenging. Thus, it is uncertain
whether type III migration is possible in a gaseous disk. In a particle disk,
though, type III migration is generally accepted. Starting with Malhotra (1993)
and continuing with Ida et al. (2000), Kirsh et al. (2009), and Bromley &
Kenyon (2011b), fast/rapid/runaway migration is a standard phenomenon in
particle disks.
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of monodisperse particles with radius rp has τ = 3Σ/4ρprp,
where ρp is the particle mass density (Goldreich & Tremaine
1978; Salmon et al. 2010). A more general, realistic treatment
of optical depth requires consideration of the particle size
distribution and coherent structures that may form as a result
of self-gravity (e.g., Salo & Karjalainen 2003; Tiscareno 2013).

For Δa � a, these timescales are

T ≡ 2π

(
a3

GM

)1/2

(orbital period), (4)

Tsyn ≈ 2aT

3Δa
(synodic period for orbital separation Δa), (5)

Tclear ≈ 4Tsyn (gap clearing time (half-width Δa)), (6)

Tfill ≈ (2Δa)2

νrad
(gap filling/viscous diffusion), (7)

Tdamp ≈ λ2
rad

flossνrad
≈ 4rpρpa

3flossvKepΣ
(damping time). (8)

To derive the physical scales for fast migration, we compare
the timescales for the relevant processes. When Tclear = Tfill, a
satellite clears its corotation zone as fast as viscous spreading
fills the zone backup. This equality defines rgap, the smallest
Hill radius for a satellite capable of opening a gap in the disk.
Balancing the torque from the satellite on disk material with
the torque from the disk on the satellite is roughly equivalent to
setting Tclear = Tfill and yields similar expressions for rgap (e.g.,
Lissauer et al. 1981; Hourigan & Ward 1984; Ward & Hourigan
1989; Ward 1997; Rafikov 2001).

Aside from establishing which satellites can open gaps in
the disk, rgap sets a lower limit on the Hill radii of satellites
capable of undergoing fast migration (Ida et al. 2000; Masset
& Papaloizou 2003; Kirsh et al. 2009; Bromley & Kenyon
2011b). When a satellite pulls disk material near the edge of
its corotation zone across its orbit, it recoils in the opposite
direction. If the net recoil is large enough, the satellite does not
interact with scattered particles when they pass by the satellite
one synodic period later. Satellites with rH < rgap cannot clear
their corotation zones and do not recoil enough to overcome the
inertia of material along their orbits. Satellites with rH � rgap
do not recoil enough to avoid a second encounter with scattered
particles.

To determine the range of Hill radii for satellites that undergo
fast migration, we identify the maximum Hill radius where the
time for a satellite to move a radial distance equal to the width of
its corotation zone is less than the synodic period of particles at
the edge of the corotation zone (see also Ida et al. 2000; Masset
& Papaloizou 2003; Kirsh et al. 2009; Bromley & Kenyon
2011b). To derive this Hill radius, which we define as rfast, we set
Tsyn = ηrfast[dafast/dt]−1 where dafast/dt is the fast migration
rate5 (e.g., Equation (12) below; see also Ida et al. 2000). To
avoid repeat encounters with material on horseshoe orbits within
the corotation zone, we set η = 2. Although choosing η = 3.5
would eliminate all possible repeat encounters, material trapped
on horseshoe orbits provides most of the drag on a drifting
moonlet. Thus, we choose η = 2.

5 Bromley & Kenyon (2011a) derive this rate from the recoil due to a single
scattering event and an encounter frequency integrated over the width of the
corotation zone.

For disks of solid particles, the viscosity νrad depends on
kinematics. From Goldreich & Tremaine (1978 and references
therein), the viscosity is a function of the optical depth, the
orbital period, and the radial velocity dispersion of particles vp:

νrad ≈ v2
pT

4π

τ

1 + τ 2
. (9)

When τ is small, νrad ∝ τ ; when τ is large, νrad ∝ τ−1.
In addition to the surface density and the viscosity, the vertical

scale height of the disk h also plays an important role in satellite
migration (e.g., Lin & Papaloizou 1979; Goldreich & Tremaine
1980; Ward 1997; Ida et al. 2000; Papaloizou et al. 2007;
Bromley & Kenyon 2011b). For a disk of particles, the scale
height depends on the vertical velocity dispersion vz:

h = vzΩ−1, (10)

where Ω is the local angular velocity of particles. If disk particles
follow a Rayleigh distribution, vz ≈ vp/2 (e.g., Ohtsuki 1992,
and references therein). The local (3D) viscosity then scales
approximately as ν ∝ h2 as in the α prescription for turbulent
gaseous disks (Shakura & Sunyaev 1973; Pringle 1981). The
true relationship between vz and the mean three-dimensional
(3D) velocity dispersion is more complicated, especially in
Saturn’s A ring where self-gravity wakes can increase velocities
in the plane of the ring (Tiscareno et al. 2007).

With these definitions and physical expressions for critical
parameters, the theoretical radial drift rates for the three modes
of migration are

daemb

dt
≈ −64

πa2Σ
M

r3
H

h2a

a

T
rH � h, rgap

(embedded, no gap; type I), (11)

dafast

dt
≈ ±5.3πa2Σ

M

a

T
h, rgap � rH � rfast (fast; type III),

(12)

dagap

dt
≈ − 16

πa2Σ
M

rH

a

a

T
→ −3νrad

2a
rH � rgap

(embedded+gap; type II). (13)

When the Hill radius is smaller than the disk scale height and
the gap radius, the satellite has a very weak gravity, cannot open
up a gap, and produces very weak density perturbations in the
disk. Only very slow, embedded migration is possible. Its rate
(Equation (11)) follows from weak-scattering theory (e.g., Lin &
Papaloizou 1979) and is analogous to type I migration in gaseous
disks (Ward 1997). The scale height is important in setting
this rate because it is a measure of the distance at which the
ring particles transition from random motion to coherent, shear
flow from the satellite’s perspective (e.g., Tanaka et al. 2002).
Fast migration (Equation (12)) is the ideal case of a satellite
spiraling through a dynamically cold disk (Masset & Papaloizou
2003). The rate is independent of satellite mass; the greater
gravitational reach of a more massive satellite compensates
for its higher inertia. The migration rate for rH > rfast is the
type II analog for a planet which opens a gap in a particle disk
(Equation (13)). In the low-viscosity limit, differential torques
arise from material at the edges of the gap, which lies at or
beyond the corotation zone (Bromley & Kenyon 2011b). In the
high-viscosity limit, the migration rate is set by the viscous
timescale (see, e.g., Ward 1997; Papaloizou et al. 2007).
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The transition from type I migration with no gap to fast and
type II migration with a gap is complex (e.g., Hourigan & Ward
1984; Ward & Hourigan 1989). When a small satellite with
rH < rgap accretes disk material and grows to larger radii, it
drifts through the disk more rapidly (Equation (11)). If this
satellite drifts across its corotation zone more rapidly than it can
clear a gap, it drifts through the disk with a partially cleared
corotation zone. Because the drift time scales more weakly with
mass (∝ m−1) than the time to clear a gap (∝ m−2), there is a
range of satellite masses where a satellite could clear a gap if it
could stop drifting (Hourigan & Ward 1984; Ward & Hourigan
1989). This range of masses roughly corresponds to the range
where fast migration operates.

The transition from type I to type II migration also depends on
the scale height and eccentricity e of disk particles. When disk
particles have large e, the drift rate slows by a factor ∼(rH/epa)3

relative to the fast rate (see Equation (12); Bromley & Kenyon
2011b). When h < rH < rgap, simulations suggest that
nonlinearities and other competing effects—such as the inertial
drag of material stuck in the corotation zone—substantially
reduce the migration in this “transgap” range of Hill radii
(D’Angelo et al. 2003). This conclusion is strengthened by a
recent analysis of moonlets in the A ring (Tiscareno 2012),
which shows how radial density structures in the ring can
produce torques that damp radial drift.

For larger satellites with rH ∼ rfast, simulations (Bromley &
Kenyon 2011b) also suggest that fast migration falls off at least
as rapidly as (rfast/rH)3 (see also Syer & Clarke 1995). As rH
increases (rH > rgap, rfast), the satellite can maintain a gap in
the disk and can experience migration with a fully formed gap
(Equation (13)). In the inviscid limit of this type II migration
(Ward 1997; Crida et al. 2006), the rate is given by weak-
scattering theory. In a sufficiently viscous disk, material piles
up at the gap edges. Then, the timescale for radial drift is the
viscous timescale (Bryden et al. 1999).

The sketch in Figure 1 summarizes the various migration
modes. In addition to showing the relative magnitude of the rates
in Equations (11)–(13) as a function of rH, the sketch illustrates
the impact of viscosity in the transgap regime and the high-
and low-mass falloff of the fast migration mode. Other motions
affecting a satellite’s radial drift include stochastic migration
(see Rein & Papaloizou 2010; Crida et al. 2010; Pan et al.
2012) and the periodic orbit perturbations caused by material on
corotating “frog” orbits centered on the satellite (Pan & Chiang
2010). On yearlong timescales, these drifts (random walks with
effective da/dt values that lie in the shaded region in the figure)
can be comparable to linear-in-time radial migration in Saturn’s
rings.

3. MIGRATION IN THE A RING

Saturn’s A ring is a dynamically cold, thin disk of icy,
meter-sized particles, lying in an annulus around Saturn that
extends from a radius of 117,000 km to the Roche Division at
137,000 km. In our calculations, we adopt an orbital radius
of a = 130,000 km as representative. For other physical
parameters, observations (e.g., Tiscareno et al. 2007; Colwell
et al. 2009) suggest:

Σ = 40 g cm−2, (14)

h = 10 m, (15)

νrad = 85 cm2 s−1. (16)

Figure 1. Qualitative comparison of predicted migration rates as a function of
Hill radius for satellites in a particle disk. The solid curves show rates in viscous
disks; the dashed curves apply in the limit of zero viscosity where rgap—the
Hill radius of a satellite that can clear a gap—is set by the disk scale height, h.
A satellite drifts radially according to the larger of the fast and embedded
migration rates for its Hill radius. The dip in the embedded migration rate
for νrad > 0 illustrates that migration may be suppressed in a viscous disk
if rH is in the “transgap” regime, where the satellite is larger than the disk
scale height but not large enough to open a gap. The curve representing fast
migration shows an upper plateau with a migration rate independent of rH,
a steep decline above the limiting Hill radius rfast (see text), and a similarly
sharp attenuation in da/dt below rH = h, where the typical disk particle
eccentricity erms becomes important. The shaded region is suggestive of radial
drifts from stochastic migration within some fixed time period. If the source
of the stochasticity is clumping of disk particles on scales of λclump, then the
effective rate falls off as 1/rH. Otherwise the effective rate is constant.

Adopting these values allows us to specialize the results of
Section 2 to Saturn’s A ring.

In the A ring, the radii that delineate different modes of
migration in Equations (1)–(3) become

rH = 1.7

[
ρ

1 g cm−3

]1/3 [
a

1.3 × 105 km

]
rphys, (17)

rgap ≈ 2

[
νrad

85 cm2 s−1

]1/3 [
a

1.3 × 105 km

]5/6

km, (18)

rfast ≈ 24

[
a

1.3 × 105 km

]2 [
Σ

40 g cm−2

]1/2

km. (19)

With mean densities of ∼0.5–1 g cm−3, the Hill radius and
the physical radius of a moonlet or small moon in the A ring
are similar. From Equation (18), satellites with Hill radii below
a few km cannot open a full gap in the A ring. These bodies
can only migrate in the slow, embedded mode. Satellites with
rH � 20 km are too massive for fast migration. Between a few km
and 20 km, small moons can migrate in fast mode.
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The timescales in Equations (4)–(8) specialize to

T ≈ 0.0015

[
a

1.3 × 105 km

]3/2

yr, (20)

Tsyn ≈ 130

[
1 km

Δa

] [
a

1.3 × 105 km

]5/2

yr, (21)

Tclear ≈ 520

[
1 km

Δa

] [
a

1.3 × 105 km

]5/2

yr, (22)

Tfill ≈ 3.7

[
Δa

1 km

]2 [
85 cm2 s−1

νrad

]
yr, (23)

Tdamp ≈ 0.008

[
0.1

floss

] [
ρ

1 g cm−3

] [
40 g cm−2

Σ

]

×
[

rp

1 m

] [
a

1.3 × 105 km

]3/2

yr. (24)

In the expression for the damping time, we adopt floss = 0.1
(see Section 4.6).

Finally, the migration rates in the A ring, corresponding to
Equations (11)–(13), are as follows:

daemb

dt
� − 10−4

[
10 m

h

]2 [
a

1.3 × 105 km

]1/2

×
[

Σ
40 g cm−2

]
km yr−1 rH � 2 km, (25)

dafast

dt
≈ ±17

[
a

1.3 × 105 km

]3/2 [
Σ

40 g cm−2

]
km yr−1

2 km � rH � 24 km, (26)

dagap

dt
≈ − 0.009

[
rH

24 km

] [
a

1.3 × 105 km

]1/2

×
[

Σ
40 g cm−2

]
km yr−1 rH � 24 km . (27)

Equation (25) gives the maximum embedded rate for rH ∼ h,
with the expectation that embedded satellites with larger radii
cannot migrate faster as a result of viscous effects (e.g.,
D’Angelo et al. 2003). Equation (27) expresses the migration
rate in the limit of small viscosity. In a viscous disk,

davisc

dt
≈ −3 × 10−6

[
1.3 × 105 km

a

] [
νrad

85 cm2 s−1

]
km yr−1

rH � 24 km, νrad � 0. (28)

These equations provide an idealized description of migration
in the A ring. At small rH, we take the embedded migration rate
for rH ∼ 3 h as a maximum value, since larger Hill radii are in
the transgap regime where migration is likely suppressed. The

Figure 2. Schematic of predicted migration rates as a function of Hill radius
for satellites in Saturn’s A ring. The solid curve shows the upper limit of the
predicted rate for a wide range of satellite masses. The dashed line is the low-
viscosity limit of embedded migration. For rH � rfast, the solid line below the
dashed line reflects the viscosity-dominated type II mode. The shaded region
represents stochastic migration, bounded by an approximate average yearly
radial drift assuming that the ring contains clumps of 30 m (these rates are
drawn from a broad range reported by Crida et al. 2010 and Rein & Papaloizou
2010). The data points and shaded region for the propeller moonlets indicate
Hill radii only; with the exception of the moonlet Blériot, migration has not
been detected.

large-rH, viscosity-dominated, type II migration rate is formally
below 1 cm yr−1.

To put these results in perspective, we estimate the timescales
for migration through a distance of 10,000 km, approximately
half the annular width of the A ring:

τemb � 100

[
1 km

rH

]3[
h

10 m

]2 [
1.3 × 105 km

a

]1/2

×
[

40 g cm−2

Σ

]
Myr rH � 2 km, (29)

τfast ≈ 0.0006

[
1.3 × 105 km

a

]3/2 [
40 g cm−2

Σ

]
Myr

2 km � rH � 24 km, (30)

τgap ≈ 1.1

[
24 km

rH

] [
1.3 × 105 km

a

]1/2

×
[

40 g cm−2

Σ

]
Myr rH � 24 km , (31)

τvisc ≈370

[
85 cm2 s−1

νrad

]
Myr (viscous lifetime) . (32)

Figure 2 summarizes results for the migration rate in the A ring
as a function of Hill radius. Satellites in or near the A ring are
included in the diagram.

These timescales lead to several clear conclusions regarding
migration through the A ring. Objects with Hill radii less than
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roughly 0.25 km migrate on a timescale comparable to the age
of the solar system (see also Goldreich & Tremaine 1982 and
references therein). This radius is roughly the maximum Hill
radius of propeller moonlets in the A ring. Because the migration
time scales as r3

H, fast migration may be responsible for the lack
of propeller moonlets with rH � 1 km. Two moons, Pan and
Atlas, have Hill radii very close to the fast migration cutoff
rfast. Although the predicted lifetimes for these moons are short
compared to the age of the solar system, they are very long
compared to the fast migration lifetime.

The small moon Daphnis clearly provides a more extreme
challenge to migration theory. Its radius lies right in the middle
of the expected range of radii for fast migration. With an
expected migration time of less than 1000 yr, either (1) Daphnis
is a recent addition to the rings, (2) the migration theory is
incorrect, or (3) additional factors contribute to its apparent
lack of migration. In the following sections, we address these
possibilities and their impact on the rates shown in Figure 2.

4. MIGRATION OF SMALL MOONS:
N-BODY EXPERIMENTS

To explore the migration of small moons through Saturn’s A
ring in more detail, we examine a set of N-body calculations.
To perform these calculations, we use Orchestra, a hybrid
N-body-coagulation code which includes additional modules
for the radial diffusion of gas and solid particles through a disk
surrounding a star or a planet. In Bromley & Kenyon (2006),
Kenyon & Bromley (2004, 2008, 2009), and Bromley & Kenyon
(2011a), we describe each component of Orchestra, including
comprehensive results with standard test problems. Here, we
provide a short overview, with a focus on the N-body component,
which we use exclusively in the calculations for this paper.

4.1. N-body Simulation Method

The N-body algorithm distinguishes among three types of
particles: the massive N-bodies, the “swarm” (superparticles),
and the tracers. The massive N-bodies gravitationally interact
with all particles in a simulation. The swarm particles interact
with and can influence the motions of the massive N-bodies
but do not interact with each other or with the tracers. The
tracers respond to the gravity of the massive N-bodies. Here,
we use massive N-bodies to track the motions of Saturn, its
major moons, and the smaller moons. Unless noted otherwise,
we represent the gravity of the ring using swarm particles. Thus,
the ring is not self-gravitating.

Orchestra uses a sixth-order accurate symplectic integrator
for all massive bodies in a computational domain that encom-
passes the full 3D extent of all orbits. In the case of the relatively
numerous tracer or swarm particles, a software switch allows
for fourth-order accurate integration over a time step that is typ-
ically 1/300th of the orbital period. During this step, the orbits
of massive particles are interpolated in a way that allows them to
respond to the gravity from swarm particles. The code handles
close encounters with a massive body by solving Kepler’s equa-
tions. These features allow us to track up to 108 ring particles for
thousands of orbits, or 105 ring particles for millions of orbits.

Orchestra can also accommodate rates of change in orbital
elements, given by da/dt (semimajor axis), de/dt (eccentric-
ity), and di/dt (inclination), from physical interactions among
the swarm particles. Here, we use this feature to include the
evolution of solid ring particles in a viscous disk. To calculate

changes in these elements over a time step Δt , we use

Δa = sgn(u − 0.5)
√

νradΔt, (33)

Δe = −e
Δt

Tdamp
, (34)

Δi = −i
Δt

Tdamp
, (35)

where u is a standard uniform (pseudo)random variate used
to implement a random walk to mimic the radial diffusion of
the swarm particles. For individual isolated particles scattered
within roughly a Hill radius of a small moon, the code has a
switch to turn off this feature.

In the calculations for this paper, we chose a damping time of
0.01 yr, comparable to the predicted timescale in Equation (24).
The diffusion of small ring particles is an important aspect of
the interactions between massive N-bodies and the swarm. As
long as it is within an order of magnitude of our choice, the
precise value of Tdamp does not make any noticeable difference
in the outcomes of our simulations,

To test this aspect of our N-body code, we considered the
evolution of a narrow ring of small particles evolving solely
by diffusion and collisional damping. Starting with initial
conditions identical to Salmon et al. (2010), our simulations
yield a gradual expansion of the narrow ring into a broad disk.
For at least 100 Myr, the time evolution of the surface density
distribution in our simulations closely follows Salmon et al.
(2010), who solve the 1D radial diffusion equation for a disk
of small particles. Comparisons with our own solutions to the
radial diffusion equation further demonstrate that the N-body
code treats particle diffusion and collisional damping accurately.

Finally, we developed and tested algorithms to model Saturn’s
oblateness, which can significantly affect orbital phases and
inferred orbital elements for all satellites and ring particles.
When we include Saturn’s oblateness in the calculations, we set
the gravitational acceleration at a distance x near the ring to

d2x
dt2

= −GM

x3

[
1 + 3J2P2(sin φ)

R2
S

x2

]
x, (36)

where φ is the latitude relative to the ring, P2 is the second-
order Legendre polynomial, and the gravitational constant
J2 = 0.01629 for an adopted radius of Saturn RS = 60,330 km
(Jacobson et al. 2006).

For this paper, we consider two sets of simulations. When
examining a simple physical process—such as a small moon
migrating through a pristine ring—we treat the dynamical
interactions between a small moon and ring particles using
swarm particles and the damping/viscous interactions among
ring particles (Equation (35)), but we do not generally include
the oblateness of Saturn or interactions with distant moons
(e.g., Mimas, Rhea, Dione, etc.). Eliminating oblateness and
the distant moons allows us to investigate a larger range of
input parameters per unit CPU time. Once we establish a typical
behavior, we verify that including oblateness and interactions
with distant moons do not change this behavior. In more
complex simulations (e.g., for Daphnis in Section 5), we include
oblateness and the interactions with distant moons and note the
included moons in the text.
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Figure 3. Fast migration of small moons in a ring of massive particles with
Σ = 40 g cm−2, a total annular width of 56 km, and a gap with a half-
width of 14 km, which covers the corotation zone. Simulations begin with the
moon precisely centered in the gap. Each curve represents the change in orbital
distance, Δa, of a moon with rH = 7 km and an initial semimajor axis of
130,000 km. In each simulation, the particles in the ring have identical mass, set
to 10−2 (lightest shading), 10−3, 10−4, 10−5, or 10−6 (darkest shading) times
the mass of the moon. Solid (dashed) lines indicate inward (outward) migration.
Although migration is more stochastic with larger ring particles, the migration
rate is nearly independent of the masses of ring particles. When a moon reaches
the edge of the ring, migration ceases.

4.2. Comparison with Other Techniques

The N-body algorithm in Orchestra differs from “patch”
simulations of Saturn’s rings, where the computational domain
is a comoving rectilinear patch centered on a circular Keplerian
orbit in the ring (e.g., Lewis & Stewart 2000; Porco et al.
2008; Salo & Schmidt 2010; Lewis et al. 2011; Perrine et al.
2011). Patch calculations include 105–106 ring particles with
typical masses of 5–10 × 10−5 relative to the satellite of
interest. For patches with sizes of roughly a square kilometer,
these calculations can track the interactions and long-term
evolution of ring particles with realistic sizes, ∼1–10 m. To
understand the origin of local structures within the rings, these
calculations are ideal. However, periodic boundary conditions
at the “ends” of a patch limit the ability of these calculations to
include perturbations from material outside the patch. Thus, it
is challenging for these simulations to track the response of a
moonlet or small moon to the global evolution of ring particles.

In Orchestra, the N-body code follows much larger particles,
∼10–100 m, over complete orbits around the central mass.
As long as the satellite mass exceeds the ring particle mass
by a factor of a few hundred, calculations suggest that these
superparticles can accurately represent smaller ring particles
and their effect on an embedded satellite (Figure 3; see also
Kirsh et al. 2009). This approach also enables straightforward
inclusion of resonances and other perturbations from distant
moons. In our simulations, the number of superparticles is too
small to identify small-scale or short-term structures within the
ring particles. Thus, these calculations accurately follow the
evolution of a small moon at the expense of a large graininess in
the structure of the ring. Because our focus is on the long-term

evolution of a satellite in response to the entire ring and distant
moons, this compromise is reasonable.

Although most previous N-body work has focused exclusively
on ring particle dynamics, several studies consider radial drift
of satellites within or outside the ring (Lewis & Stewart 2009;
Charnoz et al. 2011; Tiscareno 2012). Despite their success in
identifying sources of radial drift, none of these simulations
can track fast migration. For example, Charnoz et al. (2011)
elegantly track type II-like migration by summing the torque on
a moonlet at Lindblad resonances. However, the relevant part of
the ring for fast migration is closer to the corotation zone than
the Lindblad resonance (see Masset & Papaloizou 2003 for the
analogous case of type III migration in a gaseous disk). Thus,
this approach will never yield fast migration.

Lewis & Stewart (2009) provide an excellent demonstration
of chaotic drift of a moonlet by collisions and interactions
with massive particles and self-gravitating wakes in the rings.
However, their patch-like computational domain spans only a
small fraction of a moonlet’s orbit around the planet. To produce
fast migration in this type of calculation, we speculate that it is
necessary to account for the phase and timing of a ring particle’s
orbit when it reenters the patch. In all of their calculations, the
moonlets of interest to Lewis & Stewart (2009) are too small
to open the annular gap in the ring necessary for fast migration
(e.g., rH < rgap). Thus, fast migration is not expected in any of
their simulations.

4.3. Onset of Fast Migration

Sustained fast migration of a small moon requires one simple
condition. The moon must be able to draw/scatter ring material
from one edge of its corotation zone to the other and then drift
a sufficiently large radial distance in the opposite direction to
avoid encountering the scattered particles again. Moons that
are too large cannot drift far enough before re-encountering
scattered particles. Very small moons cannot clear enough of
an annular gap and are inertially pinned by other corotating
material at smaller orbital separation. Thus, moons which are
too small or too large migrate very slowly.

Despite this clear picture for sustaining fast migration, initi-
ating fast radial drift is more subtle. The onset of fast migration
requires (1) a satellite with a fairly empty corotation zone and (2)
enough disk material close by, within ∼3–4 rH, where dynami-
cal interactions can draw material into the satellite’s corotation
zone.6 Among plausible starting points, we consider two ex-
treme initial conditions, a satellite lying in a completely empty
gap in the disk and a satellite embedded in a continuous disk.

Although a satellite within a continuous disk has enough
material nearby to begin fast migration, it must first clear its
corotation zone. For satellites with rH � rgap, the timescale
for scattering particles out of the corotation zone is smaller
than the timescale for viscous diffusion to bring particles back
into the corotation zone. Thus, the satellite begins to clear its
corotation zone (see also Lissauer et al. 1981; Hourigan &
Ward 1984; Rafikov 2001). Whether or not the satellite drifts
slowly in the type I mode, any imbalance in the net amount of
scattering into the inner disk relative to the outer disk creates a
net drift sufficient to begin fast migration. As long as the physical
properties of the disk and the satellite maintain the conditions
Tclear � Tfill and rH � rfast, the satellite continues fast migration.

6 In addition to particles on horseshoe orbits, material on initially circular
orbits with Δa as large as 2

√
3rH can be deflected onto crossing orbits with the

satellite (Gladman 1993).
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For a satellite within a large gap, the onset of fast migration
is more delicate. Despite its empty corotation zone, the satellite
must reach across the gap and draw material from the gap edges
into the region, Δa � 2

√
3rH ∼ 3.5 rH, where orbit crossings

can begin. For a satellite with rH � rfast, the half-width of the
gap is much larger than ∼3.5 rH. Disk material is too far away;
the satellite can only migrate in the type II mode. For satellites
with rgap � rH � rfast, the edges of the gap are within ∼3.5 rH.
Material can then be drawn into crossing orbits with the satellite.

Although satellites with rgap � rH � rfast have fairly small
gaps, it is possible to construct a disk where orbit crossings
never occur. We first consider a disk where the surface density
at the inner edge of the gap is comparable to the surface density at
the outer edge. When (1) a disk has a vertical scale height h ≡ 0,
(2) the satellite lies on a perfectly circular orbit centered in a gap
with half-width Δa � 4 rH, and (3) there are no external torques,
the torque balance between the satellite and the gap edges is
perfect (e.g., Hourigan & Ward 1984). The satellite cannot draw
material into its corotation zone and can only migrate slowly in
the type II mode.

In a real disk, the finite scale height breaks the symmetry,
allowing the satellite to draw material from the gap edges
(Hourigan & Ward 1984). Once the satellite begins to draw
material from the edges of the gap across its corotation zone,
additional jostling of the gap edges or the satellite’s orbit—for
example, by density fluctuations in the disk or by gravity
fluctuations due to distant moons—places the satellite closer to
material at one edge of the gap than the other edge. The satellite
draws more material into its corotation zone. Fast migration
commences.

To try to maintain the satellite on a stable orbit, we can specify
the surface density on the inner/outer edges of the gap to balance
the slightly different angular momenta of particles on either edge
of the gap. We can also specify that the number of orbit crossings
from material in the inner disk precisely balance the number
from the outer disk. Every ensemble of scattering events then
leads to no radial motion. Neglecting internal ring dynamics and
other external processes, the satellite can maintain a wide, clear
gap and remain on its initial orbit indefinitely.

In a real ring, however, this balance is metastable. Radial
diffusion tries to fill the gap. Perturbations from scattering
by self-gravitating wakes, direct collisions, or asymmetries in
the type I-like torques (Equation (11)) from more distant ring
material pushes ring particles into the gap (e.g., Tiscareno 2012).
Jostling by distant moons also tends to fill the gap. If these
processes fill both sides of the gap identically, it is possible to
maintain the balance. If these perturbations leave a few extra
particles on one edge of the gap, the additional crossing events
will pull the moon in that direction. Once the moon is drawn to
either gap edge, it will pull even more particles from that edge,
enhancing its radial drift. Fast migration again commences.

To explore these two possibilities in more detail, we examine
a suite of numerical simulations for satellites in disks with
physical characteristics similar to Saturn’s A ring. We begin
with a discussion of fast migration for a satellite in a completely
empty gap. We then consider a satellite in a continuous disk.

4.3.1. Fast Migration in Smooth Rings

To illustrate metastability of a satellite in a pristine gap, we
set up an initially stable configuration with balanced torques
from either edge of the gap. The simulations consider two
plausible initial conditions for particles spaced uniformly in
radius through the ring: particles spaced (1) randomly or (2)

uniformly in the azimuthal direction. The calculations also
consider two types of ring particles: (1) massive swarm particles,
where we calculate the radial drift from individual N-body
interactions directly or (2) massless tracer particles, where we
derive the drift from the change in the total angular momentum
of the tracers. This approach allows us to test the sensitivity of
the migration rate to the initial orbits of ring particles and to
the method for calculating torques between the moon and ring
particles.

For a small moon with rH = 7 km and a gap with half-
width = 2 rH, fast migration initiates in every simulation in
this suite of tests (Figure 3). Moons interacting with tracer
particles tend to begin migrating earlier than moons surrounded
by massive swarm particles. Moons within a random distribution
of ring particles appear to start migrating earlier than moons in
a uniform distribution. In all cases, the onset of fast migration
requires a short time, smaller than the synodic period of material
at the gap edge. When the mass ratio of the moon to a ring
particle is large, >103, the onset is slow and regular. When the
mass ratio is �102, migration is more stochastic and starts more
quickly due to individual scattering events that push the moon
toward the edge of the gap. Still, both sets of initial conditions,
both approaches to calculate the radial drift, and all mass ratios
yield roughly the same migration rate.

To explore the onset of fast migration in more detail, we con-
ducted additional tests with larger gaps and different diffusion
timescales. The range of gap sizes, with half-widths Δa from 2rH
to 6rH, includes two nominal half-widths that are important from
gap-formation theory (see the Appendix): the first is Δa ≈ 3rH,
derived by balancing torques between the satellite and the disk
(Lissauer et al. 1981), while the second is Δa ≈ 2.5rH, derived
by balancing scattering with viscous diffusion. In all these tests,
ring particles slowly diffuse into the gap. The width of the gap
around the moon gradually decreases. With the nominal diffu-
sion time of 10 yr for a small, gap-clearing moon, larger gaps
fill in more slowly, and imply longer times before migration can
start. When the gap width closes to roughly twice the corotation
half-width, Δa ≈ 4rH, the moon starts to chaotically scatter ring
particles. Fast migration then ensues. With no diffusion, large
gaps remain pristine. Although slow, type I torques can cause
radial drift on very long timescales, fast migration cannot begin
until the moon is within a corotation radius of either edge of
the gap. Therefore, eliminating particle diffusion in a large gap
effectively eliminates fast migration.

4.3.2. Fast Migration in Wide Gaps: Encroaching Ring Edges

To provide more details on how a moon within a large
gap begins fast migration, we consider another example. The
simulation begins with a small moon, rH = 4.9 km, in a
perfectly circular orbit within a large gap of half-width Δa =
20 km ≈ 4rH. The gap is centered within a larger ring of particles
with properties appropriate for the A ring, Equations (14)–(16).
As in other calculations, ring particles have a diffusion time of
10 yr. The simulation spanned more than 50 yr, or 25,000 orbits.
A sequence of snapshots shows how gap edges are sculpted and
how particle orbits diffuse close enough to the satellite to trigger
fast migration.

Figure 4 illustrates how ring material slowly diffuses into a
wide gap and eventually leaks onto orbits that interact strongly
with the small moon. Before the moon starts to migrate, very
little of this material enters the moon’s corotation zone. Instead,
slight imbalances draw the moon slightly closer to one gap
edge than the other. This process is slow. In the top two panels
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Figure 4. Snapshots of small moon migration in a closing gap. The top image shows the location of a Daphnis-sized moon (rH = 4.9 km, the central white disk of
2.3 km in radius, the approximate physical size of Daphnis) at Daphnis’s orbital distance (136,505 km) when it is initially on a circular orbit in a pristine ring with
uniform surface density Σ = 40 g cm−2, centered on a clear annulus the size of the Keeler gap (full width of 40 km). The ring particles (masses equal to 0.1% times
that of the satellite) are indicated with a brightness that correlates with density. The lower three images show views from the same orbital distance from Saturn but at
times equal to 46.6 yr (second from top), 48.2 yr, and 49 yr. Radial diffusion (νrad = 85 cm2 s−1) causes the ring to slowly creep into the gap, but once particles get
close, fast migration initiates and the moon heads toward Saturn. Each image represents an area of 800 km in width and 120 km in height, oriented so that Saturn is
located toward the top of the page. The “exposure time” for each image is several orbital periods, to enhance the structures in the ring.

(A color version of this figure is available in the online journal.)

of Figure 4, the time difference is roughly 40 yr. Only slight
changes are visible. The gap is still well defined. The wakes
created by the moon are clear.

Once changes begin, they are rapid. In Figure 4, the lower
two panels show the scene only a few years later. Orbit crossing
is rampant. As the moon drives into one side of the gap, it pulls
material across, opening a new gap ahead of it and filling in
the space behind it. This new, smaller and less well-defined gap
comoves with the satellite (see Bromley & Kenyon 2011b, and
the associated animation in a much broader disk). Although
the original gap remains behind, viscous diffusion slowly
fills it in.

Tests with moons of other sizes in gaps of varying widths yield
similar results. Diffusion tries to fill the gap; scattering tries to
empty it. Eventually, there is an imbalance which pushes the
moon toward one edge of the gap. The accelerating imbalance
between scattering and viscous diffusion allows the moon to
draw more and more material from the gap and to move closer
and closer to the edge of the gap. Once the imbalance reaches a
critical level, fast migration begins.

The starting conditions for the results shown in Figure 4 are
almost a realistic representation of Daphnis, the A ring and the
Keeler gap. The single difference is the initial orbit of the moon.
In the simulation, the initial orbit has e = i = 0. The real orbit is
slightly eccentric and inclined to the ring plane. As we show in
Section 5, the time required for a moon to begin fast migration
depends on the initial e and i. However, the overall outcome is
identical: the moon always begins fast migration.

4.3.3. In Situ Formation and Clearing the Corotation Zone

When it grows by coagulation/accretion, a satellite forms
within a dense disk of particles. With a full corotation zone, this
satellite cannot migrate in the fast mode. Previous numerical ex-
periments (e.g., Kirsh et al. 2009) demonstrate that a satellite can
gravitationally scatter away enough of the corotating material
to trigger fast migration in a particle disk. Here, we illustrate
the same phenomenon for a small moon in Saturn’s A ring.
Figure 5 shows results for a simulated moon with rH = 14 km
in the A ring. The figure tracks the orbital distance and the
amount of material in the corotation zone as a function of time.
After the mass in the corotation zone falls to about a third of
its starting value, fast migration starts. The mass of corotating
material then peaks up as the moon plows through fresh material
during its inward spiral through the disk.

Figure 5 shows that a small moon rapidly clears its corotation
zone (for other examples of this phenomenon, see also Rafikov
2001; Kirsh et al. 2009). Within 10–20 yr, gravitational scat-
tering removes roughly half the mass of the corotation zone.
During this period, the moon slowly moves radially inward and
outward in response to perturbations from swarm particles in the
corotation zone. After ∼100 yr, the moon has removed enough
material from the corotation zone to begin fast migration. After
migrating inward roughly 200 km, the moon’s progress is halted
as it encounters the edge of the disk.

Our simulations demonstrate that this behavior is independent
of the general background perturbations from other small
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Figure 5. Disk mass in the corotation zone and the radial drift of a small moon
with rH = 14 km. The starting orbital distance is 130,000 km. The upper plot
shows the instantaneous disk mass mco inside an annulus of half-width 2rH; the
lower plot is the orbital distance of the moon relative to its starting position.
The black curve refers to calculations for the moon and ring alone; the light
curve indicates results for calculations which include Saturn’s prominent moons
(Figure 10). In both instances, migration stops after ∼170 years, when the moon
hits the inner edge of the simulated disk.

moons and larger distant ones orbiting Saturn. Comparison of
calculations without distant moons (Figure 5, black curve) and
with a full complement7 of moons (Figure 5, gray curve) shows
modest differences resulting from stochastic variations in the
orbits of swarm particles but no large variation in the timing
or rate of migration. Results for a large suite of simulations
yield the same conclusion: fast migration of satellites with
rgap < rH < rfast is a robust phenomenon in the A ring. Thus,
the general lack of small moons in the ring is consistent with
migration theory (see also Goldreich & Tremaine 1982).

4.3.4. Orbital Settling into a Ring

The onset of fast migration depends on the initial orbital
parameters of a satellite. When a small moon is scattered into
an otherwise unperturbed region of a ring, it will probably have
a large orbital eccentricity or inclination relative to the ring
particles. The moon then tries to clear a region much larger
than its corotation zone. When e � 10−5, the radial excursion
of the moon exceeds the radius of its corotation zone. When
i � 10−7, the moon spends most of its time outside the ring and
cannot completely clear out material along its orbit. However,
gravitational interactions with the ring particles damp e and i
(e.g., Goldreich & Tremaine 1981; Borderies et al. 1984; Ward
1988; Hahn 2007, 2008). Once e and i are small, the moon can
clear its corotation zone and begin fast migration.

To derive the damping time for a small moon with an inclined
orbit, we perform a set of calculations with various initial e and
i relative to swarm particles in the A ring. Figure 6 illustrates the
rapid damping of e and i experienced by a small moon in a typical

7 In these simulations, a “full complement” of moons includes the ring
moons Pan, Daphnis, Atlas, Prometheus, Pandora, Epimetheus, and Janus and
the larger, more distant moons Mimas, Enceladus, Tethys, Dione, Rhea, Titan,
and Iapetus.

Figure 6. Orbital settling of captured small moons. Simulations of moons with
Hill radii of 10 km (light gray curves), 14 km (dark gray curves), and 18 km
(black curves) show the evolution of orbital elements in an initially uniform
disk with A ring parameters. In all cases, the time for each moon to become
embedded in the disk is very short.

calculation. For moons capable of undergoing fast migration,
the damping timescale is well within one to two decades. The
inclination damps smoothly and reaches i < 10−6 in 10–20 yr.
After moons reach e < 10−4, the drop in e is more gradual and
includes additional stochastic variations due to perturbations in
the surface density of swarm particles.

Once a small moon achieves a nearly circular orbit, the
timescale to damp the orbit further is much longer. When
the inclination satisfies rH � ai, the moon can begin to clear
its corotation zone. The timescale to reach this inclination is
roughly the viscous time to fill the gap formed when the moon
had much larger e and i. Figure 7 provides an illustration. A
small moon, with rH = 6.5 km, experiences a slow damping
followed by a transition to fast migration.

Simulations of the orbital evolution of small moons with
rgap < rH < rfast and a broad range of starting e and i yield similar
results. As the moons try to clear a gap much larger than their
corotation zones, their e and i damp. While e and i damp, viscous
spreading fills in the gap outside a moon’s corotation zone. After
i reaches a threshold, fast migration begins.

The vertical scale height of the ring sets the threshold for
fast migration of a small moon with an inclined orbit relative to
the ring. The condition for fast migration is ifast < rH/a. When
i � rH/a, moons cannot completely clear their corotation zones
before viscous spreading fills them in. After damping reduces i
to the threshold ifast, fast migration begins.

We conclude that fast migration may be a common, if not
ubiquitous, process in a disk similar in structure to Saturn’s A
ring. The migration time is extremely short compared to the
∼0.1–1 Gyr lifetime of the ring (e.g., Esposito 2010). Thus, (1)
all moons with rH � rgap are recent additions to the ring or (2)
physical structures within the ring prevent migration. To address
these possibilities, we next consider how density perturbations
within the ring impact migration. In Section 5, we examine the
possibility that the moons are young.
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Figure 7. Onset of fast migration of a captured moon. The traces show the change
in semimajor axis (upper plot), eccentricity (middle plot), and inclination (lower
plot) of a small moon with rH = 6.5 km in a disk with Σ = 20 g cm−3. The
initial orbit of the moon is the same as for Daphnis; the disk properties are
modified for computational feasibility. The disk has an 80 km wide gap (similar
to the Keeler gap along Daphnis’s orbit in terms of the moon’s Hill radii). The
disk particles’ eccentricity and inclination damp as expected for the A ring. The
viscosity, however, is turned up by a factor of 15, thus reducing the viscous
spreading time in the gap by a factor of three compared to the Keeler gap.
The simulation shows that the eccentricity damps quickly, but migration does
not begin until the inclination is also small. After migration starts, its rate is
comparable to the theoretical prediction (dashed curve), and it halts once the
moon nears the edge of the simulated disk.

4.4. Fast versus Stochastic Migration

The A ring is dynamically active, with a variety of long-lived
and transient physical structures. Many features are associated
with spiral density waves (e.g., Cuzzi et al. 1981) or bending
waves (e.g., Shu et al. 1983). In addition to the surface den-
sity enhancements immediately surrounding moonlets (the pro-
pellers), nearby moonlets or small moons generate gravitational
wakes in the rings (Showalter et al. 1986). Additional variations
of optical depth in the A ring result from self-gravity wakes
(Hedman et al. 2007), which vary in structure across orbital
resonances with Saturn’s moons.

Although simulating the full range of structure present in
the A ring is beyond the current capabilities of Orchestra, we
can establish how a variety of density perturbations impact fast
migration in the A ring. We begin with simulations designed to
illustrate how clumpiness in the ring impacts migration.

Figure 8 shows a suite of simulations of a moon with
rH = 14 km at an orbital distance of 130,000 km embedded
in rings with a fixed surface density and with swarm particles of
various sizes. The swarm particles in each simulation all have
the same mass, but from run to run, that mass ranges from 0.2%
to 10% of the moon mass. In all simulations, the corotation
zone is initially free of disk particles in an annulus of 3rH.
Fast migration begins nearly immediately. Without this initial
clearing of the corotation zone, there is a time lag ∼Tclear in the
onset of fast migration (see Figure 5; Kirsh et al. 2009).

These simulations demonstrate that density perturbations can
change migration rates substantially. As the mass of a swarm

Figure 8. Fast migration of small moons in a ring of massive particles with
Σ = 30 g cm−2. Each curve represents the change in orbital distance, Δa, of a
moon with rH = 14 km that initially has a semimajor axis of 130,000 km. In
each simulation the particles in the ring have identical mass, and are set to either
10, 50, 100, 300, and 600 times smaller than the mass of the moon. The darkest
curve shows the case with the most extreme mass ratio (600:1); lighter shades
have progressively less extreme mass ratios. The lightest curves, corresponding
to runs where the particle masses are 10% of the moon mass, show stochastic
behavior.

particle increases, migration through the ring becomes more and
more erratic (Figure 8). When swarm particles are 10% of the
satellite mass, migration begins to resemble a random walk pro-
cess, as envisioned in the stochastic migration scenario of Crida
et al. (2010; see also Tiscareno 2012).

For a more detailed illustration of discreteness effects in
migration, we consider the migration of a small moonlet with
rH = 700 m. As in Figure 5, the calculations include all of
Saturn’s major moons (e.g., Titan and Rhea) and smaller moons
near the A ring (e.g., Prometheus and Pandora). To enable
computational feasibility, we reduce the number of swarm
particles by decreasing the surface density of the A ring by
a factor of 100, setting the mass of swarm particles at 1%–2%
of the moonlet mass, and clearing the corotation zone of swarm
particles. We also turn off viscous diffusion. Without viscosity,
particles with Hill radii comparable to the propeller moonlets
(rH � 1 km) can maintain a fairly empty corotation zone once
they start migrating.

Figure 9 shows typical results of these simulations. The
noisy horizontal curve in light gray measures the fluctuations
in semimajor axis—as measured in a reference frame centered
on Saturn—of an isolated moonlet orbiting the planet but not
migrating through the disk. These fluctuations result from the
constant gravitational jostling from distant and nearby moons.
When the moonlet is allowed to migrate (as in the black and
dark gray curves, which have particles that are 1% and 2%
of the moonlet mass, respectively), its semimajor axis shifts
in a stepwise fashion which tracks the theoretical prediction
(dashed curve). Over a one-year time frame, the total migration
is comparable to the variation in a from jostling by distant
moons.

These two simulations illustrate the difficulty of measuring
migration rates in Saturn’s rings and other complex systems.
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Figure 9. Fast migration of a small moonlet in the presence of Saturn’s massive
moons. In these simulations a moonlet with rH = 0.7 km starts off at an orbital
distance of 130,000 km in a ring with surface density Σ = 0.1 g cm−3. The
black curve corresponds to ring particles that are 1% of the moonlet mass, while
the dark gray curve shows results for ring particles that are twice as massive.
The corotation zone is initially clear, and no viscous diffusion can fill in the
gap. Thus, fast migration ensues, and there is a subsequent change in orbital
distance, Δa (solid black curve; the dashed line shows the theoretical prediction).
Note that the true orbital distance (not shown) is given by the sum of Δa and
the orbital fluctuations that result from orbital “jostling” of the moonlet by the
distant moons. We estimate this jostling using a moonlet with identical starting
conditions as the other simulations, but without any ring particles (light gray
curve).

Gravitational jostling of orbits by distant moons is comparable
to the expected radial excursions of small moonlets comparable
in size to Blériot and other propellers in the rings. Interactions
with larger ring particles can hinder or reverse migration of
a larger moon on short timescales (e.g., Tiscareno 2012). In
all cases, measuring robust migration rates requires long time
baselines and stable reference frames.

4.5. Migration in the Presence of Distant Moons: Resonances

In addition to propellers and wakes, Saturn’s moons create a
variety of structure within the A ring. The moons Pan (Encke
gap) and Daphnis (Keeler gap) lie within distinct low-density
gaps within the rings. A 7:6 resonance with the co-orbiting
moons Janus and Epimetheus is responsible for the outer edge of
the A ring (e.g., Lissauer et al. 1985). The “ring moons” Atlas,
Pandora, and Prometheus just outside the ring also produce
structure in the ring.

To illustrate the rich set of other resonances in the A ring
(see also Lissauer & Cuzzi 1982), Figure 10 shows the result of
a simulation of 10,000 tracer particles orbiting Saturn along
with the major moons (Mimas, Enceladus, Tethys, Dione,
Rhea, Titan, and Iapetus) and several smaller moons much
closer to the ring (Pan, Daphnis, Atlas, Prometheus, Pandora,
Janus, and Epimetheus). Ring particles have large maxima in
e around Pan (the Encke gap) and at the outer edge of the
ring (the 7:6 resonance of Janus and Epimetheus). Other rises
in e occur at the orbits of Atlas and Prometheus—which lie
beyond the outer edge of the ring in regions of very low surface
density—and at many other labeled resonances. Several of these

Figure 10. Eccentricity of simulated ring particles as a function of semimajor
axis in the presence of massive moons. The simulation started from cold initial
conditions and evolved tracer particles over a four-year period. Some of the
strongest resonances are labeled; off-resonance pumping of eccentricity is also
apparent throughout the ring. The black circles designate moons; the size of each
circle is suggestive of the relative mass. The open circles are a select sample
of propeller moonlets from Tiscareno et al. (2008). None of these symbols are
intended to quantify eccentricity, just the semimajor axis. The gray bands are
the zones where propeller moonlets seem to reside exclusively. The figure also
labels the location of the Encke and Keeler gaps, as well as the inner edge of
the Roche Division (containing the light gray points).

resonances lie close to but are not obviously coincident with
the orbit of Daphnis within the Keeler gap. Curiously, a large
ensemble of propeller moonlets lie between the 5:4 resonance of
Janus/Epimetheus and the 5:3 resonance with Mimas.

To explore the impact of orbital resonances on migration,
we consider whether small moons can pass through the 5:4
resonance with Janus and Epimetheus. We set up an ensemble
of moons with rH = 3–15 km on either side of the resonance near
a = 130,500 km. Because small moons can migrate inward or
outward, some moons attempt to migrate across the resonance.
Others try to migrate away from the resonance. In all cases,
Janus/Epimetheus stir up the eccentricities of ring particles
close to the resonance. Large vertical scale height and large
eccentricity are barriers to fast migration. Thus, we expect the
migration of smaller moons to stall close to resonance.

The results in Figure 11 confirm our expectations. Resonant
interactions with Janus and Epimetheus stir up enough ring
material to create an obstacle for smaller moons. Moons with
rH = 3.5 km do not cross the “barrier” set up by the 5:4
resonance. However, moons with rH = 14 km migrate right
through the resonance.

To understand this resonant barrier to migration, we examine
the eccentricity of ring particles close to and far away from
the resonance. At resonance, Janus and Epimetheus can stir
ring particles to fairly high eccentricity (ep ∼ 10−5; see
Figure 10). Away from resonance, ep is a factor of �10 smaller.
At a distance of 130,000 km from Saturn, these ring particles
have radial excursions of a few kilometers. When they are at
resonance, small moons or moonlets with Hill radii smaller
than a few km are thus embedded in a dynamically hot ring,
which dramatically reduces their migration rate (Bromley &
Kenyon 2011a, Equation (21)). Moons with Hill radii larger
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Figure 11. Fast migration in the presence of resonances from distant moons
Janus and Epimetheus. The two panels show the output of simulations with
isolated small moons on circular orbits at a position near the resonances. The
black-colored traces show the radial position of each moon Δa = 0 km relative
to an orbital distance of a = 130,500 km. For reference, the light gray lines
give the location of the resonances from Janus and Epimetheus (upper and
lower lines, respectively). The five runs in the left panel show fast migration of
a smaller (rH = 3.5 km) moon; the runs in the right panel are for a larger moon
(rH = 14 km). For each set of runs the initial conditions are identical, except
that the moon and ring are radially offset by a differing amount. The results
indicate that the smaller moons cannot cross the resonance; the larger ones can
pass through.

than a few km lie in a dynamically cold ring whether or not they
are within the resonance. These larger satellites migrate freely.

The value of rH that separates these two modes of migration
through a resonance depends on several factors. With other
properties of the rings held fixed, stronger (weaker) resonances
produce stronger (weaker) eccentricity enhancements, creating
barriers for larger (smaller) moons. If the strength of the
resonance is held fixed, stronger (weaker) damping or viscous
spreading weakens (strengthens) eccentricity enhancements,
enabling (preventing) migration. Thus, understanding barriers
to migration requires a thorough understanding of the physical
processes that impact the eccentricity of ring particles.

4.6. Migration in the Presence of Distant Moons: Stirring

Although distant moons outside of resonance weakly stir the
eccentricity and inclination of ring particles, this stirring can
have a major impact on the structure of the rings. Using the
impulse approximation, Weidenschilling (1989) showed that
distant moons give a particle a small kick in e and i every
synodic period. For an ensemble of distant moons, he derived a
stirring rate
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∼

∑
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where mn, an, and in are the mass, orbital distance, and
inclination of the nth moon. These expressions are valid for
objects on nearly circular orbits.

For the Saturn system, this approach is valid for moons with
separations from the ring, δa, much smaller than the semimajor
axis of ring particles. Thus, these equations apply to moons as far
as Janus and Epimetheus (and possibly Mimas), but are invalid
for more distant moons (e.g., Titan). With an orbital distance of
1.2 × 106 km, Titan tugs more on the barycenter of the entire
Saturnian system instead of stirring the rings.

Our calculations yield results in rough agreement with the
analytic theory. In several simulations for Figure 10, the ec-
centricity of ring particles grows at a rate de2/dt ∼ 10−11 yr−1,
within a factor of two of the prediction from Equation (37). With
typical e � 10−6 for ring particles, the growth time for stirring
by distant moons is a fraction of a year, roughly equivalent to
the damping time.

To compare stirring by distant moons with collisional damp-
ing in more detail, we consider the energy involved in both
mechanisms. Stirring by distant moons results in a kinetic energy
input per unit mass of Pstir ∼ v2

Kepde2/dt ∼ 2×10−7 dyne g−1.
The power per unit mass dissipated by collisions is

Pcoll ∼ Σ
mph

vpπr2
p flossmpv

2
p (39)

∼ 6 × 10−7 dyne g−1, (40)

where mp is the characteristic mass of the ring particles. To
derive this estimate, we adopt ring particles with rp = 1 m and
ρp = 1 g cm−3. The rough equality of these rates suggests that
the A ring’s velocity dispersion and thickness are supported by
stirring from distant moons. A precise balance between the two
energies requires modest changes in the size/density of the ring
particles.

To examine the impact of stirring by distant moons in more de-
tail, we consider simulations of a single ring particle interacting
with Mimas, the innermost massive moon of Saturn. Each cal-
culation begins with a ring particle orbiting at a ≈ 136,500 km,
with e ≈ 3 × 10−5 and i ≈ 6 × 10−5 relative to the ring plane.8

Mimas begins at a random phase in its orbit, which is tilted by
roughly 1◦ relative to the ring plane.

Figure 12 shows the results. In a basic set of simulations,
Mimas rapidly stirs the e and i of the ring particle (left panels
of figure). The growth rate of e follows the Weidenschilling
(1989) estimate closely. The growth rate of i is several times
faster than predicted. In these simulations, a distant perturber
(Mimas) continuously forces the alignment of angular momen-
tum vectors between Mimas and the ring particle. Thus, the im-
pulse approximation fails and i grows rapidly. Although adding
collisional damping slows the growth of e and i (right panels),
e and i still grow rapidly.

When we introduce the oblateness of Saturn into these
simulations, the growth of e and i stalls. In the gravitational field
of an oblate Saturn, the ring particle precesses rapidly. Because
the precession time is short compared to Mimas’s orbital period,
Mimas cannot force alignment of angular momenta. Thus, a
single ring particle maintains a constant e and i (Figure 12, left
panels, light gray lines). Reducing the precession rate by a factor
of 100 enables Mimas some impact on the ring particle; e and i
then vary periodically (Figure 12, left panels, dark gray lines).

8 These elements are similar to those of Daphnis.
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Figure 12. Stirring of a single massless ring particle by a distant moon (Mimas).
The ring particle has initial orbital elements similar to Daphnis. Left panels:
stirring by Mimas without collisional damping. Right panels: stirring by Mimas
with collisional damping. In each panel, the black curves show the growth in
e and i when Saturn and Mimas have a spherically symmetric gravitational
potential. Stirring grows continuously. When Saturn’s oblateness is included in
the calculations, the ring particle precesses rapidly. Stirring and precession yield
a rough equilibrium in e and i as expected for a ring particle. When precession
is slowed by a factor of 100, the variations in e and i become periodic due to
the precession of the ring particle’s angular momentum vector precesses (dark
gray curves).

Including damping and oblateness into the calculations pro-
duces a different equilibrium between stirring and damping.
With a reduced precession rate (Figure 12, right panels, dark
gray lines), e and i oscillate about a slowly declining median
level. With a normal precession rate around an oblate Saturn, e
and i decline monotonically (Figure 12, right panels, light gray
lines). At late times, t � 102 yr, e and i settle into an equilib-
rium with e ≈ i ≈ 10−7 to 10−6 set by the damping rate. Larger
damping results in a smaller equilibrium e and i.

This suite of simulations demonstrates that a balance between
damping and stirring by distant moons sets an equilibrium e
and i for ring particles. Throughout the ring, the damping time
grows in regions of reduced surface density (Equation (8)). Thus,
stirring by distant moons is more important in regions of low
surface density. Because migration slows in regions with large
e and i, stirring by distant moons can inhibit migration more
easily in regions of low surface density.

5. DAPHNIS

If the migration theory outlined in Section 2 is correct,
the A ring should contain no moon or moonlet larger that a
few kilometers. Larger satellites migrate to the ring edges on
timescales much shorter than the ring lifetime. Although some
smaller moonlets—like the propellers—can migrate slowly,
our simulations show that they cannot pass through modest
resonances. Aside from Daphnis, the ring has no large moonlets
or small moons capable of migrating through the resonances
shown in Figure 10. Because Daphnis should migrate so swiftly,
understanding the origin and the behavior of Daphnis is essential
to migration theory.

With an orbital distance of 136,505 km from Saturn, Daphnis
is embedded in the ∼20 km wide Keeler gap (Weiss et al.
2009). It has a modest eccentricity e ≈ 3×10−5 and inclination
i ≈ 6.3×10−5 (Jacobson et al. 2008). Relative to a circular orbit
in the ring plane, the radial and vertical excursions of Daphnis
have amplitudes of roughly 10 km, about twice the moon’s Hill
radius of 4.9 km (Thomas 2010).

Daphnis is a mystery. Despite having a Hill radius within the
range identified for fast migration, its radial drift is negligible.
Using the measured viscosity of the A ring (e.g., Tiscareno
et al. 2007; Colwell et al. 2009), the timescale for ring particles
to circularize Daphnis’s orbit is ∼1500 yr (Equation (7); see
also Hahn 2008). Reducing the inclination to zero follows soon
thereafter (see also Hahn 2007), allowing fast migration to
commence. With an expected total lifetime in the interior of
the A ring, ∼2500 yr, much shorter than the age of the rings,
migration models are closely linked to models for the origin of
Daphnis.

5.1. Origins

There are three possible origins for Daphnis. If this small
moon is a recent addition, it might be a fragment produced
during the impact of a comet or an asteroid with the ring system.
Alternatively, it might have formed in situ. We reject the idea
that the moon results from a three (or more) body interaction
with Saturn’s major moons and outer irregular satellites. The
escape velocities of Saturn’s moons are too low to scatter the
moon into the rings. If the current orbit of Daphnis is stable
for timescales much longer than the ∼1000 yr migration time,
Daphnis is a much older resident of the rings, perhaps a remnant
of the tidal event that produced the ring system. In this scenario,
some set of external processes prevents Daphnis from migrating.
To judge which of these possibilities is more likely, we consider
each in more detail.

Although there is a low probability that Daphnis is an impact
fragment (e.g., Cuzzi & Durisen 1990), this scenario is easy
to test with observations. The current orbital eccentricity and
inclination are appropriate for a small moon settling into the
ring (Figure 6). The numerical simulations demonstrate that e
and i damp to zero on timescales of 100–1000 yr (see also Hahn
2007, 2008). For Daphnis’s orbit in the A ring, we expect the
maximum altitude above the ring to decrease by 10–100 m yr−1.
Although there are no current observational limits on this rate, a
direct measurement would constrain this ‘recent external origin’
scenario.

Forming Daphnis in situ is more likely. Charnoz et al. (2010,
2011) show that many of the inner moons of Saturn may have
grown from ring material. Although Daphnis lies inside the
orbits of the moons considered in Charnoz et al. (2010), it
is reasonably close to the outer edge of the A ring. If Atlas,
Prometheus, and other larger moons formed just outside the
ring, it is reasonable to suppose Daphnis formed with them and
migrated inward to its present location.

Despite the attraction of this idea, Daphnis’s current orbit still
requires special timing. The size of the Keeler gap surrounding
Daphnis’s orbit is roughly the correct size for a gap produced
by a moon-like Daphnis. If Daphnis cleared this gap, then it
should migrate on short timescales (Figure 5). Thus, for in situ
formation to be viable, it probably happened relatively recently.

Although this conclusion seems at odds with the Charnoz
et al. (2010) simulations, observations can test this “recent in
situ origin” scenario. Because changes in altitude above the
rings and the radial motion of Daphnis are detectable, direct
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measurements can establish whether the orbit of Daphnis is
damping vertically or migrating radially.

Because these scenarios seem so unlikely, we consider other
processes that might prevent rapid migration of Daphnis. As
shown in the simulations for Figure 11, distant moons may
establish a resonant barrier which prevents radial migration.
In a cursory search for candidates, the Prometheus 32:31 and
Pandora 18:17 resonances seem promising. Although the
chaotic behavior of the orbits of Saturn’s inner moons com-
plicates measuring the strength of resonances and their impact
on Daphnis, our simulations demonstrate that resonances can
stop the radial migration of moons similar to Daphnis.

Gravitational stirring by distant moons may also prevent
migration (Figure 12). Several of the larger moons—notably
Mimas and Tethys—have orbits with inclinations i ≈ 1◦ relative
to the ring plane. Mimas and Tethys are also locked in a 2:4 mean
motion resonance (e.g., Allen 1969; Vienne & Duriez 1992;
Champenois & Vienne 1999). Stirring by Mimas and Tethys
counter viscous damping by the rings. From Equations (37)
and (38), we estimate that Mimas doubles the eccentricity of
Daphnis in less than a decade. With its larger mass, Tethys can
double Daphnis’s eccentricity in 1.5 yr. Because these timescales
are comparable to the damping time, stirring plausibly slows
down migration.

5.2. Simulations

To test the two possibilities to halt Daphnis’s migration in
more detail, we turn to a set of numerical calculations. Currently,
we cannot simulate the full set of physical processes which
impact Daphnis’s orbit. Our goal is to show that resonances
and stirring by more distant moons are plausible mechanisms to
prevent migration in Daphnis.

We begin with a suite of test runs for a single moon with the
Hill radius of Daphnis embedded within the Keeler gap. Starting
from Daphnis’s current e and i, the moon rapidly aligns with the
ring (Hahn 2007, 2008). With a roughly linear decrease in the
vertical excursion of Daphnis of about 50 m yr−1, Daphnis’s
maximum height above the ring plane drops from ∼10 km to
much smaller than 1 km in roughly 200 yr (Figure 13). Once
Daphnis has a vertical amplitude smaller than the scale height
of the ring, it begins fast migration.

For the next set of simulations, we consider a Daphnis-
sized moon in the 32:31 resonance with Prometheus. The
resonance pumps up the eccentricity and then maintains a
roughly sinusoidal variation in e for ∼10 yr. As e oscillates,
the resonance pushes the moon outside the gap. Once the moon
lies within pristine ring material, damping dominates stirring by
the single outer moon. Both e and i decline dramatically. When
i falls below the threshold ifast < rH/a, the moon commences
fast migration (Figure 13, light gray line).

Moving Daphnis from the Prometheus 32:31 resonance to
the Pandora 18:17 resonance leads to similar behavior on
longer timescales. Within the Pandora resonance, Daphnis’s
orbit remains inside the Keeler gap for ∼20 yr. The resonance
then moves Daphnis out of the gap into the ring. Although
it takes awhile for the ring to damp Daphnis’s inclination, i
eventually drops below ifast. Daphnis then begins fast migration.

When we move Daphnis’s orbit to an off-resonance location,
its orbit becomes more stable, at least on decade-long timescales
(Figure 13, light gray line). In this set of calculations, Daphnis
settles into the ring on a timescale comparable to calculations
without Prometheus and Pandora, or perhaps even faster. There
is no clear sign that stirring from these small, nearby moons

Figure 13. Simulations of Daphnis’s orbit: damping, stirring, and resonances.
The traces show changes in the semimajor axis (upper panel), eccentricity
(middle panel), and maximum altitude above the ring plane (lower panel,
the inclination is i ≈ zmax/a) of a simulated moon with rH = 2.6 km at
a = 136,505 km. The initial eccentricity and inclination are similar to those of
Daphnis (Jacobson et al. 2008). To help isolate physical effects, the oblateness of
Saturn is not included in these simulations (see Figure 12). The curves illustrate
the evolution of (i) a small moon embedded in the Keeler gap (black curve), (ii)
a small moon with its position adjusted to coincide with the 32:31 resonance of
Prometheus (light gray curve), and (iii) a small moon, off-resonance but stirred
by Prometheus and Pandora (dark gray curve). Without resonance or interactions
with distant moons, Daphnis settles into the ring (∼102–103 yr) and then begins
fast migration. In a single resonance, Daphnis is scattered out of the Keeler gap
and begins to migrate. Evolution within the Pandora 18:17 resonance is similar
but on a longer timescale. Off resonances, the orbit is stable on timescales of at
least 104 yr before Daphnis begins to settle into the ring.

can prevent settling. However, the moons do cause some small
differences in the evolution of orbital elements, which is an
encouraging sign: during the first 5000 simulated orbits (7.5 yr),
Daphnis’s inclination shows very little damping.

These simulations demonstrate the ability of interactions with
the distant moons to affect the orbital parameters of Daphnis-
sized moons on very short timescales. Finding plausible equi-
libria for Daphnis within the Keeler gap requires a detailed pa-
rameter search to identify the best combination of initial (a, e, i)
for the satellite and the outer moons, and (Σ, νrad, Tdamp) for the
ring. Although several test simulations suggest that it is pos-
sible to find equilibria stable over million year timescales, the
computational effort is significant and beyond the scope of this
paper.

In a final set of simulations, we consider the reaction of
Daphnis to non-resonant interactions with all of the distant
moons. The simulations with Mimas in Section 4.5 show that
a balance between damping and stirring from a single moon
can maintain a large inclination, with i � ifast. Stirring by
Prometheus and Pandora can reduce settling rates, at least
over several thousand orbits. Thus, stirring from all the outer
moons could maintain a large inclination, probably with some
jitter due to the constantly changing gravitational field along
Daphnis’s orbit.

As in Figure 10, these simulations include all of the major
moons and the ring moons. The coordinates of the moons and

15



The Astrophysical Journal, 764:192 (19pp), 2013 February 20 Bromley & Kenyon

Figure 14. Simulated evolution of Daphnis’s orbit when stirred by Saturn’s
moons. The moon orbits within a gap in surface density with a density contrast
and width similar to the Keeler gap. As in Figure 13, the black curve shows
changes in the moon’s orbital elements solely from interaction with the A ring;
over the course of 6000 orbital periods, Daphnis slowly settles in the ring and
eventually begins to migrate rapidly. The light curve shows the evolution when
Daphnis interacts with ring particles and all of the moons of Saturn. Using
initial phase-space positions from JPL’s Horizons calculator (Giorgini et al.
1996), Saturn’s moons produce quasi-periodic fluctuations in the inclination,
which prevent Daphnis from settling into the ring plane. Thus, interactions with
distant moons plausibly prevent fast migration of Daphnis through the A ring.

Daphnis relative to Saturn come from the JPL Horizons systems
(Giorgini et al. 1996) 00:00:00 GMT, 2012 June 22; we adjusted
the ring plane to enable starting conditions for Daphnis similar
to those in Figure 13. The calculations include the A ring with
an empty Keeler gap, damping and diffusion of ring particles,
and Saturn’s oblateness.

Figure 14 shows the results of one simulation. As in Figure 13,
the thin black curve shows the decay of e and i of a lone Daphnis
orbiting within the Keeler gap and interacting only with ring
particles. Orbital interactions with the full ensemble of Saturn’s
moons yields relatively rapid, small amplitude fluctuations in a
and e. This jitter is similar in amplitude to the jitter of any small
moon in the ring (see Figure 9). On much longer timescales of
a few months to half a year, Saturn’s moons produce 0.5 km
oscillations in the zmax of the moon. On decade timescales,
〈zmax〉, the median height of the moon above the ring plane
is roughly constant. Thus, stirring by Saturn’s moons appears
capable of maintaining the large inclination of Daphnis relative
to the A ring.

The predicted oscillations of Daphnis are sensitive to several
characteristics of our calculations. In our approach to ring
dynamics, ring particles have no self-gravity and therefore do
not react to changes in local surface density. Furthermore, the
ring plane itself is fixed and does not evolve in response to
torques. Despite these limitations, the calculations make a robust
prediction: as the mass of a small moon grows and as the surface
density of ring particles around the satellite declines, the distant
moons of Saturn produce an oscillatory behavior in the height
of the small moon above the ring plane. These oscillations

can prevent small moons like Daphnis from migrating through
the ring.

The predicted quasi-periodic oscillations in the altitude of
Daphnis above the ring plane are detectable. The predicted
amplitude of 200–400 m is a significant fraction of the typical
maximum altitude of roughly 9 km. The quasi-period of a few
months yields a rate żmax ≈ 0.4–0.8 km yr−1, a few times larger
than the rates of motion derived for the propeller moon Blériot
(Tiscareno et al. 2010). Thus, accurate observations of Daphnis’s
inclination or maximum height above the ring plane would test
our interpretation.

5.3. Summary

Our results suggest several plausible origins for Daphnis. A
“young” Daphnis can result from an impact fragment or from
growth beyond the outer edge of the A ring. In both of these
recent origin scenarios, ring material on either side of the Keeler
gap should damp Daphnis’s orbit on short, ∼1000 yr, timescales.
Interactions between Daphnis and the rings should also induce
fast migration.

An “old” Daphnis has been resident in the rings for timescales
exceeding ∼10,000 yr. Because external processes prevent
Daphnis from migrating, Daphnis’s residence time in the ring
could approach the ring lifetime of �0.1–1 Gyr. Our simulations
show that orbital resonances with distant moons can impact
Daphnis’s orbit. Identifying the combination of physical prop-
erties for Daphnis, the rings, and the distant moons needed to
maintain Daphnis in its current orbit requires a comprehensive
suite of simulations that is beyond the scope of this paper.

Our simulations also demonstrate that orbital interactions be-
tween Daphnis and distant moons (e.g., Mimas and Tethys)
outside of any resonance can impact Daphnis’s orbit. Maintain-
ing Daphnis in its current orbit requires a fine balance between
stirring by the distant moon(s) and damping by ring particles
outside the Keeler gap.

5.4. Observational Tests

Observations can test all of these scenarios. If Daphnis is
young, we predict detectable, monotonic changes in the orbital
parameters (a, e, i). If Daphnis is old, changes in (a, e, i) depend
on the importance of resonances. Outside resonance, we expect
modest changes in phase with the motions of distant moons
such as Mimas. Within resonance, the behavior depends on
the strength of the resonance relative to damping by the ring.
Although measuring orbital parameters in a chaotic reference
frame is challenging, direct measurement of Daphnis’s altitude
above the ring plane and position in the Keeler gap provide
equivalent tests of our predictions.

6. CONCLUSIONS

Saturn’s A ring is rich in structure, with an amazing, complex
variety of transient and long-lived features (e.g., Esposito 2010).
The smallest ring particles lie in a matrix of self-gravity wakes,
which form coherent features on scales smaller than 100 m
(Hedman et al. 2007). The 150 or so moonlets embedded in
the ring have physical radii between 50 m and 250 m, and
are located in three ∼1000 km annuli (Tiscareno et al. 2008).
The small moons Pan and Daphnis orbit within distinct gaps
with very low surface density. Together, these moons, moonlets,
and smaller particles provide an excellent testbed for migration
theory (see also Crida et al. 2010; Pan & Chiang 2010; Rein
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& Papaloizou 2010; Salmon & Charnoz 2010; Tiscareno 2012,
and references therein).

As outlined in Figures 1 and 2, theory predicts several distinct
modes of migration through the rings. In the very viscous
A ring, moonlets with rH � 0.1 km migrate on timescales
much longer than the age of the solar system. Large moons
with rH � 20–30 km also migrate very slowly. Between these
limits, migration timescales are shorter than the ring lifetime.
For rH ≈ 2–20 km, the timescales are comparable to a human
lifetime.

In our simulations of Saturn’s A ring, fast migration of small
moons with rH ≈ 2–20 km is ubiquitous. When a small moon
lies within a gap, it eventually pulls enough material from the
gap edges to begin fast migration (Figures 3 and 4). When a
small moon is embedded within a continuous ring, it eventually
clears enough material from its corotation zone to begin fast
migration (Figure 5).

In a pristine ring of small particles, numerical simulations
show that moonlets and small moons migrate at the rates
predicted by analytic theory (Figures 8 and 9). In numerical
simulations that include damping, gravitational interactions
between small moons and ring particles, and viscous spreading,
the moons clear their corotation zones on timescales Tclear. When
the viscous timescale is longer than Tclear, these moons open a
gap in the ring and begin to migrate. As long as rH � rfast,
migration is fast. Otherwise, migration is slow.

In Saturn’s rings, damping and viscous spreading smooth
out the wakes left behind by migrating moons. Thus, mul-
tiple moons can easily migrate rapidly through the rings.
This situation contrasts with protoplanetary disks, where stir-
ring by migrating protoplanets overcomes damping by smaller
planetesimals (Bromley & Kenyon 2011b).

Several physical processes within the rings limit or halt
migration. Interactions between small moons and (1) very
large ring particles or (2) local enhancements in ring surface
density lead to stochastic migration, often reducing migra-
tion rates significantly (Crida et al. 2010; Rein & Papaloizou
2010; Tiscareno 2012). Migrating moonlets and very small
moons cannot pass the “resonant barriers” formed by moons
outside the A ring (Section 4.4). Pairs of resonances can “cor-
ral” these objects and prevent them from migrating in or out
through the ring (Figure 10). Stirring by distant moons outside
resonance can also overcome damping and prevent migration
(Section 4.5).

These results lead to several clear conclusions regarding
migration in the A ring.

1. Propeller moonlet migration. With Hill radii less than
rgap ≈ 2 km (Tiscareno et al. 2008), the propeller moonlets
should experience slow, embedded migration with radial
drift rates below 10 m yr−1 (Figure 2). Stochastic migra-
tion in a self-gravitating ring (Rein & Papaloizou 2010;
Crida et al. 2010), interactions with surface density varia-
tions in the ring (Tiscareno 2012), and oscillatory motion
from interactions with corotating material (Pan & Chiang
2010, 2012) have similar low drift rates. For most moon-
lets, measurements of radial drift limit the rate to below
0.1 km yr−1. At least one larger moonlet, Blériot, shows
non-Keplerian motion (Tiscareno et al. 2010), with a drift
rate that varies in time. Our new results suggest that the
radial drift of Blériot and other moonlets can be confined
by orbital resonances. Indeed, most propellers appear to be
confined to the “corral” between the Mimas 5:3 resonance
and the Janus/Epimetheus 5:4 resonance (Figure 10).

2. The propeller moonlet size distribution. Moonlets have
a range of sizes up to about rH ∼ 1.5 km (Tiscareno
et al. 2008, 2010). Migration theory predicts an upper
limit of rgap ≈ 2 km. Larger objects migrate out of the
ring on timescales of 100–1000 yr. The good agreement
between rgap and the maximum size of propellers is a strong
confirmation of migration theory.

3. Non-Keplerian motion of moonlets. Moonlets orbit Saturn
in a gravitational field which is constantly modified by much
more massive moons orbiting at larger distance. The con-
stant jostling of moonlets by distant moons results in chaotic
radial variations in distance from Saturn (Figure 9). Aside
from complicating the measurement of a moonlet’s orbital
elements within our simulations, this motion may compli-
cate interpretations of non-Keplerian motion of moonlets
within the ring (e.g., Blériot, Tiscareno et al. 2010).

4. The “young” Daphnis. If some external physical mecha-
nism cannot maintain Daphnis in its current orbit, it must
be a recent, ∼103–104 yr, addition to the ring. Migration
theory predicts rapid damping in (e, i) followed by fast
migration. Instruments on board Cassini can measure the
predicted damping in height above the ring plane.

5. The “old” Daphnis. If orbital resonances or stirring by
distant moons can maintain Daphnis in its current orbit,
it may be very old. From our simulations, we identify
sources of stirring which might maintain Daphnis’s orbit
for timescales exceeding 104 yr. Measuring oscillations in
(a, e, i) can place strong constraints on this mechanism.

6. Pan. With rH = 19 km at an orbital distance of 133,584 km,
this small moon orbits within the 300 km wide Encke gap
(Cuzzi & Scargle 1985; Jacobson et al. 2008). Pan’s Hill
radius is very close to rfast. As with Daphnis, orbital res-
onances and stirring from distant moons probably prevent
any form of migration. In addition, these effects may op-
erate to help maintain the Encke gap, whose edges are
relatively far, ∼8 rH, from Pan. The torques from ring ma-
terial in this configuration are too weak to cause measurable
radial drift.

7. Atlas. Orbiting within the Roche Division at the outer edge
of the A ring, Atlas’s Hill radius, rH = 22 km, is also close
to rfast. Although it is too far away from ring material to
have any chance at migrating, Atlas may have migrated
out through the ring to its present location. As with Pan and
Daphnis, understanding the internal physics of ring material
and the interactions with distant moons might yield clues
about its origin and recent history.

8. Pan and Atlas. For both moons, detecting or limiting
variations in (a, e, i) can provide important constraints on
the physical mechanisms within the ring and interactions
between ring particles, these small moons, and distant
moons.

To conclude, our analytic estimates and numerical simula-
tions demonstrate that Saturn’s rings are an important labora-
tory for testing migration theory. Current results are encourag-
ing. Within the A ring, we can explain aspects of the radial and
size distributions of propellers and we identify plausible mecha-
nisms for limiting migration in Daphnis. We also identify several
important observational tests which can be accomplished with
current satellites.

Aside from including additional constraints on ring proper-
ties as new observations provide them, future studies of ring
dynamics will eventually require including the ring self-gravity
directly. Self-gravity adds to the rich dynamical structure of the
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rings (e.g., Lewis & Stewart 2009), which likely has interesting
consequences for the migration of moons and moonlets (e.g.,
Figure 9).
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APPENDIX

The onset of fast migration relies on the presence of some
ring material within ∼4 rH of a small moon. For a moon within
a gap, fast migration proceeds only when the half-width of the
gap is �4 rH. Because the relationship between the moon and
the size of the gap it creates is critical to migration, we consider
several approaches to assess this relationship.

In the torque-balance approach (e.g., Lissauer et al. 1981),
the viscous torque on ring material as it diffuses into a gap of
width Δa is set equal to the torque at the gap edge applied by
the satellite. From weak-scattering theory (Lin & Papaloizou
1979), this balance yields a simple relationship between the gap
half-width and the satellite’s Hill radius:

Δa ∼ 2

(
GM

a5ν2

)1/6

r2
H. (A1)

If the time to fill the gap is the viscous time (e.g., Tfill in
Equation (7) in the main text), it is possible to eliminate the
viscosity in this expression and derive a minimum gap size, as
in Equation (2) for rgap.

An alternative approach equates the radial distance ring
material can diffuse in a synodic period,

√
νTsyn, with the

displacement in semimajor axis a particle receives after every
close encounter with the satellite (proportional to the right-hand
side of Equation (A1); see also Equation (5) of Bromley &
Kenyon 2011b). This balanced is achieved at an orbital distance
from the satellite

Δa ∼
(

GM

a5ν2

)1/18

r
4/3
H . (A2)

This result is similar to the result in Equation (A1).
More detailed treatments derive some form of the radial

diffusion equation across the gap and solve explicitly for
the surface density distribution and the half-width of the gap
(e.g., Hourigan & Ward 1984; Rafikov 2001). Although these
solutions yield much better estimates for the surface density
distribution, results for the half-width of the gap differ from
the simpler treatments by less than a factor of two. Given the
uncertainties, either Equation (A1) or Equation (A2) provides a
reasonable approximation to the half-width.

To apply these two results to Saturn’s A ring, we adopt the
nominal parameters in Equations (14)–(16) from the main text
and derive

Δa ∼ 0.97
[ rH

1 km

]2
[

85 cm2 s−1

νrad

]1/3 [
1.3 × 105 km

a

]5/6

km

(A3)

for balancing the torques and

Δa ∼ 1.4
[ rH

1 km

]4/3
[

85 cm2 s−1

νrad

]1/9 [
1.3 × 105 km

a

]5/18

km

(A4)
for balancing scattering and viscous diffusion. For small moons
capable of fast migration, rH ≈ 2–5 km, these approaches yield
similar results for Δa. For much larger moons, torque balance
consistently yields a larger half-width.

For the rest of this section, we focus on half-widths derived by
balancing scattering and viscous diffusion. Requiring Δa � 4 rH
yields the maximum Hill radius for a satellite capable of drawing
material from the gap edges, ∼23 km, when scattering balances
viscous diffusion. This limit is comparable to rfast.

In principle, moons with rH � 23 km can prevent material
from encroaching within 4rH. These moons migrate slowly in
the type II mode. Because gravitational scattering falls off so
steeply with orbital distance from the satellite, viscous diffusion
constantly tries to drive material into the gap. If diffusion
produces a higher surface density and viscosity at the edges
of a gap, the gap will shrink, enabling the satellite to draw
material away from the gap, possibly initiating fast migration.

To compare the simple theory with Daphnis in the Keeler
Gap and Pan in the Encke Gap, we adopt rH ≈ 5 km for
Daphnis and rH ∼ 20 km for Pan. For Daphnis, the balance
between scattering and viscous diffusion occurs at Δa ∼ 12 km,
somewhat smaller than the observed half-width, ∼13–20 km,
of the Keeler gap (Weiss et al. 2009). For Pan, the balance
is at Δa ∼ 75 km, much smaller than the observed half-width,
∼160 km, of the Encke Gap. Based on this analysis, we identify
Daphnis as a good candidate for fast migration. Pan is a poor
candidate for fast migration, at least under current conditions
in the Encke Gap. However, barring other effects such as
resonances with distant moons, Pan may be unable to halt long-
term diffusion of ring material to within 4rH.

In our calculations, large moons achieve a balance between
viscous diffusion and gravitational scattering. The numerical
results support the limits derived in Equation (A4). Moons with
rH � 20–25 km can migrate in the type II mode. Smaller moons
with rH ≈ 2–20 km may undergo fast migration.
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