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ABSTRACT

We address a primary question regarding the physical mechanism that triggers the energy release and initiates
the onset of eruptions in the magnetar magnetosphere. Self-consistent stationary, axisymmetric models of the
magnetosphere are constructed based on force-free magnetic field configurations that contain a helically twisted
force-free flux rope. Depending on the surface magnetic field polarity, there exist two kinds of magnetic field
configurations, inverse and normal. For these two kinds of configurations, variations of the flux rope equilibrium
height in response to gradual surface physical processes, such as flux injections and crust motions, are carefully
examined. We find that equilibrium curves contain two branches: one represents a stable equilibrium branch, and
the other an unstable equilibrium branch. As a result, the evolution of the system shows a catastrophic behavior:
when the magnetar surface magnetic field evolves slowly, the height of the flux rope would gradually reach a
critical value beyond which stable equilibriums can no longer be maintained. Subsequently, the flux rope would
lose equilibrium and the gradual quasi-static evolution of the magnetosphere will be replaced by a fast dynamical
evolution. In addition to flux injections, the relative motion of active regions would give rise to the catastrophic
behavior and lead to magnetic eruptions as well. We propose that a gradual process could lead to a sudden release
of magnetosphere energy on a very short dynamical timescale, without being initiated by a sudden fracture in the
crust of the magnetar. Some implications of our model are also discussed.

Key words: pulsars: general – stars: magnetic field – stars: neutron – X-rays: stars

Online-only material: color figures

1. INTRODUCTION

Two intimately connected classes of young neutron
stars—soft gamma-ray repeaters (SGRs) and anomalous X-ray
pulsars (AXPs), which are commonly referred to as mag-
netars—show high-energy emissions (Mazets et al. 1979;
Mereghetti & Stella 1995; Kouveliotou et al. 1998; Gavriil et al.
2002). It is widely believed that the X-ray luminosity in these
sources is powered by the dissipation of non-potential (current-
carrying) magnetic fields in the ultra-strongly magnetized mag-
netosphere with the magnetic field B ∼ 1014–1015 G (Duncan &
Thompson 1992; Thompson & Duncan 1996; Thompson et al.
2002). Occasionally, a much brighter outburst has been ob-
served, i.e., a giant flare releases a total energy of ∼1046 erg and
has a peak luminosity of ∼1044–1046 erg s−1 (for recent reviews
see Woods & Thompson 2006; Mereghetti 2008). Although the
energy for magnetar outbursts is widely believed to be supplied
by the star’s magnetic field, the physical process by which the
energy is stored and released remains one of the great puzzles
in high-energy astrophysics. Two possibilities exist for the lo-
cation where the magnetic energy is stored prior to an eruption:
in the magnetar crust or in the magnetosphere. For the former
possibility, a giant flare may be caused by a sudden untwisting
of the internal (to the neutron star) magnetic field (Thompson &
Duncan 2001). The subsequent quick and brittle fracture of the
crust leads to energetic outbursts.3 During the outbursts, there
would be an enhanced twist of the magnetospheric magnetic
field lines. In this crust scenario, the energy stored in the external
twist is limited by the tensile strength of the crust. Alternatively,
due to the difficulties in explaining the short timescale of the

3 However, recent calculations by Levin & Lyutikov (2012) imply that plastic
deformations of the crust are more likely to occur and the crust model of giant
flares may not explain the fast dynamical energy release.

giant flare rise time, ∼0.25 ms (Palmer et al. 2005), the second
possibility—the magnetospheric storage model—was proposed
by Lyutikov (2006). In this particular scenario, the energy stored
in the external twist need not be limited by the tensile strength
of the crust, but instead by the total external magnetic field
energy (Yu 2011b). In the magnetospheric storage model, the
magnetic energy storage processes take place quasi-statically
on a longer timescale than the dynamical flare timescale prior
to the eruption.

In the magnetospheric model for giant flares, the energy re-
leased during an eruption is built up gradually in the magne-
tosphere before the eruption. Some interesting properties about
the storage of magnetic energy of the magnetospheric models
have been discussed in Yu (2011b). But there still remains a
primary question regarding magnetospheric models, i.e., what
is the mechanism that triggers the energy release and initiates
the eruption? More specifically, the question is how a very grad-
ual process by the flux injections (Kluźniak & Ruderman 1998;
Thompson et al. 2002) or crust motions (Ruderman 1991) could
lead to a sudden release of magnetosphere energy on a very
short dynamical timescale, without being initiated by a sudden
fracture in the rigid component of the neutron star. This catas-
trophic behavior is essentially reminiscent of solar flares and
coronal mass ejections (CMEs). It is conceivable that the mag-
netosphere adjusts quasi-statically in response to the slowly
changing boundary conditions at the magnetar surface. After
reaching a critical point, the magnetosphere could no longer
maintain a stable equilibrium, and a sudden reconfiguration of
the magnetic field occurs due to loss of equilibrium (Forbes
& Isenberg 1991; Isenberg et al. 1993; Forbes & Priest 1995).
The subsequent physical processes would proceed on a dynam-
ical timescale. This catastrophic process naturally explains the
puzzle of how a very slow process could lead to the sudden
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release of external magnetic energy on a much shorter timescale
(Thompson et al. 2002).

The magnetar giant flares may involve a sudden loss of
equilibrium in the magnetosphere, in close analogy to solar
flares and CMEs (Lyutikov 2006). A number of CMEs show
structures consistent with the ejection of a magnetic flux rope,4

as has been reported by Chen et al. (1997) and Dere et al.
(1999). Hence, magnetic flux ropes have been presumed to
be typical structures in the solar corona, and their eruptions
might be closely related to solar flares and CMEs (Forbes &
Isenberg 1991; Isenberg et al. 1993). Similarly, in the magnetar
magnetosphere, magnetic flux ropes could be generated due
to the pre-flare activity (Götz et al. 2007; Gill & Heyl 2010).
As the magnetic flux injects from deep inside the magnetar,
the dissipation of the magnetic field may give rise to the
precursor activity. The magnetic dissipation of the precursor
could also lead to topology changes of the magnetic fields
and the formation of a magnetic flux rope.5 Such a flux rope
is also an indispensable ingredient for the radio afterglow
observed in SGR 1806 (Gaensler et al. 2005; Lyutikov 2006).
It is worthwhile to note that the magnetic field interior to
the flux rope, which is suspended in the magnetosphere, is
helically twisted. It corresponds to a locally twisted feature in
the magnetosphere (Thompson et al. 2002; Pavan et al. 2009).
Such locally twisted flux ropes seem to be more consistent with
recent observations, which suggest the presence of localized
twist, rather than global twist (e.g., Woods et al. 2007; Perna &
Gotthelf 2008).

Observations show a striking feature of the emergence of a
strong four-peaked pattern in the light curve of the 1998 August
27 event from SGR 1900+14, which was shown in data from
the Ulysses and BeppoSAX gamma-ray detectors (Feroci et al.
2001). These remarkable data may imply that the geometry of
the magnetic field was quite complicated in regions close to the
star. It is reasonable to infer that, near the magnetar surface, the
magnetic field geometry of an SGR/AXP source involves higher
multi-poles. The multipolar magnetic field configurations could
be readily understood within the magnetar model. Physically
speaking, the electric currents, formed during the birth of
magnetar, slowly push out from within the magnetar and
generate active regions on the magnetar surface. These active
regions manifest themselves as the multipolar regions on the
magnetar surface. Due to the presence of the active regions, the
magnetic field may deviate from a simple dipole configuration
near the magnetar surface (Pavan et al. 2009). Our calculations
show that multipolar magnetic active regions, especially their
relative motions, would have important implications for the
catastrophic eruptions of magnetar giant flares (see Section 4).

Motivated by the similarity between giant flares and solar
CMEs, Lyutikov (2006) speculated that magnetar giant flares
may also be trigged by the loss of equilibrium of a magnetic field
containing a twisted flux rope. But no solid calculations about
the equilibrium loss of a flux rope in magnetar magnetosphere
have been performed yet. In this paper, we focus on the possi-
bility of magnetospheric origin for giant flares and propose that
the gradual variations at the magnetar surface could lead to fast
dynamical processes in the magnetosphere. We will construct a
force-free magnetosphere model with a flux rope suspended in

4 The flux rope is a helically twisted magnetic arcade anchored on the solar
surface and often used to model prominences in the solar corona.
5 In this work, we do not address the question of how a flux rope might be
formed. A possible mechanism was discussed by van Ballegooijen & Martens
(1989).

the magnetosphere and study the catastrophic behavior of the
flux rope in a background multi-polar magnetic field configura-
tion, taking into account the possible effects of flux injections
(Kluźniak & Ruderman 1998; Thompson et al. 2002) and crust
horizontal motions (Ruderman 1991). We are especially inter-
ested in the critical height of the flux rope that can be achieved
in our model. In the meantime, we also develop a convenient
numerical scheme to solve the inhomogeneous Grad–Shafranov
(GS) equation. Since observed magnetars have a very slow ro-
tation rate, we ignore rotation effects throughout this work.

This paper is structured as follows: in Section 2 we de-
scribe the basic equations for the force-free magnetosphere
model and the multipolar boundary conditions. Two possible
magnetic configurations are also discussed in this section. In
Section 3 we will discuss the internal and external equilib-
rium constraints in our model. Numerical results about catas-
trophic behaviors of the magnetosphere in response to flux
injections and crust motions are discussed in Section 4. Conclu-
sions and discussions are given in Section 5. Technical details
about the force-free magnetosphere magnetic field are given in
Appendices A and B.

2. AXISYMMETRIC FORCE-FREE MAGNETOSPHERE
WITH MULTIPOLAR BOUNDARY CONDITIONS

The magnetic fields in the magnetar magnetosphere are so
strong that the inertia and pressure of the plasma could be
ignored (Thompson et al. 2002; Yu 2011a). As a result, the
magnetosphere is assumed to be in a force-free equilibrium
state, in which J×B = 0. The axisymmetric force-free magnetic
field configurations are determined by an inhomogeneous GS
equation. Throughout this paper, we work in the spherical polar
coordinates (r, θ, φ).

2.1. Force-free Magnetic Field Containing a Flux Rope

In our magnetosphere model, one of the distinguishing fea-
tures is that there exists a helically twisted flux rope in the mag-
netosphere. The precursor of a giant flare could be relevant to the
formation of such helically twisted flux ropes (Götz et al. 2007;
Gill & Heyl 2010). Due to the presence of the flux rope, the mag-
netic fields consist of two parts: one is the fields that are inside
the flux rope, and the other is the fields outside the flux rope.

In our model the magnetic twist of the flux rope is locally
confined to the flux rope interior. This is quite different from
the globally twisted magnetic field configurations in Thomp-
son et al. (2002) and Beloborodov (2009). They considered a
non-potential force-free field where the electric currents per-
meate through the entire magnetosphere, while our model only
contains an electric current in a spatially confined region, i.e.,
interior to the flux rope. Note that the toroidal flux rope has
a minor radius, r0, which is small compared to the height of
flux rope, h, which is actually the major radius of the flux rope.
Under such circumstances, the magnetic field produced by the
current inside the flux rope can be viewed as that produced by
a wire carrying the net current I at the center of the flux rope
(Forbes & Priest 1995), and a simple Lundquist (1950) force-
free solution could be applied to represent the distribution of
current density and magnetic field inside the flux rope. A brief
yet self-contained description of the Lundquist solution is given
in Appendix A.

Outside the flux rope, the magnetic field is essentially po-
tential, i.e., the field outside the flux rope is non-twisting.
In the regions exterior to the flux rope, the steady-state
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axisymmetric magnetic field in the magnetosphere has only
poloidal components and can be written as

B = ∇Ψ × ∇φ, (1)

where Ψ(r, θ ) is the magnetic stream function and φ is the third
component of the spherical polar coordinates. Written explicitly,
the magnetic field is

B = 1

r sin θ

(
1

r

∂Ψ
∂θ

, −∂Ψ
∂r

)
. (2)

The force-free condition can be cast into the standard GS
equation (Thompson et al. 2002):

∂2Ψ
∂r2

+
sin θ

r2

∂

∂θ

(
1

sin θ

∂Ψ
∂θ

)
= −(r sin θ )

4π

c
Jφ, (3)

where c is the speed of light. The current density Jφ on the right-
hand side of the above equation is caused by the toroidal force-
free magnetic flux rope mentioned above, which is suspended in
the magnetosphere at height h by force balances. Note that the
stream function Ψ is determined simultaneously by the electric
current inside the flux rope and boundary conditions at the
magnetar surface. The boundary conditions will be discussed
separately in the next section. The electric current inside the
flux rope could be treated as a source term on the right-hand
side of the above inhomogeneous GS equation. We treat the
current density of the flux rope as a circular ring current of the
form (Priest & Forbes 2000)

Jφ = I

h
δ(cos θ )δ(r − h), (4)

where I is the electric current carried by the flux rope. Similar
treatments have been adopted in the CME studies (Forbes &
Isenberg 1991; Lin et al. 1998). It is clear from this equation
that the flux rope is located at the equatorial plane (θ = π/2)
and the flux rope is the only current source in the region r > rs ,
where rs is the magnetar radius (also see Figure 2).

2.2. Multipolar Boundary Conditions at Magnetar Surface

In order to solve the boundary-value problem associated with
the inhomogeneous GS equation (3), we still need to know the
boundary condition at the magnetar surface r = rs (where rs
is the magnetar radius).6 We choose Ψ at the magnetar surface
r = rs to be

Ψs(rs, μ) = Ψ0σΘ(μ), (5)

where the subscript s denotes the value on the neutron star
surface, Ψ0 is a constant with magnetic flux dimension, σ is a
dimensionless quantity that determines the magnitude of the flux
at the surface, and μ = cos θ . The magnetic field configuration
of neutron stars is basically a dipole field. But near the neutron
star surface, where the loss of equilibrium occurs, the magnetic
field presents much more complex behaviors (Feroci et al. 2001).
To simulate multipolar regions on the neutron star surface,
we add two Gaussian functions to the usual dipole field, and
consequently the function Θ(μ) in the above equation takes the
following form:

Θ(μ) ≡ (1 − μ2) + exp

[
− (μ − μ0)2

2w2

]
+ exp

[
− (μ + μ0)2

2w2

]
,

(6)

6 The boundary condition at r → ∞ is simply |∇Ψ| → 0, which is satisfied
trivially in this work (see Appendix B).
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Figure 1. Distribution of magnetic flux at the magnetar surface. Three panels
correspond to μ0 = 0.1, μ0 = 0.2, and μ0 = 0.3, respectively. The increase of
μ0 clearly shows that the magnetic active regions are moving apart, which will
have significant implications for the catastrophic behavior of the flux rope.

where μ0 and w are parameters that determine the magnetic flux
distributions at the neutron star surface. We take w = 0.001
throughout this paper. It is worthwhile to note that, according
to the parameter Ψ0 introduced in Equation (5), a dimensional
current can be defined as

I0 = Ψ0c

rs

, (7)

where rs is the radius of the magnetar. Throughout this paper, we
scale all lengths by the neutron star radius rs, magnetic flux by
Ψ0, and current by I0 = Ψ0c/rs . We also define a dimensionless
current J = I/I0 for later use, where I is the electric current
carried by the flux rope (see Section 2.1).

Figure 1 shows the profile of the flux function Θ(μ) in
Equation (6). Note that the derivative with respect to μ gives the
radial component of the magnetic field at the magnetar surface.
This boundary flux distribution is symmetric with respect to
the equator θ = π/2 or μ = 0. In real circumstances, the
active regions on magnetars may form much more complicated
patterns without any symmetry. For simplicity, we focus in
this paper only on systems with such symmetry. The distance
between the two active regions is specified by the parameter
μ0. The distribution of Θ(μ) for three different values of
μ0 = 0.1, 0.2, and 0.3 is shown in the three panels of Figure 1.
It is clear from this figure that, with the increase of μ0, the
active regions move away from each other. Another important
physical process, flux injections, can be interpreted in terms of
the variation of the parameter, σ , in Equation (5). These kinds
of variations do not change the shape of Θ(μ) but change the
magnitude of flux. For instance, if an opposite-polarity magnetic
flux is injected from below, due to the magnetic cancellation
with the pre-existed magnetic flux at the magnetar surface,
the absolute value of the parameter |σ | might decrease. Some
interesting consequences from both kinds of alterations will be
explored in this paper (see Section 4).

2.3. Inverse and Normal Configurations

The solution to Equation (3) associated with the boundary
condition (5) is of vital importance for our further discussion.
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Figure 2. Magnetic field lines for both the inverse (left panel) and normal (right panel) magnetic field configurations. Field lines are obtained with solutions of the
inhomogeneous GS equation (see Appendix B). The thick black line denotes the magnetar surface. The dashed line is a circle with a radius r = h, where h is the
height of the flux rope. The flux rope lies at the position (r, θ ) = (h, π/2). At the magnetar surface r = rs , two additional active regions appear due to our choice of
boundary conditions.

(A color version of this figure is available in the online journal.)

With some trivial boundary conditions, this equation can be
solved analytically by the Green-function method (Lin et al.
1998). When more complex multipolar boundary conditions,
such as Equations (5) and (6), are introduced, this GS equation
can generally be solved by the variable separation method. In
this paper, we develop a numerical method to solve this equation,
and full solutions to this inhomogeneous GS equation are given
in detail in Appendix B.

When solving the GS equation (3) together with the boundary
condition equations (5) and (6), we find that there exist two kinds
of magnetic field configurations in the magnetosphere. One is
the normal configuration, which means that the magnetic field
at the position (r, θ ) = (h − r0, π/2) threads across the flux
rope in the same direction as the magnetar surface magnetic
field underneath at the equator (r, θ ) = (rs, π/2). The other is
the inverse configuration, in the sense that the magnetic field at
the position (r, θ ) = (h − r0, π/2) threads across the flux rope
in the opposite direction to the magnetar surface magnetic field
underneath at the equator (r, θ ) = (rs, π/2). In our calculations,
the current J is always kept positive.7 So for our particular choice
of boundary conditions, if σ is negative, we will get a normal
configuration; if σ is positive, an inverse one is obtained. Two
schematic figures, both inverse and normal, are shown in the left
and right panels of Figure 2, respectively.

3. LOCAL-INTERNAL AND GLOBAL-EXTERNAL
EQUILIBRIUM CONSTRAINTS

In what follows, we consider that the magnetar magneto-
sphere evolves on a sufficiently long timescale so that we can

7 This is to avoid the negative values of flux rope minor radius r0, according
to Equation (8).

treat the magnetosphere as being essentially in a quasi-static
equilibrium. The condition for the flux rope equilibrium includes
two parts: the local-internal equilibrium and global-external
equilibrium (Forbes & Isenberg 1991).

3.1. Local-internal Equilibrium Constraints

For the local-internal equilibrium, we assume that the force-
free condition, J × B = 0, also applies within the flux rope. We
adopt the Lundquist (1950) force-free solution to represent the
distribution of current density and field inside the flux rope.8 For
a circular toroidal flux rope in our case, the Lundquist solution
inside the flux rope is still valid as long as the minor radius r0 is
much smaller than the major radius, h (also known as the flux
rope height). In this case, a simple relation between the minor
radius of the flux rope r0 and the current flowing in the flux rope,
I, can be written as

r0 = r00I0

I
= r00

J
, (8)

where J is the dimensionless current scaled by I0 and r00 is
the value for r0 as J = 1. We take r00 = 0.01 throughout this
paper. It should be noted that the internal equilibrium constraint,
Equation (8), is actually an alternative way to indicate the
conservation of axial magnetic flux inside the flux rope (see
Appendix A).

3.2. Global-external Equilibrium Constraints

The global equilibrium is satisfied when the total force exerted
on the flux rope vanishes. The ring current inside the flux

8 The Lundquist solution is obtained in cylindrical coordinates (see
Appendix A). Strictly speaking, the Lundquist solution is only applicable for a
straight cylindrical twisted flux rope.
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rope provides an outward force. Intuitively, the antiparallel
orientation of the current flowing on the opposite sides of the
ring produces a repulsive force similar to the force between
two parallel wires with antiparallel currents. The magnitude of
this force is equal to the current, I, times the magnetic field, Bs
(Shafranov 1966):

Bs = I

ch

(
ln

8h

r0
− 1

)
, (9)

where r0 is the minor radius of the toroidal flux rope. The
additional terms in parentheses in the above equation appear
due to the curvature effects of the circular ring current.9 This
ring-current-induced force must be balanced by the external
field Be. The external magnetic field Be at r = h and θ = π/2
can be written explicitly as (the contribution from the current
inside the flux loop must be excluded for the external magnetic
field Be; for details, see Appendix B)

Be =
∑
n odd

nΓndnh
−n−2, (10)

where the coefficients Γn and dn are all given explicitly in
Appendix B. The mechanical equilibrium condition, which
requires matching the external field Be with Bs, reads

f (σ, J, h) = 0, (11)

where

f (σ, J, h) ≡
[∑

n odd

nΓndnh
−n−2

]
− J

h

(
ln

8Jh

r00
− 1

)
. (12)

Note that the local-internal equilibrium constraint has also been
exploited in this equation. Note that the scaled current J = I/I0
(not the current I) appears in this equation. This is because all
quantities, such as h, dn, and I, in this equation are measured
in the dimensional units mentioned above (see Section 2.2 and
also Appendix B).

The stream function Ψ satisfies the ideal frozen-flux condi-
tion, which provides a link between the electric current flowing
inside the flux rope and the boundary conditions at the neutron
star surface. Specifically, it requires that the stream function on
the edge of the flux rope remain constant as the system evolves.
At the equator θ = π/2, the edge of the flux rope is located at
r = h−r0 and the frozen-flux condition can be written explicitly
as

Ψ
(
h − r0,

π

2

)
= const, (13)

where h and r0 are the major and minor radii of the flux rope,
respectively. Substituting r = h − r0 and θ = π/2 into the
stream function, i.e., Equation (B1) in Appendix B, we arrive at
another constraint,

g(σ, J, h) = const, (14)

where

g(σ, J, h) ≡
∑
n odd

[
Γncn

(
1 − r00

Jh

)n+1
+ Γndn

(
h − r00

J

)−n
]

,

(15)

9 For two straight wires, terms in the bracket disappear and the induced
magnetic field is strictly proportional to the electric current and inversely
proportional to the distance between the wires.

where dn and Γn have the same meaning as those in Equa-
tion (12); cn are explicitly given in Appendix A. Note again that
all quantities in this equation are measured in the dimensional
units defined above. The quantity r00 appears because of the
internal equilibrium constraint.

In summary, the equilibrium constraints, including the force
balance and the frozen-flux condition, can be written in the
following form: {

f (σ, J, h) = 0

g(σ, J, h) = const
, (16)

where functions f and g are defined in Equations (12) and (15).
Numerical values of f and g are calculated following the
procedures presented in Appendix B. For a given value of σ ,
the above two equations could be treated as a nonlinear set
of equations for J and h, which can be solved numerically by
the Newton–Raphson method (Press et al. 1992). Note that the
Jacobi matrix necessary for the Newton–Raphson method is
hard to obtain analytically and we calculate the Jacobi matrix
numerically instead.

4. LOSS OF EQUILIBRIUM IN RESPONSE TO
VARIATIONS AT MAGNETAR SURFACE

We consider the possibility that the primary mechanism
for driving a magnetar giant flare is a catastrophic loss of
equilibrium. The loss of equilibrium is initiated by slow changes
at the magnetar surface. Physically, there are generally two
possible processes that could occur at the magnetar surface. One
is that new magnetic fluxes, driven by the plastic deformation
of the neutron star crust, may be injected continuously into the
magnetosphere (Kluźniak & Ruderman 1998; Thompson et al.
2002; Lyutikov 2006; Götz et al. 2007). Another interesting
possibility is brought about by the crust horizontal movement
(Ruderman 1991; Jones 2003). It is very difficult to compress
magnetar crust material very much, or to move elements of
crust up or down. It is, however, much easier to move parts
of the crust horizontally, in ways that apply only shear strains
to it (Thompson & Duncan 2001; Jones 2003). It is possible
that, when the magnetic field is strong enough, the interior
magnetic stress may cause the active regions of the crust to
move horizontally (Ruderman 1991).

For the first possibility, as the new current-carrying magnetic
fluxes are injected, a direct consequence is that the background
magnetic field would vary gradually because of the active flux
injections prior to large outbursts. The background magnetic
field would increase (decrease) if the same (opposite) polarity
flux is injected. Variations of the equilibrium height of the
flux rope with alterations in the background magnetic field are
carefully examined for both the inverse and normal magnetic
configurations. In this case, we fix the value of μ0 = 0.1
and investigate the effects of variations of σ on the flux rope
equilibrium height. Numerical results of Equation (16) are
shown in Figures 3 and 4. These two figures show the results for
the normal and inverse magnetic configurations, respectively.
The curves in Figures 3 and 4 consist of two branches, which
comes from the fact that there exist two roots of h for each
particular value of σ and the two roots lie on separate branches.
The upper branch denotes an unstable equilibrium state because
when the equilibrium is on the upper branch, an slight upward
vertical displacement will generate an outward driving force.
The lower branch, however, stands for a stable branch, in
the sense that a slight upward displacement would create an
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Figure 3. Equilibrium height h as a function of σ . This curve is numerically
obtained as solutions to Equation (16). We always choose the current to be
positive. The negative value of σ denotes a normal magnetic configuration. In
this case, with the increase of |σ |, the equilibrium height gradually increases
and reaches the critical loss-of-equilibrium point, beyond which the flux
rope could not maintain the stable equilibrium. The critical height for the
normal magnetic configuration is approximately hc = 1.028. All lengths are
scaled by rs.

(A color version of this figure is available in the online journal.)

inward restoring force, just like a harmonic oscillator. The
stability of the flux rope could be understood in terms of a
spring model. The spring coefficient of Hooke’s law determines
the stability of the spring. It would be instructive to treat
the total force, T, as a function of flux rope height, h, while
keeping the flux frozen condition satisfied. Detailed analysis
shows that derivative dT /dh (which is equivalent to the spring
coefficient of Hooke’s law) is negative if the flux rope lies
on the lower branch and positive on the upper branch (see
Figure 6.18 in Forbes 2010). Negative dT /dh corresponds to
a normal Hooke spring coefficient and a stable equilibrium,
while positive dT /dh corresponds to an anomalous Hooke
spring coefficient and an unstable equilibrium. The two branches
are connected by a critical point (nose point). The instability
threshold lies at the nose point. The nose point can also be
understood as the critical loss-of-equilibrium point (red point
in Figures 3 and 4). Once the equilibrium reaches the loss-of-
equilibrium critical height, the system would no longer stay in a
stable equilibrium state. The flux rope will lose equilibrium and
lead to an eruption. In the case of normal configuration, Figure 3
shows that the increase of the parameter |σ | (flux injection
of the same polarity) would bring the system to the critical
point, which means that the enhancement of the background
flux would trigger the catastrophic behavior for a normal
configuration. For the case of inverse configuration, Figure 4
shows that the decrease of the parameter |σ | (flux injection of the
opposite polarity) would lead to loss of equilibrium, indicating
that the decay of the background flux works for an inverse
configuration. Our calculations show that the critical height
for the two kinds of configuration differs much. The normal
configuration shows a rather low critical height, roughly 3%
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h

Critical Loss−of−Equilibrium Point 
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Figure 4. Same as Figure 3 but for an inverse magnetic field configuration. In
this case, with the decrease of |σ |, the equilibrium height gradually increases and
reaches the critical loss-of-equilibrium point, beyond which the flux rope could
not maintain the stable equilibrium. The critical height for normal magnetic
configuration is approximately hc = 1.24. All lengths are scaled by rs.

(A color version of this figure is available in the online journal.)

above the magnetar surface, which is, for a typical neutron with
radius 106 cm, roughly 3×104 cm. For the inverse configuration,
the critical height is about 20% above the magnetar surface,
which is about 2 × 105 cm. Given the regular arrangements
that occur at the magnetar surface, the small critical height of
the normal configuration would indicate that it may not survive
those arrangements at the magnetar surface, and the inverse
configuration, whose critical height is larger, is preferred in real
circumstances.

As the interior magnetic stress by the ultra-strong magnetic
field in the magnetar may cause active regions of the crust
to move horizontally (Ruderman 1991; Jones 2003; Lyutikov
2006), the relative positions between multipolar active regions
may vary, moving apart or approaching each other, which may
also have significant implications for the catastrophic behavior
of magnetospheres. Consequently, we further investigate the
response of the flux rope to horizontal motions of active regions
at the magnetar surface. In our simplified model, the distance
between two active regions is determined by a single parameter
μ0 in Equation (6). The increase of μ0 may indicate that active
regions move apart (see Figure 1). To investigate the effects of
horizontal motions, we fix the value of σ and vary the parameter
μ0. Again, we numerically solve Equation (16) and get two roots
of h for each particular value of μ0. We show in Figure 5, taking
the inverse configuration as an example, the variation of the
equilibrium height with the distance between two active regions.
Similar to Figures 3 and 4, the upper branch and the lower
branch denote unstable and stable equilibrium, respectively.
As the two active regions move apart, the equilibrium height
gradually increases and reaches the critical height hc = 1.32
when μ0 = 0.14. After reaching the critical point, the system
would no longer maintain a stable equilibrium state. This means
that, in addition to flux injections, the horizontal motions of the
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Figure 5. Equilibrium height h as a function of μ0. We fix σ = 8.5 in this figure.
With the increase of μ0, the two active regions move apart. The equilibrium
height gradually increases and reaches the critical point, beyond which no stable
equilibrium state exists. The critical height for normal magnetic configuration
is approximately hc = 1.32. All lengths are scaled by rs.

(A color version of this figure is available in the online journal.)

active regions could give rise to the loss of equilibrium and
dynamical eruptions as well.

5. CONCLUSIONS AND DISCUSSIONS

In this work, we consider the possibility that the primary
mechanism for driving an eruption in a magnetar giant flare is a
catastrophic loss of equilibrium of a helically twisted flux rope in
the magnetar magnetosphere. The loss of equilibrium behavior
of a flux rope is investigated in a multi-polar magnetic field con-
figuration, taking into account possible effects of flux injections
and crust horizontal motions. The loss-of-equilibrium model
describes a quasi-static equilibrium that varies in response to
slow changes at the magnetar surface. Beyond a critical point,
the stable equilibrium cannot be maintained and the transition
to a dynamical evolution naturally occurs.

Equilibrium states of a stationary, axisymmetric magnetic
field in the non-rotating magnetosphere containing a flux rope
are obtained as solutions of the inhomogeneous GS equation in
a spherical polar coordinate. In view of the complex multipolar
boundary conditions at the magnetar surface, we develop a
numerical method to solve the GS equation. Two kinds of
magnetic field configurations, inverse and normal, are carefully
examined in this work. Both of them present the loss of
equilibrium behavior. We carefully examined the critical height
of the flux rope beyond which a stable equilibrium could not
be maintained and a sudden release of magnetosphere will be
triggered. We find that the critical flux rope height is different
for the two types of configurations. We also investigate effects of
another form of boundary changes, crust horizontal motions, on
the loss-of-equilibrium behavior. Our results show that both the
flux injection and crust motions could trigger the catastrophic
behavior in the magnetosphere.

In our simplified model, the flux rope is assumed to be a
closed current ring encircling the magnetar. It is suspended in
the magnetar magnetosphere, and two ends of the flux rope
are not anchored to the magnetar surfaces. We expect that the
overall catastrophic behavior of our model should remain the
same even when the anchoring effects of the flux rope are taken
into account. In order to further understand the anchoring effects
on the catastrophic behavior, a more realistic three-dimensional
model that includes a flux rope with two ends anchored to the
magnetar surface is worth further investigation.

The magnetic energy that could be released in our model
is an interesting issue that is worth exploring further. For a
spherical coordinate in our paper, the ground energy reference
state, based on which the fraction of released magnetic energy
can be calculated, is the fully open Aly–Sturrock field (Aly 1984,
1991; Sturrock 1991; Yu 2011b). Since the boundary conditions
in our paper are more complex (not dipolar or quadrupolar
boundary conditions), the construction of the Aly–Sturrock field
is technically nontrivial. As a result, the fraction of the energy
that could be released in our model involves a very careful
calculation of the Aly–Sturrock field. Intuitively, according to
prior studies, which have shown that magnetic configurations
with more complex boundary conditions would be able to
release more energies (Forbes & Isenberg 1991; Isenberg et al.
1993), as well as the complex boundary conditions adopted in
our model, it is expected that our model would release enough
energy for a magnetar giant flare.10 Full details of the energetics
of our model will be discussed elsewhere.

It is possible that the current sheet forms after the system
loses equilibrium (Forbes & Isenberg 1991; Forbes & Priest
1995). With the formation of the current sheet, the tearing
instability would develop inside the current sheet (Komissarov
et al. 2007) and the subsequent magnetic reconnection would
further accelerate the flux rope (Priest & Forbes 2000). Magnetic
field configurations with the current sheet in a spherical polar
coordinate are a long-standing unresolved problem. We note
that the numerical method developed in this work can be further
extended to allow the presence of current sheets (Yu 2011b).
Further discussions about the current sheet formation and their
effects on the catastrophic behavior will be reported in a separate
paper.

It would be interesting to examine the spectral properties of
the model presented in this paper (Thompson et al. 2002), in
which a locally twisted flux rope is self-consistently incorpo-
rated into the magnetar magnetosphere. By fitting the spectral
features with observations (Pavan et al. 2009), certain param-
eters in this model, e.g., flux rope height, electric current, and
magnetic field, may be better constrained. In parallel, recent
Fermi observations of Crab Nebula gamma-ray flares could
possibly be explained by the magnetic reconnection models
(Abdo et al. 2011), in which the loss of equilibrium may be
the trigger for the formation of the current sheet and subse-
quent magnetic reconnection processes. The high-energy flare
emission from the Crab Nebula is thought to be synchrotron
radiation by relativistic electron–positron pairs accelerated in
this current sheet (Uzdensky et al. 2011). It would be instruc-
tive to calculate, based on the model shown in this paper, the

10 Typically 1% of the magnetic energy release could already account for a
giant flare. For a simple dipolar boundary condition, about 1% of the magnetic
energy can be released (Forbes & Isenberg 1991). However, about 5% of the
magnetic energy can be released for a quadrupolar boundary condition
(Isenberg et al. 1993).
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emission spectra and compare them with recent Crab Nebula
observations.

The models constructed in this work are likely to be useful
as initial states in high-resolution force-free electrodynamic
numerical simulations to explore the dynamics of magnetic
eruptions (Yu 2011a). Our current model cannot address the
dissipation processes that occur during giant flares. It is left
for future work to directly simulate the behavior of loss of
equilibrium and relevant dissipation processes using a newly
developed resistive force-free electrodynamic code (Yu 2011a).

Discussions with T. Forbes and J. Lin are highly appreciated.
We are grateful to the anonymous referee’s insightful comments,
which improve this paper. The research is supported by the
Natural Science Foundation of China (grants 10703012 and
11173057) and the Western Light Young Scholar Program. The
computation in this work is performed at HPC Center, Kunming
Institute of Botany, CAS, China.

APPENDIX A

LUNDQUIST’S SOLUTION INTERIOR TO FLUX ROPES

When the flux rope minor radius is small compared to the
major radius of the flux rope, the flux rope interior magnetic
field could be approximated as a straight force-free magnetic
cylinder. We use Lundquist’s solution to represent the flux
rope interior magnetic field. The solution satisfies the force-
free condition ∇ × B = λ B, where λ is a constant. The solution
can be written in a cylindrical coordinate (r, θ, z). Note that the
z direction in this appendix is actually the φ direction in the
main text. Explicitly, Lundquist’s solution is

Br = 0, (A1)

Bθ = B0J1(λr), (A2)

Bz = B0J0(λr), (A3)

where Bz is along the central axis, Bθ is the azimuthal compo-
nent, and Br is the radial component; J0 and J1 are the zeroth-
and first-order Bessel functions. The conservation of the toroidal
flux simply gives

∫ 2π

0

∫ r0

0
Bzrdrdθ = const. (A4)

Substituting the force-free condition λBz = 4πjz/c, we have
that

4π

λc

∫ 2π

0

∫ r0

0
jzrdrdθ = 4πI

λc
= const, (A5)

which can be written equivalently as

I

λ
= const. (A6)

At the surface of the flux rope, Bz is zero, so J0(λr0) = 0.
Therefore, λr0 is the first zero of J0 and λr0 = 2.405. We can
finally arrive at

r0I = const, (A7)

which is Equation (8) in the main text.

APPENDIX B

GENERAL SOLUTION OF THE INHOMOGENEOUS
GRAD–SHAFRANOV EQUATION WITH MULTIPOLAR

BOUNDARY CONDITIONS

According to the variable separation method, the general
solution to the GS equation can be written as (see Yu 2011b)

Ψ =
∑
n odd

(cnRn(r) + dnr
−n)

[
Pn−1(μ) − Pn+1(μ)

2n + 1

]
, n = odd,

(B1)
where cn and dn are constant coefficients to be specified, Pn−1(μ)
and Pn+1(μ) are Legendre polynomials, and μ = cos θ . Here
the piecewise continuous function Rn(r) in the above equation
is defined as

Rn(r) =
{

(r/h)n+1 r � h
(h/r)n r � h

. (B2)

Note that the derivative of the function Rn(r) is discontinuous.
This feature is exploited in the following to handle the inhomo-
geneous source terms associated with the Dirac-δ-type current
density. Also note an identity for the Legendre polynomials

Pn−1(μ) − Pn+1(μ)

2n + 1
= (1 − μ2)

n(n + 1)

dPn

dμ
. (B3)

The inhomogeneous GS equation reads

∂2Ψ
∂r2

+
sin θ

r2

∂

∂θ

(
1

sin θ

∂Ψ
∂θ

)
= −r sin θ

4π

c
Jφ. (B4)

Substituting Equation (B1) and the explicit expression of Jφ

(Equation (4)) into the inhomogeneous GS equation, we arrive
at ∑

n

cn

(1 − μ2)

n(n + 1)

dPn

dμ

[
d2Rn

dr2
− n(n + 1)

Rk

r2

]

= −r sin θ
4πI

hc
δ(cos θ )δ(r − h). (B5)

Integrating r over an infinitesimally thin shell around r = h, we
can rewrite the above equation as11

∑
n

cn

(1 − μ2)

n(n + 1)

dPn

dμ

[
−(2n + 1)

1

h

]
= −4πI

c
sin θδ(cos θ ).

(B6)
Multiplying sin θdPn/dμ on both sides of the above equation
and integrating θ over [0, π ], we have that

cn =
[

(−1)
n−1

2 n!

2n
(

n−1
2

)
!
(

n−1
2

)
!

]
4πIh

c
. (B7)

It is more convenient to calculate cn numerically by the follow-
ing recursive relation:

c1 = 0.5

(
4πIh

c

)
, cn+2 = −

(
n + 2

n + 1

)
cn. (B8)

Note that terms in the stream function involving cn are induced
by the current inside the flux rope and the external magnetic

11 Note the fact that the first-order derivative of Rn(r) is discontinuous, and

dRn/dr

∣∣∣
r=h+

− dRn/dr

∣∣∣
r=h− = −(2n + 1)1/h.
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field in Equation (10) only involves terms related to dn in
Equation (B1). According to Equation (2), the external magnetic
field Be at r = h and θ = π/2 can be written explicitly as

Be =
∑
n odd

nΓndnh
−n−2, (B9)

where

Γn =
[
Pn−1(μ = 0) − Pn+1(μ = 0)

2n + 1

]
. (B10)

The coefficient Γn can be readily calculated as

Γ1 = 0.5, Γn+2 = −
( n

n + 3

)
Γn. (B11)

To specify the coefficients of dn, we have to take into account
the boundary conditions at the magnetar surface. We require
that the stream function Ψ be equal to Ψs , i.e., the boundary
conditions (5) at the neutron star surface r = rs . To achieve this,
we expand Ψs(μ) as follows:

Ψs(μ) =
∑

n

an

[
Pn−1(μ) − Pn+1(μ)

2n + 1

]
.

The coefficients an can be expressed as

an = 2n + 1

2
Ψ0σ

∫ 1

−1
Θ(μ)

dPn(μ)

dμ
dμ.

Finally, the coefficients dn can be obtained as follows:

dn = rn
s

[
an − cn

( rs

h

)n+1
]

. (B12)

For numerical conveniences, we scale all lengths by rs, the
magnetic flux by Ψ0, and the current by I0 = Ψ0c/rs throughout
this paper. Then the equation Be = Bs becomes

f (σ, J, h) = 0, (B13)

where

f (σ, J, h) ≡
∑
n odd

nΓndnh
−n−2 − J

h

(
ln

8Jh

r00
− 1

)
(B14)

and J = I/I0. Similarly, the frozen-flux condition can be
written as

g(σ, J, h) ≡
∑
n odd

Γncn

(
1 − r00

Jh

)n+1

+ Γndn

(
h − r00

J

)−n

= const. (B15)

Here we can see that both cn and dn are explicitly specified
and the solution to the inhomogeneous GS equation associated
with the multipolar boundary conditions is uniquely determined.
The results in this appendix establish the basis for further
investigations of the evolution of the whole system in the main
text.
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