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ABSTRACT

This paper addresses the problem of detecting and characterizing local variability in time series and other forms
of sequential data. The goal is to identify and characterize statistically significant variations, at the same time
suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique
and an algorithm implementing it—an improved and generalized version of Bayesian Blocks—that finds the optimal
segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a
real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure
model fitness are presented for events, binned counts, and measurements at arbitrary times with known error
distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piecewise
linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the
circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak
signals is close to a theoretical asymptotic limit derived by Arias-Castro et al. In the spirit of Reproducible Research
all of the code and data necessary to reproduce all of the figures in this paper are included as supplementary material.
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Online-only material: Supplemental data file (tar.gz)

“The line is similar to a length of time, and as the points are the beginning and end of the line, so the instants are the endpoints of
any given extension of time.” Leonardo da Vinci, Codex Arundel, folio 190v., c. 1500 A.D. (Capra 2007).

1. THE DATA ANALYSIS SETTING

This paper describes a method for nonparametric analysis of
time series data to detect and characterize structure localized
in time. Nonparametric methods seek generic representations,
in contrast to fitting of models to the data. By local structure
we mean light-curve features occupying sub-ranges of the total
observation interval, in contrast to global signals present all
or most of the time (e.g., periodicities) for which Fourier,
wavelet, or other transform methods are more appropriate.
Wavelets enjoy the best of both worlds, being effective for global
and local, short duration, signals. Our adaptive segmentation
approach is much in the spirit of wavelet analysis freed of its
restriction to basis functions supported on fixed dyadic intervals.

The goal is to separate statistically significant features from
the ever-present random observational errors. Although phrased
in the time domain the discussion throughout is applicable
to measurements sequential in wavelength, spatial quantities,
or any other independent variable. This setting leads to the
following desiderata: The ideal algorithm would impose as
few preconditions as possible, avoiding assumptions about
smoothness or shape of the signal that place a priori limitations
on scales and resolution. The algorithm should handle arbitrary
sampling (i.e., not be limited to gapless, evenly spaced data)
and large dynamic ranges in amplitude, timescale, and signal to
noise. For scientific data mining applications and for objectivity,
the method should be largely automatic. To the extent possible it
should suppress observational errors while preserving whatever
valid information lies in the data. It should be applicable to
multivariate problems. It should incorporate variation of the

exposure or instrumental efficiency during the measurement,
as well auxiliary, extrinsic information, e.g., spectral or color
information. It should be able to operate both retrospectively
(analyze all the data after they are collected) and in a real-time
fashion that triggers on the first significant variation of the signal
from its background level.

The algorithm described here has considerable success in
achieving each of these features. With a simple and easy-
to-use computational framework it represents the structure
of the signal in a form handy for further analysis and the
estimation of physically meaningful quantities. It includes an
automatic penalty for model complexity, thus solving the vexing
problems associated with model comparison in general and
determining the order of the model in particular. It is exact, not
a greedy approximation as in Scargle (1998). This term refers to
algorithms that make improvements at each iteration but in the
long run are short-sighted and not guaranteed to converge to a
global optimum.

In a similar context the reference (Gregory & Loredo 1992),
especially Appendix C, discusses evenly spaced block represen-
tations of time series for the detection of periodicities and other
features in event data. Versions of our algorithm have been used
in various applications, such as Horvath et al. (2005), Norris
et al. (2010), Norris et al. (2011), Way et al. (2011), and Qin
et al. (2013).

The following sections discuss, in turn, the basis of seg-
mentation analysis (Section 1.1), the piecewise constant model
adopted in this work (Section 1.2), extensions to piecewise lin-
ear and piecewise exponential models (Section 1.3), the types
of data that the algorithm can accept (Sections 1.5 and 1.6),
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data gaps (Section 1.7), exposure variations (Section 1.8), a
parameter from the prior on the number of blocks (Section 1.9),
generalities of optimal segmentation of data into blocks
(Section 2), some error analysis (Section 2.8), a variety of
block fitness functions (Section 3), and sample applications
(Section 4). Appendices present some MatLabTM (The
Mathworks, Inc.) and IDL TM (Exelis Visual Information
SolutionsTM) code, some miscellaneous results, and details of
other data modes, including dispersed data (Appendix C.8). An-
cillary files are available providing scripts and data in order to
reproduce all of the figures in this paper.

1.1. Optimal Segmentation Analysis

The above considerations point toward the most generic pos-
sible nonparametric data model, and have motivated the devel-
opment of data segmentation and change-point methods—see,
e.g., Ò Ruanaidh & Fitzgerald (1996) and Scargle (1998). These
methods represent the signal structure in terms of a segmenta-
tion of the time interval into blocks, with each block containing
consecutive data elements satisfying some well-defined crite-
rion. The optimal segmentation is that which maximizes some
quantitative expression of the criterion—for example, the sum
over blocks of a goodness-of-fit measure of a simple model of
the data lying in each block.

These concepts and methods can be applied in surprisingly
general, higher dimensional contexts. Here, however, we con-
centrate on one-dimensional data ordered sequentially with re-
spect to time or some other independent variable. In this setting
segmentation analysis is often called change-point detection,
since it implements models in which a signal’s statistical prop-
erties change discontinuously at discrete times but are constant
in the segments between these change points (see Section 2.5).

1.2. The Piecewise Constant Model

It is remarkable that all of the desiderata outlined in the
previous section can be achieved in large degree by optimal
fitting of a piecewise constant model to the data. The range of
the independent variable (e.g., time) is divided into subintervals
(here called blocks) generally unequal in size, in which the
dependent variable (e.g., intensity) is modeled as constant within
errors. Of all possible such “step functions” this approach yields
the best one by maximizing some goodness-of-fit measure.

Defining the times ending one block and starting the next
as change points, the model of the whole observation interval
contains these parameters:

1. Ncp: the number of change points,
2. t

cp
k : the change-point starting block k (and ending block
k − 1),

3. Xk: the signal amplitude in block k,

for k = 1, 2, . . . Ncp + 1. There is one more block than there are
change points: The first datum is always considered a change
point, marking the start of the first block, and is therefore not a
free parameter. If the last datum is a change point, it denotes a
block consisting solely of that datum.

The key idea is that the blocks can be treated independently,
in the sense that a block’s fitness depends on its data only. Our
simple model for each block has effectively two parameters.
The first represents the signal amplitude, and is treated as a
nuisance parameter to be determined after the change points
have been located. The second parameter is the length of the
interval spanned by the block. (The actual start and stop times

of this interval are needed for piecing blocks together to form the
final signal representation, but not for the fitness calculation.)

How many blocks? A key issue is how to determine the
number of blocks, Nblocks = Ncp + 1. Nonparametric analysis
invariably involves controlling in one way or another the
complexity of the estimated representation. Typically, such
regulation is considered a tradeoff of bias and variance, often
implemented by adjusting a smoothing parameter.

But smoothing is one of the very things we are trying to avoid.
The discontinuities at the block edges are regarded as assets,
not liabilities to be smoothed over. So rather than smooth, we
influence the number of blocks by defining a prior distribution
for the number of blocks. Adjusting a parameter controlling
the steepness of this prior establishes relative probabilities of
smaller or larger numbers of blocks. In the usual fashion for
Bayesian model selection in cases with high signal to noise,
Nblocks is determined by the structure of the signal; with lower
signal to noise, the prior becomes more and more important.
In short, we are regulating not smoothness but complexity,
much in the way that wavelet denoising (Donoho & Johnstone
1998) operates without smoothing over sharp features as long as
they are supported by the data. The issues centered around the
adopted prior and the determination of its parameter are further
discussed in Section 1.9 below.

This segmented representation is in the spirit of nonparamet-
ric approximation and not meant to imply that we believe the sig-
nal is actually discontinuous. The sometimes crude and blocky
appearance of this model may be awkward in visualization con-
texts, but for deriving physically meaningful quantities it is not.
Blocky models are broadly useful in signal processing (Donoho
1994) and have several motivations. Their simplicity allows ex-
act treatment of various quantities, such as the likelihood. We
can optimize or marginalize the rate parameters exactly, giv-
ing simple formulas for the fitness function (see Section 3 and
Appendix C). Furthermore, in many applications the estimated
model itself is less important than quantities derived from it.
For example, while smoothed plots of pulses within gamma-ray
bursts (GRBs) make pretty pictures, one is really interested in
pulse locations, lags, amplitudes, widths, rise and decay times,
etc. All of these quantities can be determined directly from the
locations, heights, and widths of the blocks—accurately and
free of any smoothness assumptions.

1.3. Piecewise Linear and Exponential Models

Some researchers have applied segmentation methods with
other block representations. For example, piecewise linear
models have been used in measuring similarity among time
series and in pattern matching (Lin et al. 2003) and to represent
time series generated by nonlinear processes (Tong 1990).
While such models may seem better than discontinuous step
functions, their improved flexibility is somewhat offset by added
complexity of the model and its interpretation. Note further that
if continuity is imposed at the change points, a piecewise linear
model has essentially the same number of degrees of freedom
as does the simpler piecewise constant model.

We mention two such generalizations, one modeling the
signal as linear in time across the block:

x(t) = λ(1 + a(t − t0)), (1)

and the second as exponential:

x(t) = λea(t−t0). (2)
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In both cases λ is the signal strength at the fiducial time t0 and
the coefficient a determines the rate of variation over the block.
Such models may be useful in spite of the caveats mentioned
above and the added complexity of the block fitness functions.
Hence we provide some details in Appendices C, C.9, and C.10.

1.4. Histograms

Generally speaking data analysis requires very different al-
gorithms depending on whether or not the underlying mea-
surements are sequential. However constructing a histogram of
non-sequential measured values is very similar to estimation of
a piecewise constant model for the same data treated as if they
were sequential. Hence histograms can be constructed by sim-
ply ordering the measured values and applying our algorithm
for event data.

This approach automatically leads to generalized histograms
in which the bins adapt to the data and are neither constrained
to be equal nor is their number or size pre-defined. This way of
constructing density representations with histograms has many
advantages. It avoids information loss due to arbitrarily chosen
bins. As well it short-circuits the dependence of the density
estimate on such choices, thereby circumventing the temptation
to fiddle with bins to emphasize some desired feature and then
ignore the trials factor in the significance analysis. In many
astronomical applications there is a great advantage to structure
estimation that imposes no preconditions on resolution, and
indeed allows increased resolution where it is supported by the
data. Once one determines the parameter in the prior on the
number of bins, ncp_prior, one has an objective histogram
procedure in which the number, individual sizes, and locations
of the bins are determined solely and uniquely by the data.

A future publication will detail this approach to histograms
and exhibit its advantages over non-adaptive histograms.

1.5. Data Modes

The algorithms developed here can be used with a variety
of types of data, often called data modes in instrumentation
contexts. An earlier paper (Scargle 1998) described several,
with formulas for the corresponding fitness functions. Here we
discuss data modes in a broader perspective. It is required that
the measurements provide sufficient information to determine
which block they belong to and then to compute the model
fitness function for the block (cf. Section 2.3).

Almost any physical variable and any measurement scheme
for it, discrete or quasi-continuous, can be accommodated. In
the simple one-dimensional case treated here, the independent
variable is time, wavelength, or some other quantity. The data
space is the domain of this variable over which measurements
were made—typically an interval, possibly interrupted by gaps
during which the measuring system was not operating.

The measured quantity can be almost anything that yields
information about the target signal. The three most common
examples emphasized here are: (1) times of events (often called
time-tagged event (TTE) data), (2) counts of events in time bins,
and (3) measurements of a quasi-continuous observable at a
sequence of points in time. For the first two cases the signal
of interest is the event rate, proportional to the probability
distribution regulating events that occur at discrete times due
to the nature of the astrophysical process and/or the way it
is recorded. We call case (3) point measurements, not to be
confused with point data (also called event data). These modes
have much in common, as they all comprise measurements that

can be at any time; what differentiates them is their statistics,
roughly speaking Bernoulli, Poisson, and Gaussian (or perhaps
some other), respectively.

The archetypal example of (1) is light collected by a telescope
and recorded as a set of detection times of individual photons
to study source variability. Case (2) is similar, but with the
events collected into bins—which do not have to be equal
or evenly spaced. Case (3) is common when photons are not
detected individually, such as in radio flux measurements. In
all cases it is useful to represent the measurements with data
cells, typically one for each measurement (see Section 2.2).
In principle mixtures of cells from different data types can be
handled, as described in the next section.

1.6. Mixed Data Modes

In the course of an observation sequence the data mode may
change for any one of a number of reasons. For example, a
buffer containing photon arrival times may overflow, triggering
a switch to a less voluminous mode such as time-to-spill or
binned data. Another example is GRB data in which a switch
to smaller bins occurs near the time of the burst trigger. Our
algorithm can analyze essentially arbitrary mixtures of data
types within a single time series, simply by ensuring that the
block cost function is based on whatever data lies within it. The
term mixed data modes connotes measurements of the same
quantity with different data modes at different times, whereas
the related concept of multivariate time series refers to several
simultaneous data streams with different data modes or perhaps
even measuring very different physical quantities. Therefore
implementation details will not be given here, but deferred to
Section 4.2, where we discuss this more general context.

1.7. Gaps

In many cases there are subintervals of time over which
no data were obtained,5 for diverse reasons characterized as
stochastic (weather, instrument malfunction), periodic (daily,
monthly, annual cycles), and even sociological (telescope as-
signment committee vagaries, the perceived importance of fu-
ture observations based on past data, and the reaction of the
scientific community to same).

Mathematically these may be viewed as processes with
random and deterministic components, but in practice one
rarely knows enough for a statistical treatment to be useful.
Accordingly, gaps are almost always treated as simply given,
and we do so here.

Such data gaps have a nearly invisible affect on the algorithm,
fundamentally due to the fact that it operates locally in the time
domain. For event data all that matters is the live time during the
block, i.e., the time over which data could have been registered.
Other than correcting the total time span of any putative block
containing data gaps by subtracting the corresponding dead
time, gaps can be handled by ignoring them. Operationally, one
simply treats the data right after a gap as immediately following
the data right before it (and not delayed by the length of the
gap). Think of this as squeezing the interval to eliminate the
gaps, carrying out the analysis as if no gaps are present, and
then undoing the squeezing by restoring the original times. This
procedure is valid because event independence means that the
fitness of a block depends on only its total live time and the
events within it.

5 These are very different from intervals in which no events happened to be
detected due to low event rate.
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For event data, this squeezing can be implemented by sub-
tracting from each event time the sum of the lengths of all the
preceding gaps. One small detail concerns the points just before
and just after a gap. One might think their time intervals should
be computed relative to the gap edges. But it follows from the
nature of independent events (see Appendix B) that they can be
computed as though the gap did not exist.

The only other subtlety lies in interpreting the model in and
around gaps. There are two possibilities: A given gap (1) may
lie completely within a block or (2) it may separate two blocks.
Case (1) can be taken as evidence that the event rates before and
after the gap are deemed the same within statistical fluctuations.
Case (2), on the other hand, implies that the event rate did change
significantly.

Of course the gaps must be restored for display and other post-
processing analysis. Think of this as unsqueezing the data so that
all blocks appear at their correct locations in time. Keeping in
mind that there is no direct information about what happened
during unobserved intervals, plots should probably include some
indication that rates within gaps are unknown or uncertain, such
as by use of dotted lines or shading in the gap for case (1) or
leaving the gap interval completely blank in case (2).

For the case of point measurements the situation is different.
In one sense there are no gaps at all, and in another sense the
entire observation interval consists of many gaps separating tiny
intervals over which the measurements were actually made. One
is hard-pressed to make a statistical distinction between various
reasons why there is not a measurement at a given time—e.g.,
detector and weather problems, or simply a choice as to how
to allocate observing time (a choice that may even depend on
the results of analyzing previous data). Basically, the blocks in
this case represent intervals where whatever measurements were
made in the interval are consistent with a signal that is constant
over that interval.

Note that things would be different if one wanted to define a
fitness function dependent on the total length of the block, not
just its live time. This would arise, for example, if a prior on
the block length were imposed. Such possibilities will not be
discussed here, nor will the rare exceptions where a statistical
treatment of the gaps is warranted.

1.8. Exposure Variations

In some applications the effective instrument response is not
constant. The measurements then reflect true source variations
modified by changes in overall throughput of the detection
system. We use the term exposure for any such effect on the
detected signal—e.g., detector efficiency, telescope effective
area, beam pattern, and point-spread function effects. Exposure
can be quantified by the ratio of the expected signal with and
without any such effects. It may be calculable from properties
of the observing system, determined after the fact through some
sort of calibration procedure, or a combination of the two. Here
we assume that this ratio is known and expressed as a number
en, typically with 0 � en � 1, for data cell n.

The adjustment for exposure is simple, namely, change the
parameter representing the observed signal amplitude in the
likelihood to what it would have been if the exposure had been
unity. First compute the exposure en for data cell n. Then increase
by the factor 1/en whatever quantity in the data cell represents
the measured signal intensity. Specifically, for TTE data this
parameter is the reciprocal of the interval of the corresponding
data cell: 1/Δtn (see Equation (20)), which is then replaced
with 1/(enΔtn). For bin counts the bin size can be multiplied by

en or equivalently the count by 1/en. For point measurements
the amplitude measurement are multiplied by 1/en (and adjust
any observational error parameters accordingly). In all cases the
goal is to represent the data as closely as possible to what it
would have been if the exposure had been constant. Of course
this restoration is not exact in individual cases, but is correct on
average.

For TTE data the fact that interval Δtn as we define it in
Equation (20) depends on the times of two different events
(just previous to and just after the one under consideration)
may seem to pose a problem. The exposures of these events
will in general be different, so what value do we use for the
given event? The comforting answer is that the only relevant
exposure is that for the given event itself. In considering the
interval from the previous to the current time, namely, tn − tn−1,
tn−1 is regarded as simply a fiducial time and the distribution
of this interval is given by Equation (B5) with λ the true rate
adjusted by the exposure for event n, by the principle described
in Appendix B.5 just after this equation. Similarly, by a time-
reversal invariance argument, the distribution of the interval to
the subsequent event, namely, tn+1 − tn, also depends on only the
same quantity. In summary, event independence (Appendix C)
yields the somewhat counterintuitive fact that the probability
distribution of Δtn = (tn+1 − tn−1)/2 of the interval surrounding
event n depends on only the effective event rate for event n.

1.9. Prior for the Number of Blocks

Earlier work (Scargle 1998) did not assign an explicit prior
probability distribution for the number of blocks, i.e., the
parameter Nblocks. This omission amounts to using a flat prior,
but in many contexts it is unreasonable to assign the same prior
probability to all values. In particular, in most settings it is much
more likely a priori that Nblocks � N than that Nblocks ≈ N .
For this reason it is desirable to impose a prior that assigns
smaller probability to a large number of blocks. We adopt this
geometric6 prior (Coram 2002) with the single parameter γ :

P (Nblocks) = P0γ
Nblocks (3)

for 0 � Nblocks � N , and zero otherwise since Nblocks cannot be
negative or larger than the number of data cells.

The normalization constant P0 is easily obtained, giving

P (Nblocks) = 1 − γ

1 − γ N+1
γ Nblocks, (4)

and the expected number of blocks is

〈Nblocks〉 = P0

N∑
Nblocks=0

Nblocksγ
Nblocks = Nγ N+1 + 1

γ N+1 − 1
+

1

1 − γ
.

(5)
(Note that the estimated number of blocks is a discontinuous,
monotonic function of γ , and because its jumps can be >1 it is
not generally possible to force a prescribed number by adjusting
this parameter.) See Coram & Lalley (2006) and references
therein, such as Diaconis & Freedman (1993) and Diaconis &
Freedman (1995), for discussions of the geometric and other
priors with regard to overfitting and frequentist consistency
in Bayesian regression, hierarchical priors, and priors directly
on the time series representation itself (and not the number of
blocks as done here).

6 This name seems to arise from its relation to geometric series.
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Other distributions might better represent known or assumed
prior information in specific applications, or perhaps be useful
as a generic prior for the kind of general purpose tools we
present here, meant for a wide variety of applications. Three
considerations drive our choice for the prior, namely, that it:
(1) achieves the desideratum in the previous paragraph (by
taking γ < 1), (2) has well-understood theoretical properties
(Coram 2002; Coram & Lalley 2006), and (3) is simply
implemented in the algorithm. This last point follows because
the contribution of the prior to block fitness, given by the
logarithm of Equation (3), can be implemented simply by adding
the constant log γ (called ncp_prior in the MatLabTM code and
in the discussion of computational issues below) to the fitness
of each block. Values of γ larger than 1 almost certainly lead to
extreme overfitting, namely, assigning each datum to a separate
block. Determining the actual value to use in applications is
discussed in Section 2.7 below.

Naturally, the prior influences the number of blocks in the
optimal representation. This connection is of some importance
since it means that the parameter γ affects the representation,
its visual appearance, and the values of quantities derived from
it. Accordingly, one can think of γ as a free parameter that can
be varied to adjust the amount of structure in the block repre-
sentation, controlling, e.g., its total variation. However note that
the discontinuities at the block edges are not rounded in such
an adjustment, which is therefore different from bandpass filter-
ing, e.g., and more analogous to wavelet denoising (Donoho &
Johnstone 1998) in the sense of retaining sharply defined struc-
tures supported by the data. Of course one may experiment with
different values, as is usually done with smoothing parameters.
However it is important to have an objective, principled way to
select the value of this parameter—the subject of Section 2.7.

1.10. Related Work

Some references to related work are to be found in Jackson
et al. (2005), especially papers by Hubert and Kehagias. More
recent work includes (Mannila & Salmenkivi 2001; Du & Kou
2012; Xie et al. 2012).

2. OPTIMUM SEGMENTATION OF
DATA ON AN INTERVAL

Piecewise constant modeling of sequential measurements on
a time interval T is most conveniently implemented by seeking
an optimal partition of the ordered set of data cells within T . In
this special case of segmentation, the segments cover the whole
set with no overlap between them (Appendix B). Segmentations
with overlap are possible, for example, in the case of correlated
measurements, but are not considered here. One can envision
our quest for the optimal segmentation as nothing more than
finding the best step function, or piecewise constant model, fit
to the data—defined by maximizing a specific fitness measure
as detailed in Section 2.4.

We introduce our algorithm in a somewhat abstract setting
because the formalism developed here applies to other data
analysis problems beyond time series analysis. It implements
Bayesian Blocks or other one-dimensional segmentation ideas
for any model fitness function that satisfies a simple additivity
condition. It improves the previous approximate segmentation
algorithm (Scargle 1998) by achieving an exact, rigorous solu-
tion of the multiple change-point problem, guaranteed to be a
global optimum, not just a local one.

The rest of this section describes the structure (Sections 2.1–
2.3, 2.5), fitness (Section 2.4; details for specific data modes are
in Section 3), and optimization (Section 2.6) of the model, as
well as the complexity penalty parameter γ (Section 2.7), error
analysis (Section 2.8), and multivariate data (Section 2.9).

2.1. Partitions

Partitions of a time interval T are simply collections of non-
overlapping blocks (defined below in Section 2.3), defined by
specifying the number of its blocks and the block edges:

P(I ) ≡ {Nblocks; nk, k = 1, 2, 3, . . . Nblocks}, (6)

where the nk are indices of the data cells (Section 2.2) defining
times called change points (see Section 2.5).

Appendix B gives a few mathematical details about partitions,
including justification of the restriction of the change points to
coincide with data points and the result that the number of
possible partitions (i.e., the number of ways N cells can be
arranged in blocks) is 2N . This number is exponentially large,
rendering an explicit exhaustive search of partition space utterly
impossible for all but very small N. Our algorithm implicitly
performs a complete search of this space in time of order N2, and
is practical even for N ∼ 1,000,000, for which approximately
10300,000 partitions are possible. The beauty of the algorithm
is that it finds the optimum among all partitions without an
exhaustive explicit search, which is obviously impossible for
almost any value of N arising in practice.

2.2. Data Cells

For input to the algorithm the measurements are represented
with data cells. For the most part there is one cell for each
measurement, although in the case of TTE data two or more
events with identical time tags may be combined into a single
cell. A convenient data structure is an array containing the cells
ordered by the measurement times.

Specification of the contents of the cells must meet two
requirements. First, they must include time information allowing
determination of which cells lie in a block given its start and
stop times. Post-processing steps such as plotting the blocks
may in addition use the actual times, either absolute or relative
to a specified origin.

The other requirement is that the fitness of a block can be
computed from the contents of all the cells in it (Sections 2.4
and 3). For the three standard cases the relevant data, roughly
speaking, are: (1) intervals between events (Section 3.1); (2)
bin sizes, locations, and counts (Section 3.2); and (3) measured
values augmented by a quantifier of measurement uncertainty
(Section 3.3). These same quantities enable construction of
the resulting step function for post-processing steps such as
computing signal parameters.

2.3. Blocks of Cells

A block is any set of consecutive cells, either an element
of the optimal representation or a candidate for it. Each block
represents a subinterval (within the full range of observation
times) over which the amplitude of the signal can be estimated
from the contents of its cells (Section 2.2). A block can be as
small as one cell or as large as all of the cells.

Our time series model consists of a set of blocks partitioning
the observations. All model parameters are constant within
each block but undergo discrete jumps at the change points
(Section 2.5) marking the edges of the blocks. The model is
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visualized by plotting rectangles spanning the intervals covered
by the blocks, each with height equal to the signal intensity
averaged over the interval. The concept of fitness of a block is
fundamental to everything else in this paper. As we will see
in the next section the fitness of a partition is the sum of the
fitnesses of the blocks comprising it.

2.4. Fitness of Blocks and Partitions

Since the goal is to represent the data as well as possible within
a given class of models, we maximize a quantity measuring
the fitness of models in the given class—here, the class of all
piecewise constant models. Alternatively, one can minimize an
error measure. Both operations are called optimization. The
algorithm relies on the fitness being block-additive, i.e.,

F [P(T )] =
Nblocks∑
k=1

f (Bk), (7)

where F [P(T )] is the total fitness of the partition P of interval
T and f (Bk) is the fitness of block k. The latter can be any
convenient measure of how well a constant signal represents
the data within the block. Typically, additivity results from
independence of the observational errors. We here ignore the
possibility of correlated errors, which could make the fitness of
one block depend on that of its neighbors. Remember correlation
of observational errors is quite separate from correlations in the
signal itself.

All model parameters are marginalized except the nk speci-
fying block edges. Then the total fitness depends on only these
remaining parameters—i.e., on the detailed specification of the
partition by indicating which cells fall in each of its blocks. The
best model is found by maximizing F over all possible such
partitions.

2.5. Change Points

In the time series literature, a point at which a statistical model
undergoes an abrupt transition, by one or more of its parameters
jumping instantaneously to a new value, is called a change point.
This is exactly what happens at the edges of the blocks in our
model. In principle change points can be at arbitrary times.
However, following the data cell representation and without any
essential loss of generality, they can be restricted to coincide
with a data point (Appendix B).

A few comments on notation are in order. We take blocks
to start at the data cell identified by the algorithm as a change
point and to end at the cell previous to the subsequent change
point. A slight variation of this convention is discussed below
in Section 4.4 in connection with allowing the possibility of
empty blocks in the context of event data. One might adopt
other conventions, such as apportioning the change-point data
cell to both blocks, but we do not do so here. Even though the
first data cell in the time series always starts the first block, our
convention is that it is not considered a change point. In the
code presented here the first change point marks the start of the
second block. For k > 1 the kth block starts at index nk−1 and
ends at nk − 1. The first block always starts with the very first
data cell. The last block always terminates with the very last
data cell. If the last cell is a change point, it defines a block
consisting of only that one cell. The set of change points is
empty if the best model consists of a single block, meaning that
the time series is sensibly constant over the whole observation
interval. The number of blocks is one greater than the number
of change points.

2.6. The Algorithm

We now outline the basic algorithm yielding the desired
optimum partitions. The details of this dynamic programming7

approach (Bellman 1961; Hubert et al. 2001; Dreyfus 2002) are
in Jackson et al. (2005). It follows the spirit of mathematical
induction: Beginning with the first data cell, at each step one
more cell is added. The analysis makes use of results stored
from all previous steps. Remarkably, the algorithm is exact and
yields the optimal partition of an exponentially large space in
time of order N2. The iterations normally continue until the
whole interval has been analyzed. However its recursive nature
allows the algorithm to function in a trigger mode, halting when
the first change point is detected (Section 4.3).

Let Popt(R) denote the optimal partition of the first R cells. In
the starting case R = 1, the only possible partition (one block
consisting of the first cell by itself) is trivially optimal. Now as-
sume we have completed step R, identifying the optimal partition
Popt(R). At this (and each previous) step, the value of optimal
fitness itself is stored in array best and the location of the last
change point of the optimal partition is stored in array last.

It remains to show how to obtain Popt(R + 1). For some r
consider the set of all partitions (of these first R + 1 cells) whose
last block starts with cell r (and by definition ends at R + 1).
Denote the fitness of this last block by F (r). By the subpartition
result in Appendix B the only member of this set that could
possibly be optimal is that consisting of Popt(r − 1) followed
by this last block. By the additivity in Equation (7) the fitness
of said partition is the sum of F (r) and the fitness of Popt(r − 1)
saved from a previous step:

A(r) = F (r) +

{
0 r = 1
best(r − 1), r = 2, 3, . . . , R + 1.

(8)

A(1) is the special case where the last block comprises the entire
data array and thus no previous fitness value is needed. Over the
indicated range of r this equation expresses the fitness of all
partitions P(R + 1) that can possibly be optimal. Hence the
value of r yielding the optimal partition Popt(R + 1) is the easily
computed value maximizing A(r):

ropt = argmax[A(r)]. (9)

At the end of this computation, when R = N , it only remains to
find the locations of the change points of the optimal partition.
The needed information is contained in the array last in which
we have stored the index ropt at each step. Using the corollary
in Appendix B it is a simple matter to use the last value in this
array to determine the last change point in P opt(N ), peel off the
end section of last corresponding to this last block, and repeat.
That is to say, the set of values

cp1 = last(N ); cp2 = last(cp1 − 1);
cp3 = last(cp2 − 1); . . . (10)

7 Bellman’s explanation of his choice of this name, before the word
“programming” took on its current computational connotation, is interesting.
The Secretary of Defense at the time “... had a pathological fear and hatred of
the word, research.... You can imagine how he felt, then, about the term,
mathematical.... I felt I had to do something to shield... the Air Force from the
fact that I was really doing mathematics inside the RAND Corporation.... I was
interested in planning... But planning is not a good word for various reasons. I
decided therefore to use the word, programming. I wanted to get across the
idea that this was dynamic... it’s impossible to use the word, dynamic, in a
pejorative sense. Try thinking of some combination that will possibly give it a
pejorative meaning. It’s impossible. Thus, I thought dynamic programming
was a good name. It was something not even a Congressman could object to
(Dreyfus 2002, pg. 25).”
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Figure 1. Cross-validation error of BATSE TTE data (averaged over 532 GRBs,
eight random subsamples, and time) for a range of values of −log γ = with 3σ

error bars.

are the index values giving the locations of the change points,
in reverse order. Note that the positions of the change points
are not necessarily fixed until the very last iteration, although in
practice it turns out that they become more or less “frozen” once
a few succeeding change points have been detected. MatLabTM

(The Mathworks, Inc.) code for optimal partitioning of event
data is given in Appendix A and included as supplementary
data files.

2.7. Fixing the Parameter in the Prior Distribution for Nblocks

As mentioned in Section 1.9, the output of the algorithm is
dependent on value of the parameter γ , characterizing the as-
sumed prior distribution for the number of blocks, Equation (3).
In many applications the results are rather insensitive to the
value as long as the signal-to-noise ratio is even moderately
large. Nevertheless extreme values of this parameter give bad
results in the form of clearly too few or too many blocks. In any
case one must select a value to use in applications.

This situation is much like that of selecting a smoothing
parameter in various data analysis applications, e.g., density
estimation. In such contexts there is no perfect choice but
instead a tradeoff between bias and variance. Here the tradeoff is
between a conservative choice not fooled by noise fluctuations
but potentially missing real changes, and a liberal choice better
capturing changes but yielding some false detections. Several
approaches have proven useful in elucidating this tradeoff.
Merely running the algorithm with a few different values
can indicate a range over which the block representation is
reasonable and not very sensitive to the parameter value (cf.
Figure 1).

The discussion of fitness functions below in Section 3 gives
implementation details of an objective method for calibrating
ncp_prior as a function of the number of data points. The
procedure uses the fact that this parameter controls the false
positive rate—i.e., the probability p1 of falsely reporting detec-
tion of a change point. That is p1 is defined to be the relative
frequency with which the algorithm reports the presence of a
change point in data with no signal present. It is convenient to
use the complementary quantity

p0 ≡ 1 − p1, (11)

the frequency with which the algorithm correctly rejects the
presence of a change point in such data by returning a null
list of change-point times. Therefore it is also the probability
that a change point reported by the algorithm with this value of

ncp_prior is indeed statistically significant—hence we call it
the correct detection rate for single change points.

The needed ncp_prior–p0 relationship is easily found by
noting that the rates of correct and incorrect responses to
fluctuations in simulated pure noise can be controlled by
adjusting the value of ncp_prior. The procedure is: generate a
synthetic pure noise time series; apply the algorithm for a range
of ncp_prior; and select the smallest value that yields false
detection frequency equal or less than the desired rate, such
as 0.05. The values of ncp_prior determined in this way are
averaged over a large number of realizations of the random data.
The result depends on only the number of data points and the
adopted value of p0:

ncp prior = ψ(N,p0). (12)

Results from simulations of this kind are given below for the
various fitness functions in Sections 3.1–3.3. We have no exact
formulas, but rather fits to these numerical simulations.

The above discussion is useful in the simple problem of
deciding whether or not a signal is present above a background
of noisy observations. In other words, we have a procedure for
assigning a value of ncp_prior that results in an acceptable
frequency of spurious change points, or false positives, when
searching for a single statistically significant change. Real-time
triggering on transients (Section 4.3) is an example of this
situation, as is any case where detection of a single change
point is the only issue in play.

But elucidating the shape of an actual detected signal lies
outside the scope of the above procedure, since it is based on a
pure noise model. A more general goal is to limit the number
of both false negatives and false positives in the context of an
extended signal. The choice of the parameter value here depends
on the nature of the signal present and the signal-to-noise level.
One expects that somewhat larger values of ncp_prior are
necessary to guard against corruption of the estimate of the
signal’s shape due to errors at multiple change points.

This idea suggests a simple extension of the above procedure.
Assume that a value of p0, the probability of correct detection
of an individual change point, has been adopted and the
corresponding value of ncp_prior determined with pure noise
simulations as outlined above and expressed in Equation (12).
For a complex signal our goal is correct detection of not just
one, but several change points, say Ncp in number. The trick is
to treat each of them as an independent detection of a single
change point with success rate p0. The probability of all Ncp
successes follows from the law of compound probabilities:

p(Ncp) = p
Ncp

0 . (13)

There are problems with this analysis in that the following are
not true.

1. Change-point detection in pure noise and in a signal are the
same.

2. The detections are independent of each other.
3. We know the value of Ncp.

All of these statements would have to be true for Equation (13)
to be rigorously valid. We propose to regard the first two as
approximately true and address the third as follows. Decide
that the probability of correctly detecting all the change points
should be at least as high as some value p∗, such as 0.95. Apply
the algorithm using the value of ncp_prior = ψ(N,p∗) given

7
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by the pure noise simulation. Use Equation (13) and the number
of change points thus found to yield a revised value

ncp prior = ψ(N,p
1/Ncp
∗ ). (14)

Stopping when the iteration produces no further modification
of the set of change points, one has the recommended value
of ncp_prior. This ad hoc procedure is not rigorous, but it
establishes a kind of consistency and has proven useful in all
the cases where we have tried it (e.g., Norris et al. 2010, 2011).

Figure 1 shows another approach, based on cross-validation
of the data being analyzed. See Arlot & Celisse (2010) for a
recent review of this procedure, and Hogg (2008) for an ap-
plication in a context similar to that here. This study uses the
collection of raw TTE data at the Burst and Transient Source
Experiment (BATSE) Web site ftp://legacy.gsfc.nasa.gov/
compton/data/batse/ascii_data/batse_tte/. The files for each of
532 GRBs contain time tags for all photons detected for that
burst. The energy and detector tags in the data files were not
used here, but Section 4.1 shows an example using the former.
An ordinary 256-bin histogram of all photon times for each of
532 GRBs was taken as the true signal for that burst. Eight
random subsamples smaller by a factor of eight were analyzed
with the algorithm using the fitness in Equation (19). The aver-
age rms error between these block representations (evaluated at
the same 256 time points) and the histogram is roughly flat over
a broad range. While this illustration with a relatively homoge-
neous data set should obviously not be taken as universal, the
general behavior seen here—determination of a broad range of
nearly equally optimal values of ncp_prior—is characteristic
of a wide variety of situations.

2.8. Analysis of Variance

Assessment of uncertainty is an important part of any
data analysis procedure. The observational errors discussed
throughout this paper are propagated by the algorithm to
yield corresponding uncertainties in the block representation
and its parameters. The propagation of stochastic variability
in the astronomical source is a separate issue, called cosmic
variance, and is not discussed here.

Since the results here comprise a complete function defined by
a variable number of parameters, quantification of uncertainty
is considerably more intricate than for a single parameter.
In particular, one must specify precisely which of the block
representation’s aspects is at issue. Here we discuss three
aspects: (1) the full block representation, (2) the very presence
of the change points themselves, and (3) locations of change
points.

A straightforward way to deal with (1) is by bootstrap
analysis. As described in Efron & Tibshirani (1998), for time
series data this procedure is rather complicated in general.
However, resampling of event data in the manner appropriate
to the bootstrap is trivial. The procedure is to run the algorithm
on each of many bootstrap samples and evaluate the resulting
block representations at a common set of evenly spaced times.
In this way, models with different numbers and locations of
change points can be added, yielding means and variances for
the estimated block light curves. The bootstrap variance is an
indicator of light-curve uncertainty. In addition, comparison of
the bootstrap mean with the block representation from the actual
data adds information about modeling bias. The former is rather
like a model average in the Bayesian context. This average
typically smooths out the discontinuous block edges present in

any one representation. In some applications the bootstrap mean
may be more useful than the block representation.

This method does not seem to be useful for studying uncer-
tainty in the change points themselves, in particular their num-
ber, presumably because the duplication of data points due to
the replacement feature of the resampling yields excess blocks
(but with random locations and small amplitude variance, and
therefore with little effect on the mean light curve).

Issue (2) refers to an assessment of the statistical significance
of the identification of a given change point. For a given change
point we suggest quantification of this uncertainty by evaluating
the ratio of the fitness functions for the two blocks on either side
of that change point to that of the single block that would exist if
the change point were not there. The corresponding difference of
the (logarithmic) fitness values should be adjusted by the value
of the constant parameter ncp_prior, for consistency with the
way fitness is computed in the algorithm.

Finally, (3) is easily addressed in an approximate way by fix-
ing all but one change point and computing fitness as a function
of the location of that change point. This assessment is ap-
proximate because it neglects inter-change-point dependences.
One then converts the run of the fitness function with change-
point location into a normalized probability distribution, giving
comprehensive statistical information about that location (mean,
variance, confidence interval, etc.)

Sample results of all of these uncertainty measures in con-
nection with analysis of a GRB light curve are shown below in
Section 4.1 and Figure 8.

2.9. Multivariate Time Series

Our algorithm’s intentionally flexible data interface not only
allows the processing of a wide variety of data modes, but also
facilitates joint analysis of mode combinations. This feature
allows one to obtain the optimal block representation of several
concurrent data streams with arbitrary modes and sample times.
This analysis is joint in the sense that the change points are
constrained to be at the same times for all the input series; in
other words, the block edges for all of the input data series line
up. The representation is optimal for the data as a whole but not
for the individual time series.

To interpret the result of a multivariate analysis one can study
the blocks in the different series in two ways: (1) separately,
but with the realization that the locations of their edges are
determined by all the data; or (2) in a combined representation.
The latter requires that there be a meaningful way to combine
amplitudes. For example, the plot of a joint analysis of event
and binned data could simply display the combined event rate
for each block, perhaps adjusting for exposure differences. For
other modes, such as photon events and radio frequency fluxes,
a joint display would have to involve a spectral model or some
sort of relative normalization. The example in Section 4.2 below
will help clarify these issues.

The idea extending the basic algorithm to incorporate multiple
time series is simple. Each datum in any mode has a time tag
associated with it—for example, the event time, the time of a
bin center, or the time of a point measurement. The joint change
points are allowed to occur at any one of these times. Hence,
the times from all of the separate data streams are collected
together into a single ordered array; the ordering means that
the times—as well as the measurement data—from the different
modes are interleaved. The schematic in Figure 2 shows how
the individual concatenated times and data series are placed in
separate blocks in a matrix (top) and then redistributed (bottom)
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 Data #1

 Times #1

 Data #2

 Times #2

 Data #3 

 Times #3

Ordered Times

Figure 2. Schematic depicting an example of how three data series are first
concatenated into a matrix (top) and then redistributed by ordering the combined
time tags (bottom). The cost functions for the series can then be computed from
the data in horizontal slices (e.g., dashed line) and combined, allowing the
change points to be at any of the time tags.

by ordering the combined times. Then the fitness function for
a given data series can be obtained from the corresponding
data slice (e.g., the horizontal dashed line in the figure, for
Series #2). The zero entries in these slices (indicated by white
space in the figure) are such that the fitness function for data
from each series is evaluated for only the appropriate data and
mode combination. The overall fitness is then simply the sum
of those for the several data series. The details of this procedure
are described in the code provided in Appendix A.

2.10. Comparison with Theoretical
Optimal Detection Efficiency

How good is the algorithm at extracting weak signals in noisy
data? This section gives evidence that it achieves detection sen-
sitivity closely approaching ideal theoretical limits. The formal-
ism in Arias-Castro et al. (2005) treats detection of geometric
objects in data spaces of arbitrary dimension using multiscale
methods. The one-dimensional special case in Section II of this
reference is essentially equivalent to our problem of detecting a
single block in noisy time series.

Given N measurements normalized so that the observational
errors ∼N (0, σ ) (normally distributed with zero mean and
variance σ 2), these authors show that the threshold for detection
is

A1 = σ
√

2 log N. (15)

This result is asymptotic (i.e., valid in the limit of large N).
It is valid for a frequentist detection strategy based on testing
whether the maximum of the inner product of the model with
the data exceeds the quantity in Equation (15) or not. These
authors state “In short, we can efficiently and reliably detect
intervals of amplitude roughly

√
2 logN , but not smaller”

(Arias-Castro et al. 2005, pg. 2406). More formally the result is
that asymptotically their test is powerful for signals of amplitude
greater than A1 and powerless for weaker signals.

It is of interest to see how well our algorithm stacks up against
these theoretical results, since the two analysis approaches
(matched filter test statistic versus Bayesian model selection)
are fundamentally different. Consider a simulation consisting
of normally distributed measurements at arbitrary times in an
interval. These variates are taken to be zero mean normal, except
over an unknown subinterval where the mean is a fixed constant.
In this experiment the events are evenly spaced, but only their
order matters, so the results would be the same for arbitrary
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Figure 4. Error in finding a single block vs. simulated block amplitude in units
of Arias-Castro et al.’s (2005) threshold amplitude. The curves (from right to
left) are for N = 32, 64, 128, 256, 1024, and 2048.

spacing of the events. Figure 3 shows synthetic data for four
simulated realizations with different values for this constant.
The solid line is the Bayesian Blocks representation, using the
posterior in Equation (C50). For the small amplitudes in the
first panels no change points are found; these weak signals are
completely missed. In the last panel the signal is detected and
correctly represented.

Figure 4 reports some results of detection of the same
step-function process shown in Figure 3, averaged over many
different realizations of the observational error process and for
several different values of N. The lines are plots of a simple
error metric (combing the errors in the number of change points
and their locations) as a function of the amplitude of the test
signal. The left panel is for the case where the number of points
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in the putative block is held fixed, whereas the right panel is
for the cases where this number taken to be proportional to
N, sometimes a more realistic situation. We have adopted the
following definition for the threshold in this case:

A2 = 11.3σ

√
log N

N
. (16)

This formula is roughly consistent with the asymptotic result for
this case, namely, A � σ/

√
N (E. Arias-Castro 2012, private

communication) with an arbitrary factor for plotting purposes.
Our method achieves small errors when the signal amplitude

is on the order or even somewhat smaller than the limit stated
by Arias-Castro et al. (2005), showing that we are indeed close
to their theoretical limit. The main difference here is that our
results are for specific values of N and the theoretical results are
asymptotic in N.

3. BLOCK FITNESS FUNCTIONS

To complete the algorithm, all that remains is to define the
model fitness function appropriate to a particular data mode. By
Equation (7) it is sufficient to define a block fitness function,
which can be any convenient measure of how well a constant
signal represents the data in the block. Naturally, this measure
will depend on all data in the block and not on any outside it.
As explained in Section 2.4, it cannot depend on any model
parameters other than those specifying the locations of the
block edges. In practice this means that block height (signal
amplitude) must somehow be eliminated as a parameter. This
can be accomplished, for example, by taking block fitness to be
the relevant likelihood either maximized or marginalized with
respect to this parameter. Either choice yields a quantity good for
comparing alternative models, but not necessarily for assessing
goodness of fit of a single model. Note that these measures as
such do not satisfy the additivity condition Equation (7). As
long as the cell measurement errors are independent of each
other, the likelihood of a string of blocks is the product of the
individual values, but not the required sum. But simply taking
the logarithm yields the necessary additivity.

There is considerable freedom in choosing fitness functions
to be used for a given type of data. The examples described here
have proven useful in various circumstances, but the reader is
encouraged to explore other block-additive functions that might
be more appropriate in a given application. For all cases con-
sidered in this paper the fitness function depends on data in the
block through summary parameters called sufficient statistics,
capturing the statistical behavior of the data. If these parameters
are sums of quantities defined on the cells, the computations are
simplified; however, this condition is not essential.

Two types of factors in the block fitness can be ignored. A
constant factor C appearing in the likelihood for each data cell
yields an overall constant term in the derived logarithmic fitness
function for the whole time series, namely, N log C. Such a term
is independent of all model parameters and therefore irrelevant
for the model comparison in the optimization algorithm. In
addition, while a term in the block fitness that has the same value
for each block does affect total model fitness, it contributes a
term proportional to the number of blocks, and which therefore
can be absorbed into the parameter derived from the prior on
the number of blocks (cf. Section 1.9).

Many of the data modes discussed in the following subsec-
tions were operative in the BATSE experiment on the NASA
Compton Gamma Ray Observatory, the Swift Gamma-Ray Burst

Mission, the Fermi Gamma-ray Space Telescope, and many X-
ray and other high-energy observatories. They are also relevant
in a wide range of other applications.

In the rest of this section we exhibit expressions that serve as
practical and reliable fitness functions for the three most com-
mon data modes: event data, binned data, and point measure-
ments with normal errors. In each case rules for selection of the
value of ncp_prior (cf. Section 1.9) are also provided. Some
refinements of this discussion and some other less common data
modes are discussed in Appendix C.

3.1. Event Data

For series of times of discrete events it is natural to associate
one data cell (Section 2.2) with each event. The following
derivation of the appropriate block fitness will elucidate exactly
what information the cells must contain to allow evaluation of
the fitness for the full multi-block model.

In practice the event times are integer multiples of some small
unit (Appendix C.1) but it is often convenient to treat them as
real numbers on a continuum. For example, the fitness function
is easily obtained starting with the unbinned likelihood known
as the Cash statistic (Cash 1979); a thorough discussion is in
Tompkins (1999). If M(t, θ ) is a model of the time dependence
of a signal the unbinned log-likelihood is

logL(θ ) =
∑

n

logM(tn, θ ) −
∫

M(t, θ )dt, (17)

where the sum is over the events and θ represents the model
parameters. The integral is over the observation interval and
is the expected number of events under the model. Our block
model is constant with a single parameter, M(t, λ) = λ, so for
block k

logL(k)(λ) = N (k)logλ − λT (k), (18)

where N (k) is the number of events in block k and T (k) is
the length of the block. The maximum of this likelihood is
at λ = N (k)/T (k), yielding

log L(k)
max + N (k) = N (k)(logN (k) − logT (k)). (19)

The term N (k) is taken to the left side because its sum over
the blocks is a constant (N, the total number of events) that is
model-independent and therefore irrelevant. Moreover note that
changing the units of time, say by a scale factor α, changes the
log-likelihood by −N (k) log(α), irrelevant for the same reason.
This felicitous property holds for other maximum likelihood
fitness functions and removes what would otherwise be a
parameter of the optimization. This effective scale invariance
and the simplicity of Equation (19) make its block sum the fitness
function of choice to find the optimum block representation of
event data. A possible exception is the case where detection
of more than one event at a given time is not possible, e.g.,
due to detector, dead time, in which case the fitness function in
Appendices C and C.2 may be more appropriate.

It is now obvious what information a cell must contain to allow
evaluation of the sufficient statistics N (k) and T (k) by summing
two quantities over the cells in a block. First, it must contain the
number of events in the cell. (This is typically one, but can be
more depending on how duplicate time tags are handled; see the
code section in Appendix A, dealing with duplicate time tags,
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or ones that are so close that it makes sense to treat them as
identical.) Second, it must contain the interval

Δtn = (tn+1 − tn−1)/2, (20)

representing the contribution of cell n to the length of the block.
This interval contains all times closer to event n than to any
other. It is defined by the midpoints between successive events,
and generalizes to data spaces of any dimension, where it is
called the Voronoi tessellation of the data points (Okabe et al.
2000; Scargle 2001a, 2001b). Because 1/Δtn can be regarded
as an estimate of the local event rate at time tn, it is natural to
visualize the corresponding data cell as the unit-area rectangle
of width Δtn and height 1/Δtn. These ideas lead to the comment
in Section 1.8 that the event-by-event adjustment for exposure
can be implemented by shrinking Δtn by the exposure factor en.

It is interesting to note that the actual locations of the
(independent) events within their block do not matter. The fitness
function depends on only the number of events in the block,
not their locations or the intervals between them. This result
flows directly from the nature of the underlying independently
distributed, or Poisson, process (see Appendix B).

We conclude this section with evaluation of the calibration of
ncp_prior from simulations of signal-free observational noise
as described in Section 2.7. The results of extensive simulations
for a range of values of N and the adopted false positive rate p0
introduced in Equation (11) were found to be well fit with the
formula

ncp prior = 4 − 73.53p0N
−0.478. (21)

For example, with p0 = 0.01 and N = 1000 this formula gives
ncp_prior = 7.61.

3.2. Binned Event Data

The expected count in a bin is the product λeW of the true
event rate λ at the detector, a dimensionless exposure factor
e (Section 1.8), and the width of the bin W. Therefore the
likelihood for bin n is given by the Poisson distribution

Ln = (λenWn)Nne−λenWn

Nn!
, (22)

where Nn is the number of events in bin n, λ is the actual event
rate in counts per unit time, en is the exposure averaged over the
bin, and Wn is the bin width in time units. Defining bin efficiency
as wn ≡ enWn, the likelihood for block k is the product of the
likelihoods of all its bins:

L(k) =
M (k)∏
n=1

Ln = λN (k)
e−λw(k)

. (23)

Here M (k) is the number of bins in block k,

w(k) =
M (k)∑
n=1

wn (24)

is the sum of the bin efficiencies in the block, and

N (k) =
M (k)∑
n=1

Nn (25)

is the total event count in the block. The factor (enWn)Nn/Nn!
has been discarded because its product over all the bins in all the
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Figure 5. Simulation study, based on the false positive rate of 0.05, to determine
ncp prior = −log(γ ) for binned data. Contours of this parameter are shown as
a function of the number of bins and number of data points (logarithmic x- and
y-axes, respectively). The heavy dashed line indicates the undesirable region
where the numbers of bins and data points are equal.

blocks is a constant (depending on the data only) and therefore
irrelevant to model fitness. The log-likelihood is

logL(k) = N (k)logλ − λw(k), (26)

identical to Equation (18) with w(k) playing the role of T (k),
a natural association since it is an effective block duration.
Moreover in retrospect it is understandable that unbinned and
binned event data have the same fitness function, especially in
view of the analysis in Appendix C.1 where ticks are allowed
to contain more than one event and are thus equivalent to bins.
In addition, the way variable exposure is treated here could just
as well have been applied to event data in the previous section.
Note that in all of the above, the bins are not assumed to be
equal or contiguous—there can be arbitrary gaps between them
(Section 1.7).

We now turn to the determination of ncp prior for binned
data. Figure 5 is a contour plot of the values of this parameter
based on a simulation study with bins containing independently
distributed events. These contours are very insensitive to the
false positive rate, which was taken as 0.05 in this figure.

3.3. Point Measurements

A common experimental scenario is to measure a signal s(t) at
a sequence of times tn, n = 1, 2, . . . , N in order to characterize
its time dependence. Inevitable corruption due to observational
errors is frequently countered by smoothing the data and/or
fitting a model. As with the other data modes Bayesian Blocks
is a different approach to this issue, making use of knowledge
of the observational error distribution and avoiding the infor-
mation loss entailed by smoothing. In our treatment the set of
observation times tn, collectively known as the sampling, can be
anything—evenly spaced points or otherwise. Furthermore we
explicitly assume that the measurements at these times are inde-
pendent of each other, which is to say the errors of observation
are statistically independent.

Typically these errors are random and additive, so that the
observed time series can be modeled as

xn ≡ x(tn) = s(tn) + zn n = 1, 2, . . . N. (27)
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The observational error zn, at time tn, is known only through its
statistical distribution. Consider the case where the errors are
taken to obey a normal probability distribution with zero mean
and given variance:

P (zn)dzn = 1

σn

√
2π

e− 1
2 ( zn

σn
)2

dzn. (28)

Using Equations (27) and (28), if the model signal is the
constant s = λ, the likelihood of measurement n is

Ln = 1

σn

√
2π

e− 1
2 ( xn−λ

σn
)2

. (29)

Since we assume independence of the measurements the block
k likelihood is

L(k) =
∏
n

Ln = (2π )−
Nk
2∏

m σm

e− 1
2

∑
n( xn−λ

σn
)2

. (30)

Both the products and sum are over those values of the index
such that t lies in block k. The quantities multiplying the
exponentials in both the above equations are irrelevant because
they contribute an overall constant factor to the total likelihood.

We now derive the maximum likelihood fitness function for
this data mode (with other forms based on different priors
relegated to Appendices C, C.4, C.5, C.6, and C.7). The
quantities,

ak = 1

2

∑
n

1

σ 2
n

(31)

bk = −
∑

n

xn

σ 2
n

(32)

ck = 1

2

∑
n

x2
n

σ 2
n

, (33)

appear in all versions of these fitness functions; the first two are
sufficient statistics.

As usual we need to remove the dependence of Equation (30)
on the parameter λ, and here we accomplish this result by finding
the value of λ which maximizes the block likelihood, that is by
maximizing

− 1

2

∑
n

(
xn − λ

σn

)2

. (34)

This is easily found to be

λmax =
∑

n

xn

σ 2
n

/∑
n′

1

σ 2
n′

(35)

= −bk/2ak. (36)

As expected, this maximum likelihood amplitude is just the
weighted mean value of the observations xn within the block,
because defining the weights,

wn =
1
σ 2

n∑
n′

(
1

σ 2
n′

) , (37)

yields

λmax =
∑

n

wnxn. (38)

Inserting Equation (36) into the log of Equation (30) with the
irrelevant factors omitted yields the corresponding maximum
value of the log-likelihood itself:

logL(k)
max = −1

2

∑
n

(
xn + bk

2ak

σn

)2

, (39)

where again the sums are over the data in block k. Expanding
the square

logL(k)
max = −1

2

[∑
n

x2
n

σ 2
n

+
bk

ak

∑
n

xn

σ 2
n

+
b2

k

4a2
k

∑
n

1

σ 2
n

]
, (40)

dropping the first term (quadratic in x), which also sums to a
model-independent constant, and using Equations (31) and (32)
we arrive at

logL(k)
max = b2

k/4ak. (41)

As expected each data cell must contain xn and σn but we now
see that these quantities enter the fitness function through the
summands in Equations (31) and (32) defining ak and bk (ck
does not matter), namely, 1/(2σ 2

n ) and −xn/σ
2
n . The way the

corresponding block summations are implemented is described
in Appendix A (cf. data mode #3).

A few additional notes may be helpful. In the familiar case
in which the error variance is assumed to be time-independent,
σ can be carried as an overall constant and σn does not have
to be specified in each data cell. The tn are only relevant in
determining which cells belong in a block and do not en-
ter the fitness computation explicitly. And the fitness function
in Equation (41) is manifestly invariant to a scale change in
the measured quantity, as is the alternative form derived in
Appendix C, Equation (C42). That is to say, under the
transformation

xn → axn, σn → aσn, (42)

corresponding, for example, to a simple change in the units of x
and σ , the fitness does not change.

Figure 6 exhibits a simulation study to calibrate ncp prior
for normally distributed point measurements. For illustration
the pure noise data simulated were normally distributed with a
mean of 10 and unit variance. The left-hand panel shows how
the false positive rate is diminished as ncp prior is increased, for
the eight values of N listed in the caption. The horizontal line
is at the adopted false positive rate of 0.05; the points at which
these curves cross below this line generate the curve shown in
the bottom panel. The linear fit in the latter depicts the relation
ncp prior = 1.32 + 0.577 log10(N ). This relation is insensitive
to the signal-to-noise ratio in the simulations.

4. EXAMPLES

The following subsections present illustrative examples with
sample data sets, demonstrating block representation for TTE
data, multivariate time series, triggering, the empty block
problem for TTE data, and data on the circle.
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Figure 6. Simulations of point measurements (Gaussian noise with signal-to-noise ratio of 10) to determine ncp prior = − log(γ ). Top: false positive fraction p0 vs.
value of ncp prior with separate curves for the values N = 8, 16, 32, 64, 128, 256, 512, and 1024 (left to right; alternating dots, + and circles). The points at which the
rate becomes unacceptable (here 0.05; dashed line) determines the recommended values of ncp prior shown as a function of N in the bottom panel.

4.1. BATSE Gamma-ray Burst TTE Data

Trigger 551 in the BATSE catalog (4B catalog name 910718)
was chosen to exemplify analysis of TTE data, as it has moderate
pulse structure. See Section 2.7 for a description of the data
source. Figure 7 shows analysis of all of the event data in the
top panels, and separated into the four energy channels in the
lower panels. On the left are optimal block representations and
the right shows the corresponding data in 32 evenly spaced bins.

In all five cases the optimal block representations based on
the block fitness function for event data in Equation (19) are
depicted for two cases, using values the values of ncp_prior:
(1) from Equation (21) with p0 = 0.05 (solid lines); and
(2) found with the iterative scheme described in Section 2.7
(lightly shaded blocks bounded by dashed lines). These two
results are identical for all cases except Channel 3, where the
iterative scheme’s more conservative control of false positives
yields fewer blocks (9 instead of 13).

Note that the ordinary histograms of the photon times in
the right-hand panels leave considerable uncertainty as to what
the significant and true structures are. In the optimal block
representations, two salient conclusions are clear: (1) There are
three pulses and (2) they are most clearly delineated at higher
energies.

Figure 8 depicts the error analysis procedures described above
in Section 2.8, applied to one channel of these data.

4.2. Multivariate Time Series

This example in Figure 9 demonstrates the multivariate
capability of Bayesian Blocks by analyzing data consisting of
three different modes sampled randomly from a synthetic signal.

TTEs, binned data, and normally distributed measurements
were independently drawn from the same signal and analyzed
separately, yielding the block representations depicted with thin
lines.

The joint analysis of the data combined using the multivariate
feature described above in Section 2.9 is represented as the thick
dashed line. None of these analyses are perfect, of course, due
to the statistical fluctuations in the data. The combined analysis
finds a few spurious change points, but overall these do not
represent serious distortions of the true signal. The individual
analyses are somewhat poorer at capturing only the true change
points. Hence, in this example the combined analysis makes
effective use of disparate data modes from the same signal.

4.3. Real-time Analysis: Triggers

Because of its incremental structure, our algorithm is well
suited for real-time analysis. Starting with a small amount of
data, the algorithm typically finds no change points at first.
Then, by determining the optimal partition up to and including
the most recently added data cell, the algorithm effectively tests
for the presence of the first change point. The real-time mode can
be selected simply by triggering on the condition last(R) > 1
inserted into the code shown in Appendix A, just before the end
of the basic iterative loop on R. For the entry of 1 in an element
of array last means that the optimal partition consists of the
whole array encountered so far. It is thus obvious that this first
indication of change point cannot yield more than one change
point.

Thus the algorithm can be set to return at the first signif-
icant change point. Other more complicated halting or return
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Figure 7. BATSE TTE data for Trigger 0551. Top panels: all photons.
Other panels: photons in the four BATSE energy channels. Left column
shows Bayesian block representations: default ncp prior = solid lines; iterated
ncp prior = shaded/dashed lines. Right column: ordinary evenly spaced binned
histograms.

Figure 8. Error analysis for the data in Channel 4 from Figure 7, zooming
in on the time interval with most of the activity. Top: heavy solid line is
bootstrap mean (256 realizations), with thin lines giving the ±1σ rms deviations,
all superimposed on the BB representation. Bottom: approximate posterior
distribution functions for the locations of the change points, obtained by fixing
all of the others.
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Figure 9. Multivariate analysis of synthetic signal consisting of two blocks
surrounding a Gaussian shape centered on the interval [0, 1] (solid line).
Optimal blocks for three independent data series drawn randomly from the
probability distribution corresponding to this signal are thin lines: 1024 event
times (dash), 4096 events in 32 bins (dot-dash), and 32 random amplitudes
normally distributed with mean equal to the signal at random times uniformly
distributed on [0, 1] and constant variance (dots). The thicker dashed line is the
combined analysis of all three.

conditions can be programmed into the algorithm, such as re-
turning after a specified number of change points have been
found, or when the location of a change point has not moved for
a specified length of time, etc. Essentially, any condition on the
change points or the corresponding blocks can be imposed as a
halt-and-return condition.

The real-time mode is mainly of use to detect the first
sign of a time-dependent signal rising significantly above a
slowly varying background. For example, in a photon stream the
resulting trigger may indicate the presence of a new bursting or
transient source.

The conventional way to approach problems of this sort is to
report a detection if and when the actual event rate, averaged
over some interval, exceeds one or more pre-set thresholds. See
Band (2002) for an extensive discussion, as well as Fenimore
et al. (2001), McLean et al. (2004), and Schmidt (2000) for other
applications in high-energy astrophysics. One must consider
a wide range of configurations: “Burst Alert Telescope uses
about 800 different criteria to detect GRBs, each defined by a
large number of commandable parameters” (McLean et al. 2004,
pg. 667). Both the size and locations of the intervals over which
the signal is averaged affect the result, and therefore one must
consider many different values of the corresponding parameters.
The idea is to minimize the chances of missing a signal because,
for example, its duration is poorly matched to the interval
size chosen. If the background is determined dynamically, by
averaging over an interval in which it is presumed there is no
signal, similar considerations apply to this interval.

Our segmentation algorithm greatly simplifies the above con-
siderations, since pre-defined bin sizes and locations are not
needed, and the background is automatically determined in
real time. In practice there can be a slight complication for a

14



The Astrophysical Journal, 764:167 (26pp), 2013 February 20 Scargle et al.

continuously accumulating data stream, since the N2 depen-
dence of the computing time may eventually make the compu-
tations unfeasible. A simple countermeasure is to analyze the
data in a sliding window of moderate size—large enough to cap-
ture the desired changes but not so large that the computations
take too long. Slow variations in the background in many cases
could mandate something like a sliding window anyway.

Because of additional complexities, such as accounting for
background variability and the Pandora’s box that spectral
resolution opens (Band 2002), we will defer a serious treatment
of triggers to a future publication.

We end with a few comments on the false alarm (also called
false positive) rate in the context of triggers. The considerations
are very similar to the tradeoff discussed in the context of the
choice for the parameter ncp_prior described in Sections 1.9,
2.7, and 3 for the various data modes. Even if no signal is
present, a sufficiently large (and therefore rare) noise fluctuation
can trigger any algorithm’s detection criteria. Unavoidably, all
detection procedures embody a tradeoff between sensitivity
and rate of false alarms. Other things being equal, making an
algorithm more able to trigger on weak signals renders it more
sensitive to noise fluctuations. Conversely, making an algorithm
shun noise fluctuations renders it insensitive to weak signals.
In practice one chooses a balance of these competing factors
based on the relative importance of avoiding false positives
and not missing weak signals. Hence there can be no universal
prescription.

4.4. Empty Blocks

Recall that blocks are taken to begin and end with data cells
(Section 2.5). This convention means that no block can be
empty: Each much contain at least its initiating data cell. Hence
in the case of event data, blocks cannot represent intervals of
zero event rate. This constraint is of no consequence for the other
two data modes. There is nothing special about zero (or even
negative) signals in the case of point measurements. Zero signal
would be indicated by intervals containing only measured values
not significantly different from zero. There is also no issue for
binned data as nothing prevents a block from consisting of one
or more empty data bins. In many event data applications zero
signal may never occur (e.g., if there is a significant background
over the entire observation interval). But in other cases it may
be useful to represent such intervals in the form of a truly empty
block, with corresponding zero height.

Allowing such null blocks is easily implemented in a post-
processing step applied to each of the change points. The idea
is to consider reassignment of data cells at the start or end of
a block to the adjoining block while leaving the block lengths
unchanged. For a given change point separating a pair of two
blocks (“left” and “right”) there are two possibilities: (1) the
datum marking the change point itself, currently initiating the
right block, can be moved from the right to the left block; and
(2) the datum just prior to the change point itself, currently
ending the left block, can be moved from the left block to the
right block. Straightforward evaluation of the relevant fitness
functions establishes whether one of these moves increases the
fitness of the pair, and if so, which one. (It is impossible that
this calculation will favor both moves (1) and (2); taken together
they yield no net change and therefore leave fitness unchanged.)

The suggested procedure is to carry out this comparison for
each change point in turn and adjust the populations of the blocks
accordingly. We have not proved that this ad hoc prescription
yields globally optimal models with the non-emptiness con-

1 2 3 4 5 6

2 4 6 8 10 12 14 16 18

Angle (radians)

Figure 10. Data on the circle: events drawn from two normal distributions,
centered at π and 0, the latter with some points wrapping around to values below
2π . Optimal blocks are depicted with thick horizontal bars superimposed on
ordinary histograms. Top: block representation on the interval [0, 2π ]. Bottom:
block representation of three concatenated copies of the same data on [0, 6π ].
Vertical dotted lines at 2π and 4π indicate boundaries between the copies. The
blocks in the central copy, between these lines, are not influenced by end effects
and are the correct optimal representation of these circular data.

straint removed, but it is obvious that the prescription can only
increase overall model fitness. It is quite simple computation-
ally and there is no real downside to using it routinely, even
if the moves are almost never triggered. A code fragment to
implement this procedure is given in Appendix A.

4.5. Blocks on the Circle

Each of the data spaces discussed so far has been a linear
interval with a well-defined beginning and end. A circle does
not have this property. Our algorithm cannot be applied to data
defined on a circle, such as directional measurements, because
it starts with the first data point and iteratively works its way
forward along the interval to the last point. (Of course the case
where the measured value is confined to a specific subinterval
of the circle is not a problem.) Hence the first and last points
are treated as distant, not as the pair of adjacent points that
they are. Any choice of starting point, such as the coordinate
origin 0 for angles on [0, 2π ], disallows the possibility of a
block containing data just before and after it (on the circle).
In short, the iterative (mathematical induction-like) structure of
the algorithm prevents it from being independent of the choice
of origin, which on a circle is completely arbitrary. We have
been unable to find a solution to this problem using a direct
application of dynamical programming.

However, there is a method that provides exact solutions at the
cost of about one order of magnitude more computation time.
First unfold the data with an arbitrary choice for the fiducial
origin. The resulting series starts at this origin, continues with
the subsequent data points in order, and ends at the datum just
prior to the fiducial origin. Think of cutting a loop of string and
straightening it out.

The basic algorithm is then applied to the data series ob-
tained by concatenating three copies of the unfolded data. The
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Figure 11. Optimal block representation of the same data as in Figure 10 (cf. the
middle third of the bottom panel) plotted on the circle. The origin corresponds
to the positive x-axis, and scale of the radius of the circle is arbitrary.

underlying idea is that the central copy is insulated from any
effects of the discontinuity introduced by the unfolding. In ex-
tensive tests on simulated data this algorithm performed well.
One check is whether or not the two sets of change points ad-
jacent to the two divisions between the copies of the data are
always equivalent (modulo the length of the circle). These re-
sults suggest but do not prove correctness for all data; there
may be pathological cases for which it fails. Of course this N2

computation will take ∼9 times as long as it would if the data
were on a simple linear interval.

Figure 10 shows simulated data representing measurements
of an angle on the interval [0, 2π ]. In this case the procedure
outlined above captures the central block (bottom panel) strad-
dling the origin that is broken into two parts if the data series
is taken to start at zero (upper panel). Note that the two blocks
just above 0 and below 2π in the upper panel are rendered as a
single block in the central cycle in the bottom panel. Figure 11
shows the same data shown in Figure 10 plotted explicitly on a
circle.

As a footnote, one application that might not be obvious is
the case of GRB light curves, which are short enough that the
background is accurately constant over the duration of the burst.
If all of the data are rescaled to fit on a circle, then the pre- and
post-burst background would automatically be subsumed into
a single block (covering intervals at the beginning and end of
the observation period). This procedure would be applicable to
bursting light curves of any kind if and only if the background
signal is constant, so that the event rates before and after the
main burst are the same.

5. CONCLUSIONS AND FUTURE WORK

The Bayesian Blocks algorithm finds the optimal step-
function model of time series data by implementing the dy-
namical programming algorithm of Jackson et al. (2005). It is
guaranteed to find the representation that maximizes any block-
additive fitness function, in time of order N2, and replaces the
greedy approximate algorithm in Scargle (1998). Its real-time

mode triggers on the first statistically significant rate change in
a data stream.

This paper addresses the following issues in the use of the
algorithm for a variety of data modes: gaps and exposure
variations, piecewise linear and piecewise exponential models,
the prior distribution for the number of blocks, multivariate data,
the empty block problem (for event data), data on the circle,
dispersed data, and analysis of variance (“error analysis”). The
algorithm is shown to closely approach the theoretical detection
limit derived in Arias-Castro et al. (2005).

Work in progress includes extensions to generalized data
spaces, such as those of higher dimensions (Scargle 2001b),
and speeding up the algorithm.
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APPENDIX A

REPRODUCIBLE RESEARCH: MATLAB CODE

This paper implements the spirit of Reproducible Research,
a publication protocol initiated by John Claerbout (Claerbout
1990) and developed by others at Stanford and elsewhere. The
underlying idea is that the most effective way of publishing
research is to include everything necessary to reproduce all of
the results presented in the paper. In addition to all relevant
mathematical equations and the reasoning justifying them, full
implementation of this protocol requires that the data files and
computer programs used to prepare all figures and tables are
included. Cogent arguments for Reproducible Research, an
overview of its development history, and honest assessment of
its successes and failures, are eloquently described in Donoho
et al. (2009).

Following this discipline, all of the MatLab code and data
files used in preparing this paper are available as auxiliary
material. Included is the file read_me.txt with details and a
script reproduce_figures.m that erases all of the figure files
and regenerates them from scratch. In some cases the default
parameters implement shorter simulation studies than those that
were used for the figures in the paper, but one of the features
of Reproducible Research is that such parameters and other
aspects of the code can be changed and experimented with at
will. Accordingly, this collection of scripts includes illustrative
exemplars of the use of the algorithms and serves as a tutorial for
the methods. In addition, a set of IDL routines (with extension
.pro) are included in the auxiliary material file. These scripts are
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not literal translations of the MatLab code, and in particular do
not include the figure production feature, but they do implement
the algorithm in much the same way.

Here is a commented version of the key fragment of the
MatLab script (named find_blocks.m) for the basic algorithm
described in this paper:

% For data modes 1 and 2:
% nn_vec is the array of cell populations.
% Preliminary computation:
block_length=tt_stop-[tt_start 0.5*(tt(2:end)
+tt(1:end-1))’ tt_stop];

...
%---------------------------------------------
% Start with first data cell; add one cell at

each iteration
%---------------------------------------------
best = [];
last = [];
for R = 1:num_points

% Compute fit_vec : fitness of putative last
block (end at R)

if data_mode == 3% Measurements, normal
errors

sum_x_1 = cumsum(cell_data(R:-1:1,
1))’; %sum(x/sig^2)

sum_x_0 = cumsum(cell_data(R:-1:1,
2))’; %sum(1/sig^2)

fit_vec=((sum_x_1(R:-1:1)) .^ 2).
/(4*sum_x_0(R:-1:1));

else
arg_log = block_length(1:R) - block_
length(R+1);

arg_log(find(arg_log <= 0))= Inf;
nn_cum_vec= cumsum(nn_vec(R:-1:1));
nn_cum_vec = nn_cum_vec(R:-1:1);
fit_vec = nn_cum_vec .* (log(nn_cum_
vec) - log(arg_log));

end
[best(R), last(R)] = max([0 best] +

fit_vec - ncp_prior);
end
%---------------------------------------------
% Now find changepoints by iteratively peeling

off the last block
%---------------------------------------------
index = last(num_points);
change_points = [];
while index > 1

change_points = [index change_points];
index = last(index - 1);

end

Additional information about Bayesian Blocks can be found at
The Engineering Deck: Astrophysics Source Code Library at
http://asterisk.apod.com/viewtopic.php?f=35&t=29458.

APPENDIX B

MATHEMATICAL DETAILS

Partitions of arrays of data cells are crucial to the block
modeling that our algorithm implements. This appendix collects
a few mathematical facts about partitions and the nature of
independent events.

B.1. Definition of Partitions

A partition of a set is a collection of its subsets that add up
to the whole with no overlap. Formally, a partition is a set of
elements, or blocks {Bk} satisfying

I =
⋃
k

Bk (B1)

and

Bj

⋂
Bk = ∅ (the empty set) for j �= k. (B2)

Note that these conditions apply to the partitions of the time
series data by sets of data cells. The data cells themselves may
or may not partition the whole observation interval, as either the
completeness in Equation (B1) or the no-overlap condition in
Equation (B2) may be violated.

B.2. Reduction of Infinite Partition Space to a Finite One

For a continuous independent variable, such as time, the
space of all possible partitions is infinitely large. We address
this difficulty by introducing a construct in which T and its
partitions are represented in terms of a collection of N discrete
data cells in one-to-one correspondence with the measurements.
The cells may form a partition of T , as, for example, with event
data with no gaps (see Section 3.1), but it is not necessary that
they do so. The blocks that make up the partitions are sets of
data cells contiguous with respect to time order of the cells. That
is, a given block consists of exactly all cells with observation
times within some subinterval of T .

Now consider two sets of partitions of T : (1) all possible
partitions, and (2) all possible collections of cells into blocks.
Set (1) is infinitely large since the block boundaries consist
of arbitrary real numbers in T but set (2) is a finite subset of
(1). Nevertheless, under reasonable assumptions about the data
mode, any partition in (1) can be obtained from some partition
in (2) by deforming boundaries of its blocks without crossing
a data point. Because the potential of a block to be an element
of the optimum partition (see the discussion of block fitness
in Section 3) is a function of the content of the cells, such a
transformation cannot substantially change the fitness of the
partition.

B.3. The Number of Possible Partitions

How many different partitions of N cells are possible?
Represent a partition by an ordered set of N zeros and ones,
with one indicating that the corresponding time is a change
point, and zero that it is not. With two choices at each time, the
number of combinations is

Npartitions = 2N . (B3)

Except for very short time series this number is too large for
an exhaustive search, but our algorithm nevertheless finds the
optimum over this space in a time that scales as only N2.

B.4. A Result for Subpartitions

We here define subpartitions and prove an elementary corol-
lary that is key to the algorithm.
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Definition. A subpartition of a given partition P(I ) is a
subset of the blocks of P(I ).

It is obvious that a subpartition is a partition of that subset of T
consisting of those blocks. Although not a necessary condition
for the result to be true, in all cases of interest here the blocks
in the subpartition are contiguous, and thus form a partition of
a subinterval of T . It follows that:

Theorem. A subpartition P ′ of an optimal partition P(I ) is an
optimal partition of the subset I ′ that it covers.

For if there were a partition of I ′, different from and fitter than
P ′, then combining it with the blocks of P not in P ′ would, by
the block additivity condition, yield a partition of T fitter than
P , contrary to the optimality of P .

We will make use of the following corollary:

Corollary. Removing the last block of an optimal partition
leaves an optimal partition.

B.5. Essential Nature of the “Poisson” Process

The term Poisson process refers to events occurring randomly
in time and independently of each other. That is, the times of
the events,

tn, n = 1, 2, . . . , N, (B4)

are independently drawn from a given probability distribution.
Think of the events as darts thrown randomly at the interval.
If the distribution is flat (i.e., the same all over the interval of
interest) we have a constant rate Poisson process. In this special
case, a point is just as likely to occur anywhere in the interval
as it is anywhere else; but this need not be so. What must be so
in general—the essential nature of the Poisson process from a
physical point of view—is the above-mentioned independence:
each dart is not at all influenced by the others. Throwing darts
that have feathers or magnets, although random, is not a Poisson
process if these accoutrements cause the darts to repel or attract
each other.

This key property of independence determines all of the other
features of the process. Most important are a set of remarkable
properties of interval distributions (Papoulis 1965). The time
interval between a given point t0 and the time t of the next event
is exponentially distributed

P (τ )dτ = λe−λτ dτ, (B5)

where τ = t − t0. The remarkable aspect is that it does not
matter how t0 is chosen; in particular the distribution is the
same whether or not an event occurs at t0. This fact makes
the implementation of event-by-event exposure straightforward
(Section 1.8).

Note that we have not mentioned the Poisson distribution
itself. The number of events in a fixed interval does obey the
Poisson distribution, but this result is subsidiary to, and follows
from, event independence. In this sense a better name than
Poisson process is independent event process.

In representing intensities of such processes, one scheme is
to represent each event as a delta function in time. But a more
convenient way to extract rate information incorporates the time
intervals between photons. (A method for analyzing event data
based solely on inter-event time intervals has been developed in
Prahl (1999).) Specifically, for each photon consider the interval
starting half way back to the previous photon and ending half

way forward to the subsequent photon. This interval, namely,[
tn − tn−1

2
,
tn+1 − tn

2

]
, (B6)

is the set of times closer to tn than to any other time,8 and has
length equal to the average of the two intervals connected by
photon n, namely,

Δtn = tn+1 − tn−1

2
. (B7)

Then the reciprocal

xn ≡ 1

Δtn
(B8)

is taken as an estimate of the signal amplitude corresponding to
observation n. When the photon rate is large, the corresponding
intervals are small, demonstrates the data cell concept, including
the simple modifications to account for variable exposure and
for weighting by photon energy.

Prahl (1999) has derived a statistic for event clustering in
Poisson process data that tests departures from the known
interval distribution by evaluating the likelihood over a restricted
interval range. Prahl’s statistic is

MN = 1

N

∑
ΔTi<C∗

(
1 − ΔTi

C∗

)
, (B9)

where ΔTi is the interval between events i and i + 1, and

C∗ ≡ 1

N

∑
ΔTi (B10)

is the empirical mean interval. In other settings, the fact that
this statistic is a global measure of departure of the distribution
(used here only locally, over one block) may be useful in the
detection of periodic (and other global) signals in event data.

APPENDIX C

OTHER BLOCK FITNESS FUNCTIONS

This appendix describes fitness function for a variety of data
modes.

C.1. Event Data: Alternate Derivation

The Cash statistic used to derive the fitness function in
Equation (19) is based on representation of event times as real
numbers. Of course time is not measured with infinite precision,
so it is interesting to note that a more realistic treatment yields
the same formula.

Typically the data systems’ finest time resolution is repre-
sented as an elementary quantum of time, which will be called
a tick since it is usually set by a computer clock. Measured val-
ues are expressed as integer multiples of it; cf. Section 2.2.1 of
Scargle (1998). We assume that nm, the number of events (e.g.,
photons) detected in tick m obeys a Poisson distribution:

Lm = (λdt)nm e−λdt

nm!
= Λnm e−Λ

nm!
, (C1)

8 These intervals form the Voronoi tessellation of the total observation
interval. See Okabe et al. (2000) for a full discussion of this construct, highly
useful in spatial domains of 2, 3, or higher dimension; see also Scargle (2001a)
and Scargle (2001b).
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where dt is the length of the tick. The event rates λ and Λ
are counts per second and per tick, respectively. Time here is
given in units such as seconds, but a representation in terms
of (dimensionless) integer multiples of dt is sometimes more
convenient.

Due to event independence the block likelihood is the product
of these individual factors over all ticks in the block. Assuming
that all ticks have the same length dt this is

L(k) =
M (k)∏
m=1

(λdt)nme−λdt

nm!
, (C2)

where M (k) is the number of ticks in block k. Note that non-
events are included via the factor e−λdt for each tick with
nm = 0. When this expression is used to compute the likelihood
for the whole interval (i.e., product of the block likelihoods over
all blocks of the model) the denominator contributes the factor

1∏
k

∏M (k)

m nm!
= 1∏

m nm!
, (C3)

where on the right-hand side the product is over all the ticks in
the whole interval. For low event rates where nm never exceeds
1, this quantity is unity. No matter what, it is a constant, fixed
once and for all given the data; in model comparison contexts
it is independent of model parameters and hence irrelevant.
Dropping it, noting that

∏M (k)

m=1 e−λdt is just e−λM (k)dt = e−λM (k)
.

Collecting together all factors for ticks with the same number
of events Equation (C2) simplifies to

L(k) = e−λM (k)
∞∏

n=0

(λdt)nH (k)(n), (C4)

where H (k)(n) is the number of ticks in the block with n events.
Noting that

∞∑
n=0

nH (k)(n) = N (k), (C5)

where N (k) is the total number of events in block k, we have
simply

L(k) = (λdt)N
(k)

e−λM (k)
. (C6)

In order for the model to depend on only the parameters defin-
ing the block edges, we need to eliminate λ from Equation (C6).
One way to do this is to find the maximum of this likelihood as
a function of λ, which is easily seen to be at λ = (N (k)/M (k)),
yielding

L(k)
max =

(
N (k)dt

M (k)

)N (k)

e−N (k)
. (C7)

The exponential contributes the overall constant factor
e−∑

k N (k) = e−N to the full model. Moving this ultimately irrel-
evant factor to the left-hand side, noting that M (k) = (T (k)/dt),
and taking the log, we have for the maximum likelihood block
fitness function

log L(k)
max + N (k) = N (k)(logN (k) − logM (k)), (C8)

equivalent to Equation (19).
An alternative way to eliminate λ is to marginalize it as in the

Bayesian formalism. That is, one specifies a prior probability

distribution for the parameter and integrates the likelihood
in Equation (C6) times this prior. Since the current context
is generic, not devoted to a specific application, we seek a
distribution that expresses no particular prior knowledge for
the value of λ. It is well known that there are several practical
and philosophical issues connected with such so-called non-
informative priors. Here we adopt this simple flat, normalized
prior:

P (λ) =
{
P (Δ) λ1 � λ � λ2

0 otherwise
, (C9)

where the normalization condition yields

P (Δ) = 1

λ2 − λ1
= 1

Δλ
. (C10)

Thus Equation (C6), with λ marginalized, is the posterior
probability

P (k)
marg = P (Δ)

∫ λ2

λ1

(λdt)N
(k)

e−λT (k)
dλ (C11)

= P (Δ)

T (k)

(
dt

T (k)

)N (k) ∫ z2

z1

zN (k)
e−zdz (C12)

where z1,2 = T (k)λ1,2. In terms of the incomplete gamma
function

γ (a, x) ≡
∫ x

0
za−1e−zdz, (C13)

we have, utilizing Mk = (T (k)/dt),

logP (k)
marg = log

P (Δ)

T (k)
− N (k)logM (k) + log[γ (N (k) + 1, z2)

− γ (N (k) + 1, z1)]. (C14)

The infinite range z1 = 0, z2 = ∞, gives

logP
(k)
marg(∞) = log

P (Δ)

T (k)
+ logΓ(N (k) + 1) −N (k)logM (k). (C15)

This prior is unnormalized (and therefore sometimes regarded
as improper). Technically P (Δ) approaches zero as z2 → ∞, but
is retained here in order to formally retain the scale invariance
to be discussed at the end of this section.

Another commonly used prior is the so-called conjugate
Poisson distribution

P (λ) = C λα−1e−βλ. (C16)

As noted by Gelman et al. (1995, pg. 49) this “prior density
is, in some sense, equivalent to a total count of α−1 in β
prior observations,” a relation that might be useful in some
circumstances. The normalization constant C = (βα/Γ(α)), and
with this prior the marginalized posterior probability distribution
is

Pcp = C

∫ ∞

0
λN (k)+α−1e−λ(M (k)+β)dλ, (C17)

yielding

log Pcp − log C = log Γ(N (k) + α) − (N (k) + α) log(M (k) + β) .
(C18)
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Note that for α = 1, β = 1 this prior and posterior reduce to
those in Equations (28) and (29) of Scargle (1998).

Equations (19), (C14), (C15), and (C18) are all invariant under
a change in the units of time. The case of Equation (C15)
is slightly dodgy, as mentioned above, but otherwise is a
direct result of expressing N (k) and M (k) as dimensionless
counts, of events and time ticks, respectively. (Further, in the
case of Equation (C14), z1 and z2 are dimensionless.) As
mentioned above, the simplicity of Equation (19) recommends
it in general, but specific prior information (e.g., as represented
by Equation (C16)) may suggest use of one of the other forms.

C.2. 0–1 Event Data: Duplicate Time Tags Forbidden

In Mode 2 duplicate time tags are not allowed, the number of
events detected at a given tick is 0 or 1, and the corresponding
tick likelihood is

Lm = e−λdt = 1 − p nm = 0 (C19)

= 1 − e−λdt = p nm = 1, (C20)

where λ is the model event rate, in events per unit time. From
the Poisson distribution p = 1 − e−λdt is the probability of
an event, and 1 − p = e−λdt that of no event. Note that p
or λ interchangeably specify the event rate. Since independent
probabilities multiply, the block likelihood is the product of the
tick likelihoods:

L(k) =
M (k)∏
m=1

Lm = pN (k)
(1 − p)M

(k)−N (k)
, (C21)

where M (k) is the number of ticks in block k and N (k) is the
number of events in the block.

There are again two ways to proceed. The maximum of this
likelihood occurs at p = (N (k)/M (k)) and is

L(k)
max =

(
N (k)

M (k)

)N (k) (
1 − N (k)

M (k)

)M (k)−N (k)

. (C22)

Using the logarithm of the maximum likelihood,

logL(k)
max = N (k)log

(
N (k)

M(k)

)
+ (M (k) − N (k))log

(
1 − N (k)

M(k)

)
, (C23)

yields the fitness function, additive over blocks.
As in the previous subsection, an alternative is to marginalize

λ:

P (k) =
∫

L(k)P (λ)dλ, (C24)

where P (λ) is the prior probability distribution for the rate
parameter. With the flat prior in Equation (C9)9 the posterior,
marginalized over λ is

P (k)
marg = P (Δ)

∫ λ2

λ1

(1 − e−λdt )N
k

(e−λdt )M
(k)−Nk

dλ. (C25)

Changing variables to p = 1 − e−λdt , with dp = dt e−λdtdλ,
this integral becomes

P (k)
marg = P (Δ)

dt

∫ p2

p1

pN (k)
(1 − p)M

(k)−N (k)−1dp, (C26)

9 In Scargle (1998) we used p as the independent variable, and chose a prior
flat (constant) as a function of p. Here, we use a prior flat as a function of the
rate parameter.

with p1,2 = 1 − e−λ1,2dt , and expressible in terms of the
incomplete beta function

B(z; a, b) =
∫ z

0
ua−1(1 − u)b−1du (C27)

as follows:

logP (k)
marg − log

P (Δ)

dt
= log[B(p2;N (k) + 1,M (k) − N (k))

− B(p1;N (k) + 1,M (k) − N (k))]. (C28)

The case p1 = 0, p2 = 1 yields the ordinary beta function:

logP
(k)
0→1 − log

P (Δ)

dt
= logB(N (k) + 1,M (k) − N (k)), (C29)

differing from Equation (21) of Scargle (1998) by one in the
second argument, due to the difference between a prior flat
in p and one flat in λ. All of the Equations (C23), (C28), and
(C29), can be used as fitness functions in the global optimization
algorithm and, as with Mode 1, are invariant to a change in the
units of time.

A brief aside: One might be tempted to use intervals between
successive events instead of the actual times, since in some sense
they express rate information more directly. However, as we now
prove, the likelihood based on intervals is essentially equivalent
to that in Equation (C6). It is a classic result (Papoulis 1965)
that intervals between (time-ordered) consecutive independent
events (occurring with a probability uniform in time, with a
constant rate λ) are exponentially distributed:

P (dt)dt = λe−λdtU (dt)dt, (C30)

where U (x) is the unit step function:

U (x) = 1 x � 0

= 0 x < 0.

Pretend that the data consist of the inter-event intervals, and that
one does not even know the absolute times. The likelihood of
our constant rate Poisson model for interval dtn � 0 is

Ln = λe−λ dtn , (C31)

so the block likelihood is

L(k) =
N (k)∏
n=1

λ e−λ dtn = λN (k)
e−λM (k)

, (C32)

the same as in Equation (C6), except that here N (k) is the number
of inter-event intervals, one less than the number of events.

Prahl (1999) derived a statistic for event clustering, by testing
for significant departures from the known interval distribution,
by evaluating the likelihood over a restricted interval range. This
statistic is

MN = 1

N

∑
ΔTi<C∗

(
1 − ΔTi

C∗

)
, (C33)

where ΔTi is the interval between events T and i + 1, N is the
number of terms in the sum, and

C∗ ≡ 1

N

∑
ΔTi (C34)

is the empirical mean of the relevant intervals. In some settings,
the fact that this statistic is a global measure (as opposed to the
local—over one block at a time—ones used here) may be useful
in the detection of global signals, such as periodicities, in event
data.
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C.3. Time-to-spill Data

As discussed in Section 2.2.3 of Scargle (1998), reduction
of the necessary telemetry rate is sometimes accomplished by
recording only the time of detection of every Sth photon, e.g.,
with S = 64 for the BATSE time-to-spill mode. This data mode
has the attractive feature that its time resolution is greater when
the source is brighter (and possibly more active, so that more
time resolution is useful). With slightly revised notation, the
likelihood in Equation (32) of Scargle (1998) simplifies to

L
(k)
TTS = λSN

(k)
spille−λM (k)

, (C35)

where N
(k)
spill is the number of spill events in the block and M (k)

is as usual the length of the block in ticks. With N = N
(k)
spillS

this is identical to the Poisson likelihood in Equation (C2), and
in particular the maximum likelihood is at λ = (N (k)

spillS/M (k))
and the corresponding fitness function is

log L
(k)
max,TTS − logN = SN

(k)
spill [log(N (k)

spillS) − logM (k)] (C36)

just as in Equation (19) with N (k) = SN
(k)
spill, and with the same

property that the unit in which block lengths are expressed is
irrelevant.

C.4. Point Measurements: Alternative Form

An alternative form can be derived by inserting Equation (38)
instead of Equation (36) into the log of Equation (30) as in
Section 3.3. The result is

logL(k)
max = −1

2

∑
n

(
xn − ∑

n′ wn′xn′

σn

)2

. (C37)

Expanding the square gives

logL(k)
max = −1

2

[∑
n

(
xn

σn

)2

− 2
∑

n

(
xn

σ 2
n

)(∑
n′

wn′xn′

)

+

(∑
n′

wn′xn′

)2 ∑
n

1

σ 2
n

]
(C38)

= −1

2

∑
n′

(
1

σ 2
n′

)[∑
n

wnx
2
n − 2

(∑
n

wnxn

)(∑
n′

wn′xn′

)

+

(∑
n′

wn′xn′

)2 ∑
n

wn

]
(C39)

= −1

2

∑
n′

(
1

σ 2
n′

)[∑
n

wnx
2
n − 2

(∑
n

wnxn

)2

+

(∑
n′

wn′xn′

)2 ]
(C40)

= −1

2

∑
n′

(
1

σ 2
n′

)⎡
⎣ ∑

n

wnx
2
n −

(∑
n

wnxn

)2
⎤
⎦ (C41)

yielding

logL(k)
max = −1

2

[∑
n′

(
1

σ 2
n′

)]
σ 2

X (C42)

where

σ 2
X ≡

∑
n

wnx
2
n −

(∑
n

wnxn

)2

(C43)

is the weighted average variance of the measured signal values
in the block. It makes sense that the block fitness function is
proportional to the negative of the variance: the best constant
model for the block should have minimum variance.

C.5. Point Measurements: Marginal Posterior, Flat Prior

First, consider the simplest choice, the flat, unnormalizable
prior

P (λ) = P ∗ (for all values of λ), (C44)

giving equal weight to all values. The marginal posterior for
block k is then, from Equation (30),

P k = P ∗ (2π )−
Nk
2∏

n σn

∫ ∞

−∞
e− 1

2

∑
n( xn−λ

σn
)2

dλ. (C45)

Using the definitions introduced above in Equations (31)–(33)
we have

P k = P ∗ (2π )−
Nk
2∏

n σn

∫ ∞

−∞
e−(akλ

2+bkλ+ck) dλ. (C46)

Using standard “completing the square,” letting z = √
ak(λ +

(bk/2ak)), giving

z2 = ak

(
λ +

bk

2ak

)2

= ak

(
λ2 +

λbk

ak

+
b2

k

4a2
k

)

= akλ
2 + bkλ + ck +

b2
k

4ak

− ck, (C47)

and then using ∫ +∞

−∞
e−z2 dz√

ak

=
√

π

ak

, (C48)

we have

P k = P ∗ (2π )−
Nk
2∏

n σn

√
π

ak

e

(
b2
k

4ak

)
−ck . (C49)

From this result, the log-posterior fitness function is

log P k

0 − Ak = log

(
P ∗

√
π

ak

)
+

(
b2

k

4ak

)
− ck, (C50)

where

Ak = −Nk

2
log(2π ) −

∑
log(σn) (C51)

and the subscript 0 refers to the fact that the marginal posterior
was obtained with the unnormalized prior. The second and third
terms in Equation (C50) are invariant under the transformation
(Equation (42)). Further, since the integral of P (λ) with respect
to λ must be dimensionless, we have P ∗ ∼ (1/λ) ∼ (1/x),
so P ∗ and

√
ak have the same a-dependence, yielding a

formal invariance for Equation (C50). However, the prior in
Equation (C44) is not normalizable, so that technically P ∗ is
undefined. A way to make practical use of this formal invariance
is simply to include a constant P ∗ that has the proper dimension
(x−1).
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C.6. Point Measurements: Marginal Posterior,
Normalized Flat Prior

Marginalizing the likelihood in Equation (30) with the prior
in Equation (C9), yields for the marginal posterior for block k:

P k = P (Δ) (2π )−
Nk
2∏

n σn

∫ λ2

λ1

e− 1
2

∑
n( xn−λ

σn
)2

dλ. (C52)

As before

P k = P (Δ) (2π )−
Nk
2∏

n σn

∫ λ2

λ1

e−(akλ
2+bkλ+ck) dλ. (C53)

Now complete the square by letting z = √
ak(λ + (bk/2ak)),

giving

z2 = ak

(
λ +

bk

2ak

)2

= ak

(
λ2 +

λbk

ak

+
b2

k

4a2
k

)

= akλ
2 + bkλ +

b2
k

4ak

+ ck − ck, (C54)

so we have

P k = P (Δ) (2π )−
Nk
2∏

n σn

e

(
b2
k

4ak
−ck

) ∫ z2

z1

e−z2 dz√
ak

, (C55)

where

z1,2 = √
ak

(
λ1.2 +

bk

2ak

)
. (C56)

Finally, introducing the error function

erf(x) = 2√
π

∫ x

0
e−t2

dt, (C57)

we have

P k = P (Δ)

√
π

2

(2π )−
Nk
2√

ak

∏
n σn

e

(
b2
k

4ak
−ck

)
[erf(z2) − erf(z1)]. (C58)

Taking the log gives the final expression

logP k
Δ − Ak = log

(
P (Δ)

√
π
ak

)
+

(
b2
k

4ak
− ck

)
+ log

[
erf(z2)−erf(z1)

2

]
,

(C59)
where the subscript Δ indicates the fact that this result is based
on the finite range prior in Equation (C9). Note that this fitness
function is manifestly invariant under the transformation in
Equation (42), for the same reasons discussed at the end of
the previous section, plus the invariance of z1,2. In the limits
z1 → −∞ and z2 → ∞, erf(z2) − erf(z1) → 2, and we recover
Equation (C50)—but remember that in this limit the invariance
is only formal.

C.7. Point Measurements: Marginal Posterior, Gaussian Prior

Finally, consider using the following normalized Gaussian
prior for λ:

P (λ) = 1

σ0

√
2π

e
− 1

2 ( λ−λ0
σ0

)2

(C60)

corresponding to prior knowledge that roughly speaking λ most
likely lies in the range λ0 ± σ0, with a normal distribution.

This prior is not to be confused with the Gaussian form for the
likelihood in Equation (29).

Equation (30), when λ is marginalized with this prior,
becomes

L(k) = 1

σ0

√
2π

[
(2π )−( Nk

2 )∏
n′ σn′

]

×
∫

e
− 1

2

[
λ2

(
1

σ2
0

+
∑

n
1

σ2
n

)
+λ

(
− 2λ0

σ2
0

− 2xn

σ2
0

)
+

(
λ2

0
σ2

0
+
∑

n

x2
n

σ2
n

)
,

(C61)

so with

ak = 1

2

(
1

σ 2
0

+
∑

n

1

σ 2
n

)
(C62)

bk = −
(

λ0

σ 2
0

+
∑

n

xn

σ 2
n

)
(C63)

and

ck = 1

2

(
λ2

0

σ 2
0

+
∑

n

x2
n

σ 2
n

)
(C64)

and Equation (C46) is recovered, so that Equation (C50), with
the redefined coefficients in Equations (C62)–(C64), gives the
final fitness function.

Any of the log fitness functions in Equations (C42), (C50),
or (C59) can be used for the point measurement data mode in
this section. This choice should be made based on convenience
or the relevant prior information.

C.8. Data with Dispersed Measurements

Throughout it has been presumed that two things are small
compared with any relevant timescales: errors in the determina-
tion of times of events, and the intervals over which individual
measurements are obtained as averages. These assumptions jus-
tify treatment of the corresponding data modes as points in
Sections 3.1 and 3.3, respectively. Below are discussions of
data that are dispersed because of (1) random errors in event
times and (2) measurements that are summations or averages
over non-negligible intervals. Binned data, an example of the
latter, have already been treated in Section 3.2 and are not
discussed here.

A simple ad hoc way to deal with both of these situations is to
compute kernel functions for each data point, representing the
window or error distribution in either of the two above contexts.
Each such function would be centered at the corresponding mea-
sured value, evaluated at all of the data points, and normalized to
represent unit intensity. Each such kernel would be maximum at
the data point at which it is centered, but distribute some weight
to the other data cells. The sum of all of these kernels would then
be a set of weights at each measurement, which could then be
treated as ordinary event data but with fractional rather than unit
weights. The ad hoc aspect of this approach lies in the way the
fitness function is extended. The following subsections provide
more rigorous analysis.

C.8.1. Uncertain Event Locations

Timing of events is always uncertain at some level. Here we
treat the case where the error distribution is wide enough to
make the point approximation inappropriate. Rare for photon
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time series, with microsecond timing errors, this situation is
more common in other contexts and with other independent
variables. With overlapping error distributions even the order of
events can be uncertain. In the context described in Section 1.4
one often wants to construct histograms from measurements
with errors—errors that may be different for each point (then
called heteroscedastic errors).

A simple modification of the fitness function described in
Section 3.1 addresses this kind of data. On the right-hand side of
Equation (19) N (k) quantifies the contribution of the individual
events within block k. In extending the reasoning leading to
this fitness function, the main issue concerns events with error
distributions that have fractional overlap with the extent of block
k—for events distributed entirely outside (inside) obviously
contribute in no way (fully) to block fitness. By the law for the
sum of probabilities of independent events, in the log-likelihood
implicit in Equations (17) and (18) N (k) is replaced by the sum of
the areas under the probability distributions overlapping block
k, namely,

∑
i∈k p(i) summed over all events with significant

contribution to block k, and p(i) is the integral of the overlapping
part of the error distribution, a fraction between 0 and 1. Thus
we have

logL(k)(λ) = logλ
∑
i∈k

p(i) − λT (k) (C65)

in place of Equation (19), with the analogous constant term on
the left-hand side of that equation dropped. This result holds
because a given datum falling inside and outside a block are
mutually exclusive events.

Implementing this relationship in the algorithm is easily
accomplished. For a given event and the interval assigned to
it (cf. Figure 12) sum the overlap fractions with that interval of
all events—including that event itself. These quantities could be
approximated with very simple or complex quadrature schemes,
depending on the context and the way in which the relevant
distributions are represented. Normally the array nn_vec, as in
the code fragment in Appendix A, is all 1’s (or counts of events
with identical time tags there are any); but here replace it with
these summed event weights. This construction automatically
assigns the correct fractional weights to the block with no further
alteration of the algorithm.

C.8.2. Measurements in Extended Windows

This section discusses the case of distributed measurements
in the sense that the time of measurement is either uncertain or is
effectively an interval rather than a point. (This is different from
the use of this term in Section 3.3 to describe the distribution
of the measurement error in the dependent variable.) Measure-
ments may refer to a quantity averaged over a range of values of
t, not at a single time as in Section 3.3 and Appendices C.4–C.7.
In the context of histograms (Section 1.4) the measured quantity
becomes the independent variable, and the dependent variable
is an indicator marking the presence of the measurement there.
In both cases the measurement can be thought of as distributed
over an interval, not just at a point.

In this case the data cell array would be augmented by the
inclusion of a window function, indicating the variation of the
instrumental sensitivity:

x = {xn, tn, wn(t − tn)} n = 1, 2, . . . , N, (C66)

where wn(t) describes, for the value reported as Xn, the relative
weights assigned to times near tn.

Figure 12. Voronoi cell of a photon. Three successive photon detection times
are circles on the time axis. The vertical dotted lines underneath delineate the
time extent (dt) of the cell and the height of the rectangle—n/dt , where n
is the number of photons at exactly the same time (almost always 1)—is the
local estimate of the signal amplitude. If the exposure at this time is less than
unity, the width of the rectangle shrinks in proportion, the area of the rectangle
is preserved, so the height increases in inverse proportion, yielding a larger
estimate of the true event rate.

This is a nontrivial complication if the window functions over-
lap, but can nevertheless be handled with the same technique.

We assume the standard piecewise constant model of the
underlying signal, that is, a set of contiguous blocks:

B(x) =
Nb∑
j=1

B(j )(x), (C67)

where each block is represented as a boxcar function:

B(k)(x) =
{
Bj ζj � x � ζj+1
0 otherwise (C68)

the ζj are the change points, satisfying

min(xn) � ζ1 � ζ2 � · · · ζj � ζj+1 � · · · � ζNb
� max(xn)

(C69)
and the Bj are the heights of the blocks.

The value of the observed quantity, yn, at xn, under this model
is

ŷn = ∫
wn(x)B(x)dx

= ∫
wn(x)

∑Nb

j=1 B(j )(x)dx

= ∑Nb

j=1

∫
wn(x)B(j )(x)dx

= ∑Nb

j=1 Bj

∫ ζj+1

ζj
wn(x)dx,

(C70)
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so we can write

ŷn =
Nb∑
j=1

BjGj (n), (C71)

where

Gj (n) ≡
∫ ζj+1

ζj

wn(x)dx (C72)

is the inner product of the nth weight function with the support
of the jth block. The analysis in Bretthorst (1988) shows how to
deal with the non-orthogonality that is generally the case here.
(If the weighting functions are delta functions, it is easy to see
that Gj (n) is non-zero if and only if xn lies in block j, and since
the blocks do not overlap the product Gj (n)Gk(n) is zero for
j �= k, yielding orthogonality,

∑
N Gj (n)Gk(n) = δj,k . And of

course there can be some orthogonal blocks, for which there
happens to be no “spill over,” but these are exceptions.)

The averaging process in this data model induces dependence
among the blocks. The likelihood, written as a product of
likelihoods of the assumed independent data samples, is

P (Data|Model) =
N∏

n=1

P (yn|Model) (C73)

=
N∏

n=1

1√
2πσ 2

n

e− 1
2 ( yn−ŷn

σn
)2

(C74)

=
N∏

n=1

1√
2πσ 2

n

e
− 1

2

(
yn−∑Nb

j=1 Bj Gj (n)

σn

)2

(C75)

= Qe
− 1

2

(
yn−∑Nb

j=1 Bj Gj (n)

σn

)2

, (C76)

where

Q ≡
N∏

n=1

1√
2πσ 2

n

. (C77)

After more algebra and adopting a new notation, symbolized by

yn

σ 2
n

→ yn (C78)

and
Gk(n)

σ 2
n

→ Gk(n), (C79)

we arrive at
log P ({yn}|B) = Qe− H

2 , (C80)

where

H ≡
N∑

n=1

y2
n − 2

Nb∑
j=1

Bj

N∑
n=1

ynGj (n)

+
Nb∑
j=1

Nb∑
k=1

BjBk

N∑
n=1

Gj (n)Gk(n). (C81)

The last two equations are equivalent to Equations (3.2) and
(3.3) of Bretthorst (1988), so that the orthogonalization of the
basis functions and the final expressions follow exactly as in
that reference.

C.9. Piecewise Linear Model: Event Data

Here we outline the computations of a fitness function for the
piecewise linear model in the case of event data. This means
that the event rate for a block is assumed to be linear, as in
Equation (1).

For convenience we take the fiducial time t0 to be t2, the time
at the end of the block. Take t1 to be the time at the beginning,
so M = t2 − t1 is the length of the block, and the signal x is
λ(1 − aM) at the beginning of the block and λ at the end, and
varies linearly in between.

The block likelihood for the case of event data ti is

L(λ, a) =
Nk∑
i=1

log[λ(1 + a(ti − t2))] −
∫ t2

t1

λ(1 + a(t − t2))dt,

(C82)
where the sum is over the Nk events in the block and the integral
is over the time interval covered by the block. Simplifying we
have

L(λ, a) = Nk logλ +
Nk∑
i=1

log[(1 + a(ti − t2))]

− λ
[
(1 − at2)t +

a

2
t2
]t2

t1

(C83)

L(λ, a) = Nk logλ +
Nk∑
i=1

log[(1 + a(ti − t2))]

− λMk

(
1 − a

2
Mk

)
. (C84)

Now let us compute the maximum likelihood as a function of
λ and a, starting by setting

∂L

∂λ
= Nk

λ
− Mk

(
1 − a

2
Mk

)
= 0 (C85)

so that at the maximum of this likelihood we have

λ = Nk

Mk

(
1 − a

2 Mk

) (C86)

and therefore

L(λmax, a) = Nk log

[
Nk

Mk

(
1 − a

2 Mk

)
]

+
Nk∑
i=1

log[(1 + a(ti − t2))] − Nk (C87)

∂L

∂a
= Nk log

[
Nk

Mk

(
1 − a

2 Mk

)
]

+
Nk∑
i=1

log[(1 + a(ti − t2))] − Nk (C88)

∂L

∂a
=

Nk∑
i=1

(ti − t2)

1 + a(ti − t2)
+

λ

2
M2

k = 0 (C89)
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1

Nk

Nk∑
i=1

(ti − t2)

1 + a(ti − t2)
+

1
2Mk(

1 − a
2 Mk

) = 0 (C90)

f (a) = 1

Nk

Nk∑
i=1

(ti − t2)

1 + a(ti − t2)
+

1
2Mk(

1 − a
2 Mk

) (C91)

f ′(a) = − 1

Nk

Nk∑
i=1

(ti − t2)2

[1 + a(ti − t2)]2
−

1
4M2

k(
1 − a

2 Mk

)2 (C92)

λ = − 2

M2
k

Nk∑
i=1

(ti − t2)

1 + a(ti − t2)
(C93)

Nk(
1 − a

2 Mk

) = − 2

Mk

Nk∑
i=1

(ti − t2)

1 + a(ti − t2)
(C94)

(
1 − a

2 Mk

)
Nk

= − Mk

2
∑Nk

i=1
(ti−t2)

1+a(ti−t2)

(C95)

1 − a

2
Mk = −1

2
MkNk

(
Nk∑
i=1

(ti − t2)

1 + a(ti − t2)

)−1

(C96)

a = 2

Mk

+ Nk

(
Nk∑
i=1

(ti − t2)

1 + a(ti − t2)

)−1

. (C97)

C.10. Piecewise Exponential Model

In this case we model the signal as varying exponentially
across the time interval contained in the block, as in Equation (2).

That is to say, if M = t2 − t1 is the length of the block, the
signal is λe−aM at the beginning of the block and λ at the end.

The block likelihood for the case of event data ti is

L(λ, a) =
Nk∑
i=1

log[λea(ti−t2)] −
∫ t2

t1

λea(t−t2)dt, (C98)

where the sum is over the Nk events in the block and the integral
is over the time interval covered by the block. For convenience
we take the fiducial time t2 (at which the signal is equal to λ) to
be the end of the block, and t1 is therefore the beginning.

This expression can be simplified:

L(λ, a|B) = Nk logλ+a
∑

i

(ti − t2) −λ

[
ea(t−t2)

a

∣∣∣∣
t2

t1

dt (C99)

L(λ, a|B) = Nk logλ + a
∑

i

(ti − t2) − λ

(
1 − e−aM

a

)
.

(C100)
Now let us compute the maximum likelihood as a function of λ
and a:

∂L

∂λ
= Nk

λ
−

(
1 − e−aM

a

)
(C101)

and therefore at the maximum we have

λ = aNk

1 − e−aM
(C102)

∂L

∂a
=

∑
i

(ti − t2) − [Nk(1−e−aM )−1][(M +a−1)e−aM −a−1]

(C103)

Lmax(a) = Nk log

(
aNk

1 − e−aM

)
+ a

∑
i

(ti − t2)

− aNk

1 − e−aM

(
1 − e−aM

a

)
(C104)

Lmax(a) = Nk log

(
aNk

1 − e−aM

)
+a

∑
i

(ti − t2) −Nk (C105)

∂Lmax(a)

∂a
= Nk

(
1 − e−aM

aNk

)
Q +

∑
i

(ti − t2), (C106)

where

Q = Nk[(1 − e−aM )−1 − a(1 − e−aM )−2Me−aM ] (C107)

∂Lmax(a)

∂a
= Nk

a
− MNk

e−aM

(1 − e−aM )
+
∑

i

(ti − t2). (C108)

To solve for the value of a that makes this derivative zero (to find
the maximum of the likelihood) we will use Newton’s method
to find the zeros of

f (a) = ∂Lmax(a)

∂a
/Nk = 1

a
− Me−aM (1 − e−aM )−1 + S,

(C109)
where

S = 1

Nk

∑
i

(ti − t2) (C110)

is the mean of the differences between the event times and the
time at the end of the block. The iterative equation is

ak+1 = ak − f (ak)

f ′(ak)
, (C111)

and since S is a constant we have

f ′(a) = − 1

a2
− M[−Me−aM (1 − e−aM )−1

− Me−aM (1 − e−aM )−2e−aM ] (C112)

f ′(a) = − 1

a2
+ M2e−aM (1 − e−aM )−1[1 + e−aM (1 − e−aM )−1],

(C113)
and defining

Q(a) = e−aM (1 − e−aM )−1, (C114)

we have

f ′(a) = − 1

a2
+ M2Q(a)[1 + Q(a)] (C115)

and

ak+1 = ak − a−1
k − MQ(ak) + S

−a−2
k + M2Q(ak)[1 + Q(ak)])

. (C116)
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