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ABSTRACT

We explore possible systematic errors in the mass measurements of stellar mass black holes (BHs). We find that
significant errors can arise from the assumption of zero or constant emission from the accretion flow, which
is commonly used when determining orbital inclination by modeling ellipsoidal variations. For A0620−00, the
system with the best available data, we show that typical data sets and analysis procedures can lead to systematic
underestimates of the inclination by 10◦ or more. A careful examination of the available data for the 15 other X-ray
transients with low-mass donors suggests that this effect may significantly reduce the BH mass estimates in several
other cases, most notably that of GRO J0422+32. Assuming that GRO J0422+32 behaves similarly to A0620−00,
the reduction in the mass of GRO J0422+32 fills the mass gap between the low end of the distribution and the
maximum theoretical neutron star mass, as has been identified in previous studies. Otherwise, we find that the mass
distribution retains other previously identified characteristics, namely a peak around 8 M�, a paucity of sources
with masses below 5 M�, and a sharp drop-off above 10 M�.

Key words: black hole physics – X-rays: binaries

1. INTRODUCTION

Soft X-ray transients (SXTs) provide some of the strongest
evidence for the existence of stellar mass black holes (BHs).
In these systems, Eddington-limited X-ray outbursts occur over
timescales of weeks to months, followed by years to decades
of X-ray quiescence (Chen et al. 1997). During quiescence, the
optical light from the system is dominated by the companion
star. Classic binary star analysis techniques can be used to
determine the orbit of the companion star in quiescence, and
thus the orbital parameters of the entire system, including
precise determinations of the mass of the compact object (Orosz
2003). Many of these mass determinations are greater than the
theoretical upper bound of neutron stars (≈3 M�), and thus the
compact objects are understood to be BHs. These black hole
SXTs (BHSXTs) comprise most of the dynamically confirmed
stellar mass BHs.

Mass measurements of these systems have been used to
explore the distribution of BH masses in X-ray binaries (Bailyn
et al. 1998; Özel et al. 2010; Farr et al. 2011). In these studies,
published values for the orbital parameters have been used as
inputs for a Bayesian analysis of the mass distribution of the
compact objects. In all of these analyses, a significant mass gap
between the maximum neutron star mass (3 M�) and the low end
of the BH mass distribution (�5 M�) has been identified. This is
a curious result, since one would ordinarily expect that the mass
distribution of BHs would be weighted toward the low end, as
is the mass distribution of pre-supernova massive stars. Indeed,
some theoretical results do not suggest the existence of a mass
gap (Fryer & Kalogera 2001), but several alternative theories
have been proposed to explain the evolution of massive stars
in binary systems and how the resultant supernova explosions
might result in such a gap (Brown et al. 2001; Belczynski et al.
2012).
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Recently, however, the accuracy of the mass measurements
for individual objects has implicitly been questioned. Cantrell
et al. (2010, hereafter C10) have reanalyzed all extant data for
the prototypical BHSXT A0620−00. Prior to C10, published
values for the orbital inclination ranged from i = 37◦, implying
a BH mass of 16 M� (Shahbaz et al. 1994) to i = 74◦, implying
a BH mass of 4 M� (Froning & Robinson 2001) with several
intermediate values (Haswell et al. 1993; Gelino et al. 2001).
C10 find that this wide range of incompatible results can be
reconciled by more careful modeling of the ellipsoidal light
curves of the companion star. In particular, C10 cull the data
to include only data in the “passive” state (Cantrell et al.
2008), in which the light curves do not exhibit short-term non-
ellipsoidal variability. They fit the light curves with a model that
includes variable disk light and a hotspot that is allowed to vary
in position and brightness. In this way C10 find a consistent
value of the orbital inclination, i = 51.◦0 ± 0.◦9, which implies
mBH = 6.6 ± 0.25 M�.

It is becoming increasingly clear that other BHSXTs have
active/passive state changes similar to A0620−00, and may
have variable hotspots (e.g., MacDonald et al. 2011). However,
the orbital parameter estimates in the literature generally do
not take these effects into account. Thus it is possible that, like
A0620−00, many of the BHSXTs may have mass estimates
that are inaccurate by considerable amounts. In this paper,
we examine the systematic errors introduced by the presence
of nonstellar flux in the ellipsoidal light curves of BHSXTs,
assuming they have time variability characteristics comparable
to those of A0620−00. We find that there is likely a bias
toward mass estimates that are higher than the true mass of
the compact object. We find that the “mass gap” identified
in previous work (Bailyn et al. 1998; Özel et al. 2010; Farr
et al. 2011) on the mass distribution of BHSXTs may be the
result of this systematic effect. Specifically, our correction to
the mass of GRO J0422+32 fills in the gap. Further study of
this object is required to determine whether our assumption
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that it behaves like A0620−00 is valid. However, previous
observations of the source have shown aperiodic variability so
pronounced that it obscures the ellipsoidal variations (Reynolds
et al. 2007), indicating that the accretion flow makes a substantial
contribution to the total flux. As we show in this paper, such
nonstellar flux tends to depress inclination measurements made
with standard analysis procedures, resulting in inflated mass
measurements.

The outline of the paper is as follows. In Section 2, we
summarize the primary sources of systematic uncertainty in
BH mass measurements. We quantify these uncertainties in
Section 3 for A0620−00. In Section 4, we generalize the error
estimates obtained for A0620−00 to other systems. Section 5
contains a re-evaluation of the mass estimates for 16 BHSXTs.
We use these revised mass estimates to analyze the mass
distribution in Section 6, and in Section 7 we conclude.

2. SOURCES OF SYSTEMATIC ERROR
IN MASS DETERMINATION

The mass mBH of the BH in a BHSXT is determined by three
parameters: the mass ratio of the secondary star to the BH,
q ≡ m∗/mBH, the mass function f, and the orbital inclination i.
Written in terms of these parameters, the BH mass is

mBH = f (1 + q)2

sin3 i
. (1)

The error on the mass measurement thus depends on the error
in f, q, and i.

The mass function f generally contributes little to the system-
atic error on BH mass. It is a function of the orbital period P and
semiamplitude of the radial velocity curve K, f = PK3/(2πG).
For most cases, P is measured to sub-percent precision using
photometric observations that span many periods. The radial ve-
locity curve amplitude is typically known to within 10%, with
precision mainly limited by the resolution of the spectroscopy.
Neither measurement is strongly affected by systematic bias. A
narrow Gaussian is thus a good approximation of the error on f,
which introduces a small random error on mBH.

The mass ratio q is inferred from the rotational broadening of
spectral lines. By inspection of Equation (1), we see that mBH
is relatively insensitive to the mass ratio for q � 1. In 11 of
the 16 systems in our sample, q < 0.15 (see Table 2). For three
systems with larger q, the mass ratio is well constrained. The
remaining two systems have only an upper limit, q < 0.5. Thus
in all but these two systems the uncertainty in the measured
mass ratio has a small impact on mBH.

By far the largest source of systematic error is the orbital
inclination. Inclination is typically measured by analyzing
ellipsoidal variability in the observed photometric light curve.
The origin of this variability is gravitational distortion of the
companion star. The star fills its Roche lobe, so as it orbits
the BH, the projected surface area and average temperature
along the observer’s line of sight is not constant. This gives
rise to characteristic double peaks in the light curve, known
as ellipsoidal variations, whose amplitude depends on the
inclination. The largest amplitude occurs for systems edge-on to
our line of sight (i = 90◦), because that geometry maximizes the
changes in projected surface area of the star with orbital phase.
By contrast, no ellipsoidal variations can be detected for face-on
systems (i = 0◦). One can therefore determine i by modeling
ellipsoidal variability in the observed photometric light curve.

The simplest model of ellipsoidal variability is just a sim-
ulated Roche lobe-filling star. This model, which we will call

the “star-only” model, is commonly employed in the literature
under the assumption that nonstellar sources of light are negligi-
ble, particularly in the IR (e.g., Martin et al. 1995; Greene et al.
2001; Gelino & Harrison 2003). However, it has been noted that
nonstellar flux can constitute a significant fraction of the total
flux from the system, even in the IR (Hynes et al. 2005; Gelino
et al. 2010). In the optical, nonstellar sources can contribute
more than half the total flux (e.g., Zurita et al. 2002; Orosz
et al. 2004; C10). The ratio of nonstellar light to the total flux
(hereafter denoted NSL fraction) is thus critical to measuring
inclination accurately.

To determine the NSL fraction, one subtracts a template
stellar spectrum from the observed spectrum, which reveals
the continuum excess due to the nonstellar light (e.g., Marsh
et al. 1994). It is not necessarily the case, however, that such
a measurement is valid for photometric observations taken at a
different date from the spectroscopy. Several sources contribute
to the NSL fraction, some of which vary on timescales short
compared to the orbital period. These sources include the
accretion disk, hotspots on the disk, and potentially a jet. They
can distort the shape of the photometric light curve in the
following ways.

1. The accretion disk contributes a baseline flux which dilutes
the amplitude of the ellipsoidal variations. To first order,
increasing the disk flux is degenerate with lowering the
inclination.

2. The disk and jet can exhibit aperiodic changes in brightness
(flickering) due to the accretion flow (C10). The timescale
of this variability is short compared to the orbital period,
so flickering can be misinterpreted as photometric error,
particularly in folded light curves. However, flickering is
not a white noise process, nor is it stationary, so binning
and averaging the data will not reproduce the underlying
ellipsoidal shape.

3. The disk hotspot can also distort the light-curve shape. The
hotspot causes a peak in flux once per orbit, which leads
to asymmetric light curves when superposed with double-
peaked ellipsoidal variability. Moreover, the position of the
hotspot is not constant, so it can alternately increase or
decrease the amplitude of the ellipsoidal variations for the
same source (C10).

Measuring inclination accurately is thus a delicate procedure
that requires fitting a light curve with a consistent shape and
a known NSL fraction, using a model that includes a disk
and a hotspot. Using a less sophisticated model will result
in systematically biased inclination measurements. Moreover,
because the light-curve shape changes over time, different
observing runs will yield different inclination measurements,
even if the same model is used to fit the light curve.

3. QUANTIFICATION OF SYSTEMATIC
ERROR FOR A0620−00

We now characterize the systematic error in inclination
measurements due to the effects discussed in the preceding
section. Our goal is to determine how inclination measurements
obtained with a given model compare to the true inclination
of a BHSXT. Specifically, we want to know the distribution of
inclination measurements one would obtain from observing a
source at many distinct times, and where the true inclination lies
within that distribution. This requires two pieces of information:
one, an accurate inclination measurement, and two, a description
of the time variability of the source.
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Such an analysis is possible for the source A0620−00, one of
the best-studied BHSXTs. Archival data spans the past 30 years,
including eight observing runs and more than a decade of daily
photometric monitoring from the Small and Moderate Aperture
Research Telescope System (SMARTS) consortium (Cantrell
et al. 2008). C10 use this extensive data set to make an inclination
measurement that accounts for the systematic errors discussed in
Section 2. They restrict the sample of light curves to those in the
passive state (when aperiodic variability is minimal). They also
require that each individual light curve maintain the same shape
over its entire duration. These restrictions limit the sample to 12
light curves. An additional four light curves are removed from
the sample due to uncertainty in NSL fraction and magnitude
calibration. They fit the eight light curves that remain with a 11
parameter model that includes an accretion disk with variable
temperature, size, and flaring angle and a hotspot with variable
temperature, size, and position. During the fitting procedure,
they constrain the disk to contribute the spectroscopically
determined NSL fraction. The best-fit inclinations to all eight
light curves are statistically self-consistent, giving a weighted
average of i = 51.◦0 ± 0.◦9. We assume this value is unbiased by
systematic error.

Given an accurate inclination measurement for A0620−00,
we now determine how inclination estimates vary with time.
First we select all subsets of existing data that resemble plausible
observing runs. We fit each of these light curves with a star-only
model to obtain a sample of inclination estimates. We chose a
star-only model both because it is commonly used and because
it introduces a straightforward systematic error.

3.1. Distribution of Inclination Measurements
from Archival A0620−00 Data

For our analysis, we use data collected by C10. We select
all subsets of this data that could be obtained on a typical
observing run, i.e., many observations in a short period of time.
Specifically, we require each subset to contain at least 20 data
points over seven days, with gaps in phase no larger than 0.1.
We also specify that subsets do not overlap, ensuring that each
point is only counted once. We restrict the sample to light curves
of comparable quality to previously published BHSXT light
curves by binning the data in 30 phase bins and removing all
light curves with average bin deviation greater than 0.03 mag.
These selection criteria are less stringent than those of C10
because we seek a sample that reflects the typical quality of all
previously analyzed light curves, whereas C10 were careful to
select only those light curves that minimize systematic error in
inclination measurements. Our final sample consists of 57 light
curves taken with four different filters: V, I, H, and W (a wide
bandpass centered at 4700 Å).

We fit each light curve with a star-only model to obtain a
distribution of inclination estimates. To fit the data, we use
the Eclipsing Lightcurve Code (ELC) of Orosz & Hauschildt
(2000). Our model star has a mean temperature of 4600 K
and a gravity darkening exponent of 0.10, consistent with a
K5 spectral type and a convective envelope (Lucy 1967; Gray
1992). Limb darkening is computed directly from the model
atmosphere. For each light curve in our data set, we obtain
an inclination estimate ı̂ from the model that gives the lowest
χ2

red. The distribution of ı̂ for all the light curves is shown in
Figure 1. Note that we distinguish the estimated inclination ı̂
from the true inclination, denoted i. We find ı̂ ranges from 33.◦9
to 52.◦4. Over 90% of the measurements fall below the C10
measurement of ı̂ = 51◦. Such systematic underestimation is
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Figure 1. Histogram of inclination estimates obtained by fitting a star-only
model to extant A0620−00 light curves. Note that 90% of the probability mass
lies below the C10 inclination measurement ı̂ = 51◦, marked in this plot with a
thick dashed line.

expected: nonstellar flux almost always dilutes the amplitude of
the ellipsoidal variations, mimicking a lower inclination. The
few light curves with ı̂ > 51◦ may be the result of constructive
interference between the hotspot and the ellipsoidal variability.
The distribution of ı̂ is bimodal, with one peak near 40◦ and
the other near 50◦. We discuss potential mechanisms for this
bimodality in the next section.

3.2. Distribution of Inclinations from
Simulated A0620−00 Light Curves

The bimodality in the distribution of inclinations seen in
Figure 1 is an intriguing result because it illustrates the potential
impact of nonstellar flux on inclination measurements. To
explore how different factors contribute to the shape of the
distribution, we introduce a method to simulate A0620−00 light
curves.

We build on the work of Cantrell et al. (2008), who analyze
the time variability of A0620−00 using long-term photometric
monitoring from the SMARTS consortium. They identify two
distinct states—labeled “active” and “passive”—that occur
when the X-ray source is in its quiescent state. In the passive state
there is minimal aperiodic variability, so the light-curve shape is
stable from night to night. By contrast, flickering is much more
pronounced in the active state: active light curves are brighter,
bluer, and more variable, possibly due to increased accretion
activity. States persist for several months, but transitions from
state to state occur on sub-night timescales. A0620−00 is active
roughly 70% of the time (C10). Because active and passive data
behave differently, we simulate the two states separately.

3.2.1. Simulation of Passive Data

Although passive-state light curves do not change shape on
short timescales, passive states separated by a period of activity
do not necessarily have the same light-curve shape. The eight
light curves fit by C10 were passive, but they had significantly
different shapes from each other. The main difference between
the model fits were the hotspot parameters, suggesting that
shape changes in passive light curves are due to the changing
temperature and position of the hotspot. Therefore, to model
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Figure 2. Simulated active V-band light curves (points). The best-fitting star-
only models (lines) have inclinations i = 30.◦4, 37.◦4, and 44.◦9, with larger
ellipsoidal variability corresponding to higher inclination. Each light curve
consists of a single night of simulated data.

Table 1
Hotspot Parameters

Fit sspot θspot rcut wspot

1 7.14 341.7 0.37 33.9
2 2.53 200.8 0.27 31.7
3 1.53 19.3 0.87 90.0
4 2.41 199.4 0.89 89.7
5 5.70 190.3 0.07 70.7
6 4.20 102.5 0.66 85.9
7 6.36 72.5 0.54 39.4
8 5.50 37.7 0.38 20.5

Notes. This table lists the hotspot parameters for the ELC fits in
C10. The ratio of hotspot temperature to disk temperature is sspot.
The hotspot is centered at azimuthal angle θspot and extends from
the outer disk to an inner radius rcut, given in units of disk radii. The
angular radius is given by wspot.

passive data, we select hotspot parameters from the range of fits
in C10, listed in Table 1 (J. Orosz 2011, private communication).
We find no correlation between any of the parameters, so we
choose each parameter uniformly between the minimum and
maximum value given in Table 1. We use ELC to generate
500 passive V- and H-band light curves with the specified
hotspot parameters. We then add photometric errors drawn
from a normal distribution with mean 0 and standard deviation
0.03 mag. A representative sample of simulated light curves
is shown in Figure 2. The light curves are fit with a star-only
model with parameters described in Section 3.1. All fits had
χ2

red < 3.0. We consider the quality of these fits acceptable, since
we seek to reproduce typical analysis procedures and χ2

red has
commonly exceeded 2.0 in previously published inclination fits
(e.g., Shahbaz et al. 1996; Beekman et al. 1997; van der Hooft
et al. 1998). The distribution of best-fit inclinations for each
filter is shown in the top panel of Figure 3. These distributions
reveal that the A0620−00 hotspot has a greater effect on the

dN
/d

î
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Figure 3. Kernel density estimates for inclination obtained from fitting a
star-only model to passive and active light curves (top and bottom panels,
respectively). Solid lines correspond to simulated H-band data and dashed lines
to simulated V-band data. All four samples contain 500 light curves. The vertical
gray line marks the inclination measurement obtained by C10.

light-curve shape at longer wavelengths. For both filters, the
distribution is peaked around i = 51◦ with some left skew. For
an estimator ı̂ obtained by fitting a star-only model to passive
data, the true inclination i is given by i = ı̂+3.3

−2.4 for H-band
data and i = ı̂+1.6

−1.1 for V-band data. The limits denote 68%
confidence. These distributions reproduce the second mode in
Figure 1, confirming the suggestion that the hotspot can increase
or decrease the amplitude of the ellipsoidal variations. The
distributions may be artificially narrow: the range of hotspot
parameters listed in Table 1 is derived from only eight fits,
which probably do not span the entire parameter space. In
addition to possible underestimation of the hotspot variability,
we neglect all other disk and jet variation. We therefore expect
the distribution of ı̂ for passive light curves to be somewhat
broader than the results quoted above.

3.2.2. Simulation of Active Data

For active-state data, we model the stellar and nonstellar
components of the flux separately. We simulate the stellar
component with ELC using the same temperature and gravity
darkening parameters as in Section 3.1. We set the average stellar
magnitude equal to the zero-disk magnitude found in C10.

Next we add a nonstellar component to the stellar light
curve. We model the nonstellar flux with a broken power-law
power spectral density (PSD). The PSD cannot be determined
directly from existing light curves due to severe daily and
yearly aliasing. We therefore develop an alternative method to
characterize the time variability of the nonstellar flux. We then
determine the broken power-law parameters that best reproduce
that variability.

We begin by characterizing the time variability of the non-
stellar flux. Our data consist of H- and V-band active-state light
curves from the SMARTS consortium, originally published in
Cantrell et al. (2008). The H-band data set contains 1109 points
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over 2227 days and the V-band data set contains 634 points over
2755 days. We subtract the ellipsoidal variability from these data
using the stellar light curves produced with ELC. The median
time between observations is one day; however, there are large
seasonal gaps in the data when the object is obscured by the
Sun. Even when it is visible, sampling is somewhat sporadic.
Due to such uneven sampling, conventional methods to charac-
terize time variability fail. We therefore use a modification of
the binned autocorrelation function, denoted CΔ(τ ), to describe
the time variability.

For the time series {(t1, f1), . . . , (tn, fn)}:

CΔ(τ ) = 1

N

n∑
i=1

(fi − f̄ (ti + τ ± Δ))2, (2)

where τ is the lag, f̄ (a ± b) is the average of the set {fj } such
that {tj } is within the range a ± b, and N is the number of sets
where {fj } 	= ∅.

In other words, CΔ(τ ) is the average squared difference for
points separated by τ ± Δ. If there are no points separated by
τ ± Δ (i.e., N = 0), CΔ(τ ) is undefined. To reduce the number
of pairs that are likely to be correlated, we do not include
any (ti , fi) more than once for a given lag τ . For example,
if τ = 10.0 ± 0.05 and t = {0.0, 0.01, 10.0}, we remove the
pair {0.01, 10.0} because t = 10.0 has already been included.
The error on CΔ for a given τ is the sample standard deviation
for the N squared differences. Note that these errors are not
Gaussian, because pairs of points separated by τ ± Δ are not
statistically independent.

The SMARTS observations provide sufficient coverage to
constrain CΔ(τ ) for lags on the order of 10−1–103 days. The
median time difference between observations for both H- and
V-band data is 1.0 ± 0.05 days, so we evaluate CΔ(τ ) starting
at τ = 1.0 and increasing by factors of 2.0 to τ = 1024.0. We
choose Δ = 0.1 days. Variability on timescales < 0.1 days is
small compared to variability for τ > 1.0, so this choice of Δ
does not bias the calculation of CΔ. For τ � 128.0 days, this
Δ gives N > 300 for both filters. On longer timescales, there
are fewer pairs of points from which to choose, so we exclude
τ with N < 15. To constrain variability on short timescales, we
also compute CΔ(τ = 0.1 days) with Δ = 0.01, obtaining N =
25 for the V-band data and N = 31 for H. The results of the
calculation of CΔ are shown in Figure 4.

We next determine the broken power-law PSD that best
matches the CΔ statistic for each data set. We assume a PSD
S(f ) of the form

S(f ) ∝

⎧⎪⎪⎨
⎪⎪⎩

1

f α
if f � fb

1

f
α−β

b f β
if f > fb,

(3)

where f is frequency, fb is the break frequency, α is the slope
at frequencies less than fb, and β is slope at frequencies greater
than fb.

To find the power-law parameters that best reproduce the
observed nonstellar light curve, we implement a grid-based χ2

minimization routine. We loop over α, β, and fb and simulate
a light curve from each set of parameters following the method
of Timmer & Koenig (1995). We normalize the light curve so
that it has the same 25% and 75% quartiles as the observed
nonstellar light curve. This normalization ensures that outlying
data points do not bias the amplitude of the simulated light curve.

C
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Figure 4. Statistic CΔ for V- and H-band SMARTS data (points in the top
and bottom panel, respectively) and data generated from the best-fit power
law (lines). The value of CΔ represents the average squared difference in flux
between data points separated by time τ ± Δ. The error bars represent the
standard deviation of CΔ for the N points associated with each τ . The choice of
τ for lags > 256.0 is not identical for the two data sets because they are sampled
slightly differently and we require N > 15 for each τ . The best-fit power law
has parameters (α, β, fb) = (−0.8,−1.5, 1.2 × 10−8 Hz) for V-band data and
(−0.8,−1.6, 5.0 × 10−9 Hz) for H-band data.

We then compute CΔ(τ ) for the simulated data and calculate its
goodness of fit to CΔ for the observed data. We find the power-
law parameters that give the minimum χ2 are (α, β, fb) =
(−0.8+0.1

−0.0,−1.5+0.7
−0.2, 1.2+0.1

−0.7 × 10−8 Hz) for V-band data, with
χ2

red = 1.7, and (−0.8+0.7
−0.7,−1.6+0.3

−0.4, 5.0+8.0
−0.0 × 10−9 Hz) for

H-band data, with χ2
red = 2.7. The results for the observed

and best-fit simulated light curves are shown in Figure 4. We
obtain the uncertainties by holding two parameters fixed and
determining the range of the third parameter over which χ2

increases by a factor of two. These ranges do not represent
confidence intervals, nor do we expect χ2

red = 1 for either data
set, because the errors on CΔ(τ ) are not Gaussian. Nevertheless,
varying the parameters within the quoted ranges does not
significantly change the distribution of ı̂ obtained from fitting
the inclination of the simulated light curves.

To obtain mock active-state data, we simulate fifteen 2500 day
long light curves in V and H using the best-fit power-law
parameters. The light curves are sampled at 10 minute intervals.
We normalize each light curve such that the 25% and 75%
flux quartiles match the observed SMARTS data. We limit the
length of the light curves to 2500 days because CΔ(τ ) is poorly
constrained for τ � 1000. In addition, the normalization should
be determined using light curves of comparable length. After
normalizing the nonstellar light curves, we add back the stellar
component of the flux.

In order to select sample data from the 2500 day long
simulated light curves, we recreate plausible observing runs in
the following way: first, we remove data points during “daylight”
hours, assuming 8 hr of viable observing time per 24 hr period.
We simulate bad weather by removing 4 hr segments of data with
probability 20%. Samples of the light curves are then selected
with mock observing runs separated by 30 day intervals. Each
run has equal probability of being one, two, or three consecutive
days long. We exclude the run from the final sample if it has gaps
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in phase greater than 0.1. We also bin each run in 30 phase bins
and restrict the sample to those runs with average bin standard
deviation less than 0.03 mag and none greater than 0.1 mag, as
we did for subsets of real data. We select 500 of the remaining
light curves for each filter such that the samples are the same
size. Several representative light curves are shown in Figure 2.
We fit each of the light curves in the sample with the star-
only model described in Section 3.1. The resulting estimates of
inclination, again denoted ı̂, are shown in the bottom panel of
Figure 3. The distributions are approximately normal. We fit a
Gaussian to each distribution and find ı̂ ∼ N (38.◦2, 4.◦0) for the
V-band fits and ı̂ ∼ N (43.◦2, 3.◦9) for the H band, where the
notation N (μ, σ ) indicates a normal distribution with mean μ
and standard deviation σ . The relation between true inclination
i and the estimator ı̂ is then given by i ∼ N (ı̂ + 12.◦8, 4.◦0) for V
and i ∼ N (ı̂ + 7.◦8, 3.◦9) for H.

3.3. Lessons from A0620−00

Using simulated data, we find that fitting a star-only model
to passive-state light curves results in unbiased inclination
estimates, approximately normally distributed around the true
inclination. The scatter can be explained by a hotspot with
changing position and temperature. On the other hand, fitting
active data introduces a bias toward artificially low inclination
estimates. The typical underestimation is around 8◦ for IR light
curves and 13◦ for optical light curves. The source of the bias is a
significant NSL fraction that increases with shorter wavelength.

These results reproduce the bimodality in inclination esti-
mates obtained from past observations (shown in Figure 1).
Whether the source is active or passive is unknown for many of
these observations. This is because the C10 procedure for de-
termining optical state uses V−I color, which is unavailable for
about half the sample light curves. However, the simulated data
reproduces the main characteristics of the distribution shown in
Figure 1: the first mode near ı̂ ∼ 40◦ is comparable to the fits to
simulated active data, and the second mode around ı̂ ∼ 50◦ is
consistent with the simulated passive data fits. In addition, the
relative weight of the two modes (roughly 2/3 of the probability
mass centered on the first mode) matches the C10 observation
that A0620−00 is active around 70% of the time.

4. GENERALIZATION OF SYSTEMATIC
EFFECTS TO OTHER SYSTEMS

We will now use the description of systematic effects for
A0620−00 as a framework to estimate the systematic error on
inclination for other sources. We treat passive and active data
separately.

For passive A0620−00 data, we found that inclination esti-
mates ı̂ obtained with a star-only model are related to the true
inclination i by i = ı̂

+σ1−σ2
. We assume a similar relation is valid for

other systems, because true stellar ellipsoidal variability is dom-
inant in passive light curves. Thus, we expect inclination mea-
surements made using passive data to be unbiased (centered on
the true inclination) for all systems. We choose σ1 = σ2 = 3.◦0.
The σ values we obtained for A0620−00 are not symmetric and
are somewhat smaller; however, as discussed in Section 3.2.1,
they are most likely underestimates, so σ = 3.◦0 is a conservative
approximation of the error.

For active A0620−00 data, we found

i ∼ N (ı̂ + ξ, σ ). (4)

To generalize this result to other systems, we scale the values of
ξ and σ based on the system’s orbital parameters. We find that
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Figure 5. Inclination estimates from a star-only model as a function of phase-
averaged NSL fraction for simulated active H- and V-band light curves (open
and closed circles). The line gives the inclinations fit to stellar light curves
with a constant NSL fraction added. The active light curves have ı̂ within ±2.◦7
of the black curve at 68% confidence. The dashed line marks the inclination
measurement of C10, i = 51.◦0.

ξ can be computed from the NSL fraction, which we denote φ.
We discuss this approximation in Section 4.1 and describe a
method to estimate the NSL fraction in Section 4.2. We chose
σ to scale linearly with ξ .

4.1. Dependence of Inclination Measurements
on the NSL Fraction

We expect that the bias in inclination measurements for active
data is determined primarily by the NSL fraction, and that
flickering and hotspots are secondary effects. To demonstrate
this, we simulate a set of light curves with two components: a
star and a constant offset flux representing the NSL fraction.
We choose i = 51◦ for the stellar light curve and NSL fractions
ranging from 0.0 to 0.9. We fit these diluted light curves with a
star-only model to obtain ı̂ as a function of the NSL fraction, φ.
A third-order polynomial fit to the results is

i − ı̂ = 0.2 + 28.6φ − 15.3φ2 + 27.0φ3, (5)

where we take i = 51◦. We plot this fit in Figure 5 and overplot
the points (φ, ı̂) for each of the simulated A0620−00 active
light curves. These points fit the curve closely: the simulated
active data have ı̂ within ±2.◦7 of the value obtained from
adding a constant NSL fraction (limits denote 68% confidence).
We therefore conclude that the NSL fraction is indeed the
dominant factor determining the bias ξ = i − ı̂, with some
scatter introduced by the disk hotspot and flickering.

4.2. Estimating the NSL Fraction Using Orbital Parameters

Given that the NSL fraction determines the bias ξ to first
order, we would like to estimate the typical NSL fraction for
sources other than A0620−00. Qualitatively, we expect a lower
NSL fraction for systems with relatively hotter stars and a higher
NSL fraction for systems with relatively larger accretion disks.
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To quantify these relationships, we focus on three observable
parameters.

1. Spectral type of the secondary star. The hotter the star, the
greater its total flux contribution and the lower the NSL
fraction.

2. Mass ratio. The mass ratio determines the relative size of
the Roche lobes in the system. Assuming the fraction of
the Roche lobe occupied by the disk is constant over all
systems, a system with higher q has a relatively larger disk
and correspondingly higher φ.

3. Inclination. As i increases, the projected area of the disk
decreases, thus lowering φ.

To scale the NSL fraction based on the system parameters
listed above, we use the Stefan–Boltzmann law. For an optically
thick source, the flux scales with the area of the emitting region
and the temperature to the fourth power. For convenience, we
work with the ratio of stellar to nonstellar flux, which we
denote ρ. This parameter is related to the NSL fraction by
ρ = 1/φ − 1. We expect ρ to scale as

ρ ∝
(

Tstar

Tdisk

)4 (
Rstar

Rdisk

)2

sec i (6)

∝
(

Tstar

Tdisk

)4 (
q0.45

)2
sec i, (7)

where T and R denote temperature and effective radius, with
subscripts denoting the star and disk. Equation (7) replaces
the ratio of radii with q using an approximation from Frank
et al. (2002). The sec i factor accounts for the orientation of the
accretion disk, assuming it lies entirely in the orbital plane. We
approximate that the star is spherical, so its flux is independent
of inclination.

We can use the expression in Equation (7) to estimate the
NSL fraction of any source, provided we know the constant
of proportionality. To solve for the constant, we use the known
parameters for A0620−00. We use the estimates of q, i, and Tstar
from C10. We estimate ρ from the simulated active A0620−00
data, obtaining ρ = 1.0 ± 0.25 in the optical and 2.3 ± 0.6 in
the IR. The remaining unknown is Tdisk, which we choose to
absorb into the constant of proportionality. By neglecting the
Tdisk dependence, we effectively assume that all sources have
the same disk temperature as A0620−00. This approximation is
reasonable because the internal dynamics of the disk determine
its temperature, not the properties of the gas as it passes
through the inner Lagrange point. In addition, this assumption
is substantiated by empirical evidence from three cases: the
nonstellar light is redder than the B star in SAX J1819.3−2525
(MacDonald et al. 2011), bluer than the K star in A0620−00
(C10), and approximately constant across the optical spectrum
for the F star in GRO J1655−40 (A. G. Cantrell 2011, private
communication). Under this assumption, we can solve for the
proportionality constant in (7) and thus infer ρ sec i for any
system with known q and Tstar.

We can use our estimate of ρ sec i to infer the bias ξ in a star-
only inclination estimate, ı̂. First, we generate a set of stellar
light curves and add a constant flux offset to each such that
the ratio of stellar-to-nonstellar flux equals ρ sec i. We vary i
from 0◦ to 90◦ in 1◦ intervals. Second, we fit each light curve
with a star-only model. We then find the light curve whose
inclination estimate is closest to ı̂. Because we know i for this
light curve, we can obtain the bias from ξ = i − ı̂ and the NSL

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted NSL Fraction

O
bs

er
ve

d 
N

SL
 F

ra
ct

io
n

1

2

3

4
5

6

7

8

9

10

11

Figure 6. Observed vs. predicted optical NSL fractions (points). The gray line
is a visual aid representing perfect agreement between the observations and
predictions. The numbers indicate the reference for the observation: (1) Orosz
et al. 1998; (2) Webb et al. 2000; (3) Casares et al. 1995; (4) Shahbaz et al. 1999;
(5) Casares et al. 1993; (6) Filippenko et al. 1999; (7) MacDonald et al. 2011;
(8) Orosz et al. 2002; (9) Orosz et al. 2004; (10) Orosz et al. 1996; (11) Wagner
et al. 2001. The vertical error bars indicate either 1σ error or an allowed range.
The horizontal error bars reflect the uncertainty due to the variation in the NSL
fraction of A0620−00, on which the predictions are based. The excess in the
observed NSL fraction for (9) may because the source (GRO J1650−500) was
not in full quiescence during the observation. The lack of agreement for source
(11) (XTE J1118+480) may be due to this system’s high inclination; for large i,
our assumption that the accretion disk lies entirely in the orbital plane may be
invalid.

fraction according to Equation (5). To evaluate the accuracy of
this procedure, we compute the NSL fraction from ρ sec i for
all sources with star-only inclination estimates. We compare
these values to spectroscopically determined NSL fractions in
Figure 6. There is good agreement between our predictions and
the observed values, with 7 of 11 predictions within 1σ from
the observed value.

The spread in the NSL fraction of A0620−00 introduces a
small amount of scatter in our estimate of ξ , generally < 2◦.
This error is unrealistically narrow because it does not include
any uncertainty due to other components of the light curve, such
as flickering. To estimate the σ in Equation (4), we choose the
linear relation σ = 3.0 + 0.115ξ . This scaling reduces to the
expression for passive data in the case ξ = 0.◦0 and ensures that
σ = 3.◦9 for ξ = 7.◦8 (i.e., the values we find for simulated
active H-band light curves).

4.3. Additional Constraints on Inclination

There are two additional constraints on inclination we can
obtain. First, we set an upper limit based on the absence of
eclipses of the star by the disk. The visibility of eclipses depends
on the size of the accretion disk and the mass ratio, q. We assume
a conservative disk radius of 0.5R2 and use ELC to determine
the eclipse limit as a function of q. Systems with lower q eclipse
at higher inclinations, so we use low-end estimates of q to
establish secure upper limits on i for the all BHSXTs with
measured mass ratios. Specifically, we use the minimum value
for mass ratios described by a uniform distribution and the value
two standard deviations below the mean for mass ratios with a
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Table 2
Orbital Parameters for 16 Black Hole Binaries

X-Ray Name Optical Spectral Type f (M�) q i imin imax References
Counterpart (deg) (deg) (deg)

4U 1543−47 IL Lup A2 V N (0.25, 0.01) U (0.25, 0.31) I (24.0, 36.0) 19.8 73.4 1, 2
A0620−00 V616 Mon K5 V N (3.1, 0.04) N (0.060, 0.004) N (51.0, 0.9) 36.5 79.8 3, 4
GRO J0422+32 V518 Per M2 +2/−1 V N (1.19, 0.02) N (0.116, 0.08) N (63.7, 5.2) 0.0 90.0 7, 8
GRO J1655−40 V1033 Sco F6 III N (2.73, 0.09) N (0.38, 0.05) N (69.0, 3.0) 0.0 90.0 5, 6
GRS 1009−45 MM Vel G5–K7 V N (3.17, 0.12) N (0.137, 0.015) N (62.0, 5.1) 42.3 76.9 9, 10, 11
GRS 1124−683 GU Mus K3–K4 V N (3.01, 0.15) N (0.128, 0.04) I (54.0, 65.0) 33.2 80.1 12,13
GRS 1915+105 V1487 Aql K0-7 III N (9.5, 3.0) N (0.058, 0.033) N (70.0, 2.0) 0.0 90.0 14, 15
GS 1354−64 BW Cir G0-5 III N (5.73, 0.29) N (0.12, 0.04) I (27.2, 80.8) 27.2 80.8 16, 17
GS 2000+25 QZ Vul K3-6 V N (5.01, 0.12) N (0.042, 0.012) I (55.0, 65.0) 28.3 86.7 18, 19
GS 2023+338 V404 Cyg K0 IV N (6.08, 0.06) N (0.060, 0.005) N (80.1, 5.1) 35.4 80.0 20
H1705−250 V2107 Oph K5 ± 2 V N (4.86, 0.13) U (0, 0.053) I (48.0, 90.0) 0.0 90.0 21, 22
SAX J1819.3−2525 V4641 Sag B9 III N (2.74, 0.12) N (0.67, 0.04) I (80.0, 90.0) 44.8 69.6 23
XTE J1118+480 KV UMa K5 V N (6.27, 0.04) N (0.024, 0.009) I (68.0, 82.0) 21.8 89.4 24, 25
XTE J1550−564 V381 Nor K3 ± 1 III N (7.65, 0.38) U (0.031, 0.037) I (57.7, 77.1) 26.5 82.0 26
XTE J1650−500 · · · G5–K4 III N (2.73, 0.56) U (0, 0.5) N (75.2, 5.9) 0.0 90.0 27
XTE J1859+226 V406 Vul K5–7 V N (4.5, 0.6) U (0, 0.5) N (60.0, 3.0) 0.0 90.0 28

Notes. This table gives the mass function, mass ratio, spectral type, and inclination estimate for 16 black hole binaries. The measurements of f,
q, and spectral type are taken from the literature. The lower limits on inclination, imin, are obtained assuming the secondary has a normal mass
for its spectral type. The upper limits, imax, are the highest inclinations that do not cause eclipses. For a detailed explanation of these limits and
the inclination estimates, see Section 4.
Notation. The notation N (μ, σ ) implies a normal distribution with mean μ and standard deviation σ . A uniform distribution from α to β is
indicated by U (α, β). An isotropic distribution is denoted i ∼ I (α, β), implying cos i is uniform between α and β.
References. (1) Orosz 2003; (2) Orosz et al. 1998; (3) Neilsen et al. 2008; (4) Cantrell et al. 2010; (5) Shahbaz et al. 1999; (6) Greene et al.
2001; (7) Webb et al. 2000; (8) Harlaftis et al. 1999; (9) Filippenko et al. 1999; (10) Shahbaz et al. 1996; (11) della Valle et al. 1998; (12) Orosz
et al. 1996; (13) Casares et al. 1997; (14) Greiner et al. 2001; (15) Harlaftis & Greiner 2004; (16) Casares et al. 2009; (17) Casares et al. 2004;
(18) Harlaftis et al. 1996; (19) Casares et al. 1995; (20) Casares & Charles 1994; (21) Filippenko et al. 1997; (22) Harlaftis et al. 1997; (23) Orosz
et al. 2001; (24) González Hernández et al. 2008; (25) Calvelo et al. 2009; (26) Orosz et al. 2011; (27) Orosz et al. 2004; (28) Corral-Santana
et al. 2011.

normal distribution. The upper limits calculated according to
this procedure are listed in Table 2.

The second constraint on inclination is a lower limit obtained
by assuming the secondary star has a mass equal to or less than
that of a main-sequence star of its spectral type. A Roche lobe-
filling star is out of thermal equilibrium, so the relationship
between mass, radius, and surface temperature may be quite
different from that of spherical stars. Thus far, undermassive
secondaries have been observed in several sources, including
GRO J1655−40 (van der Hooft et al. 1997) and A0620−00
(C10). We therefore interpret the standard mass for a secondary
star’s spectral type as an upper limit to its true mass. If q is
known and m∗ is overestimated, mBH is also overestimated.
By inspection of Equation (1), we find that overestimating mBH
results in an underestimation of i for fixed q and f. There is some
uncertainty in the spectral type for most of the sources in our
sample, so to obtain the most stringent lower limit, we calculate
i using the mass of the star with the earliest allowed spectral
type, along with the low-end estimates for q and f described in
the preceding paragraph. If the low-end estimate for q is less
than 0.0, the lower limit on i is also 0.◦0. The lower limits on
inclination for all sources are listed in Table 2.

5. RE-EVALUATION OF INCLINATION AND MASS
ESTIMATES FOR TRANSIENT BLACK HOLE BINARIES

Using the procedure established in the previous section,
we examine the inclination measurements for the BHs in our
sample. Much of the previous work on BH X-ray binaries
has had the goal of establishing a lower limit on the mass of
the compact object to demonstrate that it is a BH and not a

neutron star. As a result, the conservative lower limits on mass
are often secure, but the masses and their errors may not be
accurate. There are a number of standard practices that may
lead to erroneous measurements, which we briefly outline before
discussing individual objects in detail.

One of the most frequent assumptions when fitting inclination
is that the nonstellar flux is negligible, particularly in the infrared
(Shahbaz et al. 1994, 1996; Beekman et al. 1997; Gelino et al.
2001; Greene et al. 2001; Gelino & Harrison 2003). In many
cases, this assumption has been justified by claiming the disk
spectrum can be modeled as a power law with negative slope,
based on the precedent of Oke (1977). The accretion disk
thus contributes less total flux in the IR than in the optical.
However, this approach has been called into question by recent
measurements of significant IR NSL fractions in some sources
(Reynolds et al. 2008; Gelino et al. 2010). In addition, there is
evidence that the NSL fraction increases with wavelength for
some objects (Orosz & Bailyn 1997; Reynolds et al. 2007).
Inclinations obtained from fitting a star-only model should
therefore be treated with caution.

Another common practice when fitting inclination is to
combine light curves from two or more observing runs (namely,
Shahbaz et al. 1994; Remillard et al. 1996a; Gelino & Harrison
2003; Ioannou et al. 2004; Orosz et al. 2004; Gelino et al. 2006;
Casares et al. 2009; Orosz et al. 2011). However, due to aperiodic
flickering and migratory hotspots, it is unlikely that combining
and/or binning data reproduces the true underlying light-curve
shape. In addition, if the data sets being combined have non-
overlapping phase coverage, large changes in the light-curve
shape may not be detectable. Binning data that have significant
intrinsic aperiodic variability tends to depress the amplitude of
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the ellipsoidal variations and thus lead to systematically low
inclination measurements.

A third potential source of error is using an NSL fraction
determined at a different time from the photometric obser-
vations. The nonstellar flux can exhibit significant variabil-
ity on timescales of months, as we show in Section 3.3 for
A0620−00. Similar variability has been observed in many
other sources, including XTE J1550−564, SAX J1819.3−2525,
GRO J0422+32, GS 1354−64, and XTE J1859+226 (Reynolds
et al. 2007; Casares et al. 2009; Corral-Santana et al. 2011;
MacDonald et al. 2011; Orosz et al. 2011). Given these changes
in brightness, it is useful to determine the NSL fraction si-
multaneously with photometry to obtain an accurate inclination
measurement.

In the following section, we examine the data available for
each of the 16 BHSXTs in our sample. In particular, we attempt
to determine whether the source was observed in an active or
passive state. As discussed in Section 3, signatures of the active
state include aperiodic variability that is large compared to the
quoted photometric errors, high reduced χ2 values (χ2

red > 3),
and significant trends in brightness. The key signatures of
passive data are a consistent light-curve shape over the duration
of the observations and χ2

red < 3. Using our assessment of the
optical state, we determine an appropriate value and error on the
inclination, as described in Section 4. In some cases, this results
in values of i and hence of the BH mass that are quite different
from those in the literature. More extensive observations will be
required to check and refine these estimates.

5.1. 4U 1543−47

4U 1543−47 is one of the few sources with near simultaneous
photometry and spectroscopy. Orosz et al. (1998) analyze
B-, V-, and I-band photometry from 1998 June 28 to July 4
and spectroscopy from 1998 July 1 to July 4. The authors
determine the NSL fraction in B, V, R, and I from the observed
spectrum and use the measurements as constraints when fitting
models of ellipsoidal variability to the light curve. Due to the
relative brightness of the A-star secondary, we expect the NSL
fraction to be small. A larger source of error is the mass
ratio, which the authors include as a free parameter in the
model. They find 24◦ < i < 36◦ at the 3σ level, but note
the possibility of additional systematic effects. We therefore
use this range as the boundary of a uniform distribution. A
more precise measurement, i ∼ N (20.◦7, 1.◦5), was reported in
conference proceedings by Orosz et al. (2002). We do not use
this measurement because there is no published record of the
light curve. However, we note that using this smaller inclination
would increase the most likely BH mass by more than a factor
of two.

5.2. A0620−00

We adopt an inclination measurement of 51◦ ± 0.◦9 for
A0620−00, based on the analysis of C10. See Section 3 for
a discussion.

5.3. GRO J1655−40

GRO J1655−40 is a well-studied source, with very regular
quiescent light curves (Orosz & Bailyn 1997; Greene et al. 2001;
Beer & Podsiadlowski 2002). The consistency in light-curve
shape exemplifies the connection between the stellar tempera-
ture and the NSL fraction that was discussed in Section 3.3:
GRO J1655−50 has a bright F star secondary, so we expect that

it has relatively small NSL fraction, and consequently, a stable
light-curve shape. Detailed studies of optical/IR emission and
orbital parameters of GRO J1655−40 in full quiescence have
been published by Orosz & Bailyn (1997), Greene et al. (2001),
and Beer & Podsiadlowski (2002). The Orosz & Bailyn (1997)
study gives a tight constraint on i because their modeling re-
quires a partial eclipse of the secondary to account for the depth
of the minimum at phase 0.5. By contrast, the Greene et al.
(2001) analysis uses a more sophisticated model for limb dark-
ening that allows for a deep primary minimum without eclipses.
The Greene et al. (2001) analysis use optical and IR light curves
collected between 1999 July 7 and October 30. Over the course
of observations, the light curves remained stable within the range
of photometric error, a few hundredths of a magnitude. The light
curves are also consistent with those reported from several years
before by Orosz & Bailyn (1997). Thus these light curves appear
to be passive. The data are fit with a star-only model, giving a
best-fit inclination i = 70.◦2 with χ2

red = 1.6. Beer & Podsiad-
lowski (2002) obtain a similar result by reanalyzing the Orosz
& Bailyn (1997) data. They use a model that includes an accre-
tion disk and distance constraints obtained from the kinematics
of the radio jet, finding a best-fit inclination of i = 69.◦0 with
χ2

red = 1.6. Recent unpublished measurements of the NSL frac-
tion (A. G. Cantrell 2011, private communication) suggest that
the distance to the source obtained by Beer & Podsiadlowski
(2002) is more accurate than that of Greene et al. (2001). We
therefore adopt the Beer & Podsiadlowski (2002) measurement,
which is compatible with the Greene et al. (2001) result, and
assume the source was passive during the observations, thus
taking i ∼ N (69.◦0, 3.◦0).

5.4. GRO J0422+32

GRO J0422+32 has an unusually late-type secondary
(Filippenko et al. 1995), and thus we expect the disk contribu-
tion to be especially strong. The inclination has been frequently
discussed since it was first measured by Orosz & Bailyn (1995).
That work finds i > 45◦ based on I-band photometry from 1994
October 27 to October 28. The light curve exhibits noticeable
shape changes between the two nights and a difference in mean I
magnitude of 0.05. This type of variability is typical of the active
state. A lower limit on i is obtained by fitting a star-only model to
ellipsoidal variability with amplitude 0.15 mag, an approximate
amplitude determined by considering each night in the observed
light curve separately. This measurement is consistent with the
work of Gelino & Harrison (2003), who find i = 45◦ ± 2◦
from fitting a star-only model to J, H, and K ′ light curves.
There is evidence, however, for substantial IR disk contamina-
tion: Reynolds et al. (2007) detect no ellipsoidal variability in H
and K light curves that have mean magnitudes consistent with
the Gelino & Harrison (2003) light curves. These conflicting
results suggest that both the Gelino & Harrison (2003) and the
Reynolds et al. (2007) light curves are in the active state, so we
interpret the Gelino & Harrison (2003) measurement as a lower
limit. These results are consistent with the work of Filippenko
et al. (1995), who find i = 48◦ ± 3◦, assuming a normal mass
M2 V secondary and mass ratio q = 0.1093 ± 0.0086. As dis-
cussed in Section 4.3, assuming a normal mass secondary gives
a lower limit on inclination.

In contrast to the above measurements, there are several
works, which find i < 45◦: Casares et al. (1995) obtain
i = 30◦ ± 6◦ for q = 0.1, using I-band data and assuming zero
disk contribution. However, there are significant gaps in phase
coverage near the primary maximum at phase 0.25. Another low
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measurement is obtained by Callanan et al. (1996), who find
i < 45◦ for an assumed disk contamination less than 0.2. This
NSL fraction is based on what is considered typical for other
SXTs, which may not be applicable to this source because of the
late-type secondary. Moreover, the light curve they fit consists of
14 nights of data between 1994 September 11 and 1995 January
9 that are combined and binned. Given the substantial aperiodic
variability this source exhibits, binning data over multiple nights
may flatten the light-curve shape, implying a lower inclination.
Similarly, Beekman et al. (1997), who find 10◦ < i < 26◦ use
a binned R-band light curve obtained between 1995 January 12
and January 15. The light curve consists of just 55 points, binned
in phase bins of width 0.1.

Given the large variability exhibited by GRO J0422+32,
binning the light curves is unusually problematic. In addition,
those measurements fall well below the lower limit obtained
using the spectral type of the secondary. Therefore, we discount
measurements obtained by binning optical light curves. We
adopt ı̂ = 45◦, assume the source is active, and adjust the
inclination according to Section 4, obtaining an inclination
i ∼ N (63.◦7, 5.◦2). We note that the 3σ lower limit of this
distribution is consistent with the lower limit of Filippenko et al.
(1995). The peak of the probability distribution for the mass of
the BH is 2.1 M�, which may call into the question the nature
of this compact object.

5.5. GRS 1009−45

The only analysis of ellipsoidal variability in GRS 1009−45
was performed by Shahbaz et al. (1996). They obtain R-band
photometry on 1995 May 8–10 and 1996 February 17–21. The
light curve shows evidence of aperiodic variability: the peak
brightness fluctuates by around 0.1 mag during the time of ob-
servations, clear evidence of a significant nonstellar contribu-
tion. Shahbaz et al. (1996) bin the data and fit a star-only model,
obtaining a best-fit inclination i = 44◦ with χ2

red = 3.2. Such
a high χ2 indicates that the light curve is most likely active,
as is also suggested by the variability. We therefore adjust the
inclination estimate ı̂ = 44◦ according to Section 4, obtaining
i ∼ N (62.◦0, 5.◦1).

This result conflicts with the work of Filippenko et al.
(1999), who determine inclination assuming the secondary is
not undermassive. They find i = 78◦ for a K7–K8 star with
mass m∗ ≈ 0.6 M�. According to the reasoning in Section 4.3,
this inclination should be a lower limit. However, there is some
ambiguity about the spectral type. della Valle et al. (1998)
suggest the spectral type may be as early G5 V. Following
the procedure outlined in Section 4, we find that a G5 V star
implies a lower limit of ı̂ = 42.◦3, consistent with our estimate
i ∼ N (62.◦0, 5.◦1).

5.6. GRS 1124−68

GRS 1124−68 is one of the few sources for which simulta-
neous spectroscopy and photometry exist. Orosz et al. (1996)
analyze spectroscopy obtained 1992 April 3 and photometry be-
tween 1992 April 3 and April 15 in I and W (the W filter is a wide
bandpass centered at 4700 Å). Ellipsoidal modulation is easily
discernible in this data. By contrast, long-term monitoring of
the source with SMARTS shows no clear ellipsoidal variability
since 2003 (C. Bailyn 2012, private communication). We there-
fore assume the source was passive during the 1992 observations
and active post-2003.

Using the 1992 spectroscopy, Orosz et al. (1996) constrain
the B- + V-band NSL fraction to 0.45±0.05. Because the source

was passive during this period, the NSL fraction is most likely
valid for the 12 days of photometry following the spectroscopic
observations. Using NSL fractions in the quoted range, Orosz
et al. (1996) fit the 1992 B + V light curve with a star + constant
flux offset model. However, the B + V light curve has uneven
maxima, a signature of the hotspot in the passive state. Fits to
the larger maximum yield inclinations above the eclipse limit,
so Orosz et al. (1996) fit the smaller maximum and obtain
54◦ < i < 65◦.

This measurement is somewhat higher and less precise than
that of Gelino et al. (2001). They find i = 54◦ ±1.◦5 from a star-
only fit to J and K light curves obtained 2000 February 20–21.
However, there is clear evidence for substantial nonstellar flux
in the IR (Gelino et al. 2010), when the source was active. The
source may have been passive in 2000 February, but that does
not guarantee a negligible NSL fraction.

The Orosz et al. (1996) result is also slightly higher than that
of Shahbaz et al. (1994), who find i = 54+20

−15
◦

for a folded,
binned H-band light curve from 1995 February 17 to February
20. However, the best-fit inclination gave χ2

red = 5.4, which the
authors suggest is a consequence of incorrect sky subtraction and
flat-fielding. We therefore adopt the Orosz et al. (1996) result as
the most reliable inclination measurement, 54◦ < i < 65◦.

5.7. GRS 1915+105

GRS 1915+105 is the only X-ray binary for which we can
measure inclination without analyzing ellipsoidal variability.
Greiner et al. (2001) determine an inclination i = 70◦ ± 2◦
based on the apparent superluminal motion of the jet. They
assume the jet is perpendicular to the orbital plane due to a
lack of observable precession over several years of observation.
GRS 1915+105 has been active since its discovery in 1994
(Mirabel & Rodrı́guez 1994). Single-hump variability and a
superhump period have been detected (Bailyn & Buxton 2011),
but no studies of ellipsoidal variability have been possible to
date because of substantial disk and jet flux variation.

5.8. GS 1354−64

Casares et al. (2009) obtain multiwavelength photometry and
spectroscopy between 1995 and 2003. The data are character-
ized by strong aperiodic variability, and no clear ellipsoidal
modulation is discernable. Casares et al. (2009) measure an
NSL fraction of 0.67 in 2004 and 0.5 in 2006. The average
R-band magnitude varies by nearly 1 mag between 2002 and
2004. Because of this strong variability, Casares et al. (2009)
cannot determine a lower limit to inclination based on ellip-
soidal variations. From the spectral type and eclipse limits, we
find 27.◦2 < i < 80.◦8 according to the criteria in Section 4.3. We
assume an isotropic distribution i ∼ I (27.◦2, 80.◦8), indicating
that cos i is uniform between cos 27.◦2 and cos 80.◦8.

5.9. GS 2000+25

The most extensive study of ellipsoidal variability in GS
2000+25 was performed by Ioannou et al. (2004). They obtain
I-band data from 1992 August and 1998 September, as well
as R-band data from 1998 September to October, 1999 June,
July, and September, and 2000 July to August. The authors
note some changes in light-curve shape between the observing
runs: for example, the R-band light curve has equal maxima in
2000 August, but unequal maxima in 1998 September. These
changes are small, however, and there is relatively little scatter
in the folded light curve. We therefore conclude that the source
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is passive during the Ioannou et al. (2004) observations. The
authors bin the light curve and fit a star-only model, finding
54◦ < i < 60◦. Fits including a disk and hotspot give lower
χ2

red values, but do not affect the allowed range of inclinations.
Fits to data between phase 0.0 and 0.5, which the authors
suggest are less affected by the hotspot, also produce the same
result. This lack of sensitivity to changes in the model may
well be a consequence of combining and binning data taken
over many nights: features such as a hotspot are obscured
because the hotspot position changes over time. We suspect that
binning the data depresses the Ioannou et al. (2004) inclination
measurement: even for passive light curves, binning slightly
decreases the amplitude of the ellipsoidal variations. Indeed,
the Ioannou et al. (2004) measurement is somewhat lower than
that of Callanan et al. (1996), who find 55◦ < i < 65◦ for a star-
only fit to J and K ′ photometry obtained on 1995 August 11–12,
assuming q < 0.05. The Callanan et al. (1996) result is most
likely passive, because it gave a higher inclination range than
the passive Ioannou et al. (2004) light curves. Both the Ioannou
et al. (2004) and Callanan et al. (1996) results are consistent
with the Beekman et al. (1996) estimate 43◦ < i < 60◦. For
our final estimate, we adopt the Callanan et al. (1996) result
because it is less affected by binning than that of Ioannou et al.
(2004), given that the observations span only two days. We take
i ∼ I (55.◦0, 65.◦0) as our inclination estimate.

5.10. GS 2023+338

Strong aperiodic variability in the light curve of GS 2023+388
has thus far prevented precise inclination measurements.
Wagner et al. (1992) obtained I-band photometry on 17 nights
between 1990 September and 1992 May. During this period, the
average I magnitude varied by more than 0.1 mag, so the au-
thors are only able to constrain 50◦ < i < 80◦. The lower limit
is derived based on the observation of double-peaked Balmer
lines in the spectrum, and the upper limit is based on the lack
of eclipses. Shahbaz et al. (1994) find a similar allowed range,
45◦ < ı̂ < 83◦, using K and K ′ photometry obtained between
1992 August and 1993 December. Their best fit with a star-
only model has ı̂ = 56.0 with a χ2

red = 15.2. They suggest
the poorness of the fit may be due to an incorrect color correc-
tion between the K and K ′ data. We therefore regard the limits
obtained by Wagner et al. (1992) as more secure.

Sanwal et al. (1996) also fit a star-only model to IR data: they
obtain H-band photometry on 17 nights between 1993 June and
November. Strong aperiodic variability is present in the light
curve. The authors note that there is significantly more scatter
in the observations of GS 2023+388 than in the light curve of
the comparison star. They also note a systematic increase in
brightness over one 6 hr period of observation. At the beginning
of that night, the data are fainter than the ellipsoidal model,
but the source smoothly increases in brightness over 6 hr until
it is nearly 0.1 mag brighter than the model light curve. This
hour-scale time variability suggests that the source was active
during these observations. Such behavior is typical of the active
state. On the other hand, Khargharia et al. (2010) find almost no
disk contamination in the IR spectrum. However, these data were
obtained in 2007, and thus do not speak to the state of the system
when the Sanwal et al. (1996) data were taken over a decade
earlier. We therefore use the minimum inclination estimate of
Sanwal et al. (1996), ı̂ > 62.◦0, which they obtain using a
star-only model with standard limb and gravity darkening. We
assume that the source was active at the time. Using the method

described in Section 4, we obtain i ∼ N (80.◦1, 5.◦1). We note
that this is approximately equal to the eclipse limit.

5.11. H1705−250

The inclination of H1705−250 was first measured by Martin
et al. (1995). They obtain 87 R-band images on 1992 May 1–6
and fit a star-only model, finding 48◦ < i < 51◦. The best fit
had χ2

red = 0.87. The authors only show a folded light curve, so
it is difficult to detect aperiodic variability.

Remillard et al. (1996b) obtain a conflicting result using B + V
observations from 1992 May, 1993 April, and 1994 July. The
light curve exhibits uneven maxima, which suggests the source
was active during the observations. However, the authors suggest
this may be an artifact of changes in phase coverage between the
observations. They find a lower limit on i by fitting a star-only
model to the light curve, excluding the higher maximum from
the fit. Their fit restricts i > 60◦.

Given the uncertainty in whether the source was active or
passive for both these analyses, we adopt the Martin et al. (1995)
i = 48◦ estimate as a lower limit. We cannot obtain an upper
limit due to eclipses for this source because the limits on the
mass ratio extend to 0.0. Our final estimate for the inclination is
thus i ∼ I (48.◦0, 90.◦0).

5.12. SAX J1819.3−2525

Orosz et al. (2001) analyze the photographic B-band light
curve obtained by Goranskij (1990). The photometric errors are
large (near 0.1 mag), so the binned light curve is imprecise. The
best-fit model to the light curve has i = 70◦ and a partial eclipse
of the secondary by a large, faint accretion disk; however, it
systematically underestimates the amplitude of the ellipsoidal
variability.

MacDonald et al. (2011) have compiled 10 years of data on
this source, which they separate into clearly defined passive
and active states. Analysis of the passive data shows no
nonstellar contribution, a result that is supported in some cases
by simultaneous spectroscopy. However, the amplitude of the
ellipsoidal variability requires an extreme inclination of ∼90◦.
The X-ray data are sparse enough that an eclipse geometry
cannot be excluded. Therefore, we adopt i ∼ I (80.◦0, 90.◦0).

5.13. XTE J1118+480

There is consensus in the literature that XTE J1118+480 has
a high inclination, in the range 68◦ < i < 81◦. However, there
are a number of factors that make an accurate measurement
challenging. One is a strong superhump modulation in addition
to the ellipsoidal variability (Zurita et al. 2002). Another
complicating aspect is the large and variable NSL fraction:
Wagner et al. (2001) measure an R-band NSL fraction of
0.72 for 2000 November 30 which decreases to 0.64 by
2001 January 4.

Gelino et al. (2006) obtain data in B, V, R, J, H, and K that may
be passive. Their R-band light curve is around 0.8 mag fainter
than that of Wagner et al. (2001), and there is no detectable
superhump period, both indications of less disk activity. They
fit data in all bands simultaneously and constrain the NSL
fraction in each band. They find i = 68◦ ± 2◦. However, the
authors assume there is zero disk contamination in the H band
when fitting the spectral template, an assumption that may be
problematic.

Wagner et al. (2001) measure i = 81◦ ± 2◦ with a star+disk
model using a brighter R-band light curve than that of Gelino
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et al. (2006). This is unusual, because light curves with very high
levels of disk contamination generally cause lower inclination
measurements. However, these data were taken on three separate
occasions between 2000 December 14 and 2001 January 9,
during which time the measured R-band disk fraction varied
significantly. Moreover, the light curve consists of 68 exposures
that were binned in 25 phase bins. The combination of binning
small amounts of data taken weeks apart during a period of
intense disk activity may lead to an unrepresentative light-curve
shape.

McClintock et al. (2001) also measure a very high inclination,
finding a best fit i = 80◦ for a disk fraction of 0.66. However,
they acknowledge uncertainty in the NSL fraction and set a
lower limit i > 40◦ for zero disk light.

The most extensive study of ellipsoidal variability in XTE
J1118+480 is that of Zurita et al. (2002). They obtain
R-band photometry on 53 unique nights between 2000
December and 2001 June. They observe a steady decrease in
magnitude over this time interval, so they detrend the light curve
by subtracting the average nightly flux. This light curve shows
evidence of superhump modulation and may be distorted by
flickering on sub-orbital timescales. They infer an NSL fraction
for the detrended light curve by extrapolating the 2001 April
measurement of Wagner et al. (2001) and assuming the decline
in brightness is due to a decrease in disk flux. Using the ex-
trapolated NSL fraction, they find an inclination in the range
71◦ < i < 82◦.

None of the inclination measurements discussed above are
free of significant systematic sources of error; they are, however,
reasonably consistent. We adopt the full range of inclination
estimates obtained for this object, taking i ∼ I (68.◦0, 82.◦0).

5.14. XTE J1550−564

Orosz et al. (2011) determine the inclination of XTE
J1550−564 using photometry and spectroscopy obtained be-
tween 2001 and 2008. The photometric observations include
optical data from 2001 June and NIR data taken between 2006
and 2008. The measured V- and R-band NSL fractions are
0.3 and 0.39 using 2001 and 2008 spectroscopy, respectively.
There are definite changes in the NIR light-curve shape be-
tween 2006–2007 and 2008, so it unlikely that the 2008 NSL
fraction measurement is valid for the 2006–2007 observations.
It is also unlikely that the 2001 NSL fraction is valid for any
of the NIR observations. Orosz et al. (2011) acknowledge this
uncertainty, but fit the data using eight different combinations
of light curves and NSL fractions. There are four data subsets:
optical data only, optical data and 2006–2007 NIR data, optical
data and 2008 NIR data, and all optical and NIR data. Each
subset is fit separately for both NSL fraction measurements.
The model includes a disk with four free parameters: radius,
flaring angle, inner radius temperature, and temperature pro-
file. The lowest χ2

red is obtained using the optical light curves
from 2001 and the 2008 NSL fraction. However, as discussed in
Section 3.3, using NSL fractions determined at a different time
from the observations produces unreliable inclination measure-
ments. Nevertheless, the range of inclination measurements
from all eight combinations is reasonably narrow: 57.◦7 < i <
77.◦1. Because we do not know which of the combinations is
most appropriate, we adopt i ∼ I (57.◦7, 77.◦1) as our estimate
of inclination. We followed the same reasoning to obtain an
estimate for the mass ratio, assuming q is uniformly distributed
between the minimum and maximum values found by Orosz
et al. (2011).

5.15. XTE J1650−500

Orosz et al. (2004) determine the inclination of J1650−500
with R-band photometry obtained between 2003 May and
August. The authors set a lower limit on inclination of i > 50◦
by fitting a star-only model. Orosz et al. (2004) also attempt
to constrain the NSL fraction using spectroscopy from 2002
June, tentatively finding disk contamination near 0.8 in the R
band. There is no indication, however, that this measurement
is applicable to the 2003 photometry. No χ2

red is given for the
star-only fit, but we infer that the source was active for the 2003
observations because there appears to be more scatter in the
folded light curve than one expects due to photometric error. We
therefore assume the source was active and scale the lower limit
ı̂ = 50◦ according to Section 4, which implies i ∼ N (75.◦2, 5.◦9).

5.16. XTE J1859+226

Corral-Santana et al. (2011) obtain R-band photometry on
2008 July 31–August 1 and 2010 July 13–14. They compare this
data to the 2002 R-band light curve of Zurita et al. (2002) and find
an increase in brightness of ∼0.25 from 2002 to 2008 and ∼1.0
from 2002 to 2010. No clear ellipsoidal modulation is detectable
in the 2010 data, but the 2000 and 2008 data show variability
with amplitude 0.3–0.4 mag, consistent with the passive state.
Corral-Santana et al. (2011) find that a star-only model with
i = 60◦ reproduces these data. We therefore adopt this value as
representative of the passive state, and estimate i = 60◦ ± 3.◦0.

6. THE BLACK HOLE MASS DISTRIBUTION

We now analyze the mass distribution of BHs using the orbital
parameters and new inclination estimates listed in Table 2.
Previous analyses of the mass distribution indicate that there is a
“mass gap,” or dearth of BHs, between the maximum theoretical
neutron star mass (≈ 3 M�) and the minimum BH mass (Bailyn
et al. 1998; Özel et al. 2010; Farr et al. 2011). The presence of
a mass gap has important implications for the physics of BH
formation, as discussed by Belczynski et al. (2012).

Based on our arguments in Section 5 that many of these
published masses may be overestimates, it is plausible that the
mass gap inferred in earlier work is the result of systematic errors
in mass measurements. Using the revised system parameters in
Table 2, we show in Section 6.3 that there is no evidence of a
mass gap, even when using models of the BH mass distribution
that give strong evidence for a gap in previous analyses.
We demonstrate in Section 6.3 that this conclusion rests on
the properties of one system in our sample, GRO J0422+32.
However, it is not clear that the inclination correction we have
identified by analogy to A0620−00 is entirely appropriate for
this system; we discuss this issue in Section 6.3.1. Further
observations of the system will be needed to settle this question.

6.1. Statistical Methods

To address the impact of systematic error in the mass
distribution, we repeat a subset of the Bayesian analysis in
Farr et al. (2011) using the adjusted inclination measurements
discussed in Section 5. Using the distributions of system
parameters from Table 2, we can compute the probability
distribution for the true mass of each system. Figure 7 shows
these distributions for all 16 BHSXTs.
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Figure 7. Kernel density estimates of the probability distributions for black hole mass implied by the system parameters in Table 2 (solid lines). The distributions
implied by the system parameters used in Farr et al. (2011) are also shown (dashed lines). Each panel is normalized so that the probability distributions integrate to 1.

For a set of parameters, θ , governing the underlying BH mass
distribution and observational data, D, Bayes’ rule states

P (θ | D) = P (D | θ )P (θ )

P (D)
. (8)

Here P (θ |D), called the posterior, is the probability of obtaining
particular values for θ given the observational data, D. P (D | θ )
called the likelihood, is the probability of obtaining the observed
data, D, when the underlying mass distribution is described
by parameters θ . P (θ ), called the prior, is the probability
distribution one would expect for the parameters before seeing
the data. P (D), called the evidence, is a normalization constant
that ensures that the posterior is a proper probability distribution
on parameter space.

Our data D are the set of probability distributions for the
underlying masses derived from the observations discussed in
Section 5 and displayed in Figure 7. Write Pi(mBH) for the
distribution of masses in system i. We assume that the mass
measurements for the 16 systems are independent; then the
likelihood is given by

P (D | θ ) =
∏

i

∫
P (mBH | θ )Pi(mBH)dmBH. (9)

It is possible to evaluate the posterior in Equation (8) directly for
various values of the parameters, θ . However, this calculation
is computationally expensive in multi-dimensional parameter
space. As a more efficient alternative, we draw parameter
samples from the posterior distribution via Markov Chain Monte
Carlo methods (Metropolis et al. 1953; Farr et al. 2011). Given
a set of samples, {θi}, one can compute probability distributions
for individual parameters by histogram and can approximate
posterior-weighted integrals over parameter space by sums

〈f (θ )〉p(θ |D) =
∫

dθ f (θ )p(θ | D) ≈ 1

N

∑
i

f (θi). (10)

6.2. Model

We focus on the power-law model from Farr et al. (2011,
Equation (7)) because it was the most-favored model for the
LMXB mass distribution out of the 10 considered in that work.5

5 We have verified that the qualitative behavior of the mass gap described in
this section is present for the other models of the LMXB mass distribution
considered in Farr et al. (2011).
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Figure 8. Marginalized mass distribution, Equation (15), for the power-law
mass distribution model (Equation (11)). The solid curve from an analysis using
the system parameters in Table 2; the dotted curve from an analysis with the
parameters from Table 2, but excluding GRO J0422+32 from the sample; the
dashed curve comes from an analysis with system parameters from Table 2, but
excluding 4U 1543−47 from the sample; and the dot-dashed curve comes from
the analysis using the system parameters of Farr et al. (2011). The analysis using
parameters from Table 2 shows significant support in the gap region, but this
conclusion depends strongly on the updated parameters for GRO J0422+32.

The power-law model has

P (mBH|{Mmin,Mmax, α}) =
{
Amα

BH Mmin � mBH � Mmax

0 otherwise
,

(11)
with parameters

θ = {Mmin,Mmax, α}. (12)

The normalization constant, A, is

A = 1 + α

M1+α
max − M1+α

min

. (13)

We use uniform priors on Mmin, Mmax > Mmin, and α within
broad ranges that allow for BH masses up to 40 M�:

P (θ ) =
{

2 1
402

1
28 0 � Mmin � Mmax � 40,−15 � α � 13

0 otherwise
.

(14)

In the analysis of Farr et al. (2011), the power-law model
had strong evidence of a mass gap between the theoretical
maximum mass of the heaviest neutron stars (∼3 M�) and the
mass of the lightest BHs, defined as the 1% quantile (M1%) of
the mass distribution in Equation (11). Farr et al. (2011) had
M1% > 4.3 M� with 90% confidence for the power-law model.

6.3. The Mass Gap

With the revised system parameters in Table 2, there are
two systems whose mass distribution peaks below 4 M�: 4U
1543−47 and GRO J0422+32. Thus, it is not surprising that the
expected mass distribution under the power-law model, defined
by

〈P 〉(mBH) ≡
∫

dθP (mBH | θ )P (θ | D) (15)
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Figure 9. Distribution of the 1% mass quantile, M1%, in the power-law model
implied by the analysis with system parameters from Table 2 (solid line);
parameters from Table 2, but excluding GRO J0422+32 (dotted line); parameters
from Table 2, but excluding 4U 1543−47 (dashed line); and parameters from
Farr et al. (2011; dot-dashed line). For the complete set of parameters from
Table 2, and this set excluding 4U 1543−47, the range of likely minimum black
hole masses extends through the gap (M1% � 4 M�); when GRO J0422+32 is
excluded the minimum black hole mass is equivalent to the analysis from Farr
et al. (2011).

gains support in the mass gap. That is, the existence of two
sources whose mass distribution is strongly peaked below 4 M�
necessarily requires that the overall mass distribution not be zero
in that region. In Figure 8, we show the 〈P 〉(mBH) implied by
the Farr et al. (2011) analysis and the 〈P 〉(mBH) implied by the
system parameters in Table 2. Interestingly, the extra support
in the gap region is due almost completely to the shift in the
mass distribution of GRO J0422+32; in Figure 8 we also show
〈P 〉(mBH) with parameters from Table 2, but excluding GRO
J0422+32 from the sample, and similarly for excluding 4U
1543−47. When 4U 1543−47 is excluded from the analysis,
the curve is essentially the same as when the entire set of 16
systems is analyzed, while excluding GRO J0422+32 produces
a curve that is very close to that of Farr et al. (2011).

Another way to address the presence of the mass gap is to
examine the posterior probability distribution of the 1% mass
quantile, M1%. Figure 9 shows this distribution from the Farr
et al. (2011) parameter values, the updated parameters in Table 2,
and using the updated parameters but excluding 4U 1543−47 or
GRO J0422+32. The analysis using the complete set of systems
from Table 2 has significant probability for M1% � 3 M�; so
does the analysis with parameters from Table 2, but excluding
4U 1543−47. On the other hand, the analysis with parameters
from Farr et al. (2011) and Table 2, but excluding GRO
J0422+32, have M1% � 4.3 M� with 90% confidence. Thus,
the presence or absence of a mass gap depends strongly on
the properties of the mass distribution for GRO J0422+32. In
addition, if in the future the mass distribution of 4U 1543−47
were constrained to a narrow peak near the low-mass end of
its current distribution, this system would also provide strong
evidence against a mass gap. Because the continued evidence for
or against the mass gap may depend on the constraints on these
systems from future observations, we next discuss the current
status of observations of these systems in more detail.
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Figure 10. Variation in the 16% quantile of J0422+32’s mass distribution, m16%,
with the assumed peak of the inclination distribution for this object. m16% is a
rough proxy for the peak of the M1% distribution (see Figure 9). As long as the
inclination of J0422+32 is peaks at i � 45◦ we expect to obtain no evidence for
a mass gap.

6.3.1. GRO J0422+32

The inclination of GRO J0422+32 hinges on whether this
source is generally observed in an active state, and whether that
active state biases the inclination measurements in a similar way
to that of A0620−00. GRO J0422+32 is an unusual system and
different in several ways from A0620−00. For example, it does
not appear to exhibit a soft state during outburst (Sunyaev et al.
1993). The source also exhibited bright radio emission for nearly
a year (Shrader et al. 1994), in contrast to a timescale of months
for A0620−00 and other sources (Kuulkers et al. 1999). GRO
J0422+32 has also shown noticeable variability in quiescence,
with ellipsoidal modulations visible only some of the time (e.g.,
Gelino & Harrison 2003; Reynolds et al. 2007). It has one of
the smallest orbital periods, one of the coolest companion stars,
and an extreme mass ratio. Therefore, the ratio of flux from the
companion star to that of the disk is expected to be small, and
we thus expect that systematic effects due to neglecting the NSL
fraction will be pronounced for this system.

If the typical measurements of i ∼ 45◦ for GRO J0422+32
are correct, then the previously identified mass gap still exists.
However, if the analogy with A0620−00 is correct, then the
inclination must be significantly larger. In this case, the compact
object in this system must be roughly between 2 and 3 solar
masses, which effectively fills the mass gap (see the relevant
panel in Figure 7). In Figure 10, we show how the 16%
quantile of J0422+32’s mass distribution varies as its inclination
distribution’s mean varies from the previously accepted value
to the value in Table 2, holding the width of the inclination
distribution fixed. The 16% quantile approximately tracks the
peak of the M1% distribution shown in Figure 9, so we can see
the effect on the mass gap from varying the inclination without
repeating the analysis for each value of i. We expect to obtain
no evidence of a mass gap as long as the inclination distribution
of J0422+32 peaks at i � 45◦.

In many ways, GRO J0422+32 is just the kind of system
one would expect to be heavily biased by nonstellar light.
The secondary star is one of the smallest and coolest of the
entire sample. Therefore, changes in the nonstellar flux will

be reflected strongly in the overall flux of the system. And
indeed, GRO J0422+32 is quite faint in quiescence (R ∼ 21)
and strongly varying light curves are observed at different
times (compare Curry et al. 2003; Gelino & Harrison 2003).
Thus, it seems likely that the observed light curves of this
source are distorted by nonstellar light in ways that change
strongly with time. Whether these distortions conspire to create
significant underestimates in the inclination, as in A0620−00,
is not yet clear. One route to resolving this issue would be to
carry out simultaneous photometry and spectroscopy of GRO
J0422+32, so that the division of stellar and nonstellar light can
be determined for each individual observation, resulting in an
unbiased light curve of stellar light only. However, given the
faintness of this source, such observations will be challenging.

6.3.2. 4U1543−47

The other source which has a mass probability distribution
significantly lower than in previous work is 4U1543−47.
This is because we did not accept the Orosz et al. (2002)
inclination value, since no published light curve accompanied
that report, but rather accepted the earlier, significantly higher
estimate of Orosz et al. (1998). That previous higher inclination
measurement resulted in a significantly smaller BH mass, but
still allowed masses above 4 M�, so the source does not greatly
affect the possibility of a mass gap. However, if the observations
become more precise at the higher inclination value this source
might also be an issue for the mass gap, so we discuss it further
here.

The difficulties with 4U1543−47 are associated primarily
with its low inclination. The sin3 i term in Equation (1) means
that at low inclination very small changes in i create large
changes in the BH mass. Going from the Orosz et al. (2002)
result of i � 20◦ to the previous result centered around i � 30◦
results in a change in the centroid of the probability distribution
of the BH mass of more than a factor of two. At low inclinations,
the amplitude of the ellipsoidal modulation is also quite small
(�0.1 magnitudes in this case), so high precision magnitude
measurements are required. Given that errors of a few degrees in
inclination determinations seem inevitable, it may prove difficult
to pin down the inclination of 4U 1543−47 sufficiently tightly
to fully resolve the issue.

4U 1543−47 does have some observational advantages,
however. It is one of the three sources (with SAX 1819.3−2525
and GRO J1655−40) that have early-type secondaries. These
systems all have very regular ellipsoidal variations in the
passive state, with very little nonstellar light; this is presumably
because the relatively hot secondary stars are particularly bright.
Like the other early secondary systems, 4U1543−47 is quite
bright in quiescence (V ∼ 15) so that also makes the system
easy to study. There is one technical difficulty in studying
4U1543−47: it is in the wings of an even brighter star, but
this can be dealt with through appropriate use of point-spread
function fitting techniques. A long-term photometric data set
for this source, similar to those for A0620−00 (C10) and
SAX1819.3−2525 (MacDonald et al. 2011) has been obtained
and is currently being analyzed.

6.4. Discussion

A resolution of the specific situation of GRO J0422+32 and
4U1543−47 will be required to determine whether a true mass
gap exists in the BHSXT mass distribution. However, even if
these two objects do prove to have M < 4 M�, it is still true
that the mass distribution rises from the low-mass end. Thus, the
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relative paucity of low-mass BHs in these systems still requires
an explanation. The peak of the mass distribution appears to be
around 8 M�, slightly higher than in the previous analysis by
Farr et al. (2011). The new analysis also confirms another aspect
of the previous analysis, namely, a sharp cutoff above 10 M�.
This is quite different for the BHSXT BH distribution than for
the wind-fed systems with Mstar > MBH (e.g., Cyg X-1 and
M33 X-7), which often contain much more massive BHs. The
difference presumably arises due to the dramatically different
evolutionary scenarios that create these two kinds of systems
(Valsecchi et al. 2010; Wong et al. 2012). It is important to
avoid combining these two kinds of systems into a single mass
distribution, since there are clearly significant empirical and
evolutionary differences between them.

The characteristics of the BHSXT mass distribution should
provide guidance and constraints for the physics of massive
core collapse. Previous studies have discussed possibilities
for observational biases and/or physical mechanisms that can
explain the characteristics of the low-mass BH distribution in
these systems (Brown et al. 2001; Fryer & Kalogera 2001;
Özel et al. 2010). Most recently, Belczynski et al. (2012) have
carefully assessed how this low-mass tail and the potential
presence of a gap leads to constraints regarding the timescale for
the instability growth that eventually drives the stellar explosion,
as well as the role of binary evolution in affected the BH masses
in low-mass X-ray transients. Our current results, with the
mass gap partially filled in, still provide an empirical basis for
exploring the physical processes considered in these studies,
although the constraints on the explosion timescale will be
weaker.

7. CONCLUSIONS

We have explored the systematic effects of nonstellar light
on the mass estimates of BHs in BHSXTs. We summarize our
conclusions as follows.

1. By examining the case of A0620−00, for which the most
extensive and carefully analyzed data set exists, we find
that observations in the “active” state significantly under-
estimate the inclination of the system, and consequently
overestimate the BH mass. By contrast, observations in the
“passive” state appear to be relatively unbiased toward the
system inclination.

2. We estimate how large such effects might be in other
systems, based on the assumption that the accretion flows
are roughly similar in form, while the temperature of the star
and the relative size of the star and the accretion disk vary
from system to system. The assumption of similar accretion
flows appears to be in good agreement with spectroscopic
measurements of the NSL fractions.

3. We re-examine the literature on the 16 known BHs in SXTs.
The data and analysis of many of these systems have been
aimed at establishing a firm minimum for the mass of the
compact object, since that is what establishes the identity
of the compact object as a BH. When examined from the
point of view of determining accurate inclinations, and thus
accurate BH masses, we identify a number of problematic
issues. These problems stem from the presence of variable
nonstellar light, even in the IR. The amount of this extra
flux can vary significantly from one observation run to
another, and thus it is not safe to use a measurement of
stellar light fraction from one time to calibrate photometric
observations made at another time. The nonstellar light also

appears to vary with orbital phase, so the assumption that it
is a flat “dilution” of the ellipsoidal variations is not always
true. Significant variability also means that phase binning
over long periods of time may result in a light curve that is
unrepresentative of the underlying ellipsoidal variations.

4. When we apply a consistent set of criteria to the existing
literature on BHSXTs, we find that two objects, GRO
J0422+32 and 4U1543−47, may have small BH masses
(below 4–5 M�, see Figure 7). Specifically, the low mass
required for GRO J0422+32 eliminates the mass gap
identified in previous work on the BH distribution. But
this result depends on the active state of GRO J0422+32
biasing the inclination measurement in the same way
as in A0620−00. While this seems plausible, additional
observational work will be required to assess whether the
active state is indeed biasing the BH mass in this system. We
note that if GRO J0422+32 is excluded from the analysis
presented here, the results from previous studies, including
the mass gap, are reproduced quite closely.

5. However, even if GRO J0422+32 (and possibly
4U1543−47) do fall into the purported mass gap, the basic
features of the mass distribution of BHSXTs remain: there
are relatively few low-mass (<5 M�) BHs, there is a peak
in the distribution around 7–8 M� and a sharp drop-off in
numbers beyond 10 M�. This distribution is quite different
from the “high-mass” BH binary systems, and provides in-
teresting constraints on the supernovae and binary evolution
processes that create BHSXTs.
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Özel, F., Psaltis, D., Narayan, R., & McClintock, J. E. 2010, ApJ, 725, 1918
Remillard, R. A., Orosz, J. A., McClintock, J. E., & Bailyn, C. D. 1996a, ApJ,

459, 226
Remillard, R. A., Orosz, J. A., McClintock, J. E., & Bailyn, C. D. 1996b, ApJ,

459, 226
Reynolds, M. T., Callanan, P. J., & Filippenko, A. V. 2007, MNRAS, 374, 657
Reynolds, M. T., Callanan, P. J., Robinson, E. L., & Froning, C. S.

2008, MNRAS, 387, 788
Sanwal, D., Robinson, E. L., Zhang, E., et al. 1996, ApJ, 460, 437
Shahbaz, T., Naylor, T., & Charles, P. A. 1994, MNRAS, 268, 756
Shahbaz, T., van der Hooft, F., Casares, J., Charles, P. A., & van Paradijs, J.

1999, MNRAS, 306, 89
Shahbaz, T., van der Hooft, F., Charles, P. A., Casares, J., & van Paradijs, J.

1996, MNRAS, 282, L47
Shrader, C. R., Wagner, R. M., Hjellming, R. M., Han, X. H., & Starrfield,

S. G. 1994, ApJ, 434, 698
Sunyaev, R. A., Kaniovsky, A. S., Borozdin, K. N., et al. 1993, A&A, 280, L1
Timmer, J., & Koenig, M. 1995, A&A, 300, 707
Valsecchi, F., Glebbeek, E., Farr, W. M., et al. 2010, Nature, 468, 77
van der Hooft, F., Groot, P. J., Shahbaz, T., et al. 1997, MNRAS, 286, L43
van der Hooft, F., Heemskerk, M. H. M., Alberts, F., & van Paradijs, J. 1998,

A&A, 329, 538
Wagner, R. M., Foltz, C. B., Shahbaz, T., et al. 2001, ApJ, 556, 42
Wagner, R. M., Kreidl, T. J., Howell, S. B., & Starrfield, S. G. 1992, ApJ, 401,

L97
Webb, N. A., Naylor, T., Ioannou, Z., Charles, P. A., & Shahbaz, T.

2000, MNRAS, 317, 528
Wong, T.-W., Valsecchi, F., Fragos, T., & Kalogera, V. 2012, ApJ, 747, 111
Zurita, C., Sánchez-Fernández, C., Casares, J., et al. 2002, MNRAS, 334, 999

17

http://adsabs.harvard.edu/abs/1998A&A...329..606D
http://adsabs.harvard.edu/abs/1998A&A...329..606D
http://dx.doi.org/10.1088/0004-637X/741/2/103
http://adsabs.harvard.edu/abs/2011ApJ...741..103F
http://adsabs.harvard.edu/abs/2011ApJ...741..103F
http://dx.doi.org/10.1086/316413
http://adsabs.harvard.edu/abs/1999PASP..111..969F
http://adsabs.harvard.edu/abs/1999PASP..111..969F
http://dx.doi.org/10.1086/176609
http://adsabs.harvard.edu/abs/1995ApJ...455..614F
http://adsabs.harvard.edu/abs/1995ApJ...455..614F
http://dx.doi.org/10.1086/133902
http://adsabs.harvard.edu/abs/1997PASP..109..461F
http://adsabs.harvard.edu/abs/1997PASP..109..461F
http://adsabs.harvard.edu/abs/2002apa..book.....F
http://dx.doi.org/10.1086/319963
http://adsabs.harvard.edu/abs/2001AJ....121.2212F
http://adsabs.harvard.edu/abs/2001AJ....121.2212F
http://dx.doi.org/10.1086/321359
http://adsabs.harvard.edu/abs/2001ApJ...554..548F
http://adsabs.harvard.edu/abs/2001ApJ...554..548F
http://dx.doi.org/10.1086/500924
http://adsabs.harvard.edu/abs/2006ApJ...642..438G
http://adsabs.harvard.edu/abs/2006ApJ...642..438G
http://dx.doi.org/10.1088/0004-637X/718/1/1
http://adsabs.harvard.edu/abs/2010ApJ...718....1G
http://adsabs.harvard.edu/abs/2010ApJ...718....1G
http://dx.doi.org/10.1086/379311
http://adsabs.harvard.edu/abs/2003ApJ...599.1254G
http://adsabs.harvard.edu/abs/2003ApJ...599.1254G
http://dx.doi.org/10.1086/321159
http://adsabs.harvard.edu/abs/2001AJ....122..971G
http://adsabs.harvard.edu/abs/2001AJ....122..971G
http://dx.doi.org/10.1086/586888
http://adsabs.harvard.edu/abs/2008ApJ...679..732G
http://adsabs.harvard.edu/abs/2008ApJ...679..732G
http://adsabs.harvard.edu/abs/1990IBVS.3464....1G
http://adsabs.harvard.edu/abs/1990IBVS.3464....1G
http://dx.doi.org/10.1086/321411
http://adsabs.harvard.edu/abs/2001ApJ...554.1290G
http://adsabs.harvard.edu/abs/2001ApJ...554.1290G
http://dx.doi.org/10.1038/35107019
http://adsabs.harvard.edu/abs/2001Natur.414..522G
http://adsabs.harvard.edu/abs/2001Natur.414..522G
http://adsabs.harvard.edu/abs/1999A&A...341..491H
http://adsabs.harvard.edu/abs/1999A&A...341..491H
http://dx.doi.org/10.1051/0004-6361:20031754
http://adsabs.harvard.edu/abs/2004A&A...414L..13H
http://adsabs.harvard.edu/abs/2004A&A...414L..13H
http://dx.doi.org/10.1086/133799
http://adsabs.harvard.edu/abs/1996PASP..108..762H
http://adsabs.harvard.edu/abs/1996PASP..108..762H
http://dx.doi.org/10.1086/118548
http://adsabs.harvard.edu/abs/1997AJ....114.1170H
http://adsabs.harvard.edu/abs/1997AJ....114.1170H
http://dx.doi.org/10.1086/172884
http://adsabs.harvard.edu/abs/1993ApJ...411..802H
http://adsabs.harvard.edu/abs/1993ApJ...411..802H
http://dx.doi.org/10.1086/431966
http://adsabs.harvard.edu/abs/2005ApJ...630..405H
http://adsabs.harvard.edu/abs/2005ApJ...630..405H
http://dx.doi.org/10.1086/380215
http://adsabs.harvard.edu/abs/2004AJ....127..481I
http://adsabs.harvard.edu/abs/2004AJ....127..481I
http://dx.doi.org/10.1088/0004-637X/716/2/1105
http://adsabs.harvard.edu/abs/2010ApJ...716.1105K
http://adsabs.harvard.edu/abs/2010ApJ...716.1105K
http://dx.doi.org/10.1046/j.1365-8711.1999.02578.x
http://adsabs.harvard.edu/abs/1999MNRAS.306..919K
http://adsabs.harvard.edu/abs/1999MNRAS.306..919K
http://adsabs.harvard.edu/abs/1967ZA.....65...89L
http://adsabs.harvard.edu/abs/1967ZA.....65...89L
http://adsabs.harvard.edu/abs/2011BAAS...4314420M
http://adsabs.harvard.edu/abs/2011BAAS...4314420M
http://adsabs.harvard.edu/abs/1994MNRAS.266..137M
http://adsabs.harvard.edu/abs/1994MNRAS.266..137M
http://adsabs.harvard.edu/abs/1995MNRAS.274L..46M
http://adsabs.harvard.edu/abs/1995MNRAS.274L..46M
http://dx.doi.org/10.1086/321449
http://adsabs.harvard.edu/abs/2001ApJ...555..477M
http://adsabs.harvard.edu/abs/2001ApJ...555..477M
http://dx.doi.org/10.1063/1.1699114
http://adsabs.harvard.edu/abs/1953JChPh..21.1087M
http://adsabs.harvard.edu/abs/1953JChPh..21.1087M
http://dx.doi.org/10.1038/371046a0
http://adsabs.harvard.edu/abs/1994Natur.371...46M
http://adsabs.harvard.edu/abs/1994Natur.371...46M
http://dx.doi.org/10.1111/j.1365-2966.2007.12599.x
http://adsabs.harvard.edu/abs/2008MNRAS.384..849N
http://adsabs.harvard.edu/abs/2008MNRAS.384..849N
http://dx.doi.org/10.1086/155568
http://adsabs.harvard.edu/abs/1977ApJ...217..181O
http://adsabs.harvard.edu/abs/1977ApJ...217..181O
http://adsabs.harvard.edu/abs/2003IAUS..212..365O
http://dx.doi.org/10.1086/187930
http://adsabs.harvard.edu/abs/1995ApJ...446L..59O
http://adsabs.harvard.edu/abs/1995ApJ...446L..59O
http://dx.doi.org/10.1086/303741
http://adsabs.harvard.edu/abs/1997ApJ...477..876O
http://adsabs.harvard.edu/abs/1997ApJ...477..876O
http://dx.doi.org/10.1086/177698
http://adsabs.harvard.edu/abs/1996ApJ...468..380O
http://adsabs.harvard.edu/abs/1996ApJ...468..380O
http://adsabs.harvard.edu/abs/2000A&A...364..265O
http://adsabs.harvard.edu/abs/2000A&A...364..265O
http://dx.doi.org/10.1086/305620
http://adsabs.harvard.edu/abs/1998ApJ...499..375O
http://adsabs.harvard.edu/abs/1998ApJ...499..375O
http://dx.doi.org/10.1086/321442
http://adsabs.harvard.edu/abs/2001ApJ...555..489O
http://adsabs.harvard.edu/abs/2001ApJ...555..489O
http://dx.doi.org/10.1086/424892
http://adsabs.harvard.edu/abs/2004ApJ...616..376O
http://adsabs.harvard.edu/abs/2004ApJ...616..376O
http://adsabs.harvard.edu/abs/2002BAAS...34.1124O
http://adsabs.harvard.edu/abs/2002BAAS...34.1124O
http://dx.doi.org/10.1088/0004-637X/730/2/75
http://adsabs.harvard.edu/abs/2011ApJ...730...75O
http://adsabs.harvard.edu/abs/2011ApJ...730...75O
http://dx.doi.org/10.1088/0004-637X/725/2/1918
http://adsabs.harvard.edu/abs/2010ApJ...725.1918O
http://adsabs.harvard.edu/abs/2010ApJ...725.1918O
http://dx.doi.org/10.1086/176885
http://adsabs.harvard.edu/abs/1996ApJ...459..226R
http://adsabs.harvard.edu/abs/1996ApJ...459..226R
http://dx.doi.org/10.1086/176885
http://adsabs.harvard.edu/abs/1996ApJ...459..226R
http://adsabs.harvard.edu/abs/1996ApJ...459..226R
http://dx.doi.org/10.1111/j.1365-2966.2006.11180.x
http://adsabs.harvard.edu/abs/2007MNRAS.374..657R
http://adsabs.harvard.edu/abs/2007MNRAS.374..657R
http://dx.doi.org/10.1111/j.1365-2966.2008.13272.x
http://adsabs.harvard.edu/abs/2008MNRAS.387..788R
http://adsabs.harvard.edu/abs/2008MNRAS.387..788R
http://dx.doi.org/10.1086/176981
http://adsabs.harvard.edu/abs/1996ApJ...460..437S
http://adsabs.harvard.edu/abs/1996ApJ...460..437S
http://adsabs.harvard.edu/abs/1994MNRAS.268..756S
http://adsabs.harvard.edu/abs/1994MNRAS.268..756S
http://dx.doi.org/10.1046/j.1365-8711.1999.02481.x
http://adsabs.harvard.edu/abs/1999MNRAS.306...89S
http://adsabs.harvard.edu/abs/1999MNRAS.306...89S
http://adsabs.harvard.edu/abs/1996MNRAS.282L..47S
http://adsabs.harvard.edu/abs/1996MNRAS.282L..47S
http://dx.doi.org/10.1086/174771
http://adsabs.harvard.edu/abs/1994ApJ...434..698S
http://adsabs.harvard.edu/abs/1994ApJ...434..698S
http://adsabs.harvard.edu/abs/1993A&A...280L...1S
http://adsabs.harvard.edu/abs/1993A&A...280L...1S
http://adsabs.harvard.edu/abs/1995A&A...300..707T
http://adsabs.harvard.edu/abs/1995A&A...300..707T
http://dx.doi.org/10.1038/nature09463
http://adsabs.harvard.edu/abs/2010Natur.468...77V
http://adsabs.harvard.edu/abs/2010Natur.468...77V
http://adsabs.harvard.edu/abs/1997MNRAS.286L..43V
http://adsabs.harvard.edu/abs/1997MNRAS.286L..43V
http://adsabs.harvard.edu/abs/1998A&A...329..538V
http://adsabs.harvard.edu/abs/1998A&A...329..538V
http://dx.doi.org/10.1086/321572
http://adsabs.harvard.edu/abs/2001ApJ...556...42W
http://adsabs.harvard.edu/abs/2001ApJ...556...42W
http://dx.doi.org/10.1086/186680
http://adsabs.harvard.edu/abs/1992ApJ...401L..97W
http://adsabs.harvard.edu/abs/1992ApJ...401L..97W
http://dx.doi.org/10.1046/j.1365-8711.2000.03608.x
http://adsabs.harvard.edu/abs/2000MNRAS.317..528W
http://adsabs.harvard.edu/abs/2000MNRAS.317..528W
http://dx.doi.org/10.1088/0004-637X/747/2/111
http://adsabs.harvard.edu/abs/2012ApJ...747..111W
http://adsabs.harvard.edu/abs/2012ApJ...747..111W
http://dx.doi.org/10.1046/j.1365-8711.2002.05588.x
http://adsabs.harvard.edu/abs/2002MNRAS.334..999Z
http://adsabs.harvard.edu/abs/2002MNRAS.334..999Z

	1. INTRODUCTION
	2. SOURCES OF SYSTEMATIC ERROR IN MASS DETERMINATION
	3. QUANTIFICATION OF SYSTEMATIC ERROR FOR A0620−00
	3.1. Distribution of Inclination Measurements from Archival A0620−00 Data
	3.2. Distribution of Inclinations from Simulated A0620−00 Light Curves
	3.3. Lessons from A0620−00

	4. GENERALIZATION OF SYSTEMATIC EFFECTS TO OTHER SYSTEMS
	4.1. Dependence of Inclination Measurements on the NSL Fraction
	4.2. Estimating the NSL Fraction Using Orbital Parameters
	4.3. Additional Constraints on Inclination

	5. RE-EVALUATION OF INCLINATION AND MASS ESTIMATES FOR TRANSIENT BLACK HOLE BINARIES
	5.1. 4U 1543−47
	5.2. A0620−00
	5.3. GRO J1655−40
	5.4. GRO J0422+32
	5.5. GRS 1009−45
	5.6. GRS 1124−68
	5.7. GRS 1915+105
	5.8. GS 1354−64
	5.9. GS 2000+25
	5.10. GS 2023+338
	5.11. H1705−250
	5.12. SAX J1819.3−2525
	5.13. XTE J1118+480
	5.14. XTE J1550−564
	5.15. XTE J1650−500
	5.16. XTE J1859+226

	6. THE BLACK HOLE MASS DISTRIBUTION
	6.1. Statistical Methods
	6.2. Model
	6.3. The Mass Gap
	6.4. Discussion

	7. CONCLUSIONS
	REFERENCES

