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ABSTRACT

We study the collimation of a highly magnetized jet by a surrounding cocoon that forms as a result of the interaction
of the jet with the external medium. We show that in regions where the jet is well confined by the cocoon, current-
driven instabilities should develop over timescales shorter than the expansion time of the jet’s head. We speculate
that these instabilities would give rise to complete magnetic field destruction, whereby the jet undergoes a transition
from high to low sigma above the collimation zone. Using this assumption, we construct a self-consistent model for
the evolution of the jet–cocoon system in an ambient medium of arbitrary density profile. We apply the model to
jet breakout in long gamma-ray bursts (GRBs) and show that the jet is highly collimated inside the envelope of the
progenitor star and is likely to remain confined well after breakout. We speculate that this strong confinement may
provide a channel for magnetic field conversion in GRB outflows, whereby the hot, low-sigma jet section thereby
produced is the source of the photospheric emission observed in many bursts.
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1. INTRODUCTION

The relativistic outflows observed in many compact astro-
physical systems are commonly thought to be powered by mag-
netic extraction of the rotational energy of a neutron star or an
accreting black hole. The energy thereby extracted is transported
outward in the form of Poynting flux, which on large enough
scales is converted to kinetic energy flux. The mechanism by
which magnetic energy is converted to kinetic energy has not
been identified yet, but it is generally believed to involve grad-
ual acceleration of the flow (e.g., Heyvaerts & Norman 1989;
Chiueh et al. 1991; Bogovalov 1995; Lyubarsky 2009), impul-
sive acceleration (Granot et al. 2011; Lyutikov 2011; Granot
2012), and/or non-ideal MHD effects, specifically magnetic
reconnection (Lyutikov & Blandford 2003; Giannios & Spruit
2007; Lyubarsky 2010; McKinney & Uzdensky 2012).

Astrophysical outflows appear to be highly collimated, and
there have been many attempts to explain the observed col-
limation in different systems. Understanding the collimation
process is important not only from an observational point of
view, but also because in ideal MHD flows collimation and ac-
celeration are intimately related (e.g., Begelman & Li 1994;
Vlahakis 2004). Magnetic fields can cause collimation via
magnetic tension. However, collimation by magnetic tension
alone is extremely slow (Eichler 1993; Begelman & Li 1994;
Tomimatsu 1994; Beskin et al. 1998) and cannot account for
the inferred collimation scales. Confinement by the pressure
and inertia of an external medium has emerged as a promising
alternative (Begelman 1995). The environments in which astro-
physical jets propagate, e.g., accretion disk winds in the case of
active galactic nuclei (AGNs) or stellar envelopes in the case of
long gamma-ray bursts (GRBs), are ideal for this purpose (e.g.,
Eichler 1983; Levinson & Eichler 2000; Bromberg & Levinson
2007, 2009; Kohler et al. 2012).
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The effect of the external medium on the structure of MHD
jets has been studied using semi-analytic models (Zakamska
et al. 2008; Lyubarsky 2009, 2011; Kohler & Begelman 2012)
and numerical simulations (McKinney & Blandford 2009;
Komissarov et al. 2007; Tchekhovskoy et al. 2010). However,
these studies are restricted to steady-state solutions in which
the jet boundary is either treated as a rigid wall or determined
by external pressure with a prescribed profile. In more realistic
situations, it is expected that the jet will be surrounded by a
hot cocoon that forms due to side flows of shocked matter
from the jet’s head or a nose cone if magnetic pinching is
important (Komissarov 1999). Indeed, numerical simulations
(Marti et al. 1997; Aloy et al. 1999; Hughes et al. 2002;
Zhang et al. 2003; Morsony et al. 2007; Mizuta & Aloy 2009;
Lazzati et al. 2009) and analytic models (Begelman & Cioffi
1989; Matzner 2003; Lazzati & Begelman 2005; Bromberg
et al. 2011 (BNPS11)) of purely hydrodynamic jets indicate
that under astrophysical conditions anticipated in GRBs, AGNs,
and microquasars, the surrounding cocoon significantly affects
the structure and dynamics of the jet. Attempts to simulate
the propagation of a magnetized jet in an external medium
have been limited to two-dimensional Newtonian jets (Clarke
et al. 1986; Lind et al. 1989) and relativistic jets with moderate
magnetization, σ � 1, under restricted conditions (Van Putten
1996; Komissarov 1999). Here σ = B2/4πρc2, where B and ρ
are the proper magnetic field strength and gas density in the jet.
The results of such simulations should be treated with caution,
as they cannot account for magnetic field dissipation in the
shocked jet and in the nose cone that, as we will argue below,
might be important.

In this paper, we construct an analytic model for the propa-
gation of a highly magnetized jet in an external medium. We
suggest that a self-consistent treatment of the evolution of the
jet–cocoon system may require a proper account of magnetic
field dissipation at the jet’s head. Such dissipation is implicitly
invoked in our model. In Section 2, we outline the basic model
and its key features. In Section 3, we consider the collimation
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of newly ejected jet material by the surrounding cocoon. In
Section 4, we compute the evolution of the jet–cocoon system
under different conditions. In Section 5, we consider the appli-
cations of our model to astrophysical systems. We conclude in
Section 6.

2. THE BASIC MODEL

Consider a magnetized jet propagating along the z-axis in a
medium of density ρa(z). We suppose that the jet is injected
with a fixed opening angle θ0, a Lorentz factor γj , and a total
power Lj. As the jet pushes its way forward, it accelerates the
matter ahead of it and produces a strong forward shock. The jet
is slowed down behind a reverse shock to match the velocity of
the shocked ambient matter at the contact discontinuity that
separates the shocked jet plasma and the shocked ambient
gas. In the case of a hydrodynamic jet the reverse shock is
strong whenever the ambient density is large enough, such
that the center of momentum frame moves at a Lorentz factor
considerably smaller than γj . Then, the flow of matter into the
jet’s head through the forward and reverse shocks is balanced
by a sideways flow that feeds a cocoon surrounding the jet. As
long as the cocoon’s pressure is sufficiently large, it deflects the
streamlines of newly injected fluid and collimates the jet. As the
system evolves, the cocoon expands and its pressure drops, until
reaching a level at which it is too low to confine the jet. At which
point in the course of the evolution this happens depends merely
on the density profile of the ambient medium, the injected power
Lj, and the opening angle θ0 at the injection point.

The picture appears to be more involved in the case of
magnetically dominated MHD jets. In the context of ideal MHD,
the reverse shock is expected to be weak in the high-sigma limit
in the sense that the compression ratio defined using densities
measured in the shock frame is near unity. This implies that the
velocity uj = γjβj of the unshocked jet near the head should
roughly match the velocity of the head, viz., uj � uh. Such a
condition requires strong focusing of the section of the jet below
the contact discontinuity, which can only be accomplished if the
pressure of the confining medium roughly equals the pressure
behind the forward shock. We shall propose in Section 4.1 that
this might be accomplished through magnetic stresses, if some
fraction of the magnetic field that enters the head through the
reverse shock is advected into the cocoon and remains ordered
over scales considerably larger than the cross-sectional radius
of the jet. An alternative possibility, discussed in Section 4.2,
is that the section of the jet below the contact discontinuity is
rendered unstable, thereby giving rise to rapid dissipation of the
magnetic field there, and/or entrainment of shocked ambient
matter, that can strengthen the reverse shock. The destruction of
the magnetic field below the head may result from current-driven
instabilities (Eichler 1993; Begelman 1998; Mizuno et al. 2009,
2012). Entrainment of matter may be driven by rapid growth of
the Rayleigh–Taylor instability at the contact, which is expected
when the head is accelerating (Lyubarsky 2010). The structure of
the cocoon thereby formed consists of an outer part containing
the shocked ambient plasma and an inner part containing the
lighter, shocked jet fluid (see Figure 1).

As long as the pressure in the cocoon is sufficiently large, it
will collimate the jet. The transition from a freely expanding
to a confined jet will occur at a radius at which the transverse
ram pressure of the conical jet roughly equals the cocoon’s
pressure. If the transverse expansion of the unconfined jet is
super-magnetosonic, then the streamlines of the jet will be
deflected across a superfast tangential shock. Otherwise, the

Figure 1. Schematic illustration of the jet–cocoon system.

(A color version of this figure is available in the online journal.)

collimation will proceed smoothly through the formation of a
compression wave that propagates from the jet boundary inward.
The collimation of the jet by the cocoon is analyzed in Section 3.
The results derived there are used in Section 4 to determine the
scales over which the cocoon significantly affects the evolution
of the jet.

The asymptotic structure of a relativistic, strongly magne-
tized jet has been analyzed recently by Komissarov et al. (2009)
and Lyubarsky (2009, 2011). Lyubarsky obtained analytic so-
lutions of the transfield equation in the limit Ωr � 1 (r is
the cylindrical radius) that describe a rigidly rotating, steady
jet confined by an external pressure having a power-law profile
pext(z) ∝ z−κ . He examined the behavior of the solutions in
the regimes κ < 2 and κ > 2 and showed that when κ < 2
the opening angle of the jet θj decreases continuously such
that the jet interior remains in causal contact (γj θj � 1) every-
where. As a consequence, the jet is accelerated and collimated
until it roughly reaches equipartition, where σ ∼ 1. The jet’s
streamlines have a parabolic shape, r ∝ zκ/4, with spatial os-
cillations superimposed on it if the jet is initially out of equi-
librium. For κ > 2, the jet becomes asymptotically radial, with
the final opening angle θj∞ depending solely on the pressure
profile. In this case γj∞θj∞ > 1, so that the jet interior is not
in causal contact. The asymptotic Lorentz factor is then prac-
tically limited to γj∞ � σ

1/3
0 θ

−2/3
j∞ , where σ0 � B2

0/4πρ0c
2 is

the value of the magnetization parameter at the injection point.
Since γj∞θj∞ > 1, the jet remains Poynting dominated in the
far zone, viz., γj∞ < σ0. As shown in Lyubarsky (2011), the
above results hold not only for a cold jet but also in the case of
a magnetically dominated hot jet.

The model outlined in the following sections assumes that
above the transition zone, at radii where confinement by the
cocoon has been communicated to the jet interior, the jet
structure can be described by the solution derived in Lyubarsky
(2009) for κ < 2. This may be justified in the regime where the
propagation of the jet’s head is sub- or even mildly relativistic,
such that the vertical pressure distribution in the cocoon is
sufficiently flat. As will be shown in Section 3 below, the
confined jet just upward of the transition region is out of
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equilibrium and is expected to oscillate. These oscillations may
eventually decay to an equilibrium state via production of shocks
in the external gas flowing near the jet boundary. We suppose
that near the position of the head the jet is in its equilibrium
state, and we use the equilibrium solution derived in Lyubarsky
(2009) as a closure condition for the jet–cocoon system analyzed
in Section 4. A schematic illustration of the model described
above is presented in Figure 1.

3. TRANSITION TO THE COLLIMATION REGIME

When the transverse ram pressure of the freely expanding jet
roughly equals the cocoon’s pressure, the streamlines of the jet
will be deflected until the jet becomes confined by the gas in the
cocoon. As mentioned above, whether the collimation of the jet
proceeds smoothly or through a formation of a tangential shock
depends on the transverse fast magnetosonic Mach number of
the unconfined jet, Mf ⊥ = (uj sin θ0)/uf , where uf is the fast
magnetosonic 4-speed and θ0 denotes the opening angle of the
jet prior to its interaction with the cocoon. This is confirmed in
the Appendix, where the jump conditions of an oblique MHD
shock are solved.

For a magnetically dominated jet, the asymptotic Lorentz
factor is limited to γj � (σ0/θ

2
0 )1/3 (see discussion in the pre-

ceding section). If the jet is injected cold, then γjσj = σ0 to
O(σ−1

j ) (see Equation (A7)), yielding γjβj θ0/
√

σj � 1 in the
asymptotic limit. Consequently, for a cold jet the transverse ex-
pansion is marginally sub-magnetosonic and we expect smooth
collimation. The confinement of the jet in this case is commu-
nicated to the inner regions by a fast magnetosonic wave that
propagates from the jet boundary inward (Kohler & Begelman
2012). If the jet is injected hot, then it may become superfast
when interacting with the cocoon, and a tangential collimation
shock will form. At the tangential contact discontinuity, the
pressure of the shocked jet layer must be equal to the cocoon’s
pressure pc. Then, assuming that the transverse momentum flux
is roughly uniform across the shocked layer we obtain, using
Equation (A4),

pc = (hj + σj )ρjc
2γ 2

j β2
j cos2 ψj (1)

for a superfast flow, viz., Mf ⊥ � 1. Here ψj is the angle
between the fluid velocity and the shock normal (see the
Appendix).

Adopting pc = p0(z/RL)−κ for the external pressure, RL
being the radius of the light cylinder, and recalling that Lj =
(hj + σj )ρjγ

2
j βj c

3π tan2 θ0z
2 yields

cos ψj = A tan θ0(z/RL)1−κ/2, (2)

with A = (πcp0R
2
L/Lj )1/2 � (4πp0/B

2
0 )1/2, where B0 is the

characteristic magnetic field at the light cylinder. We see that this
condition is essentially the same as in the hydrodynamic case
(Bromberg & Levinson 2009; Van Putten & Levinson 2012), as
naively expected. In the small-angle approximation, cos ψj =
rs/z − drs/dz, where rs(z) is the cylindrical radius of the shock
front. Substituting the latter expansion into Equation (2), we
obtain

drs

dz
= rs

z
− A tan θ0(z/RL)1−κ/2. (3)

Solving Equation (3), subject to rs(z = RL) = RL tan θ0, gives

rs(z) = z tan θ0 − 2A

2 − κ
z tan θ0[(z/RL)1−κ/2 − 1]. (4)

The point z
 at which the shock reaches the axis is determined
from the condition rs(z = z
) = 0:

z
 = RL

(
2 − κ

2A
+ 1

)1/(1−κ/2)

. (5)

The latter result is used in Section 4.2 to determine the
scales over which collimation of the jet by the cocoon occurs
(Equation (31)).

If the motion of the head is slow enough, the cocoon is
anticipated to be roughly isobaric. Then κ = 0, and if A 
 1
we have z
/RL � (B2

0/4πp0)1/2. The radius of the jet at
this distance is R


j = RL tan θ0(B2
0/4πp0)1/2. The radius of

an equilibrium cylinder is Re = RL(B2
0/2πp0)1/4 (Lyubarsky

2009). Our analysis assumes that γj sin θ0 >
√

σj/hj > 1.
Since γj � Rj/RL, it implies that sin θ0 >

√
σj/hj (R


j/RL)−1.

At small angles sin θ0 � tan θ0 = √
2R


jRL/R2
e , and the

above results yield R

j � (σj/2hj )1/4Re > Re. If tan θ0 <√

σj/hj (Re/RL)−1, it means that the transverse expansion of the
jet is sub-magnetosonic, so that collimation proceeds smoothly.

Because Rj > Re at z
, we expect spatial oscillations of the jet
to ensue above the transition region. To illustrate this, consider
the propagation of a jet in a confining medium having a uniform
pressure, pc = p0 = const. Suppose that at z = z0 the radius of
the jet satisfies Rj = R0 and dRj /dz = 0. The solution of the
transfield equation in this case reduces to (Lyubarsky 2009)

Rj (z) = R0
[

cos2 {√
3/2A(z − z0)

}
+ (Re/R0)4

× sin2
{√

3/2A(z − z0)
}]1/2

, (6)

with A and Re as defined above. For R0 = Re the latter
equation yields Rj (z) = Re = const. For any other values
the jet oscillates. Such oscillations are present for any pressure
profile with κ � 2, when the initial jet radius deviates from
the equilibrium value. These spatial oscillations may eventually
decay, and the jet radius will approach Re.

4. EVOLUTION OF THE JET–COCOON SYSTEM

The temporal evolution of the jet–cocoon system is deter-
mined by the density profile of the ambient medium and the
parameters of the injected jet, assumed to be given. As ex-
plained in Section 2 above, matching of the jet and head Lorentz
factors can be accomplished through magnetic pinching or, al-
ternatively, non-ideal MHD effects that allow the formation of a
strong reverse shock below the contact discontinuity. The evolu-
tion of the system in the former case is explored in Section 4.1,
and in the latter case in Section 4.2.

The energy momentum tensor of the unshocked jet can be
expressed as

T
μν

j = (
wj + b2

j

)
u

μ

j uν
j +

(
pj + b2

j /2
)
gμν − b

μ

j bν
j , (7)

where pj and wj are the pressure and specific enthalpy, re-
spectively, u

μ

j is the 4-velocity, and
√

4πbμ = F

μνu

ν is the
magnetic field vector, F
 being the dual electromagnetic ten-
sor. Since well above the light cylinder the azimuthal magnetic
field of the unshocked jet satisfies Bφ � rΩBp � Bp, where
r is the cylindrical radius of the magnetic surface Ψ(r, z) and
Ω(Ψ) its angular velocity, we can neglect the poloidal field Bp.
Then b

μ

j = (0, 0, bj , 0), where
√

4πbj = Bjφ/γj is the proper
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magnetic field. The jet power is obtained upon integration of the
energy flux from the jet axis to its boundary, at r = Rj :

Lj =
∫ Rj

0
T 0z

j 2πrdr =
∫ Rj

0

(
wj + b2

j

)
γ 2

j cβj 2πrdr. (8)

We suppose that the structure of the confined jet well above
the transition region can be approximated by the equilibrium
solution obtained in Lyubarsky (2009) in the limit of rigid
rotation, Ω = const. Then, Lj � (B2

0/4π )cπR2
L, where B0 =

Ψ0/R
2
L is the characteristic magnetic field at the light cylinder,

and 2πΨ0 ≡ 2πΨ(Rj , z) is the total magnetic flux subtended
by the jet. In terms of the cocoon’s pressure at the jet boundary,
pc(z), the cross-sectional radius of the confined jet is given by
(Lyubarsky 2009)

Rj/RL �
(

B2
0

2πpc

)1/4

�
(

2Lj

πcR2
Lpc

)1/4

, (9)

and the Lorentz factor by γj � Rj/RL.
Let βh denote the velocity of the contact discontinuity (the

head) and γh the corresponding Lorentz factor. Momentum
balance at the forward and reverse shocks gives∫ Rj

0

[(
wj + b2

j

)
γ 2

j γ 2
h (βj − βh)2 + pj + b2

j /2
]
2πrdr

=
∫ Rf

0

[
waγ

2
h β2

h + pa

]
2πrdr, (10)

where wa and pa are the enthalpy and pressure of the ambient
medium, respectively, and Rf is the cross-sectional radius of
the forward shock. For simplicity, we shall consider a cold
medium, pa = 0, and assume that the effective cross-sectional
radius of the forward shock roughly equals that of the jet. Then,
Equation (10) yields lγ 2

h βj (1 − βh/βj )2 + p̃ = γ 2
h β2

h , in terms
of the dimensionless parameters,

l = Lj/
(
πR2

j ρac
3
)
, (11)

p̃ = (
pj + b2

j /2
)
/ρac

2. (12)

Here l represents the ratio between the total energy density
of the jet, Lj/cπR2

j , and the rest-mass energy density of the
surrounding matter, as measured in the rest frame of the ambient
medium. Likewise, p̃ is the ratio between the total jet pressure
and the rest-mass energy density of the ambient matter. The
solution for the head velocity reads

βh = βj

l − [
l2 − (

l + p̃/β2
j

)
(l − p̃ − 1)

]1/2

l − p̃ − 1
. (13)

Note that for a highly magnetized jet, b2
j � wj , one has, to a

good approximation, p̃ = l/(2γ 2
j ). When the reverse shock is

strong, l � p̃ and the latter solution simplifies to

βh = βj

1 + l−1/2
, (14)

as derived in BNPS11. When the reverse shock is weak or absent,
specifically when γ 2

j γ 2
h (βj − βh)2 < 1, Equation (13) reduces

to

βh =
√

p̃

1 + p̃
. (15)

In order to proceed, we need to specify the conditions in
the inner cocoon. In what follows, we consider two different
scenarios.

4.1. Magnetized Cocoon

In this section we consider the possibility that the jet is
pinched by magnetic stresses in the inner cocoon, assuming
that a fraction ξB of the toroidal magnetic field (more precisely,
the fraction of magnetic flux) that enters the head through the
reverse shock is advected into the inner cocoon. Suppose that
the rate of separation of the forward and reverse shocks is much
slower than the velocity of the head, that is, βh � βr . Then, the
rate at which magnetic flux is added to the head, as measured in
the star frame, is roughly

dΦBj

dt
� (βj − βh)

∫ Rj

0
Bjφ(r)dr = Bjφ(Rj )Rj (βj − βh)/2,

(16)
assuming a uniform current density inside the jet. Here Bjφ(Rj )
denotes the value of Bjφ at the jet boundary r = Rj . For illustra-
tion, we assume that the return current is flowing in a thin sheet
at some radius Rc > Rj . Then, the magnetic field in the inner
cocoon scales as Bc ∝ r−1 with cylindrical radius r. The rate
at which magnetic flux is added to the cocoon is approximately
dΦBc/dt � βh

∫ Rc

Rj
Bcdr � βhRjBc0 ln(Rc/Rj ), where Bc0 is

the value of Bc at the jet boundary, r = Rj . Flux conservation,
viz., dΦBc/dt = ξBdΦBj/dt , implies

Bc0 = (ξB/2)Bjφ(Rj )(βj/βh − 1)[ln(Rc/Rj )]−1. (17)

In order not to crush the jet, the cocoon’s pressure at the jet
boundary, pc0 � B2

c0/8π , should not exceed the jet pressure,
pj � [Bjφ(Rj )]2/(8πγ 2

j ). This yields the condition

ln(Rc/Rj ) > (ξB/2)γj (βj/βh − 1). (18)

Since ln(Rc/Rj ) = a few, Equation (18) implies ξB(βj −βh) 

1 in the relativistic regime γj � 1. Unless the fraction ξB is
very small, the latter condition means that |βj − βh| 
 1.5

To illustrate some key features of jet focusing by the inner
cocoon, we compute the evolution of the system by invoking the
extreme condition γh = γj . This, of course, is a gross approx-
imation, as some velocity difference is required in order that
magnetic flux will be advected into the inner cocoon, as indi-
cated by Equation (17). Nonetheless, for βj/βh − 1 � (γjγh)−1

it may represent a reasonable approximation of a more real-
istic situation. Furthermore, we assume that the inner jet can
be described by the equilibrium solution derived in Lyubarsky
(2009), so that γj � Rj/RL. With βj = βh, Equation (10)
yields γ 2

h = p̃ � l/2γ 2
j , and since γh = γj , we have, using

Equation (11),

γh = Rj/RL =
(

Lj

2πR2
Lρ0c3

)1/6

z̃h
α/6 (19)

for a density profile ρa = ρ0z̃h
−α , where z̃h = zh/RL.

Comparing the latter with the unmagnetized case discussed in
the next section (Equation (30) with η � 1), it is seen that the
head Lorentz factor is larger by a factor 1.5z̃

1/9
h when magnetic

pinching is effective. We remind the reader that the above results
assume that the radius of the forward shock roughly equals the
jet radius at the head. If magnetic pinching is effective mainly at

5 For a uniform current distribution in the cocoon with Bc(Rc) = 0 we obtain
dΦBc/dt � βhRjBc0[ln(Rc/Rj )/(1 − R2

j /R
2
c ) − 1/2], suggesting that the

latter condition is quite robust.
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a nose surrounding the head, it would mean that the jet is strongly
focused only in the vicinity of the head. Then the assumption
that the radius of the forward shock matches that of the head is
questionable.

Let us proceed by assuming that the outer cocoon is roughly
isobaric, has a cylindrical geometry, and contains radiation-
dominated gas, as described in detail in Section 4.2. Then, its
pressure can be approximated by Equation (23) below. Using
Equations (19) and (23) with β2

c = pc/ρac
2 and β−1

h − 1 �
1/2γ 2

h , we arrive at

pc = (η/3)1/2ρac
2γ 2

h t̃−1 ∝ z̃h
−(3+2α)/3

. (20)

Under the assumption Bc ∝ r−1, the pressure exerted on the jet
by the inner cocoon is related to the thermal pressure pc of the
outer cocoon, at r = Rc, through

pc0 = pc(Rc/Rj )2. (21)

Now, for the equilibrium solution adopted here the jet radius Rj
is given by Equation (9) with pc replaced by pc0, specifically
Rj/RL = (2Lj/πcR2

Lpc0)1/4 = (2Lj/πcR2
Lpc)1/4(Rc/Rj )1/2.

Combining the latter relation with Equations (19) and (20) gives
the radius of the current sheet in the inner cocoon:

Rc/Rj = 2(3/η)1/4 t̃1/2. (22)

The above derivation implicitly assumes that in the vicinity
of the head the relativistic jet is focused by magnetic pinching
to a level at which the jet Lorentz factor can be continuously
matched to the head. One might naively conclude that if the
ambient medium is sufficiently dense, then ultimately a bubble
of sub-magnetosonic, high Poynting flux material will fill the
expanding cocoon, quenching the inner jet to a narrow cylinder
of radius Rj ∼ RL that propagates outward at a sub-relativistic
speed, γj � Rj/RL � 1. In reality, such a structure is expected
to be extremely unstable. What seems likely to happen is that
current-driven instabilities will destroy the magnetic field in
the inner jet before it is even deposited in the cocoon. Since the
comoving growth time of the instability roughly equals the
Alfvén crossing time of the jet, t ′ ∼Rj/vA (Begelman 1998),
the length scale over which the instability develops is λCD ∼
γjct

′ ∼ γjRj . If the jet is well collimated by the cocoon,
then this scale is generally smaller than the distance zh of the
jet’s head from the origin. It is, therefore, conceivable that the
magnetization of the jet in some region between the head and
the collimation zone is strongly reduced by the instability. We
examine the consequences of such a process next.

4.2. Unmagnetized Cocoon

If the magnetic field dissipates before reaching the cocoon, as
argued above, then magnetic stresses in the inner cocoon can be
ignored. As shown below, in the absence of magnetic pinching
the jet cannot be sufficiently focused, and its Lorentz factor γj

may be much larger than the Lorentz factor γh of the head, as
in the pure hydrodynamic case. This means that the jet must
decelerate across a strong reverse shock. We envision that the
shock is formed in a low-sigma section of the jet, following
the destruction of the incident magnetic field by the instabilities
described above.

Under the conditions envisaged, the pressure in the cocoon
is anticipated to be radiation dominated; thus, we adopt an
adiabatic index of 4/3. Following BNPS11, we assume that

the cocoon is roughly isobaric and approximate its geometry
as a cylinder of height zh = c

∫
βhdt and cylindrical radius

rc = c
∫

βcdt , where βc = (pc/ρac
2)1/2 is the lateral expansion

velocity of the outer cocoon. The former assumption, that the
energy distribution in the cocoon is approximately uniform,
introduces a considerable simplification and may be justified
when the motion of the head is sufficiently slow. With the above
approximations the cocoon’s pressure is given by pc = Ec/3Vc,
where Ec = ηLj

∫
(1 − βh)dt is the total energy deposited

in the cocoon and Vc = πr2
c zh its volume. The parameter η

represents the fraction of the energy that enters the cocoon, as
explained in BNPS11; at sufficiently low Lorentz factors of the
head, γh < 2zh/Rj , for which it is in causal contact across its
transverse direction, η = 1. Otherwise, η = 2zh/(γhRj ). Taking
for simplicity rc = c

∫
βcdt � βcct and likewise zh = cβht , we

obtain

pc = ηLj

3πcR2
L

(β−1
h − 1)

β2
c t̃

2
, (23)

in terms of the fiducial time t̃ = ct/RL. This expression is
accurate up to an order unity factor that depends on the density
profile of the ambient medium (see BNPS11). In the regime
where the reverse shock is strong, βh can be approximated by
Equation (14). Substituting βc and βh into the last equation and
solving for pc yields

pc =
(

ηLjρac

3πR2
L

)1/2

l−1/4 t̃−1. (24)

Next, we suppose that near the head the cross-sectional radius
of the jet can be approximated by Equation (9) and the Lorentz
factor by γj = Rj/RL. Solving Equations (9), (11), and (24),
one finds

l = 0.26η2/9

(
Lj

R2
Lρac3

)2/3

t̃−4/9 = l0z̃
2α/3
h t̃−4/9, (25)

where we adopt an ambient density profile of the form ρa(z) =
ρ0z̃

−α , with z̃h = zh/RL, and define

l0 = 0.26η2/9

(
Lj

R2
Lρ0c3

)2/3

. (26)

The radius and Lorentz factor of the jet are found from
Equations (9), (24), and (25):

γj = Rj/RL = (12/η)1/6l1/4 t̃1/3 = 1.5η−1/6l
1/4
0 z̃

α/6
h t̃2/9. (27)

Result (27) holds at times at which γj < γmax.
The position of the head at time t̃ is given by z̃h = βht̃ . From

Equation (14) it is readily seen that if l 
 1 then z̃h ∼ l1/2 t̃ ,
and if l � 1, z̃h ∼ t̃ . In the former case we have

l = l
9/7
0 z̃

(6α−4)/7
h , (28)

and in the latter case (l � 1)

l = l0z̃
(6α−4)/9
h . (29)

Consequently, for α > 2/3, l increases with zh and the head
accelerates. This is different than the hydrodynamic case, where
this happens at α > 2 (cf. BNPS11). Note that when the head’s
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motion becomes relativistic, the Lorentz factor of the head is
given by

γh � l1/4/
√

2 = 0.68η1/18

(
Lj

2πR2
Lρ0c3

)1/6

z̃
(3α−2)/18
h , (30)

where Equation (14) has been employed. The pressure inside
the cocoon satisfies pc ∝ z−s

h with s = (2α + 8)/7 when l 
 1
and s = (6α + 8)/9 when l � 1. From Equation (9) and the
relation γj = Rj/RL we have γj ∝ z̃s/4 = z̃(3α+4)/18 for l � 1.
The scaling of γh and γj with zh confirms that as long as the
jet is confined by the cocoon, it always accelerates faster than
the head. The jet is considered collimated as long as z
 < zh,
where z
 is given by Equation (5) with κ = 0 for an isobaric
cocoon. The jet will be unconfined only when A 
 1, for
which z̃
 � (Lj/πcR2

Lpc)1/2 ∝ z̃
s/2
h . When s < 2 (α < 5/3),

the head advances faster than z
, and the jet becomes confined
at distances z > zc, where

z̃c = (
1.6η−2/9l

1/2
0

)9/(5−3α)
. (31)

When s > 2 (α > 5/3), the jet is confined at z < zc and
becomes unconfined at z > zc.

The model presented above implicitly assumes that current-
driven instabilities lead to magnetic field dissipation above the
transition zone, at z > z
. This assumption is justified provided
that the instability growth time is shorter than the dynamical time
for jet fluid to reach the head. As argued at the end of Section 4.1,
the instability growth length is λCD ∼ γjRjβ

−1
A � R2

j /(βARL),
where βA is the Alfvén speed in units of c, for which Equation (9)
yields λCD/RL � (2Lj/πcR2

Lpc)1/2β−1
A = √

2β−1
A z̃
. Now, as

long as the jet is confined by the cocoon, z
 < zh; hence,
the magnetic field in the jet has sufficient time to dissipate
before it reaches the head provided that βA > z
/zh. In
particular, in the regime where the head is sub-relativistic we
find λCD/zh ∼ β−1

A t̃−1/3 ∼ β−1
A l

3/14
0 z̃

(α−3)/7
h , and in the regime

where the head is transrelativistic λCD/zh ∼ β−1
A l

1/2
0 z̃

(3α−5)/9
h .

It is worth noting that in a relativistically hot, pure hydrody-
namic flow the cross-sectional radius and Lorentz factor scale
as γj ∝ Rj ∝ p

−1/4
j with pressure pj. By comparing with

Equation (9), it is seen that conversion of magnetic energy to
kinetic energy in the confinement region does not change the
scaling of the outflow parameters, so that the use of Equation (9)
is justified even if the jet becomes kinetic dominated in the vicin-
ity of the head.

5. APPLICATIONS

We examine first the application of the above results to
GRBs, assuming an unmagnetized cocoon. In the context
of the collapsar scenario for long GRBs, the jet propagates
inside the envelope of a massive star before breaking out
to produce the observed signal. For illustration, we invoke
a W-R star of mass M ∼ 10 M and radius R
 ∼ R. The
density profile in the stellar envelope may be expressed as
ρa(z) = ρ̄(z/R
)−α , with α < 3, where the average density is
roughly ρ̄ � 5(3 − α)(M/10 M)(R
/R)−3 g cm−3. From
Equation (26) we obtain

l0 = 2×103η2/9

(
RL

R


)2α/3(
Lj52

R2
L7

)2/3[ (3 − α)M

10 M

]−2/3(
R


R

)2

,

(32)

where RL = 107RL7 cm. For α = 2 and the above choice of M,
R
, and RL we have, using Equation (28) with η = 1,

l � 5 × 10−3

(
Lj52

R2
L7

)6/7

z̃
8/7
h � 123

(
Lj52

R2
L7

)6/7 (
zh

R


)8/7

(33)

in the sub-relativistic regime, and from Equation (29)

l � 1.5 × 10−2η2/9

(
Lj52

R2
L7

)2/3

z̃
8/9
h

� 40η2/9

(
Lj52

R2
L7

)2/3 (
zh

R


)8/9

(34)

in the relativistic regime (l � 1). The Lorentz factor of the
head can be expressed as γh � 2(Lj52/R

2
L7)1/6(zh/R
)2/9,

and it is seen that for values of the jet power inferred from
observations, Lj52 � 1, the motion of the head is sub- to mildly
relativistic inside the stellar envelope. For the above choice of
parameters the head becomes relativistic at zh > zt � 0.014R
.
The jet Lorentz factor at the location of the head is given
by γj � 40(Lj52/R

2
L7)1/14(zh/R
)3/7 at zh < zt and γj �

62(Lj52/R
2
L7)1/6(zh/R
)5/9 at zh > zt . From Equation (31) we

also have

zc/R
 � 70

(
Lj52

R2
L7

)−3

. (35)

Thus, the jet will be collimated all the way to the edge of the
stellar envelope provided that Lj52/R

2
L7 < 4. In fact, jets of

sufficiently low power may remain confined well above the
edge of the stellar envelope by the surrounding matter that
breaks out of the star with the jet. This raises the question
of whether the deconfinement of the jet at breakout is sudden
enough to lead to re-acceleration to Γj /θj � 1, as proposed
recently (Tchekhovskoy et al. 2010; Komissarov et al. 2010).
The dissipation of the magnetic field in the confinement region
may persist after breakout, until the confinement relaxes to
the point that current-driven instabilities no longer have time
to operate. From the above results, we obtain λCD/zh ∼
0.55β−1

A (Lj52/R
2
L7)1/3(zh/R
)1/9 in the transrelativistic regime

(γh > 1). Thus, under the assumption that the cocoon is isobaric,
it seems that the instability is marginal near and beyond the
edge of the star, and it is unclear whether it will indeed become
destructive there. On the other hand, a non-uniform pressure
distribution in the cocoon would lead to additional focusing of
the jet above the collimation zone and, hence, a shorter growth
length of the instability. The hot, low-sigma outflow produced
by the destruction of the magnetic field well inside the star
and, conceivably, also after breakout will eventually reach the
photosphere and may be the source of the photospheric emission
observed during the prompt phase.

Blazar jets propagating in a medium of constant density,
n0 = ρ0/mp (measured in cgs units), will be collimated at
distances z > zc, with

zc � 10

(
Lj45

n0R
2
L14

)3/5

pc, (36)

where we adopt RL = 1014RL14 cm. For n0 � 1 cm−3, zc

is much larger than the scale over which the magnetic field
dissipates, as inferred from observations. The cocoons observed
on tens of kpc scales form, most likely, in the pure hydrodynamic
regime (BNPS11). However, the average density in the vicinity
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of the broad-line region may be larger by several orders of
magnitudes than the average interstellar medium density, so
that collimation by the cocoon may occur on much smaller
scales, shortly after the activation of the central engine. We
note that the Lorentz factor of the confined jet at z > zc is
γj � 67(Lj45/R

2
L14n0)3/10(zh/zc)2/9. The latter exceeds the

characteristic values inferred from observations, γj ∼ 10–50,
implying that conversion of magnetic energy to kinetic energy
can occur by collimation alone, even on sub-parsec scales if
the ambient density in the vicinity of the central engine is large
enough, viz., n0 > 103.

6. CONCLUSION

We have constructed an analytic model for the propagation
of a magnetically dominated jet in an external medium having
an arbitrary density profile and examined the conditions under
which the jet can be collimated by the cocoon surrounding
it. Our model assumes that in the region where the jet is
well confined by the cocoon, its structure can be described
by the equilibrium solution derived in Lyubarsky (2009) in
the equilibrium regime. This solution is employed as a closure
condition for the jet–cocoon system of equations. We analyzed
two different evolutionary tracks.

The first one, outlined in Section 4.1, assumes that some
fraction of the magnetic field that enters the jet’s head through
the reverse shock is advected into the cocoon and remains
ordered. The inner jet is focused by magnetic pinching to a
level at which the jet Lorentz factor can be matched to the head
through a weak reverse shock. Under these assumptions, a self-
consistent solution of the jet–cocoon equations can be obtained.
This solution may correspond to the nose cone revealed in two-
dimensional numerical simulations of moderately magnetized
jets (Komissarov 1999). However, this scenario requires that the
system maintain a high degree of axisymmetry over times longer
than the expansion time of the head, which is questionable. We
argued, at the end of Section 4.1, that for a dense enough medium
such a configuration should be unstable and should lead to a
rapid dissipation of the magnetic field in the inner jet and the
surrounding cocoon.

In the second one, which we find more likely, the magnetic
flux in the confined jet dissipates via current-driven instabilities
before it reaches the head, and the jet undergoes a transition
from high to low sigma above the collimation zone. A strong
reverse shock forms in the low-sigma section of the jet, allowing
matching of the jet and head Lorentz factors, as in the pure
hydrodynamic case. Since the side flow that feeds the cocoon is
weakly magnetized, magnetic pinching is unimportant. Instead,
the jet is confined by the pressure of the gas contained in the
inner cocoon. Collimation commences at a radius at which the
transverse ram pressure of the unconfined jet roughly equals
the cocoon’s pressure, followed by spatial oscillations of the
confined jet that decay to the equilibrium state by dissipative
processes. The collimation proceeds smoothly if the transverse
expansion of the unconfined jet is sub-magnetosonic or through
formation of a (weak) superfast tangential shock if the transverse
expansion is super-magnetosonic. At the onset of collimation
the jet may still be highly magnetized (σ � 1), unlike the
pure hydrodynamic case considered in BNPS11. This leads to
scalings different than those derived by BNPS11. For example,
for transrelativistic propagation in an ambient density profile
ρa ∝ z−α , we find that the head Lorentz factor evolves according

to γh ∝ z
(3α−2)/18
h in the high-sigma case, versus γh ∝ z

(α−2)/10
h

in the pure hydrodynamic case.
As long as the jet is well confined by the cocoon, the

growth time of the current-driven instabilities is shorter than
the expansion time of the head. As a consequence, complete
destruction of the magnetic field is expected in the confinement
region below the head. The hot, low-sigma matter thereby
produced may be a source of high-energy radiation when
approaching the photosphere. In the collapsar scenario for long
GRBs, we find that the jet will remain well confined throughout
its propagation in the envelope of the progenitor star, and
perhaps even well above the envelope. For a reasonable density
profile, the criterion for the growth of the instability is found to
be marginal near the edge of the envelope, so further analysis
is required to quantify the likelihood that the instability will
become disruptive. If it does, then magnetic field dissipation may
persist for times longer than the duration of the breakout phase.
At any rate, the hot, low-sigma matter produced inside and,
conceivably, above the stellar envelope will eventually reach the
photosphere and radiate. The photospheric emission observed
in the prompt phase of many bursts may be a signature of this
mechanism. Since magnetic field dissipation commences well
inside the envelope, at large optical depths, there is sufficient
time to generate the radiation entropy required to explain the
sub-MeV peaks; typically, a Thomson depth of τ > 103 is
required for complete thermalization (Levinson 2012). The
overall shape of the spectrum emitted from the photosphere
would depend on the dissipation profile below the photosphere
(Levinson 2012; Beloborodov 2012), which in turn depends
on the density profile of the progenitor star and other details.
Further dissipation of the bulk energy of the weakly magnetized
fluid near the photosphere may occur via formation of internal
or collimation shocks.

A.L. acknowledges support from an ISF grant for the Israeli
center for high-energy astrophysics and thanks the Fellows of
JILA for their hospitality during a sabbatical visit. M.C.B. ac-
knowledges support from NSF grant AST-0907872 and NASA
Astrophysics Theory grant NNX09AG02G.

APPENDIX

OBLIQUE MHD SHOCKS IN SUPERFAST FLOWS

The energy momentum tensor of the upstream flow, as
measured in the shock frame, is expressed as

T
μν

1 = (
w1 + b2

1

)
u

μ

1 uν
1 +

(
p1 + b2

1/2
)
gμν − b

μ

1 bν
1, (A1)

where bμ is defined below Equation (7). We consider a planar
shock and choose our coordinate system such that the velocity
of the unshocked flow is given by β = (βx, 0, βz), and the
shock normal by n = (nx, 0, nz). For simplicity, we assume
that the magnetic field of the unshocked flow just upstream of
the shock is purely toroidal. Then b

μ

1 = (0, 0, b1, 0), where√
4πb1 = B1φ/γ1 is the proper magnetic field. In terms of

the angle ψ between the jet velocity and the shock normal
(cos ψ = n · β̂), the jump conditions are written as

ρ1γ1β1 cos ψ1 = ρ2γ2β2 cos ψ2, (A2)

(h1 + σ1)ρ1γ
2
1 β1 cos ψ1 = (h2 + σ2)ρ2γ

2
2 β2 cos ψ2 (A3)

7
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Figure 2. Normal component of the downstream 4-velocity normalized to uA = √
σ1/h1 (solid line), and proper density ratio ρ1/ρ2 (dashed line), vs. fast magnetosonic

Mach number Mf ⊥, for a hot upstream flow (h1 = 4p1) with σ1/h1 = 10 and incidence angle (measured with respect to the shock normal) cos ψ1 = 0.1.

(h1 + σ1)ρ1γ
2
1 β2

1 cos2 ψ1 + p1 + ρ1σ1/2

= (h2 + σ2)ρ2γ
2
2 β2

2 cos2 ψ2 + p2 + ρ2σ2/2 (A4)

β1 sin ψ1 = β2 sin ψ2 (A5)

σ1/ρ1 = σ2/ρ2. (A6)

Here subscript 2 refers to shocked fluid quantities, σ = b2/ρ is
the magnetization, and h = w/ρ is the enthalpy per baryon.
Note that

√
σ/h is the Alfvén 4-velocity. Equations (A2)

and (A3) can be combined to yield

(h1 + σ1)γ1 = (h2 + σ2)γ2. (A7)

After some algebraic manipulations, the jump conditions can
be reduced to a cubic equation for the variable x = u2

2⊥ =
γ 2

2 β2
2 cos2 ψ2 (for a similar derivation see also Lyutikov 2004;

Komissarov & Lyutikov 2011):

a3x
3 + a2x

2 + a1x + a0 = 0, (A8)

with

a3 = 16
[
c2

1 − (
1 − β2

1 sin2 ψ1
)]

, (A9)

a2 = 16c2 − 8c1c2β1 cos ψ1 − 8
(
1 − β2

1 sin2 ψ1
)
, (A10)

a1 = c2
2β

2
1 cos2 ψ1 − 8c1c2β1 cos ψ1 − (

1 − β2
1 sin2 ψ1

)
,

(A11)

a0 = c2
2β

2
1 cos2 ψ1, (A12)

where c1 = β1 cos ψ1[1 + (p1/(h1 + σ1) + c2/2)/(u2
1 cos2 ψ1)]

and c2 = σ1/(σ1 + h1). Solutions of Equation (A8) obtained
numerically for h1 = 4p1/ρ1, cos ψ1 = 0.1, σ1/h1 = 10,
and different values of the fast magnetosonic Mach number,

Mf ⊥ = u1⊥/uf , uf = √
(h1 + 3σ1)/2h1,6 are exhibited in

Figure 2. As expected, shock solutions exist only for Mf ⊥ > 1.
In the limit γ1 � 1, M2

f ⊥ � 1 Equation (A8) can be solved
analytically to yield

u2
2⊥ = 8σ 2 + 10h1σ + h2

1

16h1(σ + h1)

+

[
64σ 2(h1 + σ )2 + 20σ (h1 + σ ) + h4

1

]1/2

16h1(σ + h1)
, (A13)

which in the special case cos ψ1 = 1, h1 = 1 reduces
to that obtained by Kennel & Coroniti (1984), and in the
limit σ1 = 0, h1 = 1 reduces to u2⊥ = 1/

√
8. Note that

γ 2
2 = (1 + u2

2⊥)/(1 −β2
1 sin2 ψ1). As pointed out by Komissarov

(2012), the proper condition for the approximation (A13) is
Mf ⊥ � 1, not just u1⊥ � 1. In the limit σ1 � h1 the
solution (A13) simplifies to

u2
2⊥ = (σ1/h1), (A14)

sin ψ2 =
(

h1 + σ1

σ1 + h1 sin2 ψ1

)1/2

sin ψ1, (A15)

ρ2

ρ1
= γ1β1√

σ1/h1
cos ψ1, (A16)

ptot = p2 + b2
2/2 = 1

4

(√
h1 + σ1

σ1
+ 1

)
ρ1h1γ

2
1 β2

1 cos ψ2
1 ,

(A17)

in agreement with the high Mach number limit of Figure 2.
In fact, Figure 2 indicates that the latter solution is a good

6 In general, the fast magnetosonic speed cf satisfies
c2
f = (γ̂ p + b2)/(ρh + b2), where γ̂ is the adiabatic index. In the limit

h = 4p/ρ, γ̂ = 4/3, it reduces to c2
f = (h/3 + σ )/(h + σ ), from which we

obtain u2
f = c2

f /(1 − c2
f ) = (h + 3σ )/2h.

8
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approximation already at modest Mach numbers, Mf ⊥ = a
few. The deflection angle of streamlines across the shock,
δ = ψ2 − ψ1, is readily obtained from the above:

sin δ =
( √

1 + h1/σ1 − 1

2
√

σ1/h1 + sin2 ψ1

)
sin 2ψ1 � 1

4
(h1/σ1)3/2 sin 2ψ1.

(A18)
The shock compression ratio is r = β1/β2 = β1

√
1 + h1/σ1,

and it is seen that in the limit σ1/h1 � 1 the shock is always
weak. We emphasize that Equations (A14)–(A17) hold not only
in the case of hot upstream flow but for any h1.
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