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ABSTRACT

We present a new three-dimensional numerical method for calculating the non-spherical shape and internal structure
of a model of a rapidly rotating gaseous body with a polytropic index of unity. The calculation is based on a finite-
element method and accounts for the full effects of rotation. After validating the numerical approach against the
asymptotic solution of Chandrasekhar that is valid only for a slowly rotating gaseous body, we apply it to models
of Jupiter and a rapidly rotating, highly flattened star (α Eridani). In the case of Jupiter, the two-dimensional
distributions of density and pressure are determined via a hybrid inverse approach by adjusting an a priori unknown
coefficient in the equation of state until the model shape matches the observed shape of Jupiter. After obtaining
the two-dimensional distribution of density, we then compute the zonal gravity coefficients and the total mass from
the non-spherical model that takes full account of rotation-induced shape change. Our non-spherical model with
a polytropic index of unity is able to produce the known mass of Jupiter with about 4% accuracy and the zonal
gravitational coefficient J2 of Jupiter with better than 2% accuracy, a reasonable result considering that there is only
one parameter in the model. For α Eridani, we calculate its rotationally distorted shape and internal structure based
on the observationally deduced rotation rate and size of the star by using a similar hybrid inverse approach. Our
model of the star closely approximates the observed flattening.

Key words: gravitation – planets and satellites: individual (Jupiter) – planets and satellites: interiors – stars:
individual (α Eridani)
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1. INTRODUCTION

As a consequence of rapid rotation, planets like Jupiter are
rotationally distorted into a non-spherical shape. Taking the full
effect of rotational distortion as the leading-order solution in
describing the shape and gravity of a rotating gaseous planet
leads to a highly complicated and challenging mathematical
problem. Although attempts to employ spheroidal geometry
as the leading-order solution have been made with constant
density (Kong et al. 2012; Hubbard 2012), the generalization of
the constant density models to compressible gaseous models,
via either analytical or semi-analytical approaches, is likely too
complicated to be practical. No previous attempts have been
made to compute the gravitational field of a rapidly rotating,
compressible fluid planet that accounts for the full effects of
rotation.

This paper represents the first attempt to calculate a model
of the gravitational field of a rapidly rotating compressible fluid
body when the rotational distortion is too large to be regarded
as a small perturbation. In such a calculation, an equation of
state (EOS) describing the relationship between the pressure p
and the density ρ, denoted by p = f (ρ), is needed. There are at
least three different types of EOS that may be adopted: a physical
EOS (Chabrier et al. 1992; Saumon et al. 2004; Nettelmann et al.
2012), an empirical EOS (Helled et al. 2009), and the classic
polytropic EOS (Chandrasekhar 1933, 1967; Hubbard 1974,
1999). In this study, we adopt the EOS of a polytrope of index
unity for the following reasons. First, a polytrope of index unity
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has been shown to provide a good qualitative approximation to
the EOS of the Jovian interior (Hubbard 1974, 1999). Second, a
simple polytropic EOS is appropriate for illustrating our method
of studying rotationally distorted bodies without making any
approximation, which is the primary focus of this paper. Third,
the existence of the analytical solution of Chandrasekhar (1933)
for the polytropic EOS allows us to validate our numerical
results. Finally, the proposed method for the simple polytropic
EOS can be readily extended to other more realistic EOS without
any major mathematical or numerical difficulties.

We present a new numerical model, based on a finite-element
method, for determining the rotationally distorted shape and
internal structure of a rapidly rotating gaseous body whose EOS
is that of a polytrope of index unity; in the EOS for a polytrope,

p = f (ρ) = K ρ1+1/n, (1)

where n is the polytropic index and K is a constant, we take
n = 1. A significant consequence of choosing n = 1 is that
the resulting governing equation of the equilibrium state for the
density ρ is linear.

The internal structures of slowly rotating planets and stars
with a polytropic index of unity n = 1 was first studied by
Chandrasekhar (1933) using a perturbation analysis. For an
isolated, non-rotating, and self-gravitating body, the density
distribution ρ0 within its interior is spherically symmetric and
described by the Lane–Emden equation
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where r is the radial coordinate in spherical polar coordi-
nates and G is the universal gravitational constant with G =
6.67384 × 10−11 m3 kg−1 s−2. With a proper boundary condi-
tion for ρ0, the Lane–Emden equation can be readily solved
to determine the one-dimensional density distribution of such
non-rotating masses. For a body that is slowly rotating with an-
gular velocity Ω0 such that departure from spherical symmetry
is small, Chandrasekhar (1933) introduced a small parameter
ε ∼ Ω2

0 and, then, wrote the density distribution ρ in a pertur-
bation series

ρ = ρ0 + εΨ + ε2Φ + · · · . (3)

He solved the first-order solution Ψ by neglecting the effects
arising from the second-order term Φ. Martin (1970) extended
the first-order solution of Chandrasekhar (1933) to the second
order by obtaining Φ in the expansion (3).

Many gaseous bodies such as Jupiter and Saturn are rotating
rapidly and thus cause significant departure from spherical
geometry: the eccentricity at the one-bar surface is EJ = 0.3543
for Jupiter and ES = 0.4316 for Saturn (Seidelmann et al. 2007).
Classical perturbation theories (Chandrasekhar 1933; Hubbard
1974; Zharkov & Trubitsyn 1978) based on an expansion around
spherical geometry using a small rotation parameter require an
unpractically large number of terms in the expansion to reach
the high precision anticipated in Juno’s observations of Jupiter’s
gravitational field (Kaspi et al. 2010). Some stars, such as α
Eridani (Domiciano de Souza et al. 2003), rotate even faster and
result in an even larger departure from spherical geometry. It is
thus highly desirable, in order to provide an accurate description
of the structure and gravity for these rapidly rotating bodies,
to construct a non-spherical model that takes full account of
rotational distortion.

This paper examines the shapes and internal structures of
rapidly rotating gaseous bodies having a polytropic interior with
an index of unity and the shape of an oblate spheroid of moder-
ate or large eccentricity. The governing equations of the prob-
lem are solved using a three-dimensional finite-element method
by making a three-dimensional tetrahedralization of the oblate
spheroid that produces a finite-element mesh without pole or
central numerical singularities. Though a finite-element model
is usually complicated and cumbersome in its numerical imple-
mentation, it is particularly suitable for non-spherical geometry
for which the standard spectral method would be mathemati-
cally inconvenient and difficult. In comparison with an analyt-
ical approach (Chandrasekhar 1933), there are, however, two
major difficulties in numerical modeling. Prior to solving the
equations for the shape of a rapidly rotating body, we must
construct a three-dimensional finite-element mesh on which we
can compute a numerical solution to the equilibrium equations.
The finite-element mesh is, however, dependent on the priori
unknown shape of the rotating body. This difficulty will be
resolved using an iterative procedure, which is numerically ex-
pensive, between the unknown shape (the finite-element mesh)
and the required boundary condition by introducing an auxil-
iary function, in connection with the total potential, evaluated
at the bounding surface of the rotating body. Another difficulty
concerns the value of K in the EOS (1) which is also a priori un-
known. When the polytropic index is fixed with n = 1, the value
of K in the EOS also depends on the shape of the rotating body.
We will utilize the observed shape of a rapidly rotating planet
to determine the value of K by introducing a second iterative
procedure. Meanwhile, a simple theoretical approach, presented
in the Appendix, is also employed to estimate the value of K for
gaseous planets.

In what follows we begin by presenting the governing
equations and the numerical method in Section 2. The validation
of our numerical model with the first-order asymptotic solution
of Chandrasekhar (1933) is discussed in Section 3. We then
apply the numerical model to Jupiter and α Eridani in Section 4.
A summary and some remarks are given in Section 5.

2. GOVERNING EQUATIONS AND
NUMERICAL METHOD

2.1. Governing Equations

Consider an isolated mass of gas with total mass M that is
rotating rapidly about the z-axis with angular velocity Ω0 ẑ.
When the density ρ = ρ0 is uniform, i.e., ρ0 is constant, the
rotating fluid body is in the shape of an axisymmetric oblate
spheroid with eccentricity E0 given by the well-known equation
(Lamb 1932):

Ω2
0

2πGρ0
=

√
1 − E2

0

E3
0

(
3 − 2E2

0

)
sin−1 E0 − 3

(
1 − E2

0

)
E2

0

. (4)

When the density ρ within a rapidly rotating body is non-
uniform, it was shown analytically that the leading-order so-
lution is also in the shape of an axisymmetric oblate spheroid
(Kong et al. 2010). In this study, we assume that the effect of
rotation is sufficiently strong that the rotating body is in the
shape of an oblate spheroid with moderate or large eccentricity
that is still within the stable limit.

With a polytrope of index unity, the pressure–density relation
of the gas is given by

p = Kρ2, (5)

where K is a constant. The mechanical equilibrium equation is

− ∇p

ρ
− ∇Vg − ∇Vc = 0 in D, (6)

where Vg is the gravitational potential, Vc is the centrifugal
potential, and D is the domain of the rotating body, subject to
the boundary condition

p = 0 at the bounding surface of D. (7)

The shape of a rotationally distorted body is characterized by
its eccentricity E defined as

E =
√

R2
e − R2

p

Re

,

where 0 < E < 1 and, Re and Rp are the equatorial and polar
radii of an oblate spheroid, respectively. In Equation (6), the
gravitational potential Vg is given by

Vg = −G

∫ ∫ ∫
D

ρ(r′)d3r′

|r − r′| (8)

where r is the position vector. The centrifugal potential Vc is

Vc = −Ω2
0c

2

2
(1 + ξ 2)(1 − η2). (9)
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Here we have used oblate spheroidal coordinates, (ξ, η, φ), de-
fined by the coordinate transformation with Cartesian coordi-
nates

x = c
√

(1 + ξ 2)(1 − η2) cos φ,

y = c
√

(1 + ξ 2)(1 − η2) sin φ,

z = cξη,

where c is the focal length of an oblate spheroid with its
bounding surface S described by

ξ = ξo =
√

1

E2
− 1.

The shape parameter, the size of eccentricity E , is a priori
unknown.

On the bounding surface S of a rotating body, the free-surface
condition must be imposed at the equilibrium

Vg + Vc = constant at the outer surface S. (10)

Eliminating p from Equations (5) and (6) yields the equation

2K∇ρ + ∇Vg + ∇Vc = 0, (11)

which, after applying ∇· to the both sides, becomes

K∇2ρ + 2πGρ = Ω2
0. (12)

After scaling Equation (12) with the length scale Re and the mass
scale M, we obtain the governing equation in the dimensionless
form

∇2ρ + αρ = β, (13)

where α and β are defined as

α = 2πGR2
e

K
and β = Ω2

0R
5
e

MK
. (14)

The boundary condition (7), after using the EOS, becomes

ρ = 0 at the outer surface S. (15)

Since α is always positive, Equation (13) represents an inhomo-
geneous Helmholtz equation (Chandrasekhar 1933). The con-
dition of the free surface in Equation (10) can also be written in
the dimensionless form∫ ∫ ∫

D

ρ(r′)d3r′

|r − r′| +
βc2

4α
(1 + ξ 2)(1 − η2)

= constant at ξ =
√

1

E2
− 1, (16)

which must be satisfied at the equilibrium. Our primary task is
to solve the inhomogeneous Helmholtz equation (13) for both
the shape parameter E and the density distribution ρ(ξ, η) that
satisfy both Equations (15) and (16).

When the shape parameter E and the density distribution
ρ(ξ, η) become available for a highly flattened planet, we can
readily compute the total mass of the rotating body

M =
∫ ∫ ∫

D
ρ(r′)d3r′, (17)

and the exterior gravitational potential Vg which is expanded in
terms of spherical harmonics P2n,

Vg(r, θ ) = −GM

r

[
1 −

∞∑
n=1

J2n

(
Re

r

)2n

P2n(cos θ )

]
, r � Re,

(18)
where (r, θ, φ) are spherical polar coordinates with θ = 0
being at the axis of rotation, and J2, J4, J6, · · · , are the zonal
gravitational coefficients. It is important to point out that
Equation (18) is only valid for r � Re where there is no mass
and the potential satisfies Laplace’s equation. This is because the
region Rp < r < Re has empty space in part and mass near low
latitudes and, consequently, the potential satisfying Poisson’s
equation with the density is a highly complicated function of
latitude and radius.

2.2. Numerical Method

A three-dimensional finite-element method is employed to
solve the shape and internal structure of a non-spherical body
through the following three different stages. The first stage
is to construct a three-dimensional finite-element mesh by
making a tetrahedralization of an oblate spheroid with a guessed
eccentricity EG. This is because we do not have a priori
knowledge of the shape of a rapidly rotating liquid planet. A
sketch of the finite-element mesh for an oblate spheroid with
E = 0.5 is illustrated in Figure 1(a). In comparison to a spectral
or finite difference method, the finite-element method is free of
the pole and central numerical singularities.

In the second stage, we solve Equation (13) for ρ together
with the boundary condition (15) with a given α and β
for a guessed eccentricity E = EG. A Galerkin-weighted
residual approach is adopted in the finite-element formulation of
Equation (13). Multiplying Equation (13) by the corresponding
weight functions wρ , then integrating the resulting equation
over the spheroidal domain D, after making use of integration
by parts, we derive the weak formulation of Equation (13)∫

D
−∇ρ · ∇wρ dV + α

∫
D

ρwρdV = β

∫
D

wρdV, (19)

where the boundary integral vanishes as the weight function
wρ is zero on the bounding spheroidal surface S. Within each
tetrahedron, as shown in Figure 1(b), 10 nodes are used in
representing the density ρ

ρ =
10∑

j=1

ρj Φj , (20)

where ρj is the value of the density ρ on the jth node in the
element and Φj is the quadratic function defined as

Φ1 = L1(2L1 − 1), Φ2 = L2(2L2 − 1),

Φ3 = L3(2L3 − 1), Φ4 = L4(2L4 − 1),

Φ5 = 4L1L2, Φ6 = 4L1L3, Φ7 = 4L1L4,

Φ8 = 4L2L3, Φ9 = 4L2L4, Φ10 = 4L3L4, (21)

where Lj , j = 1, · · · , 4 are the volume coordinates of the finite
element and Φj has the properties

Φj (ri) = δij ,

10∑
j=1

Φj = 1, (22)

3



The Astrophysical Journal, 763:116 (10pp), 2013 February 1 Kong et al.

(a)

2

3

1

4

5

6

7

8

9

10

(b)

Figure 1. (a) Sketch of a three-dimensional tetrahedral mesh for an oblate
spheroid with E = 0.5 and (b) the location of 10 nodes in a typical tetrahedral
element.

(A color version of this figure is available in the online journal.)

where ri is the position vector for the ith node in the element. The
weight functions are selected to be the same as the corresponding
shape functions. Applying a standard procedure of the finite-
element method, we obtain a system of linear equations for the
coefficients ρj on the whole three-dimensional mesh, which is
then solved by a Krylov subspace iterative method. The values
of ρj on the mesh provide a numerical solution ρ(r) that satisfies
Equations (13) and (15). For the results reported in this paper, a
spheroidal domain is typically divided into about 106 ∼ 2×106

tetrahedral elements.
It is critically important to note that a numerical solution

found in the second stage does not, in general, satisfy the free-
surface condition (16). Although condition (16) is mathemat-
ically simple, it is numerically problematic. In order to find a
numerical solution satisfying Equation (16), we introduce an
auxiliary function, || dVt/ dη||2, defined as

∣∣∣∣
∣∣∣∣ dVt

dη

∣∣∣∣
∣∣∣∣
2

= 1

2π

∫ ∫
S

∣∣∣∣∣ ∂

∂η

[∫ ∫ ∫
D

ρ(r′)d3r′

|r − r′|

+
βc2

4α
(1 + ξ 2)(1 − η2)

]
ξ=ξo

∣∣∣∣∣
2

dS, (23)

where
∫ ∫

S dS represents the surface integral over the bounding
surface S of the oblate spheroid. Theoretically, we would expect
that ∣∣∣∣

∣∣∣∣ dVt

dη

∣∣∣∣
∣∣∣∣
2

> 0

in the neighborhood of an equilibrium while∣∣∣∣
∣∣∣∣ dVt

dη

∣∣∣∣
∣∣∣∣
2

= 0

at the equilibrium. Far away from the equilibrium, we would
have ∣∣∣∣

∣∣∣∣ dVt

dη

∣∣∣∣
∣∣∣∣
2

= O(1).

Numerically, however, the mathematical condition || dVt/
dη||2 = 0 cannot be exactly satisfied at the equilibrium.
Instead, || dVt/ dη||2 = 0 will be replaced by a numerical con-
dition that || dVt/ dη||2 at the equilibrium reaches a minimum
that is generally non-zero.

The third stage is an iterative procedure that repeats the first
and second stages, such that condition (16) is approximately
satisfied. In other words, by computing many numerical so-
lutions for different values EG at fixed K,α, and β, we are
able to determine a particular set of ρ and E that satisfies
not only Equations (13) and (15) but also Equation (16). All
the numerical computations presented in this paper are fully
three-dimensional, but all the numerical solutions turn out to
be axisymmetric (∂/∂φ = 0). The proposed three-dimensional
method is potentially suited for describing general properties of
three-dimensional deformations of both rotationally and tidally
distorted bodies.

3. VALIDATION AGAINST CHANDRASEKHAR’s
SOLUTION

Two different ways are employed to validate the accuracy
of our three-dimensional code in spheroidal geometry. In the
first validation, we construct an exact analytical solution ρexact
of Equation (13) satisfying Equation (15) by replacing β with
a known function, and then we compare the corresponding
numerical solution ρnum to the exact solution ρexact. It is found
that an accurate numerical solution can be produced and,
moreover, the numerical solution converges, as theoretically
expected, to the exact solution at the second-order rate∫ ∫ ∫

D
|ρnum − ρexact|2 d3r ∼ O(h2),

where h is the typical size of elements in the mesh.
The second validation involves comparison of our nu-

merical solution with Chandrasekhar’s approximate solution
(Chandrasekhar 1933) for a slowly rotating body. Following
Chandrasekhar’s (1933) analysis, the non-dimensional Equa-
tion (13) is expressible as

1

ξ 2

∂

∂ξ

(
ξ 2 ∂ρ

∂ξ

)
+

1

ξ 2

∂

∂μ

[
(1 − μ2)

∂ρ

∂μ

]
+ ρ = ε, (24)

where μ = cos θ , ξ = r
√

α, and ε defined as

ε = β

α
� 1 (25)

for a slowly rotating body. Inserting the asymptotic expan-
sion (3) into Equation (24) yields the leading-order equation
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for ρ0
1

ξ

d

dξ

(
ξ 2 dρ0

dξ

)
+ ρ0 = 0, (26)

which has the exact solution

ρ0 = sin ξ

ξ
. (27)

The first-order equation for Ψ is given by

1

ξ 2

∂

∂ξ

(
ξ 2 ∂Ψ

∂ξ

)
+

1

ξ 2

∂

∂μ

[
(1 − μ2)

∂Ψ
∂μ

]
+ Ψ = 1, (28)

which is then solved by expanding Ψ in terms of Legendre
polynomials Pj

Ψ = ψ0(ξ ) +
∞∑

j=1

Ajψj (ξ )Pj (μ). (29)

It was shown by Chandrasekhar (1933) that ψ0(ξ ) is a solution of

1

ξ 2

d

dξ

(
ξ 2 dψ0

dξ

)
+ ψ0 = 1, (30)

which has the solution

ψ0(ξ ) = 1 − sin ξ

ξ
. (31)

Chandrasekhar (1933) also showed that Aj = 0 when j �= 2 and

A2 = −5

6

[
ξ 2

1

3ψ2(ξ1) + ξ1ψ
′
2(ξ1)

]
, (32)

where ψ2(ξ ) is a solution of

1

ξ 2

d

dξ

(
ξ 2 dψ2

dξ

)
=

(
6

ξ 2
− ρ0

)
ψ2 (33)

which can be solved numerically.
It follows that the first-order solution to Equation (24) is

ρ = sin ξ

ξ
+ ε

[(
1 − sin ξ

ξ

)
+ A2ψ2(ξ )P2(μ)

]
+ O(ε2). (34)

This approximate solution is shown in Figure 2 for α = 10.71
and β = 0.0035 along with the corresponding numerical
solution obtained for a small eccentricity at E = 0.042.
Evidently, a satisfactory agreement is achieved for E � 1
between the asymptotic solution (34) valid only for E � 1
and the three-dimensional numerical solution for 0 < E < 1.

4. NUMERICAL MODELS FOR JUPITER AND α ERIDANI

4.1. Numerical Model for Jupiter

In modeling a rapidly rotating gaseous planet or star, some
parameters will be regarded as being well determined by
observations while other parameters have to be treated as
unknown. In the case of Jupiter, we regard the equatorial
and polar radii at the one-bar surface Re and Rp—which are
Re = 71,492 km and Rp = 66,854 km (Seidelmann et al.
2007)—as the known parameters. They yield an eccentricity
EJ = 0.3543 for the shape of Jupiter. We also regard the
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Figure 2. Validation of our numerical solution against the asymptotic solution
given by Chandrasekhar (1933): (a) the dependence of ρ on r in the equatorial
plane and (b) the dependence of p on r in the equatorial plane. The solid line
represents the result of our numerical calculation while the open circles are
computed from the analytical expression (34).

rotational period TJ of Jupiter, TJ = 9.925 hr (Seidelmann et al.
2007), as a known parameter. This corresponds to the angular
velocity ΩJ = 1.7585 × 10−4 s−1 for the rotation of Jupiter.
The two-dimensional distributions of the density ρ(ξ, η) and
the pressure p(ξ, η) within Jupiter are regarded as unknown
functions to be determined via our three-dimensional numerical
calculation. In addition, the size of K in the EOS p = Kρ2 is
also unknown.

The objective of our numerical calculation is, via a hybrid in-
verse method, to find the density ρ(ξ, η) and the pressure p(ξ, η)
by matching K in the EOS p = Kρ2 with the observed shape EJ

and the observed angular velocity ΩJ . For a trial value K = KG

and a fixed ΩJ , we calculate, through the three-stage iterative
scheme, an equilibrium solution ρG satisfying Equation (13) as
well as Equations (15) and (16) at a particular value EG at the
equilibrium. However, EG is generally inconsistent with the ob-
served value EJ for Jupiter. By repeating this process at many
different values of KG, i.e., through an iterative scheme with K,
we are able to find a particular value KJ = KG such that the
shape parameter EG is consistent with the observed value EJ . In
other words, a numerically expensive two-parameter (E − K)
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Figure 3. Hybrid inverse method involving a two-parameter (K − E) iterative
procedure for determining the shape and internal structure of Jupiter. (a) The
solid line represents the relationship between K and E at the equilibrium while
the star symbol denotes a particular solution that matches the parameter with the
shape of Jupiter at E = EJ = 0.3543 when K = KJ = 200, 102 Pa m6 kg−2.
(b) The detail of the three-stage iterative scheme for fixed K = KJ =
200, 102 Pa m6 kg−2, showing that || dVt / dη||2 reaches the minimum at E =
EJ = 0.3543 at the equilibrium, where each triangle represents a solution of the
three-dimensional numerical simulation at given K = KJ for different values
of E .

iterative process is required in determining the rotationally dis-
torted internal structure of Jupiter.

A relationship between K and E at the equilibrium, resulting
from the two-parameter (K − E) iterative process, is shown in
Figure 3(a) where the star symbol denotes a particular numerical
solution that matches the numerical model with the observed
shape of Jupiter E = EJ when K = KJ = 200, 102 Pa m6 kg−2.
In other words, for the fixed rate of rotation ΩJ and a polytrope
of unit index n = 1, the EOS for Jupiter must be of the form

p = 200, 102 Pa m6 kg−2 ρ2

in order that its shape matches the observed value E = EJ . The
detail of the three-stage iterative procedure at K = KJ is de-
picted in Figure 3(b). It shows that the function || dVt/ dη||2
at fixed K = KJ decreases from || dVt/ dη||2 = O(1) far
away from the equilibrium to || dVt/ dη||2 = O(10−3) at the
equilibrium when reaching the minimum at E = EJ . Each tri-
angle in Figure 3(b) represents a three-dimensional solution at
the fixed KJ using different three-dimensional finite-element

0 1 2 3 4 5 6 7 8

x 10
7

0

500

1000

1500

2000

2500

3000

3500

4000

4500

r /m

ρ
/
kg

m
−

3

(a)

0 1 2 3 4 5 6 7 8

x 10
7

0

500

1000

1500

2000

2500

3000

3500

4000

r /m

p
/
G

P
a

(b)

0 1 2 3 4 5 6 7

x 10
7

0.29

0.3

0.31

0.32

0.33

0.34

0.35

r /m

E

(c)

Figure 4. Interior structure from the numerical model of Jupiter: (a) the density
ρ, (b) the pressure p, and (c) the eccentricity of constant density surfaces as a
function of the radius r in the equatorial plane.

meshes. The particular solution at E = EJ and K = KJ repre-
sents a numerical model for Jupiter with a polytrope of unit index
n = 1. Figure 4 shows the density and pressure distribution of
this numerical solution in the equatorial plane as well as the
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Figure 5. Interior structure from the numerical model of Jupiter: the two-
dimensional density distribution ρ(ξ, η) in an oblate spheroid with eccentricity
EJ = 0.3543.

(A color version of this figure is available in the online journal.)

eccentricity of constant density surfaces while Figure 5 depicts
the two-dimensional density distribution, ρ(η, ξ ), in a merid-
ional plane.

The total mass MJ of Jupiter is MJ = 1.8986 × 1027 kg
(Williams 2010), giving rise to the mean density ρ̄J = 1.326 ×
103 kg m−3. It needs to be emphasized, however, that the Jupiter
model with a polytrope of unit index n = 1 does not require
an a priori value for the planet’s mass. Rather, total mass is
determined as part of the three-dimensional numerical solution.
This provides a useful constraint on the model whose predicted
mass can be compared with the observed mass of Jupiter MJ .
For the two-dimensional density distribution ρ(ξ, η) shown in
Figure 5, we find the total mass of our Jupiter model is 100.4%
of MJ . This difference could be attributable to the inadequacy
of the n = 1 polytrope to represent the real EOS of the
Jovian interior. The zonal gravitational coefficients J2, J4, J6
predicted by the model using the expression (18) are listed
in Table 1. Our model predictions of the zonal gravitational
coefficients are in reasonably good agreement with observed
values (Jacobson 2003) especially when considering that there
is only one parameter in the model.

Our model, which assumes only the size and shape of Jupiter’s
surface and the planet’s rotation rate together with an EOS of
the form p = Kρ2, does a reasonable job of predicting the low-
order gravitational coefficient J2 of Jupiter with a better than 2%
accuracy and the planet’s mass with about 4% accuracy. This
opens the possibility of inferring the mass and gravitational
coefficients of extra-solar bodies whose rotation rates, sizes,
and shapes can be measured. Table 1 in the third column also
gives values of the zonal gravitational coefficients J2, J4, J6
computed from the theory of figures. They were obtained by
an application of the Zharkov–Trubitsyn third-order theory of
figures to Jupiter (Zharkov & Trubitsyn 1978), with a polytropic
density of index one, an equatorial radius of 71,492 km, and the
IAU System III rotation rate of 9h55m29.s71.

The Appendix presents a simplified theory for estimating the
value of the polytropic constant K. The theoretical estimate for
K from Equation (A4) gives K = 200, 544 Pa m6 kg−2. This
estimate is quite close to K = 200, 102 Pa m6 kg−2 obtained

Table 1
Zonal Coefficients of Jupiter’s Gravitational Field

n Jn × 106 Jn × 106 Jn × 106

(Model) (Observed) (Theory of Figures)

2 14909.60 14696.43 ± 0.21 14001.53
4 −559.07 −587.14 ± 1.68 −532.02
6 29.89 34.25 ± 5.22 31.94

Notes. The fourth column is obtained by an application of the
Zharkov–Trubitsyn third-order theory of figures to Jupiter (Zharkov & Tru-
bitsyn 1978). The second column is the prediction of our numerical model
with 2 × 106 tetrahedral elements and in the third column are observed values
(Jacobson 2003).

by our hybrid inverse method via three-dimensional numerical
simulation.

4.2. Numerical Model for α Eridani(Achernar)

Our non-spherical model is particularly suitable for study-
ing the fast rotating B-type star, α Eridani (Harmanec 1988;
Perryman et al. 1997), which is strongly distorted by rota-
tional effects. Since the internal pressure in α Eridani is likely
radiation-field-dominated, its mean polytropic index n would
be larger than unity. We still adopt the polytropic index n = 1
because our main objective is to illustrate a new method of de-
termining the rotationally distorted shape and internal structure
from the known or deduced physical parameters of the rapidly
rotating star.

Harmanec (1988) estimated, from the luminosity–mass re-
lation of main sequence stars, that the mass of α Eridani is
MA = 6.07 M	(1.21 × 1031 kg). From spectral line broadening
it is deduced that Achernar’s rotational speed projected on its
equator is Veq sin i = 225 km s−1 (Slettebak 1982), where i is
the inclination angle between the rotational axis and the line
of sight from the Earth which cannot be observed directly. Ac-
cording to model 4 of Carcifi et al. (2008), which best fits the
interferometry observation, the equatorial radius of α Eridani
is 10.2 R	(Re = 7.10 × 106 km). Using this radius and taking
i = 65◦ (Carcifi et al. 2008), we obtain an angular velocity
ΩA = 3.493 × 10−5 s−1. In our calculation for α Eridani, we
regard its total mass MA, its equatorial radius Re, and its angular
velocity ΩA as the known parameters. The two-dimensional dis-
tributions of the density ρ(ξ, η) and the pressure p(ξ, η) within
α Eridani are regarded as unknown functions to be determined
via our three-dimensional numerical calculation. In addition,
the shape parameter E and the size of K in the EOS p = Kρ2

are also unknown.
The objective of our numerical calculation for α Eridani

is, via a hybrid inverse method, to find the shape parameter
E , the density ρ(ξ, η), and the pressure p(ξ, η) by matching
K in the EOS p = Kρ2 with the deduced mass MA. For a
trial value K = KG and a fixed ΩA, we calculate, through
the three-stage iterative scheme, an equilibrium solution ρG

satisfying Equation (13) as well as Equations (15) and (16) at
the equilibrium, which gives rise to a particular total mass MG.
However, this size of the mass MG is generally inconsistent
with the value MA for α Eridani. By repeating this process
at many different values of KG, i.e., through an iterative
scheme with K, we are able to find a particular value KA =
1.8241×109 Pa m6 kg−2 such that its total mass MG is consistent
with the value MA. A relationship between K and M at the
equilibrium, resulting from the two-parameter (K−M) iterative
process, is shown in Figure 6(a) where the star symbol denotes a
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Figure 6. Hybrid inverse method involving a two-parameter (M−K) iterative
procedure for determining the shape and internal structure of α Eridani. (a) The
solid line represents the relationship between M and K at the equilibrium while
the star symbol denotes a particular solution that matches the mass of α Eridani
when K = KA = 1.8241 × 109 Pa m6 kg−2 and EA = 0.7222. (b) The detail of
the three-stage iterative scheme for fixed K = KA = 1.8241 × 109 Pa m6 kg−2,
showing that || dVt / dη||2 reaches the minimum at E = EA = 0.7222 at the
equilibrium, where each triangle represents a solution of the three-dimensional
numerical simulation at given K = KA for different values of the total mass
M/MA.

particular numerical solution that matches the numerical model
with the observed mass of α Eridani MA at K = KA =
1.8241 × 109 Pa m6 kg−2. In other words, for the fixed rate of
rotation ΩA = 3.493 × 10−5 s−1 and a polytrope of unit index
n = 1, the EOS for α Eridani must be of the form

p = 1.8241 × 109 Pa m6 kg−2 ρ2

in order that its mass matches the value MA = 6.07 M	(1.21 ×
1031 kg). The detail of the three-stage iterative procedure at K =
KA = 1.8241 × 109 Pa m6 kg−2 is depicted in Figure 6(b). It
shows that the function || dVt/ dη||2 at fixed K = KA decreases
from || dVt/ dη||2 = O(10) far away from the equilibrium
to || dVt/ dη||2 = O(10−2) at the equilibrium when reaching
the minimum at E = EA = 0.7222. The particular solution
obtained at EA = 0.7222 and KA = 1.8241 × 109 Pa m6 kg−2

represents a numerical model for α Eridani with a polytrope of
unit index n = 1. Figures 7(a) and (b) show the density and
pressure distribution of this numerical solution in the equatorial
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Figure 7. Interior structure from the numerical model of α Eridani: (a) the
density ρ, (b) the pressure p, and (c) the eccentricity of constant density surfaces
as a function of the radius r in the equatorial plane.

plane while the eccentricity of constant density surfaces within
α Eridani is shown in Figure 7(c). Figure 8 depicts the two-
dimensional density distribution, ρ(η, ξ ), in a meridional plane.
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Figure 8. Interior structure from the numerical model of α Eridani: the density
distribution ρ(ξ, η) inside α Eridani with the shape parameter EA = 0.7222.

(A color version of this figure is available in the online journal.)

It is found, via our model calculation, that α Eridani must
be highly flattened with eccentricity E = 0.7222 or Re/Rp =
1.45, which is slightly larger than the observational estimate
Re/Rp = 1.4 (Carcifi et al. 2008). Evidently, perturbation
theories based on an expansion using a small rotation parameter
around spherical geometry based on E � 1 are inapplicable to
the present problem with E = O(1).

5. SUMMARY AND REMARKS

It was nearly 80 years ago that Chandrasekhar (1933) derived
the first approximate solution for the internal structure of slowly
rotating polytropic planets and stars. An analytical extension of
Chandrasekhar’s (1933) analysis to rapidly rotating planets and
stars proves to be difficult and mathematically challenging. This
study is the first attempt to construct a non-spherical numerical
model, based on a three-dimensional finite-element method, for
the rotationally distorted shape and internal structure of rapidly
rotating gaseous bodies with a polytropic index of unity. Our
three-dimensional numerical model, which is valid for rapidly
rotating objects, is in excellent agreement with Chandrasekhar’s
(1933) asymptotic solution valid only for slowing rotating
planets.

Although the governing mathematical equation of the prob-
lem is relatively simple, the numerical procedure for seeking a
physically relevant solution to the equilibrium state is quite com-
plicated, intricate, and expensive, involving a two-parameter
(K − E) iterative procedure for exoplanets or (K−M) itera-
tive procedure for rapidly rotating stars, marked by construct-
ing many different three-dimensional finite-element meshes and
carrying out a large number of three-dimensional numerical
calculations. This is because a solution to the inhomogeneous
Helmholtz equation subject to the simple boundary condition
ρ = 0 on the bounding surface S, which is a priori unknown, is
not sufficient. Additionally, the free-surface condition

∫ ∫ ∫
D

ρ(r′)d3r′

|r − r′| +
βc2

4α
(1 + ξ 2)(1 − η2)

= constant at ξ =
√

1

E2
− 1,

must be also satisfied on the bounding surface S at the equi-
librium. This feature perhaps represents not only the most
significant difference between the perturbation theories
(Chandrasekhar 1933; Zharkov & Trubitsyn 1978) and the
present approach, but also the root of numerical difficulties in
this study. It is noteworthy that there exists no simple analytical
expression for

Vg(r) =
∫ ∫ ∫

D

ρ(r′)d3r′

|r − r′|
in the exterior of the rapidly rotating body,

when ρ is non-uniform and rotational distortion is too large to
be regarded as being a small perturbation (Kong et al. 2010). In
other words, any analytical approach for the present problem is
likely too complicated to be practically useful.

Evidently, our simple model of a polytrope with unity index
n = 1 presented in this paper is not sufficient for the purpose of
accurately modeling rotating planets like Jupiter within the tight
error bars of the observational constraints. The next necessary
step for application to Jupiter and other gaseous planets will
include options for more parameters that can be used to adjust
the observational constraints such as the total mass of Jupiter.

The method of this paper can be used together with a
polytropic EOS with non-unity index or a physical EOS or
an empirical EOS. Let us look at the pressure term which is
involved in the EOS in the governing equation. First, consider a
polytrope with non-unity index n �= 1. In this case, the pressure
term can be written as

1

ρ
∇p =

(
1

ρ

)
∇

(
Kρ1+1/n

) = K (1 + 1/n) ρ(1/n−1)∇ρ1/n.

For example, with n = 2 we have

1

ρ
∇p =

(
3K

2

)
1√
ρ

∇√
ρ,

leading to a nonlinear equation for the density ρ which can
be solved numerically by a standard iterative method. This is
because, for a local method, all differential operators such as
(1/

√
ρ) ∇√

ρ are expressed in terms of local nodes. In the case
of a general EOS p = f (ρ), we have

1

ρ
∇p =

(
∂f

∂ρ

) (
1

ρ
∇ρ

)
,

where the coefficient (∂f /∂ρ) can be provided by an EOS that
is, for example, in the form of a numerical table between the
pressure p and the density ρ. The resulting nonlinear equation
can also be solved numerically by the standard iterative method.
In other words, the proposed method can be used to deal with
any form of the EOS without major mathematical or numerical
difficulties.

Rapidly rotating giant planets like Jupiter are marked by the
existence of strong zonal flow at the cloud level which may
be capable of producing gravitational anomalies if it penetrates
sufficiently deep. An extension of the present numerical model
by including the effect of a deep zonal flow is underway and
will be reported in a future paper.
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APPENDIX

The hydrostatic equilibrium (HE) equation, which stabilizes
internal pressure p(s) with gravitational and rotational forces,
can be written (Zharkov & Trubitsyn 1978) as

1

ρ

dp

dr
= −Gmr

r2
+

2

3
Ω2r, (A1)

where r is the mean radius. This equation is valid to the first
order in Ω2, the square of the angular velocity of rotation.
Higher order terms involve the shape of the surfaces of constant
internal potential, the so-called level surfaces at r on the interval
0 � r � R, where R is the planet’s mean radius at the surface.
The internal pressure p is given in terms of the density ρ by
an EOS of the form p = f (ρ). When the EOS is given by a
polytrope of index one, such that p = Kρ2, with K a constant,
the HE equation takes on the particularly simple form of

2K
dρ

dr
= −Gmr

r2
+

2

3
Ω2r (A2)

and the mass mr internal to r is given by the following continuity
equation:

dmr

dr
= 4πρr2. (A3)

An exact solution exists to Equations (A2) and (A3). For a
giant planet with polytropic interior, the density, and hence the
pressure, are taken as zero at the surface where r = R. The
mass at the surface is the total mass MJ . These two boundary
conditions yield a unique first-order solution with a mass that is
finite, but not necessarily zero at the origin. However, with the
mass in the core set to zero, the approximate first-order value of
K is unique and it is given by

K = 2GR2

π

(
1 − 4q

π2

)
. (A4)

Basically, the polytropic constant is dependent on the gravi-
tational constant G and the mean radius of the planet R. The
smallness parameter q is defined by

q = Ω2R3

GMJ

. (A5)

For this particular value of K, the density is finite at the center.
For larger values of K the central density diverges to positive
infinity, while for smaller values it diverges to minus infinity.

Both G and R contribute to the error budget for K. While
GMJ is well determined by spacecraft missions to Jupiter,
G itself is relatively poorly determined by laboratory experi-
ments. The recommended 2010 value of G by CODATA5 is
(6.67384 ± 0.00080) × 10−11 m3 kg−1 s−2. In addition to this
fundamental physical constant, we adopt astrodynamic con-
stants consistent with the space navigation group at JPL.6 The
equatorial radius of Jupiter at a one-bar level in its atmosphere is
71,492 ± 4 km; the value of GMJ is 126,686,535 ± 2 km3 s−2;
and the first two non-zero zonal gravitational coefficients in units
of 10−6 are J2 = 14696.43 ± 0.21 and J4 = −587.14 ± 1.68.
Using these values and a fifth-order geoid calculation, we obtain
a polar radius of 66,854 km and a mean radius of 69,894 km,
both uncertain by ± 4 km. The mean density ρ0 of Jupiter,
based on its mean radius, is 1327.24 ± 0.26 kg m−3. With a ro-
tation period TJ of 9h55m29.s71, the parameter q is 0.083346 ±
0.000014, and the polytropic constant from Equation (A4) is
20,0544 ± 32 Pa m6 kg−2. A numerical integration of the sys-
tem given by Equations (A2) and (A3) yields a more precise
value for K of 200,570 Pa m6 kg−2.
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