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ABSTRACT

A unique feature of deflagration-to-detonation (DDT) white dwarf explosion models of supernovae of type Ia is the
presence of a strong shock wave propagating through the outer envelope. We consider the early emission expected
in such models, which is produced by the expanding shock-heated outer part of the ejecta and precedes the emission
driven by radioactive decay. We expand on earlier analyses by considering the modification of the pre-detonation
density profile by the weak shocks generated during the deflagration phase, the time evolution of the opacity, and
the deviation of the post-shock equation of state from that obtained for radiation pressure domination. A simple
analytic model is presented and shown to provide an acceptable approximation to the results of one-dimensional
numerical DDT simulations. Our analysis predicts a ∼103 s long UV/optical flash with a luminosity of ∼1 to
∼3 × 1039 erg s−1. Lower luminosity corresponds to faster (turbulent) deflagration velocity. The luminosity of
the UV flash is predicted to be strongly suppressed at t > tdrop ∼ 1 hr due to the deviation from pure radiation
domination.
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1. INTRODUCTION

The majority of normal type Ia supernova (SN Ia) explosions
are commonly assumed to be driven by unstable thermonuclear
burning of Chandrasekhar mass C/O white dwarfs (WDs). A key
open question is whether the nuclear burning front propagates
as a subsonic deflagration or as a supersonic detonation wave
(e.g., Hillebrandt & Niemeyer 2000, for review). The existence
of a deflagration phase is inferred to be required in these models
to allow the progenitor to expand prior to its consumption by nu-
clear burning, in order to avoid the almost exclusive production
of iron-peak nuclei that would result from a pure supersonic det-
onation (Nomoto et al. 1976, 1984; Woosley & Weaver 1986).
Both strongly turbulent deflagration models (Ivanova et al. 1974;
Nomoto et al. 1984) and delayed-detonation models, in which
a deflagration wave spontaneously transforms into a detonation
wave (Woosley 19903; Khokhlov 1991; Yamaoka et al. 1992;
Khokhlov et al. 1993; Arnett & Livne 1994a, 1994b; Woosley
& Weaver 1994; Höflich et al. 1995; Höflich & Khokhlov 1996;
Iwamoto et al. 1999), are argued to be consistent with obser-
vations of intermediate-mass elements in the spectra of type
Ia SN.

Sub-Chandrasekhar mass progenitors do not reach the critical
density and pressure for explosive carbon burning by accretion
and need to be ignited by an external trigger. Detonation in
an accreted He layer was suggested to trigger a secondary
detonation in the Carbon core which ultimately explodes the
whole progenitor (Weaver & Woosley 1980; Woosley et al.
1980; Nomoto 1980, 1982; Sutherland & Wheeler 1984; Iben
& Tutukov 1984). Such explosion models are characterized by
an ejecta structure where an outer layer of high-velocity Ni and
He is external to a layer of intermediate-mass elements and an
inner iron core (Hillebrandt & Niemeyer 2000). It is still under
debate whether such models are compatible with observations
of normal type Ia SN (Nugent et al. 1997; Kromer et al. 2010;

3 Similar to a model previously proposed by A. M. Khokhlov.

Woosley & Kasen 2011). On the other hand, they may naturally
explain the statistics of subluminous type Ia SN (Yungelson &
Livio 1998).

If a detonation wave is formed, it sends a shock wave through
the edge of the star. The detonation wave is transformed into
an ordinary shock wave, behind which thermonuclear burning
does not release much energy, at densities ∼106 g cm−3 (e.g.,
Piro et al. 2010), where the thickness of the burning layer
becomes comparable to the scale height. Unique signatures of
the presence of a strong shock are an X-ray outburst, which
is expected to be produced when the shock breaks out from
the stellar edge (Colgate 1974; Falk 1978; Klein & Chevalier
1978), and early UV-optical emission, which is produced by
the expanding and cooling shock heated outer shells of the
progenitor (Falk 1978) and precedes the emission powered by
radioactive decay.

The observed properties of the shock breakout were investi-
gated using analytic order of magnitude estimates (e.g., Matzner
& McKee 1999; Katz et al. 2010; Piro et al. 2010; Nakar & Sari
2010) and numerical calculations for particular progenitors (e.g.,
Ensman & Burrows 1992; Blinnikov et al. 2000; Utrobin 2007;
Höflich & Schaefer 2009; Tominaga et al. 2009; Tolstov 2010;
Dessart et al. 2011; Kasen et al. 2011). An exact description of
the time-dependent radiation emission for non-relativistic shock
breakout from a general progenitor (without an optically thick
wind) has been recently provided in Sapir et al. (2011) and Katz
et al. (2012). This description is accurate during the “planar
phase” of the expansion that is as long as the distance traveled
by the expanding shells is small compared with the progenitor’s
radius. Approximate analytic descriptions of the emission dur-
ing the later “spherical phase,” when the shells expand to radii
much larger than the original radius of the progenitor, were
given by several authors (e.g., Chevalier 1992; Waxman et al.
2007; Chevalier & Fransson 2008; Rabinak & Waxman 2011;
Nakar & Sari 2010). The recent analysis of Rabinak & Waxman
(2011) provides an approximate analytic description including
the effects of opacity variations due to recombination, which
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are of particular importance for compact progenitors with hy-
drogen poor envelopes, and a method for inferring the relative
extinction directly from the UV/O light curves.

The early emission from a WD undergoing a deflagration-to-
detonation (DDT) explosion was recently discussed by Nakar &
Sari (2010), who gave general order of magnitude estimates, and
by Piro et al. (2010), who used a more realistic description of the
propagation of the detonation wave. In this paper, we improve on
the existing analyses of breakouts in C/O WD DDT models of
Ia SNe by taking into consideration three effects that have not
been addressed earlier: the modification of the pre-detonation
density profile by the weak shocks generated during the defla-
gration phase, the time evolution of the opacity due to recom-
bination, and the deviation of the post-shock equation of state
(EOS) from that obtained assuming the pressure to be purely
contributed by radiation (neglecting the plasma contribution).

A note is in place here regarding the third effect. During the
“spherical phase” the radius r and density ρ of the radiation
emitting shells at some given time t is essentially determined by
the expansion velocity v and by the opacity κ (r ∼ vt , τ ∼ κρr),
and largely independent of the initial radius of the progenitor R∗.
The initial post-shock pressure of the radiation emitting shells is
∼ρ0v

2, where ρ0 ∼ (r/R∗)3ρ is the initial density. This implies
that the initial ratio of radiation pressure, aT 4 ∼ ρ0v

2, to plasma
pressure, ∼ρ0T/μ, is ∝ ρ

−1/4
0 ∝ R

3/4
∗ . Thus, while neglecting

that the plasma pressure is an excellent approximation for large
(core-collapse SN) progenitors, it is not a good approximation
for SN Ia progenitors. As we show below, taking into account
the deviation from pure radiation domination leads to strong
suppression of the flux at t > tdrop ∼ 1 hr.

The properties of the emission during both the planar phase
and the spherical phase are not very sensitive to the initial
density profile (Sapir et al. 2011; Katz et al. 2012; Rabinak
& Waxman 2011). We therefore discuss first, in Section 2.1,
the opacity and EOS effects using a simple analytic model for
the spherical phase emission, assuming a power-law dependence
of the progenitor’s density on distance from the stellar surface
and a simple self-similar description of the shock propagation
(we include in Section 2.1.2 also a derivation of tdrop using
a more realistic description). The planar phase, which is not
much affected by the opacity and EOS effects and lasts for
�0.1 s for the compact SN Ia progenitors, is briefly discussed
in Section 2.2. We then discuss, in Sections 3 and 4, the
effect of deviations from the simple description of Section 2.1,
using detailed hydrodynamical models of DDT explosions.
The numerical models are described in Section 3, and the
emission properties are described in Section 4. Our results are
summarized and discussed in Section 5.

2. SIMPLE ANALYTIC ESTIMATES

2.1. The Spherical Phase

For the analysis of this section, we assume that the shock
accelerates down the density gradient following the self-similar
solution of Gandel’Man & Frank-Kamenetskii (1956) and
Sakurai (1960), v ∝ ρ

−β

0 with β = 0.19. This description
of the shock velocity is valid for explosions in which the energy
is released at small radii, r � R∗ (see Matzner & McKee
1999), i.e., ignoring the fact that part of the energy is released
by nuclear burning at large radii. The distributed energy release
is accurately described in our numerical analysis (Sections 3
and 4). As we show there, the simple model described in this
section provides an acceptable description of the velocity profile
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Figure 1. Pressure and velocity as function of electron-scattering optical depth
obtained from the simulations (solid lines) at ts = 100 s, compared to the
analytic estimates of Rabinak & Waxman (2011, dashed lines) and Piro et al.
(2010, dash-dotted, corrected as explained in the text preceding Equation (13)).
Line colors correspond to different simulation parameters as given in Table 1.
“×” marks indicate the position where the radiation and gas pressure are equal.

(A color version of this figure is available in the online journal.)

of the ejecta, and a rough description of the pressure profile in
regions where radiation dominates the pressure (see Figure 1).

The early, t < 1 day, emission from SNe is dominated
by the outer �10−3 M� shells of the progenitor, which are
heated by the SN shock and are emitting radiation while
expanding and cooling. We discuss the opacity and EOS effects
in Sections 2.1.1 and 2.1.2, respectively, using the analytic
model of Rabinak & Waxman (2011). This simple model’s
assumptions are that the initial density profile of the progenitor is
given by a power law of the form ρ0 ∝ δn where δ = (R∗/ri −1)
and ri is the initial radius of the shell, that the post-shock
energy density is dominated by radiation and that the post-
shock expansion is adiabatic. Since the results are not sensitive
to the value of n, we adopt below n = 3 (the value obtained for
non-degenerate radiative envelopes).

The model assumptions are similar to those used in other
analytic studies of the early emission (e.g., Chevalier 1992;
Waxman et al. 2007; Chevalier & Fransson 2008; Rabinak &
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Waxman 2011; Nakar & Sari 2010). We use the Rabinak &
Waxman (2011) analysis since it includes a realistic description
of the opacity (beyond the Thomson opacity of fully ionized
plasma used in other analyses). Another comment is in place
here regarding the various analyses. For the calculation of the
luminosity, the diffusion of radiation below the photosphere is
ignored in Rabinak & Waxman (2011) while it is taken into
account in Chevalier & Fransson (2008) and Nakar & Sari
(2010). As pointed out in Rabinak & Waxman (2011), the
effects of the diffusion on the luminosity are indeed negligible,
and the results obtained with and without diffusion are nearly
identical (e.g., compare Rabinak & Waxman 2011; Nakar & Sari
2010). The effects of diffusion are, on the other hand, important
for determining the spectrum or color temperature. The color
temperatures obtained in Rabinak & Waxman (2011) differ from
those obtained in Nakar & Sari (2010) due to the more accurate
description of the opacity.

2.1.1. Opacity

As long as photospheric temperature is well above the
recombination temperature, the ejecta is nearly fully ionized
and the opacity is time independent and dominated by electron
scattering. At this stage the bolometric luminosity and the
effective temperature are given by (see Equations (13) and (15)
in Rabinak & Waxman 2011)

L(t) = 3.2×1039 E0.85
51 R8.5

f 0.16
ρ (M/1.4 M�)0.69κ0.85

0.2

t−0.31
2 erg s−1, (1)

and

Teff(t) = 3.5 f −0.022
ρ

E0.016
51 R

1/4
8.5

(M/1.4M�)0.03κ0.27
0.2

t−0.47
2 eV. (2)

Here t = 102t2 s is the time after breakout, κ = 0.2κ0.2 cm2 g−1,
M is the ejecta mass, E = 1051E51 erg is the explosion energy,
and fρ is a dimensionless factor of order unity that depends on
the envelope density profile (see Rabinak & Waxman 2011).
Fitting an n = 1.5 profile to the outer 10−2 M� pre-detonation
density profiles of the simulations described in Section 3 gives
0.5 < fρ < 2. The opacity is κ0.2 ≈ 1 + X, where X is the H
mass fraction and R∗ = 108.5R8.5 cm. For DDT explosions of
Chandrasekhar mass progenitors, R8.5 ∼ 1. These simple results
for the luminosity and temperature are compared to numerical
simulations of DDT explosions in Section 4.

The color temperature Tcol is set by photons that can diffuse
and reach the photosphere after thermalizing in an inner layer.
As a result, Tcol is higher than the effective temperature and
is approximately given by Tcol ≈ 1.2Teff (Rabinak & Waxman
2011). Although this result was obtained for explosions of RSG,
BSG, and WR stars, we expect it to hold also for explosions of
Type Ia SNe, since the pressure profile of the Type Ia ejecta
is similar to that obtained in the analytic model presented here
(see Figure 1), and since the composition of the ejecta is similar
to that considered for WR progenitors.

When the photospheric temperature approaches the recombi-
nation temperature of the ejecta, the approximation of constant
opacity is no longer valid and the decline of the opacity, which
is composition dependent, has to be taken into consideration.
For H poor envelopes, the decline in the opacity becomes im-
portant for Teff � 3 eV. The bolometric luminosity for He and
C/O envelopes is given in this regime by (see Equations (25)

and (29) in Rabinak & Waxman 2011)

L[He](t) = 3.1 × 1039 E0.84
51 R0.85

8.5

f 0.15
ρ (M/1.4 M�)0.67

t−0.02
3 erg s−1, (3)

and

L[C/O](t) = 4.4 × 1039 E0.83
51 R0.8

8.5

f 0.14
ρ (M/1.4 M�)0.67

t0.07
3 erg s−1, (4)

respectively (note that these equations correct for typos that
appeared in Equations (25) and (29) in Rabinak & Waxman
(2011), where the subscript of R should be “12” and not “13”
and the exponent of t should be −0.02 and 0.07 and not 0.03
and −0.07, respectively). Here, t = 103t3 s. The effective
temperature is given by (see Equations (23) and (27) in Rabinak
& Waxman 2011)

T
[He]

eff (t) = 1.5 eVf −0.02
ρ R0.2

8.5 t
−0.38
3 (5)

and
T

[C/O]
eff (t) = 1.6 eVf −0.017

ρ R0.19
8.5 t−0.35

3 , (6)

both with very weak dependence on E and M.
The composition of the WD’s outer mass shells at the onset

of the explosion is uncertain. The estimated maximum mass of
H and He shells are �10−5 M� (Shen & Bildsten 2009a) and
�10−3 M� (Iben & Tutukov 1989; Shen & Bildsten 2009b),
respectively. As the diffusion sphere propagates inward to
larger mass shells it may pass through shells with different
compositions. For t2 � 1, the plasma in the photosphere is fully
ionized for all types of compositions, and the luminosity and
temperature are given by Equations (1) and (2), respectively. For
t2 > 3 the photosphere propagates beyond the outer ∼10−5 M�
and the effective temperature drops below 3 eV. At t2 > 3
we therefore expect the radiation to be emitted from shells
dominated by He or C/O, with luminosity and temperature
given by Equations (3) and (5) or (4) and (6), depending on
the composition. For 1 � t2 � 3, the detailed properties of the
emission depend on the amount of H (X as function of mass).
A comparison of Equations (1) and (3) or (4) implies that the
modification of the opacity with time leads to a nearly time-
independent luminosity at t larger than few hundred seconds.

Piro et al. (2010) found L ∼ 3 × 1040t−0.16
3 erg s−1. The time

dependence they obtain is different than ours due to the fact
that opacity evolution is not included in their calculation. The
difference in normalization (their predicted luminosity is ≈10
times larger than ours) is mainly due to an inaccuracy of their
Equation (17) (see comment preceding Equation (13) below).
The luminosity normalization (but not its time dependence)
obtained by Nakar & Sari (2010) is closer to the one obtained
here.

2.1.2. EOS

As long as the pressure, p, is dominated by radiation and the
evolution is adiabatic, the radiation pressure of a given fluid
element declines as p = prad ∝ ρ4/3 ∝ r−4. For shells at which
the pressure is dominated by the plasma, the pressure declines
as p = pgas ∝ ρ5/3 ∝ r−5, which implies, assuming thermal
equilibrium, prad ∝ ρ8/3 ∝ r−8. The faster decline of the
radiation energy density in shells dominated by plasma pressure
implies that once the diffusion front reaches shells dominated
by plasma pressure, a strong suppression of the luminosity is
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expected, by a factor ∼(ρ/ρ0)4/3 ∼ (r/R∗)−4 compared to the
luminosity given in Section 2.1.1, which is calculated assuming
radiation pressure domination. In what follows we estimate the
time tdrop, defined as the time at which the diffusion front reaches
layers in which the plasma pressure is equal to the radiation
pressure.

In the discussion of the preceding paragraph, we have ignored
the possible contribution of recombination to the energy density.
This contribution is small for shells in which radiation pressure
dominates. In these shells the photon number density nγ is
much larger than the electron number density ne (nγ /ne does
not change significantly during adiabatic expansion), so that
although the recombination temperature Trec is a few times
smaller than the ionization energy (due to the low density,
�1 g cm−3), the energy released by recombination is negligible.

For shells in which the post-shock energy density of radi-
ation and plasma is similar, ρ0 	 ρ0,e (see Equation (14)),
nγ ∼ ne, the contribution of recombination to the energy
density (∼Trecne) is significant. In order to estimate the ef-
fect of recombination we have calculated the adiabatic cool-
ing of a gas in thermal equilibrium, using an EOS calcula-
tion as outlined in Cox & Giuli (1968), Timmes & Arnett
(1999), and Timmes & Swesty (2000). We calculated the tem-
perature T after shell expansion, for shells with initial density
105 < ρ0/(1 g cm−3) < 107 and initial post-shock temperature
T0 ∼ 3mpv2/16 ∼ 2 × 105 eV. At t = 3 × 103 the ratio of the
shell’s density ρ to its original density is ρ/ρ0 ∼ (R∗/vt)3 ≈
10−12(R∗/v9)3. For 10−14 < ρ/ρ0 < 10−10, we find (T/T0)4 <
10−3(ρ/ρ0)−4/3, indicating that a strong suppression in the ra-
diation energy density and luminosity are expected at t > tdrop
compared to those obtained assuming radiation pressure dom-
ination (which yields (T/T0)4 = (ρ/ρ0)−4/3). Finally, we note
that the assumption of thermal equilibrium is valid, since for the
range of final densities and temperatures obtained the free–free
absorption time is much smaller than t (note also that the photon
and electron energies are kept similar by Compton scattering, as
the number of collisions required to modify the photon energy
is ∼c/v while the number of collisions a photon undergoes over
a dynamical time is ∼τc/v).

Let us proceed with the calculation of tdrop. Assuming that the
post-shock pressure is dominated by radiation (prad = aT 4/3,
where T is the temperature and a is the radiation constant) and
that the plasma pressure is given by pgas = ρshT/μmp (where
ρsh = [(γ + 1)/(γ − 1)]ρ0 is the post-shock density, mp is the
proton mass, and μ is the molecular weight), and using the
self-similar shock description (assuming an adiabatic index of
γ = 4/3, e.g., Rabinak & Waxman 2011, for details), the post-
shock ratio of radiation to gas pressure is given by

ηsh ≡ prad

pgas
= 1.2 × 103E

3/4
51 (μ/2)

(ρ0/g cm−3)0.53R0.84
8.5 (M/1.4 M�)0.47

(7)

(electron degeneracy pressure and pair production, which were
neglected in this analysis, do not change this result substan-
tially). The post-shock pressure is not dominated by radiation
for

ρ0 � ρ0,e ≡ 6.6 × 105 E1.4
51 (μ/2)1.9

R1.6
8.5(M/1.4 M�)0.89

g cm−3. (8)

Noting that ρ0 < 3M/4πR3, we find that a region in which the
post-shock pressure is not dominated by radiation exists only

for compact progenitors,

R8.5 � 11(M/1.4 M�)4/3E−1
51 (μ/2)−4/3. (9)

Let us next estimate the evolution of the radiation to gas
pressure ratio, η, with time. Assuming adiabatic evolution of an
ideal gas in equilibrium with radiation, the density ρ for which
η = 1 for a shell with post-shock density ρsh and initial pressure
ratio η = ηsh, is

ρ/ρsh = η−1
sh e−8(ηsh−1). (10)

To estimate the time when the diffusion sphere reaches a layer
with η = 1, we use the (time-dependent) density and pressure
profiles of the ejecta given in Rabinak & Waxman (2011),
and use the method described there for determining the (time-
dependent) mass of the shell reached by the diffusion front. For
time-independent opacity we find

tdrop ≈ 5.3 × 103 E0.83
51 R1.1

8.5κ
0.5
0.2 (μ/2)1.44

f 0.17
ρ (M/1.4 M�)0.69

s, (11)

while for C/O opacity we find (using the power-law approxi-
mation for the opacity suggested in Rabinak & Waxman 2011)

tdrop ≈ 3 × 103 E0.66
51 R8.5(μ/2)1.2

f 0.15
ρ (M/1.4 M�)0.56

s (12)

(in both cases we neglected logarithmic corrections).
It is illustrative to compare tdrop obtained above to that

obtained using the more detailed description of the ejecta
profiles suggested by Piro et al. (2010). These profiles are
obtained under the following assumptions: the pre-detonation
envelope is in hydrostatic equilibrium and the pressure is
dominated by degeneracy pressure (see Equation (A2)), the
velocity of the shock is given by Equation (A5), the terminal
velocity of a shell is vf = 2vs (instead of vf = (6/7)vs taken
by Piro et al. 2010, which is more appropriate for the planar
phase), and the diffusion front is located at an optical depth
τ = c/vf . The pressure in the ejecta is calculated using the
relation p = psh (ρ/ρsh)γ , where psh is the initial post-shock
pressure (correcting Equation (17) of Piro et al. 2010, which
uses ρ0 instead of ρsh in the denominator). For these profiles we
find

ηsh ≡ prad

pgas
= 910

(μ/2)v3/2
9 ρ0.27

6

(ρ0/g cm−3)0.52
, (13)

where Vrun = 109v9 cm s−1 and ρrun = 106ρ6 g cm−3 are the
velocity and density where the detonation wave transforms to
a shock wave, respectively. Thus, the assumption of radiation
pressure dominance breaks for

ρ0 � 5 × 105v2.9
9 ρ0.52

6 (μ/2)1.9 g cm−3. (14)

For constant opacity we find

tdrop ≈ 3.6 × 103 R2
8.5v

2.16
9 κ0.5

0.2 ρ0.39
6 (μ/2)1.8

(M/1.4 M�)0.5
s, (15)

while for C/O opacity we find

tdrop ≈ 2.2 × 103 R1.74
8.5 v1.76

9 ρ0.31
6 (μ/2)1.5

(M/1.4 M�)0.44
s. (16)
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2.2. Breakout Flash

When the shock reaches layers with optical depth τ =
δMBOκ/(4πR2

∗) comparable to c/vs , where δMBO is the mass
exterior to the shell, photons outrun the shock and escape,
producing a breakout flash. Our simulations’ pre-detonation
profiles (described in Appendix A.1) are different from those
used by Piro et al. (2010). However, as expected, the breakout
energy is not sensitive to the details of the profiles. Using the
simulation based (extrapolated) profiles derived in Appendix B,
and the shock description given in Appendix A.2, the shock
velocity at τ = c/vs ≡ β−1

s is mildly relativistic (for κ0.2 = 1).
For mild-relativistic shocks, vs in Equation (A5) is replaced with
Γsvs , where Γs = [1 − (vs/c)2]−1/2 (Tan et al. 2001; Piro et al.
2010; Nakar & Sari 2012). The resulting breakout velocity is

Γsvs ≈ 1.8c
R0.31

8.5 v1.16
9 f 0.05

β κ0.84
0.16 (2ρ6/μ)0.21

(M/1.4 M�)0.16
, (17)

and the rest-frame breakout energy is

EBO ≈ 1040
R2.3

8.5v
1.16
9 f 0.05

β (2ρ6/μ)0.21

(M/1.4 M�)0.16(Γs/2.1)1.16κ0.84
0.2

erg. (18)

EBO depends weakly on fβ ≡ β−4(1 − β), where 1 − β =
L/Ledd, the ratio of the luminosity escaping the pre-detonation
progenitor to the Eddington luminosity, is not accurately deter-
mined by our simulations. Our results are in agreement with
previous estimates (Imshennik et al. 1981; Piro et al. 2010;
Nakar & Sari 2010), suggesting that the higher breakout energy
obtained by Höflich & Schaefer (2009) is due to the coarse
numerical resolution near the stellar edge. In the case that an
optically thick detached shell is present Equations (17) and (18)
still hold, replacing the stellar radius with the detached shell
radius.

Since the shock velocity is mildly relativistic at breakout,
relativistic effects must be taken into consideration in estimating
the properties of the observed breakout emission. As shown
by Budnik et al. (2010) and Katz et al. (2010), for mildly
relativistic, v/c � 0.1, shocks the radiation within the shock
transition region is far from thermal equilibrium. The photon
spectrum extends to ≈30 keV for v/c = 0.2 and to ≈500 keV
as v approaches c. These results apply to the structure of steady
shocks. Unfortunately, a solution for the shock structure at the
non-steady conditions at breakout is not available for relativistic
velocities (unlike the non-relativistic case, for which the solution
is given in Sapir et al. 2011; Katz et al. 2012). A very crude
estimate of the properties of the emitted radiation may be
obtained by assuming that an energy ≈ΓescEBO escapes over
an observed timescale of R∗/Γ2

escc with a spectrum given by
boosting the steady state shock transition region spectrum by
Γesc, where Γesc is the characteristic Lorentz factor of the plasma
at the time when photons escape, and Γesc > Γs is expected since
the plasma accelerates during breakout. Nakar & Sari (2012), for
example, assume Γesc = Γf , where Γf is the terminal Lorentz
factor that the plasma reaches, and use the estimate of Tan et al.
(2001), Γf βf 	 Γsβs(2.03 + (Γsβs)1.732).

3. NUMERICAL CALCULATIONS

We carried out one-dimensional (1D) simulations of DDT SN
Ia explosions, in order to obtain the outer ejecta profiles (i.e.,
density, pressure, and temperature profiles) that determine the
emission of radiation during the “spherical phase.” Some aspects

of burning, such as flame instabilities and turbulence, cannot
be addressed in 1D simulations and are phenomenologically
treated by using a parameterized deflagration velocity. Despite
this caveat, we expect the simulations to describe the outer ejecta
profiles truthfully.

The simulations have been performed using the Vulcan/1D
(V1D) code (Livne 1993), that incorporates Lagrangian hydro-
dynamics, general EOS, and nuclear burning. The EOS includes
contributions from fully ionized gas and radiation at LTE. Free
electron pressure and energy are computed using tabulated val-
ues of partially degenerate electron–positron gas. For burning
we used the Alpha network of 13 elements from 4He to 56Ni.
The nuclear reaction rates are taken from the NON-SMOKER
database as described by Rauscher & Thielemann (2001).

We assumed the “standard” scenario of thermonuclear
runaway in a carbon–oxygen WD that approaches the
Chandrasekhar mass by accretion from a companion. We as-
sumed equal mass fractions for the two species, 12C and 16O.
For a given central density and temperature we integrated the
equation of hydrostatic equilibrium outward under the assump-
tion of constant entropy. We then modified the central density
until the desired mass is achieved. Using variable zone masses
we obtained a reasonable smooth mass distribution that goes
down to ∼10−7 M� in the outer cells. The total number of zones
used was roughly 1000. The number of zones was increased to
over 4000 in one simulation to test for convergence.

Our simulations start with a deflagration phase where the
deflagration front propagates from the center of the progen-
itor outward, with a parameterized local speed of the form
used by Höflich et al. (2002), where the deflagration veloc-
ity is take as the maximum between the Laminar deflagra-
tion velocity (see Equation (43) of Timmes & Woosley 1992)
and turbulent velocity. For the turbulence velocity, we use the
parameterization suggested by Domı́nguez & Höflich (2000),
fturb(gAL)1/2, where A is the Atwood number, g is the gravita-
tional acceleration, L = (dr/dp)p is the characteristic pressure
length scale, and fturb = 0.2 and 0.4 for “slow” and “fast”
simulations, respectively. The values for fturb were calibrated
from three-dimensional calculations (A. Khokhlov 2002, private
communication).

During the deflagration phase, the progenitor expands and its
outer layers move with a typical velocity of 3–6 × 108 cm s−1

depending on the deflagration velocity. In regions where the
expansion velocity is higher than the matter sound speed,
weak shock waves form and heat the plasma. This leads
to modifications of the density and pressure profiles of the
progenitor, as discussed in detail in Appendix A.1. The fully
ionized gas EOS is not valid at the outer parts of the progenitor,
leading to inaccurate initial profiles in these regions. These
profiles, however, are modified by the heating during the
deflagration phase, and therefore have little effect on the final
ejecta profiles.

The deflagration front propagates until it reaches a critical
density ρcrit, where we induce a detonation wave by increas-
ing the deflagration speed to nearly sonic over few zones.
Three values are taken for ρcrit: 1, 2, and 2.5 × 107 g cm−3.
These are denoted by 1, 2, and 2.5 in the simulation names.
The detonation front propagates outward until the entropy
produced by the burning of elements becomes smaller than
the entropy that is produced by the compression, at which
point the detonation transforms into a shock wave. The tran-
sition of the detonation to a shock wave as well as the
shock propagation is discussed in detail in Appendix A.2. We
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Table 1
Simulation Parameters

Namea Color tdet
b Kch

c γp
c R∗d E51

e

(s) (108 cm)

DDT1s Blue 3.05 3.5 0.95 5.3 1.27
DDT2s Green 2.8 7.1 0.89 4.3 1.52
DDT2.5s Red 2.75 7.9 0.89 4.1 1.55
DDT1f Cyan 1.75 1.3 1 4.9 1.31
DDT2f Magenta 1.6 6.7 0.86 3.9 1.55
DDT2.5f Black 1.6 6.7 0.86 3.9 1.58

Notes.
a 1, 2, and 2.5 correspond to DDT transition at ρcrit = 107 g cm−3× 1, 2, and
2.5. “s” and “f” stand for slow and fast deflagration velocities (cf. Section 3).
b The time at which detonation is induced.
c Fit parameters for P0(ρ0) at ts = tdet and ρ0 < 104 g cm−3 (Equation (A3)).
d Progenitor radius at t = tdet.
e Total ejecta energy in units of 1051 erg.

follow the expansion of the progenitor after the shock wave
reaches the stellar edge, neglecting the effects of radiation
transport.

4. UV/OPTICAL EMISSION DURING
THE SPHERICAL PHASE

4.1. Density and Pressure Profiles of the Outer
Parts of the Ejecta

We derive the emission of radiation using the density and
temperature profiles at the end of the simulations, ts = 100 s
(note that ts is measured from the onset of deflagration, while
we use t to denote the time measured from breakout). At this
stage the ejecta has expanded significantly and the radius r of
a relevant mass shell is �R∗ and is approximately given by
tvf , where the shell’s velocity vf is approximately its terminal
velocity. The simulations’ mass resolution at the outer cells,
∼3 × 10−7 M�, sets a lower limit to the time from which the
emission can be reliably calculated based on the simulations,
t � 3 × 102 s.

We neglect the reheating by the radioactive decay of elements
synthesized in the explosion process (valid for the outer layers
of the ejecta, in which only a small fraction of the elements
are fused), and extrapolate the profiles to later times assuming
that the ejecta expand adiabatically and that the fluid elements
reached their final velocity. We use an EOS of radiation in
equilibrium with an ideal gas (μ = 1.7455 for fully ionized
equal mass fractions of C and O). Note that although we assume
full ionization for the EOS, we do not make this assumption
for the opacity. This approximation for the EOS is accurate as
long as the thermal energy density is dominated by radiation,
and becomes less accurate when the plasma pressure becomes
significant. This implies that our light curves are not accurate at
t � tdrop.

In Figure 1, we compare the pressure and velocity profiles at
the end of the simulations to the profiles suggested by Rabinak
& Waxman (2011; for n = 3) and Piro et al. (2010; corrected as
explained in the text preceding Equation (13)), denoted by RW
and PCW subscripts, respectively. For the model of Rabinak &
Waxman (2011) we used E51 = 1, R8.5 = 1, and M = 1.4 M�,
similar to the values obtained from the simulations (see Table 1).
The discontinuity in the PCW profiles results from a transition
between regions with different pre-detonation density profiles.
Both the RW and PCW models do not properly describe the

pressure behavior at large optical depth, where the pressure is
no longer purely dominated by radiation and thus drops faster
with time, as explained in Section 2.1.2.

For the lower deflagration velocity the pressure is higher by
∼70% at 102 � τes � 104, where τes is the optical depth for
electron scattering (κ0.2 = 1). This difference is due to the fact
that for the low velocity explosions the envelope is heated to
higher temperatures during the deflagration phase. Thus, for a
given pre-detonation density ρ0 the mass fraction δM (integrated
mass to the stellar surface) is larger compared with that in high
velocity explosions. For γ = 4/3, as τes ∝ δM(tvs)−2 and the
density in the ejecta ρ ∝ δM(tvs)−3, the pressure in the ejecta
p ∝ v2

s (ρ/ρ0)γ ∝ (δM/ρ0)1/3τest
−2, implying that for lower ρ0

at given δM the pressure is larger at a given τes.

4.2. L and Teff.

We use the density and pressure profiles obtained as described
in Section 4.1 to derive the properties of the emitted radiation.
Due to the deviation from pure radiation pressure domination,
the pressure profiles deviate significantly from p ∝ τ (which is
valid for the core collapse progenitors). This implies that photon
diffusion may have a non-negligible effect on the predicted
luminosity (Rabinak & Waxman 2011). We therefore estimate
the luminosity at time t as dE/dt , where E(t) is the radiation
energy that escapes by diffusion up to time t. The diffusion
depth is determined as the depth at which τ = c/vf , and
τ is calculated with the opacity taken from the OP project
tables (Seaton 2005). The effective temperature is calculated as
Teff = (L/4πr2

phσ )1/4, where rph is the radius of the photosphere
(τ = 1). The temperature at the photosphere (τ = 1) is typically
larger than Teff by 10%–20%, which implies that neglecting
diffusion leads to an overestimate of L by a factor of 1.5–2. The
simulations’ resolution was not fine enough to allow an accurate
determination of the color temperature.

The resulting luminosities and effective temperatures are
given in Figure 2. The luminosity depends weakly on ρcrit
and is lower for larger deflagration velocities, reflecting the
lower pressure at given τes (see Figure 1). Comparing the results
presented in the figure with Equations (4), (6), and (12), we
find that the simple model of Section 2.1 provides a good
description of the properties of the emitted radiation. For the
slow deflagration velocity the luminosity is similar to that
predicted by the simple analytic analysis, while for the larger
velocity it is 2–3 times lower.

An estimate of the luminosity expected for a pure He com-
position of the outer shells may be obtained by extrapolating
the simulation profiles assuming an EOS with μ = 2, and cal-
culating the emission using the opacity of He. The luminosity
obtained in this case is ∼50% lower and the effective tempera-
ture is ∼15% lower than the results obtained for C/O, consistent
with the simple model of Section 2.1.

5. SUMMARY AND DISCUSSION

We have presented in Section 2.1 a simple model of the
UV/optical emission during the spherical phase, assuming a
power-law density profile of the progenitor that is not modified
during the deflagration phase, and a self-similar shock prop-
agation, ignoring the fact that part of the explosion energy is
released by nuclear burning at large radii. The predicted lumi-
nosity and effective temperature are given in Equations (1)–(6)
for different compositions of the outer shells of the progenitor.
For t > 300 s the photosphere propagates beyond the outer
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Figure 2. Bolometric luminosity and effective temperature derived from the
simulations. Line colors correspond to different simulation parameters as given
in Table 1. t = t3103 s.

(A color version of this figure is available in the online journal.)

∼10−5 M�, the estimated maximum mass of a possible H shell
(Shen & Bildsten 2009a), and the effective temperature drops
below 3 eV. At this time, we therefore expect the radiation to be
emitted from shells dominated by He or C/O, with luminosity
and temperature given by Equations (3) and (5) or (4) and (6),
respectively. At earlier times the detailed properties of the emis-
sion depend on the mass fraction of H. The simple model pre-
dicts a nearly time-independent luminosity, L 	 1039.5 erg s−1,
at 300 s < t < 103 s, and a strong suppression of the flux
at t > tdrop ∼ 1 hr (see Equations (15) and (16)) due to the
deviation from pure radiation domination. The estimated maxi-
mum mass of a possible He shell in SN Ia progenitors, 10−3 M�
(Iben & Tutukov 1989; Shen & Bildsten 2009b), is similar to
the mass of the shell beyond which the radiation is no longer
dominated by radiation (see Equation (14)), which suggests that
Equation (16) (rather than Equation (15)) should be used to
estimate tdrop (note that at tdrop the temperature is below 3 eV,
implying a strong decline in the He opacity).

Comparing the results of the model to those of detailed 1D
simulations (Section 4), we find that it provides an acceptable
description of the velocity profile of the ejecta, and a rough
description of the pressure profile in regions where radiation

dominates the pressure (see Figure 1; a detailed discussion
of the pre-detonation profile, which is significantly affected at
ρ0 � 3 × 104 g cm−3 by weak shocks during the deflagration
phase, is given in Appendix A). Thus, we expect the model to
provide an acceptable description of the luminosity at t < tdrop.

Indeed, we find that Equations (4), (6), and (12) provide
an acceptable description of the properties of the emitted
radiation. We find that the luminosity depends weakly on ρcrit,
the density at which detonation is initiated, and is lower for larger
deflagration velocities. For the slow (turbulent) deflagration
velocity (see Section 3 for a description of the turbulent velocity
prescription) the luminosity is similar to that predicted by the
simple analytic analysis, while for the larger velocity it is
2–3 times lower (see Figure 2).

The model described in this paper was applied by Nugent et al.
(2011) and Bloom et al. (2012) to the recently observed type Ia
SN2011fe, which was detected by the Palomar Transient Factory
in the Pinwheel galaxy (Nugent et al. 2011). Observations on the
night preceding the detection (with luminosity ∼1040 erg s−1)
revealed no source to a limiting luminosity of few ×1038 erg s−1,
and observations ∼7 hr prior to the detection revealed no source
to a limiting luminosity of few ×1039 erg s−1 (Bloom et al.
2012). Using a tα model for the evolution of the luminosity
during the first 3 nights of observations, Nugent et al. (2011)
estimate the explosion time to be 11 hr ± 20 minutes preceding
the first detection. Using this time estimate and the non-detection
at 7 hr preceding first detection, Bloom et al. (2012) derive
(using Equations (1) and (2)) R∗ � 1 × 109 cm, which implies
a degeneracy-supported compact progenitor, i.e., a WD or a
NS progenitor for SN 2011fe (note that for R∗ = 109 cm, the
suppression of the luminosity at t ∼ tdrop is expected to occur
after the time of the first non-detection). Improving this estimate
requires improving the model for the radioactive light curve and
the estimate of the explosion time, which is beyond the scope
of the current paper.

As indicated by Piro et al. (2010), the detonation in DDT
models is suppressed at outer shells of mass �10−1 M�. The
production of radioactive elements in these shells is small, and
as long as radioactive material is not mixed efficiently into shells
of mass �10−4 M� we expect that radioactive heating will not
prevent the strong decline in the luminosity on hour timescale.

As expected, our estimates for the properties of the breakout
emission during the planar phase are not sensitive to the density
profile modifications, and are therefore in agreement with
previous estimates (Imshennik et al. 1981; Piro et al. 2010;
Nakar & Sari 2010, 2012). We note, however, that only crude
estimates of the planar phase breakout emission are possibly
at this time, due to the lack of a solution for the structure
of the radiation-mediated shock at the non-steady conditions
prevailing during breakout (see Section 2.2).

We thank A. Glasner and D. Kushnir for useful discussions.
We thank the anonymous referee for useful comments. This
research was supported in part by ISF, UPBC, GIF, and Minerva
grants.

APPENDIX A

ANALYSIS OF NUMERICAL SIMULATIONS’ RESULTS

A.1. Pre-detonation Pressure and Density Profiles

We consider the pressure and density profiles of the outer
layers of the progenitor, which are modified by weak shocks
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generated during the deflagration phase, focusing on the profiles
at t = tdet. During the deflagration phase the progenitor WD
expands. In regions, where the expansion velocity is similar to
or higher than the sound speed, weak shock waves form, which
heat the envelope and modify its pressure profile. During this
phase, two physical processes affect the pressure profile: shock
wave heating and diffusion of energy. Diffusion significantly
affects regions in which the photon diffusion time (to the stellar
surface) is similar to the deflagration time. The outer part of
the progenitor’s envelope may be divided into three regions
distinguished by the physical processes that affect them: (1)
the inner region, which is negligibly affected by shock heating
and diffusion; (2) the intermediate region, which is affected
by shock heating but is negligibly affected by diffusion; (3) the
outer region, which is affected by both shock heating and photon
diffusion. The mass resolution in our simulations does not allow
us to fully resolve region (2). We denote by (2A) and (2B) the
parts of this region that are resolved and unresolved by the
simulations, respectively. Below we describe the simulations’
results for regions (1) and (2A). The unresolved regions, (2B)
and (3), are discussed in Appendix B.

Let us first discuss the pressure profile expected at the outer
shells of the progenitor based on simple theoretical arguments.
For simplicity, we neglect the shells’ self-gravity and thickness
(relative to the progenitor radius R∗ at the onset of detonation).
We denote the density of a shell at the onset of detonation by
ρ0. Assuming that the star is in hydrostatic equilibrium, we have
for the outer layers

δM(ρ0) ≈ 4πR4
∗P0(ρ0)

GM
, (A1)

where M is the total mass of the progenitor, P0 is the pressure,
and δM is the integrated mass from the point where the density
equals ρ0 out to the stellar surface. For a polytropic EOS,
P0 ∝ ρ

1+1/n

0 , the density profile is ∝ δn, where δ = (R∗/r − 1).
We consider first the inner region (1). In this region, the

pressure is negligibly affected by the deflagration process and
is therefore dominated by the electron degeneracy pressure. In
this case P0(ρ0) is polytropic with index n = 3/2 and may be
approximated by (following Piro et al. 2010)

Pdeg ≡ 9.91 × 1012

(
ρ0

μe g cm−3

)5/3

erg cm−3, (A2)

where μe is the molecular weight per electron. The sound speed
in these layers is cs = 4.1 × 106(ρ0/g cm−3)1/3μ

5/6
e cm s−1.

Let us consider next region (2A). The simulations show that
when the deflagration front reaches a density ρcrit ∼ 107 g cm−3,
at time tdet, the outer layers of the progenitor expand at a
speed 3–6 × 108 cm s−1. The pressure profile deviates from
that of region (1) at densities ∼3 × 104 g cm−3, beyond which
it becomes flatter and nearly linear in ρ0. This change in the
density profile is the result of shock heating during expansion.
We use the simulations to obtain an approximation for P0(ρ0).
In Table 1, we give the best-fit parameters for a pressure profile
of the form

P0(ρ0) = Kch × 1015

(
ρ0

g cm−3

)γp

erg cm−3, (A3)

for t = tdet and ρ0 < 104 g cm−3. In all of the fits the index γp

is in the range 0.9–1, implying a nearly isothermal profile, in

agreement with the simulations of Höflich & Schaefer (2009,
see their Figure 1), which have a similar resolution to that of our
simulations, <10−6 M�.

The pressure in region (2A) is different than that assumed by
Imshennik et al. (1981), Piro et al. (2010), and Nakar & Sari
(2010; for the same ρ0 range). In particular, it corresponds to
a negative polytropic index (n < 0) and does not correspond
to a density profile declining as a power of δ (distance from
the progenitor’s edge). The density profile we find falls approx-
imately exponentially with r, similar to the profile produced
by an isothermal gas. The shells of region (2A) determine the
emission on timescales of minutes to hours.

In the left panel of Figure 3, we compare the results of the
simulations to the approximations of Equations (A2) and (A3).
Since the profile is nearly isothermal at the outer regions, we
normalize P0 to

Pthrm(ρ0) ≡ 4.79 × 1015

(
ρ0

g cm−3

)
T10 keV

μ/2
erg cm−3, (A4)

where T = 10T10 keV keV and μ is the molecular weight. The
approximation of Equation (A2) is good to a few percent in
the density range 3 × 104 g cm−3 < ρ0 < 106 g cm−3 and the
approximation of Equation (A3) is good to tens of percent for
ρ0 < 104 g cm−3. In the latter density range, P0 is given by
Pthrm to within a factor of two.

In the right panel of Figure 3, we compare δM(ρ0) obtained
in the simulations to that given by Equation (A1) using the
pressure approximations of Equations (A2) and (A3) (with
the values given in Table 1). Equation (A1) with P0 given
by Equation (A2) is accurate to a factor ∼2 in the density
range 3 × 104 g cm−3 < ρ0 < 106 g cm−3. The discrepancy
is partially due to deviations from hydrostatic equilibrium and
partially due to the fact that R∗ overestimates r by up to
15% in this density range. Equation (A1), with P0 given by
Equation (A3), is accurate to a few tens of a percent in the density
range ρ0 < 104 g cm−3. In this density range, substituting Pthrm
for P0 gives an approximation for δM , which is good to up to a
factor of two.

A.2. Shock Propagation

As the detonation wave propagates in the declining density
profile of the star, the entropy produced by the burning of
elements declines, until eventually this entropy is smaller than
the entropy that is produced by the shock compression. At that
point the detonation wave transforms to a shock wave. The shock
wave continues to accelerate in the declining density profile.
In regions where the density falls as δn, shock acceleration
is described by the Gandel’Man–Frank-Kamenetskii–Sakurai
self-similar solutions (Gandel’Man & Frank-Kamenetskii 1956;
Sakurai 1960). In regions where the density falls exponentially
with δ, the acceleration is described by the self-similar solution
of Grover & Hardy (1966). In both types of solutions, the shock
velocity is given by

vs = Vrun

(
ρ0

ρrun

)−β1

. (A5)

For a radiation-dominated shock, with post-shock adiabatic
index of γs = 4/3, β1 ≈ 0.19 for density profiles declining
as a power law with n = 3, 3/2 (Grassberg 1981; Matzner &
McKee 1999) and β1 ≈ 0.176 for exponential density profiles
(Grover & Hardy 1966). The self-similar solutions also show
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Figure 3. Left: P0(ρ0) obtained in the simulations at t = tdet (solid lines) compared to the approximations of Equation (A2) (black dash dotted line) and Equation (A3)
(with the values given in Table 1, dashed lines). The pressure is normalized to the pressure given by Equation (A4) for T10 keV = 1 and μ = 2. Right: δM(ρ0) obtained
in the simulations at t = tdet (solid lines) compared to the approximation of Equation (A1), with P0 given by Equation (A2) (black dash dotted line) or Equation (A3)
(dashed lines). The masses are normalized to the mass given by Equation (A1) with P0 = Pthrm (with T10 keV = 1 and μ = 2). Different colors correspond to different
simulation parameters as specified in Table 1.

(A color version of this figure is available in the online journal.)
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Figure 4. Left: shock velocity (blue) and terminal velocity (ts = 100 s, red) obtained in one simulation (with higher dumping resolution), normalized by the shock
velocity given by Equation (A5), with β1 = 0.18. Right: terminal velocities (ts = 100 s, red) obtained in the simulations, normalized to the approximation of
Equation (A6) with β1 = 0.18 and fv = 1. Different colors correspond to different simulation parameters as specified in Table 1.

(A color version of this figure is available in the online journal.)

that the terminal velocity of the shells, vf , is ∝ vs . For power-
law density profiles vf

∼= 2vs , while for exponential density
profiles vf

∼= 1.5vs .
The transition from a detonation wave to a shock wave was

analyzed by Piro et al. (2010). The transition density ρrun
was defined as the density at which the “induction length”
λ = (q/ε)ρdet, where q, ε are the energy and energy generation
rate of the detonation process, respectively, is smaller than the
scale over which the progenitor density changes, assuming ρdet
is given by the Chapman–Jouguet detonation velocity at the
corresponding density. For a WD equally composed of 12C
and 16O they found ρrun ≈ 2 × 106 g cm−3, in agreement with
our simulations (although the equation for ε was take in Piro
et al. 2010 at the wrong electron screening regime). It should
be noted here that the values of Vrun, ρrun may be affected by
instabilities that are not considered here (e.g., Domı́nguez &
Khokhlov 2011).

In the left panel of Figure 4, we compare the shock velocity
and the terminal velocity obtained in a simulation to the approx-
imation of Equation (A5). This figure shows that although the
density profile changes from a power of δ to an exponential,

the approximation Equation (A5) holds. The figure also shows
that the values estimated analytically for ρrun and Vrun are ac-
curate to ∼10%. The ratio vf /vs is not independent of ρ0 and
declines from a ratio of ≈2.4 at ρ0 = 105 g cm−3 to ≈1.4 at
ρ0 = 10 g cm−3. The decline in the ratio vf /vs with ρ0 can be
attributed to the transition from a power law to an exponential
density profile and to spherical affects (see Matzner & McKee
1999). In the right panel of Figure 4, we compare the velocity
at ts = 100 s (terminal velocity) to the approximation

vf = 2.5fv vs(ρ0/ρrun)0.05. (A6)

APPENDIX B

EXTRAPOLATING THE PRE-DETONATION
PROFILES TO δMBO

Our simulations do not resolve regions with densities ρ0 �
102 g cm−3 at tdet and we only consider them qualitatively. These
regions determine the emission at t � 3 × 102 s (cf. Section 2)
and have little effect on the emission at later times. Assuming
that the pressure profile given by Equation (A3) continues to
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densities �102 g cm−3, the pressure becomes dominated by
radiation at ρ0 ∼ 1 g cm−3, the flux reaches ∼gc/κ , and the
luminosity approaches the Eddington luminosity, Ledd. In this
case, the luminosity is L ≈ Ledd = 4πcGM/κ ∼ 1038 erg s−1,
which is similar to the luminosity obtained by Höflich &
Schaefer (2009) before the transition to detonation, and is larger
by 3 orders of magnitude than the luminosity assumed by Piro
et al. (2010). The simulations indicate therefore that the heating
process is efficient in the sense that it leads to L 	 Ledd during
the deflagration phase that this upper bound is reached.

It is reasonable to assume that near the stellar surface,
in regions where the diffusion time to the stellar surface is
�tdet, the luminosity is constant. We do not consider here the
presence of a detached shell. Assuming that the envelope is at
hydrostatic equilibrium, that opacity is constant, and that the
pressure is a sum of a radiation pressure and assuming an ideal
gas pressure with mean molecular weight μ, we have in this
region

P0 = 1015

(
1 − β

β4

)1/3 (
2ρ0

μg cm−3

)4/3

erg cm−3, (B1)

where 1 − β = L/Ledd. The large L obtained in the simulations
indicates that fβ ≡ β−4(1 − β) � 1. This pressure profile
is similar to the one suggested by Piro et al. (2010) for the
outermost layers but its normalization is higher by an order of
magnitude. For this profile, the diffusion time to stellar edge is

tdiff ≈ 2
f

2/3
β R4

8.5κ0.2

(M/1.4 M�)2(μ/2)8/3

(
ρ0

g cm−3

)5/3

s, (B2)

where κ = 0.2κ0.2 cm2 g−1 is the opacity. The density for which
tdiff ≈ tdet is roughly ρ0 ∼ 1 g cm−3 (for tdet given in Table 1).
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