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ABSTRACT

This second paper of the series investigates the transverse response of a magnetic field to the independent relaxation
of its flux tubes of fluid seeking hydrostatic and energy balance, under the frozen-in condition and suppression of
cross-field thermal conduction. The temperature, density, and pressure naturally develop discontinuities across the
magnetic flux surfaces separating the tubes, requiring the finite pressure jumps to be compensated by magnetic-
pressure jumps in cross-field force balance. The tangentially discontinuous fields are due to discrete currents in
these surfaces, δ-function singularities in the current density that are fully admissible under the rigorous frozen-in
condition but must dissipate resistively if the electrical conductivity is high but finite. The magnetic field and fluid
must thus endlessly evolve by this spontaneous formation and resistive dissipation of discrete currents taking place
intermittently in spacetime, even in a low-β environment. This is a multi-dimensional effect in which the field
plays a central role suppressed in the one-dimensional (1D) slab model of the first paper. The study begins with an
order-of-magnitude demonstration that of the weak resistive and cross-field thermal diffusivities in the corona, the
latter is significantly weaker for small β. This case for spontaneous discrete currents, as an important example of the
general theory of Parker, is illustrated with an analysis of singularity formation in three families of two-dimensional
generalizations of the 1D slab model. The physical picture emerging completes the hypothesis formulated in Paper I
that this intermittent process is the origin of the dynamic interiors of a class of quiescent prominences revealed by
recent Hinode/SOT and SDO/AIA high-resolution observations.
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1. INTRODUCTION

This series of papers investigates the unlimited hydromag-
netic steepening of magnetic field gradients under the frozen-in
condition. An infinite field gradient as a mathematical singular-
ity is physically admissible under a rigorous imposition of that
condition. In the solar corona, with its extremely high but finite
electrical conductivity, this steepening would proceed only to
such extreme but finite gradients at which the frozen-in condition
ceases to be a valid approximation. In this manner a coronal field
may be in a stable equilibrium globally while it undergoes this
breakdown of the frozen-in condition in many localities (Parker
1994; Low 2007; Low & Janse 2009; Janse & Low 2009). At
each breakdown, the intense electric current density dissipates
resistively and the magnetic field reconnects. Once the extreme
field gradients are thus removed, a high degree of frozen-in
condition is restored, only to bring about further field steep-
ening (Janse & Low 2010). We hypothesize that this process,
intermittent in spacetime, is the origin of the restless dynamical
interiors of quiescent prominences, of the polar-crown type, re-
vealed by high-resolution Hinode/SOT and SDO/AIA observa-
tions (Martin et al. 1994; Tandberg-Hanssen 1995; Gaizauskas
1998; Labrosse et al. 2010; Mackay et al. 2010; Berger et al.
2008, 2010, 2011; Okamoto et al. 2007, 2010; Liu et al. 2012).

In the first paper (Low et al. 2012, hereafter Paper I),
we treat the thermally balanced one-dimensional (1D)
Kippenhahn–Schlüter (KS) slab (Kippenhahn & Schlüter 1957;
Low 1975; Low & Wu 1981; Zweibel 1982; Low & Zhang
2004; Hillier et al. 2011). This is an infinite vertical slab of
plasma supported against gravity in a bowed magnetic field
under the frozen-in condition and subject to a steady transport-

equation balancing theoretically defined optically thin radiative
loss, volumetric heating, and heat conducted along the field. For
a sufficiently large total mass per unit magnetic flux, force and
energy balance requires a fraction of that mass in a magnetic flux
tube to have collapsed into a cold dense core at the tube’s low-
est point. This core is a δ-function singularity in fluid density.
The δ-function cores on adjacent thin flux tubes form a discrete
surface, a zero-thickness sheet with a finite mass per unit area
threaded across by the bowed field. A corresponding δ-function
in electric current density, a discrete current, flows in this mass
sheet such that its Lorentz force balances the weight of the mass
sheet. This discrete current can persist only if the electrical con-
ductivity is infinite. In the presence of an extremely large but
finite conductivity, this current dissipates resistively upon for-
mation, producing heating and resistive cross-field flows as we
have also modeled in Paper I.

In this second paper, we show that the intermittent frozen-in
breakdown is greatly enhanced and spatially pervasive when the
magnetic field plays an active dynamical role possible only in
multi-dimensional systems. This is a formidable time-dependent
problem not well understood. Therefore, we continue with
the methodology used in Paper I of demonstrating a general
inevitability of discrete currents in equilibrium states when
the frozen-in condition is rigorously imposed. These discrete
currents indicate where the frozen-in breakdown would occur if
the fluid of a large but finite electrical conductivity evolves
in search of equilibrium. The cross-field balance of forces
and energy in the 1D KS slab is simple, with the physical
problem reduced to just the balance along the field. Its flux
tubes of equal magnetic flux are all identical. Temperature is
automatically continuous across the field, and the magnetic
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suppression of thermal conduction across the field has no
cross-field consequences. In sharp contrast, the consequences
arising from zero cross-field thermal conduction are far reaching
in multi-dimensional fields.

In two-dimensional (2D) and three-dimensional (3D) fields,
flux tubes of the same unit axial flux generally are topologically
and geometrically different and loaded with different masses.
Without thermal conduction across the field, each flux tube
determines its tube-aligned temperature distribution according
to its field-aligned energy transport, independent of the tubes
contiguous to it. In the relaxation of such a hydromagnetic
system to static equilibrium under the frozen-in condition, the
temperature naturally becomes discontinuous across very many
magnetic flux surfaces. Consequently, the pressure is generally
also discontinuous across these surfaces in the equilibrium
available. For 2D and 3D equilibrium fields, that fluid-pressure
jump is balanced by an equal and opposite jump in magnetic
pressure, readily accommodated in the magnetically dominated
corona. The latter jump implies discrete currents flowing in
entire flux surfaces. A complexity of discrete currents extending
pervasively in the fluid thus develops during evolution, quite
separate from the other kind of discrete currents at collapsed
mass sheets found in Paper I. All discrete currents dissipate in
a real fluid by its small, nonzero resistivity when field gradients
have steepened sufficiently. The field reconnects and diffuses
across fluid surfaces, with the overloaded, reconfigured flux
tubes falling by gravity and the underloaded ones rising by
magnetic buoyancy. This implied scenario is suggestive of the
Hinode/SOT and SDO/AIA movies of the interiors of quiescent
prominences (Berger et al. 2008, 2010; Liu et al. 2012).

The hydromagnetic property we investigate is a novel appli-
cation of the Parker theory of spontaneous current sheets (Parker
1972, 1990, 1991, 1994; Petrie & Low 2005; Janse & Low 2010;
Janse et al. 2010). The Parker theory concentrates on explaining
the quiescent heating of the corona by investigating the force-
free magnetic field, a field with zero Lorentz force in a fluid
of negligible inertia. The preservation of the field topology un-
der the frozen-in condition can force the embedding fluid to be
torn tangentially on flux surfaces, producing discrete currents,
in order to render the field force-free. Since fluid pressure is
neglected, force balance requires the continuity of the magnetic
pressure everywhere. This leaves the field direction to be discon-
tinuous as a degree of freedom to admit discrete currents. The
essence of the Parker theory is that in most 3D situations, dis-
crete currents are generally inevitable because in their absence
no continuous current density on its own can ensure that the field
in equilibrium has exactly the topology it possesses for all time.
The prominence field presents the same basic inevitability for
discrete-current formation, to ensure field-topology invariance
under the frozen-in condition in a more complicated situation,
that of balancing the Lorentz force with the pressure and gravi-
tational forces.

We organize our paper to first concentrate on the basic hy-
dromagnetic effects. Section 2 formulates an elementary theory
based on a set of 2D magnetostatic equations for a thermally
balanced fluid assuming zero cross-field thermal conduction.
Section 3 presents a justification of that assumption in terms of
the Spitzer (1962) thermal-conduction and electrical diffusivi-
ties in a fully ionized gas. Section 4 presents three families of
idealized magnetostatic solutions that together illustrate differ-
ent aspects of inevitable discrete currents in equilibrium states.
Section 5 relates this study to the observed quiescent promi-
nences. We use cgs units in this paper.

2. MAGNETOSTATIC EQUILIBRIUM

We derive the 2D magnetostatic equations describing a fluid
of perfect electrical conductivity that thermally conducts heat
along but not across the magnetic field. The field-aligned thermal
conduction steadily balances a heat source and a radiative sink
distributed in the fluid. In Section 3, we analyze the physical
values of thermal and electrical conductivities expected in the
corona to examine when the separate assumptions of the frozen-
in condition and the zero cross-field thermal conduction may
break down.

2.1. The Magnetostatic Equations in 2D

We adopt the following one-fluid hydromagnetic description
of the corona and prominence:

ρ

[
∂v
∂t

+ (v · ∇) v
]

= 1

4π
(∇ × B) × B − ∇p − ρgẑ, (1)

∂B
∂t

− η∇2B = ∇ × (v × B), (2)

∂ρ

∂t
+ ∇ · (ρv) = 0, (3)

where v, B, ρ, p, and g denote, respectively, the velocity,
magnetic field, density, pressure, and uniform gravitational
acceleration in the negative Cartesian z-direction. We also need
an equation of state and another for energy transport, the latter
involving anisotropic thermal conduction, radiative processes,
and volumetric heating operating in the corona. If these energy
processes are specified explicitly in terms of the fluid and field
variables, Equations (1)–(3) together with the scalar equations
of state and energy transport are a complete set to determine
these variables, including the temperature T.

For simplicity in our analysis of basic effects, we neglect
viscosity in momentum equation (1) and take electrical conduc-
tivity to be isotropic, characterized by a constant σ related to the
resistivity η = c2/4πσ , where c is the speed of light. The length
scale l0 ≈ 7×107 cm is of the order of spatial resolutions achiev-
able in solar observations from the ground. In the corona and
prominence interior, the resistive diffusion of a magnetic field
of that length scale has a timescale τD = l2

0/η of tens of years
and longer if σ is estimated with the formula of Spitzer (1962)
in the temperature range of 104–106 K for a fully ionized gas.
Therefore, for dynamical events in the corona and prominences
observed over timescales of hours at spatial resolutions not dras-
tically smaller than l0, the frozen-in condition is an excellent
approximation with an important qualification. There can be
processes, unresolved in such observations, creating field struc-
tures of sufficiently small scales over which resistive dissipation
is significant. The observable large-scale consequences of this
dissipation are not possible to be described under the frozen-in
condition. For example, at the large scales of resolution-limited
observations, a significant larger “effective” resistivity may ap-
pear to be operating. This general physical point important for
understanding quiescent-prominence observations is a central
motivation of this series of papers.

2.2. Thermally Balanced Equilibrium States

Consider the relaxation of a fluid to static equilibrium under
the frozen-in condition, setting η = 0. This equilibrium is
described by

1

4π
(∇ × B) × B − ∇p − ρgẑ = 0, (4)
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∇ · B = 0, (5)

∇ ·
[
κ

(B · ∇T ) B
|B|2

]
− L + H = 0, (6)

p = kB

m0
ρT . (7)

In addition to force balance, we have thermal balance among
a radiative-loss sink L, a heating source H, and a field-aligned
thermal flux with conductivity κ , all these quantities assumed
to be expressible as known functions of the fluid and field.
We assume the ideal gas law, kB and m0 being the Boltzmann
constant and the mean molecular mass, respectively.

Consider a 2D Cartesian system with the solenoidal field

B =
[
Q,

∂A

∂z
,−∂A

∂y

]
, (8)

in terms of the flux function A constant along each field line and
an x-component Q, x being an ignorable coordinate. The electric
current density J = (c/4π )∇ × B is given by

∇ × B =
[
−∇2A,

∂Q

∂z
,−∂Q

∂y

]
. (9)

The equilibrium Lorentz force cannot have an x-component,
requiring Q(y, z) = Q[A(y, z)] so that Equation (4) reduces to
the two components in the y − z plane,

∇2A + Q(A)Q′(A) + 4π
∂p(A, z)

∂A
= 0, (10)

∂p(A, z)

∂z
+ ρg = 0, (11)

for force balance across and along the field, respectively (Low
1975).

The condition Q = Q(A), together with Equation (10),
implies that in equilibrium the current density takes the form

∇ × B = 4π
∂p(A, z)

∂A
x̂ + Q′(A)B, (12)

a field-aligned component with a proportionality Q′(A) constant
on constant-A field lines and a cross-field component in the
x-direction that generates the Lorentz force to balance the forces
of pressure and weight. If the latter forces are absent, setting
p ≡ 0, we have a force-free field.

In a stratified atmosphere, we express p(y, z) =
p[A(y, z), z], to describe its hydrostatic variation with height
z along a constant-A field line. Each point (y, z) on the y − z
plane is identified by the value A = A0, a constant, at that point
and a height z-varying along the curve A = A0, the way to
visualize the partial derivatives of p with respect to (A, z) as
independent variables. Henceforth, the dependence of a scalar
function on (A, z) shall be indicated when we mean partial
derivatives with respect to these variables. The hydrostatic pro-
file of p is subject to the balance of forces across the field lines,
the Grad–Shrafanov equation (10).

Denote the field-aligned thermal flux in Equation (6) by
F = FB, where

F = κ(|∇A|2 + Q2
)1/2

∂(T ,A)

∂(y, z)
, (13)

introducing the Jacobian operator. Then energy-balance
equation (6) takes the form

∂(F, A)

∂(y, z)
− L + H = 0. (14)

Equations (7), (10), (11), and (14) constitute a complete system
of one algebraic and three partial differential equations (PDEs)
determining the four scalar unknowns A, p, ρ, T.

2.3. The Frozen-in Condition

To see the structure of this system of equations, introduce a
constant normalization T0, setting T = T0θ and defining the
constant hydrostatic scale height Λ0 = kBT0/m0g, using the
notations in Paper I. First eliminate ρ between Equations (7)
and (11) and then integrate with respect to z, treating (A, z) as
the independent variables, to obtain

p(A, z) = p0(A) exp

[
−

∫ z

0

dz′

Λ0θ (A, z′)

]
, (15)

where p0(A) arises as an arbitrary “constant” in that integration
with respect to z. In the representation θ (y, z) = θ (A, z),
Equations (13) and (14) take the forms

F = κT0

(|∇A|2 + Q2)1/2

∂θ (A, z)

∂z
, (16)

∂F(A, z)

∂z
− L + H = 0, (17)

the latter effectively being an ordinary differential equation
balancing a field-aligned thermal conduction against energy loss
and gain along each constant-A field line. By using Equations (7)
and (15) to express p and ρ in terms of θ , the problem is then
reduced to solving Equations (10) and (17) for A and θ as the
two coupled unknowns subject to suitable boundary conditions.
This is a 2D extension of the 1D KS slab in Paper I.

Taken as a boundary-value problem in PDEs, there are
two types of free functions to prescribe in order to render
Equations (10) and (17) specific. We must prescribe the thermal
conductivity κ , energy sink L, and heat source H as explicit
functions of the fluid and field variables, to identify a specific
fluid by its properties. The thermally balanced equilibrium states
of this fluid are then generated by all the admissible forms
of Q(A) and p0(A), usually called the generating functions.
For each pair of analytic [Q(A), p0(A)], the boundary-value
problem in the tradition of classical analysis gives either no
solution, because the governing PDEs are nonlinear, or an
everywhere-analytic solution (Courant & Hilbert 1962). The
principal result of Paper I is that the set of all everywhere-
analytic solutions is a subset of measure zero of the physically
admissible thermally balanced equilibrium states. So the same
result may be expected in the 2D extension of the model.

If the electrical resistivity η �= 0, there is no steady state
because the current density would then decay in time. If η = 0,
the fluid surface identified as a flux surface of B at any one
time remains a flux surface for all time under continuous
displacement, the frozen-in condition expressed by the induction
equation

∂B
∂t

= ∇ × (v × B) . (18)

This equation implies, in particular,

∂A

∂t
+ v · ∇A = 0, (19)
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for our 2D system. It is easy to show that as long as v is
continuous, setting A(y, z, t) = A0, a fixed constant, describes
an evolving fluid surface. Therefore, the total mass M(A1, A2)
distributed with x as an ignorable coordinate between any two
flux surfaces A = A1 and A = A2, A1 and A2 being constants,
is a constant in time. More generally, induction equation (18)
states that the net magnetic flux across any fluid surface area
is conserved as it deforms continuously. Therefore, the total
magnetic flux Φ(A1, A2) contributed by Bx = Q across the
area in the y − z plane between two field lines, A = A1 and
A = A2, is also a constant in time. When given one of the
above 2D thermally balanced equilibrium states, the system
must be thought of physically as having arrived at this state with
a specific M(A1, A2) and Φ(A1, A2) fixed for the system for all
time. If we specify M(A1, A2) and Φ(A1, A2), we are asking for
the equilibrium state for a completely identified fluid in terms
of its mass and x-directed flux distributed over the constant-A
fluid surfaces in some specific manner. For that equilibrium, the
functions p0(A) and Q(A) must be given forms that recover
M(A1, A2) and Φ(A1, A2), respectively, in the solution. That is,
p0(A) and Q(A) are unknowns in this physical formulation of
the equilibrium expressed by integral equations that relate them
to M(A1, A2) and Φ(A1, A2), respectively; see the discussion
of this integro-PDE system by Wu & Low (1987).

Conceptually, M(A1, A2) and Φ(A1, A2) are physical prop-
erties that can be freely prescribed. It is thus interesting that,
in general, not all prescribed pairs yield an everywhere-analytic
solution to their integro-PDE system. The unavoidable singu-
larities in the non-analytic solutions are the weak solutions of
the boundary-value problem, meaning that these singularities
are not arbitrary but subject to the same physical laws as the
integral equivalence to the PDEs governing the continuous part
of the global solutions (Courant & Hilbert 1962). From this
analysis, an exhaustive search of everywhere-analytic solutions
to the boundary-value problems posed by PDEs (7), (10), (11),
and (14) with an a priori prescription of continuous p0(A) and
Q(A) would miss out on the singular solutions that populate the
total set of physically admissible equilibrium states.

Coupling the Grad–Shrafanov equation (10) to the energy-
transport equation (17) is an analytically intractable problem.
The basic property of interest here is in equilibrium states
with a temperature T that is discontinuous across a magnetic
flux surface. This effect can be investigated with the simpler
equilibrium states in which θ (y, z) = θ (A) with L = H = 0.
Then F = 0 by Equation (16), and energy equation (17) is
trivially satisfied. Equation (15) gives

p(A, z) = p0(A) exp

[
− z

Λ0θ (A)

]
, (20)

reducing the problem to one of solving the Grad–Shrafanov
PDE

∇2A + Q(A)Q′(A) + 4π
∂

∂A

(
p0(A) exp

[
− z

Λ0θ (A)

])
= 0,

(21)
for A with prescribed functions p0(A), Q(A), and θ (A), subject
to boundary conditions on A. Since thermal conduction is absent
across the field lines, θ (A) is not required to be a continuous
function of A. Moreover, the pressure is generally not continuous
when the temperature is discontinuous, that is, the function
p0(A) may also be discontinuous. The derivatives of p0(A)
and θ (A) on the right-hand side of Equation (21) contribute

δ-functions to ∇2A and, hence, to the current density given by
Equation (9).

All the above magnetostatic problems, as either a purely PDE
system or an integro-PDE system, are generally intractable. So
we shall make our physical points in Section 4 by specialized
solutions to give insights into the general solutions. Before
proceeding, we need to address in the next section an important
assumption in our analysis. In a real plasma, not only is the
electrical conductivity not infinite, that is, there is a small
but nonzero resistivity, but its cross-field thermal conductivity
is also small but nonzero. The non-dimensional ratio of the
resistivity to that thermal diffusion of heat determines whether
the breakdown of the frozen-in condition as an approximation
precedes the breakdown of the assumption of zero cross-field
thermal conduction.

3. THE RESISTIVE AND CROSS-FIELD THERMAL
DIFFUSIVITIES IN THE CORONA

The degree of ionization in the optically thin parts of
prominences has an observed range of 10−3 to 10−1 (Tandberg-
Hanssen 1995; Gilbert et al. 2002, 2007; Labrosse et al. 2010;
Mackay et al. 2010). The one-fluid description we have adopted
is only a step toward a more complete but formidable description
that accounts for the interactions among neutrals, ions, and
electrons as separate fluids. Here within the one-fluid description
of a fully ionized gas, we demonstrate that cross-field thermal
conduction is a weaker effect than electrical resistivity in the
corona and prominences.

3.1. The Spitzer Resistivity

We adopt the isotropic, temperature-dependent Spitzer (1962)
resistivity,

η = 5 × 1012T −3/2 cm2 s−1, (22)

neglecting for simplicity a weak anisotropy owing to the pres-
ence of a magnetic field. We also neglect other complications
like the thermoelectric effect on the resistivity arising from an
extreme thermal gradient across the field.

We obtain the values η = 5 × 106 cm2 s−1 at T = 104 K in
a prominence and η = 5 × 103 cm2 s−1 at T = 106 K in the
corona. The resistive diffusion time τd = L2/η of a magnetic
structure of size L = 200 km, representing a lower-limit length
scale observable with Hinode/SOT, for example, is of the order
of 108 s and 1011 s for the prominence and corona, respectively.
These times are too long to be relevant at the timescale of 100 s
characteristic of the prominence’s vertical threads. Turning the
question around, the length scales for which τd ≈ 100 s are
LP = 2×10−1 km in the prominence and LC = 10−2 km in the
corona, both three orders of magnitude, at least, smaller than
their respective hydrostatic scale heights of ΛP = 300 km and
ΛC = 3 × 104 km.

The mean free paths of the electrons and protons for like-
particle collisions have the same dependence on T 2/N , where
N is the number density of the species. Let us simplify by
assuming the same temperature for the two species. Then, this
common mean free path is of the order of lP = 5 cm in a
prominence plasma of density N ≈ 1011 cm−3 and T = 104 K
and lC = 50 km in a coronal plasma of density N ≈ 109 cm−3

and T = 106 K. Therefore, when resistive diffusion in the
prominence becomes relevant at a scale of LP = 2 × 10−1 km,
this scale is still much larger than the mean free path of
lP = 5 cm. On the other hand, because of its high electrical
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conductivity, resistive diffusion becomes relevant in the corona
for scales of LC = 10−2 km or smaller, well below its mean
free path of lC = 50 km. In other words, as a field gradient
steepens toward a tangential discontinuity under the frozen-in
condition, it proceeds until the fluid description breaks down,
locally at where the tangential discontinuity is developing
without arriving at a resistive fluid regime. The situation is
actually more optimistic because in the presence of a 10 G
magnetic field, the ions are tied to the field with a cyclotron
radius of about 90 cm for protons at T = 106 K, so that the
fluid picture may be said to break down only along the field.
A proper treatment of this breakdown is outside the scope of
the present paper, but it seems reasonable to assume that such a
developing tangential discontinuity will excite a host of plasma-
kinetic effects to dissipate its growing current density while the
fluid description and the frozen-in condition break down. Note
that the fluid picture is approximately good along the field to
some relatively small scales in the low corona, considering that
the mean free path in the corona is of the order of 10−2 of the
coronal hydrostatic scale height ΛC .

3.2. The Spitzer Thermal Conductivity

We adopt the Spitzer thermal conductivity and thermometric
diffusivity

κ‖(T ) = 2 × 10−6T 5/2 erg cm−1 s−1 K−1,

K‖(T ) = κ(T )/(5NkB)

= 3 × 109T 5/2N−1 cm2 s−1, (23)

respectively, taken from Parker (1994), using a subscript to
indicate thermal conduction along the magnetic field. The
electrons as the carriers of thermally conducted heat are tightly
tied to the magnetic field lines. Thermal conduction across the
field has the coefficients

κ⊥ = κ‖/(ωeτe)2, (24)

K⊥ = K‖/(ωeτe)2, (25)

greatly reduced from the respective parallel coefficients by a
factor of (ωeτe)−2 
 1, where

ωe = eB/mec rad s−1, (26)

τe = 11.4m
1/2
e

logΛ
T 3/2

N
s (27)

are the electron cyclotron frequency and the time for an
electron to be significantly deflected by Coulomb interaction,
respectively, in standard notation. For our purpose we set the
Coulomb factor log Λ ≈ 10 for application. For example,
if the field strength B = 100 G and the electron density
is N ≈ 1010 cm−3 at T = 106 K, the cross-field thermal
conduction is reduced by a factor of (ωeτ )−2 ≈ 10−10 (Parker
1994). Taking the field to be 10 G, closer to the fields threading
quiescent prominences, that reduction factor is still exceedingly
small at 10−8.

The thermometric diffusivity, K⊥(T ), describing the diffusion
of temperature, has the same dimension as resistivity η, and we
have an interest in their dimensionless ratio. Direct evaluation
gives

ωe = 1.6 × 107B, (28)

τe = 2.3 × 10−2 T 3/2

N
. (29)

Then, we have

ωeτe ≈ 3.73 × 105 BT 3/2

N
, (30)

K⊥ = 2.2 × 10−2 N

B2T 1/2
. (31)

Evaluate the ratio

ε = K⊥
η

= 4.4 × 10−15 NT

B2

= 32
NkBT

B2
. (32)

The quantity p = 2NkBT is just the pressure of the fully ionized
gas, which defines the plasma beta

β = 8πp

B2
. (33)

Hence, we have the ratio

ε = 0.64β. (34)

The field intensity in a prominence is about 10–60 G, from
polarimetric observations (Casini et al. 2003; Lopez Ariste &
Casini 2003). If we take N = 1011 cm−3, T = 104 K, and
B = 30 G, we get p = 0.28 erg cm−3, β = 7.7 × 10−3, and
ε = 5 × 10−3.

With ε 
 1, the thinning of a steep gradient layer to zero
will cross the threshold thickness for resistive dissipation of
the growing current density in the layer, well before cross-field
thermal conduction becomes important. If ε � 1, the thinning
steep gradient will excite cross-field thermal diffusion before
resistive diffusion. In this case, the thermal balances in the two
adjacent tubes are perturbed and a time-dependent evolution is
initiated without breaking the frozen-in condition. It is possible
that this evolution on its own develops steep gradient layers
even thinner to also excite resistive dissipation. This is just as
interesting an outcome, but the case of ε 
 1 is simpler, a
clear case of the magnetic thermal insulation directly causing
a magnetic tangential discontinuity to form at a flux surface, a
novel case of the Parker spontaneous current sheets. Note that
β 
 1 does not mean that the field is so rigid that it cannot
change when the plasma pressure changes. Rather, the field
being strong can change by just a small amount to accommodate
any plasma-pressure change, including an inevitable jump in the
plasma pressure.

4. THREE FAMILIES OF 2D EQUILIBRIUM
MAGNETIC FIELDS

Solving equilibrium equations (7), (10), (11), and (14) for
A, p, ρ, T in generality requires powerful numerical methods,
an undertaking that must be postponed to the future. The 1D
KS slab of Paper I is a special case of this system of static
equations that is soluble analytically by a reduction of the PDEs
to ordinary differential equations. Here we go on to multi-
dimensional fields to treat a rich class of inevitable discrete
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currents distinct from the ones due to the collapsed mass sheets
found in the 1D KS slabs. The hydromagnetic effect we aim
to understand is, in principle, already identified unambiguously
in Section 2. That is, once the temperature is allowed to be
discontinuous across a magnetic flux surface under energy
equation (14), that surface automatically acquires a discrete
current since equilibrium demands for an inevitable tangential
field discontinuity across the surface. This consideration shows
that the effect in its elementary form is about the cross-field
response of a multi-dimensional field to the field-aligned force
and energy balance. Only the details of the effect depend on
the detailed fluid structures along the flux tubes as demanded
by energy equation (14). Here we set out to study how field
geometry plays a fundamental role in the multi-dimensional
field’s response, without having to solve Equation (14) for such
details. This is fruitfully done by analyzing the properties of
three instructive families of 2D equilibrium states, the solutions
in the first family being continuous everywhere and those in
the other two families containing inevitable tangential field
discontinuities.

4.1. 2D KS Slab with Vertically Periodic Structures

Consider equilibrium in the presence of a spatially uniform
temperature. Set θ ≡ 1, that is, T = T0, the uniform tempera-
ture, and the Grad–Shafranov equation (21) takes the form

∇2A + Q(A)Q′(A) + 4π
dp0(A)

dA
exp(−k0z) = 0, (35)

introducing the inverse scale height k0 = 1/Λ0. Let us prescribe

p0(A) = p1 exp(λA), (36)

Q(A) = B1, (37)

where p1, λ, and B1 are constants. The pressure in Equation (20)
takes the form

p(A, z) = p1 exp [−k0z + λA] , (38)

and the Grad–Shrafanov equation (35) reduces to

∇2A + 4πp1λ exp [−k0z + λA] = 0. (39)

The substitution,

A = k0

λ
z + φ(y, z), (40)

transforms the Grad–Shrafanov equation into the Liouville PDE

∇2φ + 4πp1λ exp (λφ) = 0, (41)

with the complete integral

exp(λφ) = 2(∇u)2

πp1λ2(1 + u2 + v2)2
, (42)

introducing u and iv as the real and imaginary parts of
an arbitrary analytic complex function F (ω) of the complex
variable ω = y + iz, that is,

u(y, z) + iv(y, z) = F (ω). (43)

Each prescription of F (ω) yields a Liouville solution φ defining
a static equilibrium. The field, with Bx = B1, is given by the
flux function (40), frozen into an isothermal density distribution

ρg = k0p1 exp (λφ) , (44)

using the ideal gas law and the pressure (38). The field and
density are expressed as functions of space through φ(y, z).

For our purpose in this paper, we concentrate on the family
of solutions generated by

F (ω) = exp (kω) + a,

u(y, z) = exp (ky) cos kz + a, (45)

v(y, z) = exp (ky) sin kz,

where k and a are two arbitrary constants. Equation (42) gives
the solution

exp(λφ) = 2k2 exp(2ky)

πp1λ2(1 + a2 + 2a exp(ky) cos kz + exp(2ky))2
.

(46)
For a given a, define exp (ky1) =

√
1 + a2. Then a transforma-

tion y → y + y1 redefines the function φ(y, z):

exp(λφ) = 2k2

πp1λ2(
√

1 + a2 cosh ky + a cos kz)2
. (47)

This transformation has moved the origin along the y-axis to a
location about which the redefined function φ(y, z) is symmetric
in y. The free parameter k is the wavenumber of this function’s
periodicity in z, as well as its exponential decline with y in either
direction.

To relate to the physics we are interested in, we prescribe
the uniform temperature T0, fixing the inverse scale height k0.
Take the free parameter λ to have the dimension of the
reciprocal of the field intensity times length. We may then set
λ = k0/B2, introducing a constant field intensity B2 to replace
λ as a free parameter. We now introduce a third field intensity
B3 = (k/k0) B2 to represent the free parameter k as may be
convenient to do depending on the physical discussion. Note
that λ = k/B3 by definition. Then the magnetic field is given by

A = B2z − 2

(
B3

k

)
log(

√
1 + a2 cosh ky + a cos kz), (48)

B =
[
B1, B2 +

2aB3 sin kz√
1 + a2 cosh ky + a cos kz

,

2B3

√
1 + a2 sinh ky√

1 + a2 cosh ky + a cos kz

]
, (49)

in which (B1, B2, B3) are three field intensities we may arbi-
trarily prescribe with k = (B3/B2)k0. This is a four-parameter
family of everywhere continuous solutions, the fourth being the
dimensionless constant a.

Each of these fields is in equilibrium with the isothermal
density

ρg = B2B3k

2π (
√

1 + a2 cosh ky + a cos kz)2
, (50)

which is periodic in z, confined about the central plane y = 0
with an exponential decay over a scale k−1 to zero as y → ±∞.
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Figure 1. Three solutions for a 1D KS slab with a fixed scale height Λ0 but three increasing values of the total mass W/g defined by Equation (54). With y on the
abscissa are the representative field lines each plotted as z(y) (left panel) and their respective density distributions (right panel). The three cases are identified by the
properties that the smaller W is, the smaller the maximum density at y = 0 and the flatter the bottom of the bowed field line.

The density is independent of Bx = B1. From force-balance
equation (4) with x as an ignorable coordinate, the uniform Bx
produces only a uniform magnetic pressure that is immaterial
to the force balance. This component plays a more explicit
role through the anisotropic influence of the field on thermal
conduction in energy equation (6).

4.1.1. The 1D Isothermal KS Slab

Set a = 0 and we have the 1D-slab isothermal solution of
Kippenhahn and Schlüter (1957),

A = B2z − 2

(
B3

k

)
log(cosh ky), (51)

B = [B1, B2, 2B3 tanh ky], (52)

ρg = B2B3k

2π
sech2ky. (53)

Thus, setting a �= 0 generalizes this strictly y-dependent solution
to vary with both y and z, keeping x as an ignorable coordinate.
In Section 4.3 we will be examining a different generalization
to 2D, allowing variations in y and x while keeping z as an
ignorable coordinate. Therefore, it is useful to see clearly the
following specific property of this 1D KS solution as a reference
state for these two generalizations.

Equation (52) shows that the equilibrium field is the result
of weighing down a uniform background field Bbg = B1x̂ +
B2ŷ into a sheared, bowed shape. By the 1D nature of the
equilibrium, a measure of the total weight is given by

W =
∫ ∞

−∞
ρgdy

= B2B3

π
. (54)

This is the weight in an infinite column of unit cross-sectional
area aligned in the y-direction. In the y − z plane, W may be
called the integrated weight per unit length in the z-direction,
which we henceforth refer to as the weight for brevity. The
greater the weight, the greater is the sag defined by Bz = ±2B3
at y → ±∞ for a fixed By = B2. If we hold Bbg fixed, it is useful
to replace B3 = πW/B2 with W as a free parameter. Then the
wavenumber k = k0B3/B2 can be expressed as k = πk0W/B2

2 ,
and Equations (51)–(53) read

A = B2

(
z − 2Λ0 log

[
cosh

(
πW

B2
2

y

Λ0

)])
, (55)

B = B1x̂ + B2

[
0, 1, 2

πW

B2
2

tanh

(
πW

B2
2

y

Λ0

)]
, (56)

ρg = πW 2

2Λ0B
2
2

sech2

(
πW

B2
2

y

Λ0

)
, (57)

where we have used k0 = 1/Λ0.
In 3D space, we have an infinite, vertical slab represented by

a density ρ(y) symmetrically concentrated about the vertical
plane y = 0. The characteristic slab width is B2

2 Λ0/πW .
Figures 1 and 2, with a fixed By = B2, suffice for illustrating
the parametric dependence of the solution on the isothermal
temperature and the total mass W/g in the frozen-in condition.

Figure 1 shows the shapes of the bowed field lines projected
on the y − z plane for three slab solutions of increasing values
of W, all having the same scale height Λ0. The greater W is,
the more inclined the field is below the horizontal indicated
by |Bz/By | = B3/B2 = πW/B2

2 at y → ±∞. The density
distributions show the corresponding parametric trend of a
narrowing of slab width and an increasing peak value of the
density at y = 0. When the total weight W is greater, it weighs
more on the background field into a deeper bow such that the
slab in equilibrium has a smaller width.
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Figure 2. Three solutions for a 1D KS slab with a fixed total mass W/g but three increasing values of the scale height Λ0, in the same format as in Figure 1. The
densities in the three cases are identified by the properties that the larger the scale height Λ0 is, the smaller the maximum density at y = 0 with more mass distributed
into the wings, and the flatter the bottom of the bowed field line. With the total mass W/g the same for all three solutions, all three field lines at large y tend to the
same constant gradient.

Figure 3. Two solutions of the isothermal 2D KS slab with a = 0.2 (left) and a = 0.25 (right), displayed as vertically periodic thin field lines of constant A and thick
contours of constant ρ in the plane with ky on the abscissa and kz on the ordinate. The inverse isothermal density scale height k0 is set to half the wavenumber k of
the vertical periodicity, which fixes the critical parameter a0 = 0.25. The equilibrium on the left is an a < a0 state that has only open field lines. The critical a = a0
equilibrium on the right also has only open field lines, but a cusp has appeared on the critical (dashed) field line shown, where O-type and X-type neutral points appear
in coincidence.

Figure 2 shows the shapes of the bowed field lines projected
on the y − z plane for three slab solutions of increasing values
of the isothermal temperature T0 and its scale height Λ0, all
having the same weight W. Increasing the scale height implies
a more gradual spatial decline of stratified density with z along
the inclined field. This means that the same total weight W
in the three cases is distributed over increasingly thicker slab

widths as shown. In all three cases, the field lines tend to the
same inclination below the horizontal at y → ±∞ because that
inclination is determined by W alone.

4.1.2. The 2D Isothermal KS Slab

If a �= 0, we have a 2D KS slab with a slab width k−1

and a periodic vertical structure of wavenumber k. Figures 3

8
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Figure 4. Two solutions of the isothermal 2D KS slab with a = 0.4 (left) and a = 0.6 (right), displayed in the same format as Figure 3, both with k0/k = 0.5 and
a0 = 0.25. These a > a0 states have magnetic islands of closed field lines nested around an O-type neutral point and looped around by the infinitely long (dashed)
separatrix field line associated with the X-type neutral point shown.

and 4 show four examples with the same values of B2, B3 but
with increasing values of a as a measure of departure from
one-dimensionality. In each figure, the thin lines are constant-
A field lines projected on the y − z plane and the thick lines
are contours of constant density. The constant field component
Bx = B1 may be taken to be the same for the three examples.
This field component does not affect the equilibrium in the y − z
plane, but it gives the field, in 3D space, a sheared configuration
for the field lines extending to y → ±∞ and a twisted flux-rope
configuration for the magnetic islands, or regions of closed field
lines, found in Figure 4.

For a < a0 = B2/2B3, all the field lines extend to infinity and
are unevenly bowed because the loaded mass per unit magnetic
flux varies across the field, the cases in Figure 3. For a > a0,
periodic magnetic islands appear, lined up along the z-axis, the
two illustrative cases in Figure 4. In each magnetic island, the
closed field lines nest around an O neutral point. The island
boundary is a part of a separatrix line, drawn as a dashed line in
Figure 4, associated with an X neutral point. This separatrix line
comes in from y → −∞, passes through the X neutral point
to go around the magnetic island, passes through that neutral
point again, and then goes off to y → ∞. As a increases past
a0, the special case of a = a0 shown on the right in Figure 3
corresponds to the parametric simultaneous appearances of the
O and X neutral points in coincidence, manifesting as a cusp on
the dashed line shown.

The density ρ(y, z) concentrates around the vertical plane
y = 0 in a vertical series of alternating maxima and saddle
points. Along y = 0, the saddle points are minima in density
alternating with the maxima, having the respective values

ρmin = B2B3k

2π
(
√

1 + a2 + a)−2, (58)

ρmax = B2B3k

2π
(
√

1 + a2 + a)2. (59)

Each of these equilibrium fluids when perturbed to evolve
under the frozen-in condition moves with its flux surfaces of

constant-A deforming as fluid surfaces, described by induction
equation (19). The mass sandwiched between any two flux
surfaces on which A = A1, A2, two constants,

M(A1, A2) =
∫

A1<A(y,z,t)<A2

ρ(y, z, t)dydz, (60)

is a constant in time, where ρ(y, z, t) is the evolving density
and A(y, z, t) satisfies Equation (19). To clarify our notation,
with no loss of generality, we can fix A1 to define a reference
flux surface. Then M(A1, A) is a function of a single variable A
such that setting this variable A = A2, a constant, picks out the
second flux surface to define the invariant total mass measured
from the reference surface. We call M(A1, A) the (invariant)
mass function. Its derivative dM(A1, A)/dA is the total mass
per unit A-flux, which we refer to as mass per unit flux for
brevity. We can calculate M(A1, A) from the field and density
in the a-family of equilibrium states. By this calculation we can
attribute the two-dimensionality of the equilibrium state to the
fact that the mass per unit flux varies with A when a �= 0, that
is, flux tubes of a fixed unit axial flux are loaded with unequal
total masses. The field is thus unevenly bowed by the weight
varying from flux tube to flux tube. The special case of a = 0
corresponds to a uniform loading of mass for each flux tube of a
fixed axial flux. These flux tubes are identical, thus compatible
with equilibrium varying only in the y dimension.

The total weight averaged over a full periodicity in the
z-direction given by

W = k

2π

∫ 2π/k

0

∫ ∞

−∞
ρgdydz

= B2B3

π
(61)

is independent of parameter a, exactly the weight W given by
Equation (54) for the a = 0 1D isothermal KS slab. We recover
the formula k = πk0W/B2

2 showing that the product of the
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total average weight W with the inverse isothermal scale height
determines the width of the 2D slab, as well as the wavenumber
of the vertical periodicity. This property characterizes the
a-family of solutions in terms of their different mass functions
(M) all having the same total mass 2πW/kg per periodic cell,
e.g., −∞ < y < ∞, 0 < z < 2π/k. The four states of different
values of a in Figures 3 and 4 thus have the significance of having
the same total mass 2πW/kg being distributed in different
manners over the A-flux.

4.1.3. The 0 < a < a0 States

The mass function M(A1, A) and its derivatives are contin-
uous over the simple bowed field lines for 0 < a < a0, such as
shown in Figure 3. The hydrostatic density along each infinites-
imally thin flux tube decreases exponentially with z, at scale
height Λ0, starting from a maximum value at the lowest point of
the bowed tube. This maximum value is fixed by the total mass
in the tube. To address the purpose of this paper, suppose that
the isothermal condition is changed by some energy process so
that two contiguous thin flux tubes remain isothermal but end
up with unequal temperatures along them, maintained through
the absence of thermal conduction across the field. Then, in the
new equilibrium, the different exponential decreases of density
with z along the two tubes, at their two unequal respective scale
heights, imply that the densities in the two tubes can agree at
only one point along the common length of the tubes. A pressure
discontinuity is unavoidable, and a discrete current must arise
from the compensating discontinuity in magnetic pressure.

Suppose that we instead introduce a finite additional mass
into one of the two contiguous flux tubes. For simplicity,
retain the condition of a spatially uniform temperature. In the
new equilibrium, the densities along the two tubes decrease
exponentially with z, at the same scale height, starting from two
lowest-point values different by a finite amount that we denote
by Δρ0. This mass addition has rendered the mass per unit flux,
dM(A1, A)/dA, discontinuous going across from one tube to
the other. The discontinuities in the density and pressure across
the tubes are proportional to Δρ0 exp(−z/Λ0), strongest at the
lowest point of the tubes. The heating by the resistive dissipation
of the inevitable discrete current is thus expected to be most
intense at the lowest points where that current is strongest.

4.1.4. The a > a0 States

The invariance of M also means that no frozen-in evolution
can bring any one of these equilibrium states to another because
their respective fields are topologically different. On the other
hand, we may interpret the parametric sequence in Figures 3
and 4 as a quasi-static evolution of the following kind. Each
of these states by its definition lies in the unbounded space
but may be physically interpreted as a local idealization of
a structure belonging to a much larger global structure. The
open part of the field therefore may slowly have mass added
or siphoned out from the global structure, under the frozen-
in condition, changing the mass function M(A1, A) quasi-
steadily. The sequence of equilibria beginning with a = 0 and
ending a = a0, in this interpretation, represents a frozen-in
evolution brought about by this mass siphoning process to alter
the mass function M in a particular manner. Figure 3 shows
an 0 < a < a0 state and the a = a0 state. A change of M
can result in the former evolving into the latter to produce a
local concentration of mass whose weight deforms the field
under equilibrium condition into a cusp point where the field
intensity vanishes. The neighborhood of this point is susceptible

to resistive instability resulting in the formation of a magnetic
island with its X neutral point (Parker 1975; Lerche & Low
1980; Haerendel & Berger 2011). Further addition of mass into
the system cannot proceed under the frozen-in condition without
the X neutral point being creased into a current-sheet singularity
(Parker 1994; Priest 1982). The dissipation of this current sheet
relaxes the field to the continuous states exemplified by the
equilibrium fields in Figure 4. In fact, the discrete-current
formation is more extensive in space as we see below.

The presence of magnetic islands and separatrix lines in these
states implies that the mass per unit flux, dM(A1, A)/dA, is not
everywhere continuous over the A-flux, despite the fact that the
equilibrium field and density are continuous in space. Consider
the dashed separatrix in any of the two solutions in Figure 4. On
the two sides of this special field line three thin flux tubes can
be identified: a closed tube belonging to the magnetic island,
an open tube on the upper side of the separatrix, and a third,
also open, on the lower side of the separatrix. We shall refer
to them as the closed, top, and bottom tubes, respectively. To
compare the total masses frozen into the three flux tubes in
a meaningful manner, we define the tubes to have the same
(small) axial flux. Then, it is easy to verify that these three
tubes contain unequal total masses as a consequence of the
density being continuous in space. For example, the closed and
bottom tubes are contiguous along the finite-length boundary of
the magnetic island. The same exponential hydrostatic decrease
with z of identical densities along the two tubes implies that the
longer bottom tube must have more total mass, by a finite rather
than an infinitesimal amount, in it than the closed tube. Similar
reasoning applies to the infinitely long top and bottom tubes that
are contiguous but not everywhere along the bottom tube.

Suppose that these three tubes adjust to a new local equi-
librium under the frozen-in condition, responding to permanent
changes elsewhere. For example, the particular periodic cell dis-
cussed here has changed its shape or volume permanently due
to a change exterior to this cell. The evolution to new equilib-
rium conserves the total masses in the three flux tubes without
changing the field topology. So the three tubes remain contigu-
ous along the identifiable separatrix in the new equilibrium. In
the new equilibrium, the X neutral point is likely to have been
deformed into field-reversal line under the frozen-in condition.
If the isothermal condition continues to apply, then the hydro-
static exponential decrease of density with z must lead to a dis-
continuous jump in the equilibrium density between contiguous
tubes on two sides of the separatrix line, since their respective
masses are conserved but their tube volumes have changed. The
separatrix must then carry a discrete current to account for a
magnetic-pressure jump to compensate the inevitable pressure
jump across the separatrix.

Another instructive illustration of this effect is given by the
following thought experiment. Take one of the fields in Figure 4
as an initial state but load it with an everywhere continuous
mass per unit flux, dM(A1, A)/dA. This initial state is not
in equilibrium, and we let it evolve under the frozen-in and
isothermal conditions to equilibrium. The separatrix and the
three thin flux tubes on its two sides can never have continuous
density across the separatrix in that equilibrium. This follows
from the overconstraint of the density having to decrease with
z with a fixed scale height, and the flux tubes conserving their
total masses have no control over their respective tube volumes
in the equilibrium state.

We should remind ourselves that by the assumption of a uni-
form temperature we have removed powerful energy-transport
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processes such as the one considered in Paper I. In our analysis,
we use the pure isothermal equilibrium to show how readily
discrete currents can form when this simple state is perturbed.
If we subject each of the flux tubes of fluid in this equilibrium to
the steady energy transport in Paper I, involving radiative loss,
heating, and field-aligned thermal conduction, for example, it is
clearly conceivable that this transport is greatly influenced not
just by the total mass in a flux tube, as shown in Paper I, but
also by its geometric shape. In Figure 4, energy transport takes
on significantly different forms depending on whether the flux
tube is closed or open. The thermal collapse of a fraction of
the total mass in a flux tube followed by its resistive drainage
across the field, say, from the magnetic island to the external
open field, has many dynamical consequences in terms of sink-
ing overloaded flux tubes, a magnetic island made buoyant by
its loss of mass, and, of course, the formation and dissipation
of new discrete currents. Our static analysis has its limit but is
sufficient for pointing out these interesting effects by inference,
leaving the interesting and unambiguous dynamical effects for
future time-dependent studies.

4.1.5. Endless Intermittently Resistive Evolution

Although the a-family of isothermal solutions is artificial
from the physical point of view, their properties described
above point to the following general hydromagnetic process
quite relevant to the solar prominence. The resistive dissipation
of a discrete current flowing in an entire flux surface across
which the density is discontinuous delivers a finite, as opposed
to an infinitesimal, mass from one side to the other. This
dissipation enabling the field to diffuse resistively across the
fluid is time dependent and sensitive to the precise nature of
the dissipative process. Therefore, the finite amount of mass so
transported across the field is effectively a random quantity,
being dependent on the nature and course of events in the
dissipative process. As soon as the extreme field gradients have
been dissipated away, the frozen-in condition is restored as an
excellent approximation. Because the mass transported across
from one flux bundle to another is finite and uncontrolled, it
follows that such a process cannot, in general, either produce a
mass per unit flux everywhere continuous across the magnetic
flux or be piecewise continuous to be just right to ensure that
where there are X neutral points in the field, the equilibrium
density is everywhere continuous.

This conclusion is simplest to see if we avoid the complication
of magnetic reconnection and deal with just resistive diffusion
of field across a fluid surface. Consider two closed flux tubes in
one of the magnetic islands in Figure 4 of the same unit axial flux
and contiguous along their entire lengths. Let one tube have a
total mass a finite amount larger than the total mass of the other.
Between them in equilibrium is a discrete current required for
the balance of their jump in fluid pressure. The dissipation of
that discrete current brings about a resistive diffusion of the
magnetic flux across the fluid boundary separating the fluid
in the original two flux tubes. In relative terms, the original
two flux tubes can be identified in the diffused field, and we
may then say that they have exchanged mass between them.
Now, this process, whatever its physical resistive nature, is not
constrained such that just the right finite amount of mass would
have passed to equalize the total masses of the two flux tubes
in the final state. That is, although a finite amount of mass has
passed between the two flux tubes, this amount is uncontrolled.
Therefore, after the dissipation, the new total masses in the two
flux tubes, in general, would still have a finite difference between

them. With the extreme field gradients removed resistively,
the frozen-in condition is restored. This means that the field’s
discontinuous mass per unit flux, dM(A1, A)/dA, is invariant
in the evolution that follows. The system is thus set up for the
next in a never-ending sequence of bouts of resistive dissipation.
Once started, the formation and dissipation of discrete currents
repeat intermittently in this manner.

The inevitability of discrete-current formation is topological,
that is, it has to do with anisotropy in thermal conduction and
the anisotropic Lorentz force. This inevitability is separate from
how energetic the discrete currents would be in a given bout
of dissipation, the latter depending on the free energy available
(Janse & Low 2010). In the case of the quiescent prominence,
an important source of energy for this endless intermittently
resistive evolution is the gravitational potential energy of the
system. In a complex 3D field, every resistive event opens new
paths in the local reconnected field for the fluid to flow to lower
gravitational potential energy, while a reconfigured flux tube
drained of some of its fluid would rise by magnetic buoyancy
(Berger et al. 2010). The tortuous process ends only when all
the mass has drained out of the magnetic field, which we are
assuming to have somehow gotten into the atmosphere.

So, if the system is driven with a continual injection of
mass and magnetic flux into the system, then the dissipation
can conceivably be sustained. The accumulation of buoyant
magnetic flux and helicity can explain the large coronal cavity
that contains the quiescent prominence (Priest et al. 1989; Low
1996, 2001; Zhang & Low 2005; Low & Hundhausen 1995;
Schmit et al. 2009; Fan & Gibson 2006, 2007; Schmit & Gibson
2011; Fuller et al. 2008; Dove et al. 2011; Gibson & Fan 2006;
Gibson et al. 2010). In this picture the ultimate source of energy
is magnetic, providing the heating of plasma to be injected into
the cavity to be condensed into the prominence. We have only
provided an elementary theoretical analysis, but this analysis
suggests some rudiments for the magneto-thermal convection
proposed by Berger et al. (2011) to explain the phenomenon of
the quiescent prominence with the unprecedented observations
from Hinode/SOT and SDO/AIA. The dissipation puts a limit
of how much mass may be retained in the system on a long
quasi-steady timescale, determined by the mass injection and
drainage rates. Liu et al. (2012) reported the first observation
of such a quasi-steady balance in a prominence made with
SDO/AIA. In this event, the drainage rate is significant to the
level of the prominence having drained an estimated total mass
of about 1015 g, of the order of the magnitude of a CME mass,
in a day while retaining an estimated, quasi-steady total mass in
the prominence of an order of magnitude smaller.

These prominence observations are the motivation of our the-
oretical development in this paper. To complete this develop-
ment, we present two explicit families of solutions describing
inevitable discrete currents arising from discontinuity in mass
per unit flux, as well as the discontinuity of a temperature that
is isothermal on but varying across magnetic flux surfaces.

4.2. Equilibrium with Discontinuous Total Mass per Unit Flux

There is a family of analytic solutions to the isothermal
Grad–Shrafanov equation (35) especially suited for illustrat-
ing 2D equilibrium states in which the mass per unit flux,
dM(A1, A)/dA, is a discontinuous function (Low & Manch-
ester 2000; Manchester & Low 2000). These solutions satisfy
the Grad–Shrafanov equation (35) with p0(A) being a discon-
tinuous function of A.
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Figure 5. Field lines of constant-φ(y, z), defined by Equation (62), projected on
the plane with k0y on the abscissa and k0z on the ordinate. The field is periodic
in y, everywhere vertical in the z → ∞ region and morphing into a horizontal
wavy field in the z → −∞ region, separated by the (dashed) separatrix field
line φ = 1.

Prescribe the constant-A field lines to be contours of constant
φ(y, z), where

φ = exp(−k0z) + cos(k0y). (62)

This simply means that A(y, z) = A(φ) and Equation (35)
reduces to the following ordinary differential equations:

(1 − φ2)
d

dφ

(
dA

dφ

)2

− 2φ

(
dA

dφ

)2

+
d

dφ
Q2 = 0, (63)

φ
d

dφ

(
dA

dφ

)2

+ 2

(
dA

dφ

)2

+ 4π
dp0

dφ
= 0, (64)

relating A(φ), Q(φ), and p0(φ). Figure 5 displays the contours
of constant φ(y, z), comprising horizontally periodic cells of
U-shaped field lines resting on a bed of horizontally oriented
field lines. The field line φ(y, z) = 1 separates the latter
set of lines from the periodic cells, running up to z → ∞
and back as the boundary of each successive cell. To build
an equilibrium of this family of solutions, we may prescribe
p0(φ) arbitrarily, that is, specifying the isothermal pressure
distribution p(y, z) = p0[φ(y, z)] exp(−k0z). This specification
is equivalent to prescribing dM(A1, A)/dA on the field lines of
a fixed shape. Equations (63) and (64) then determine A(φ) and
Q(φ) in terms of the prescribed p0(φ) and yield the equilibrium
magnetic field given by Equation (8). Note that in Figure 5
the upper periodic U-shape fields can be loaded with vertically
elongated fluids with their lower ends terminating at a height
beneath which the field is of a contrastingly different topology,
the latter suggestive of the observed quasi-steady macroscopic
voids at the base of prominences (Berger et al. 2010, 2011).

In the original studies (Low & Manchester 2000; Manchester
& Low 2000), interest was concentrated on A(φ) having an ev-
erywhere continuous derivative, so that both the field and plasma

are everywhere continuous in space. This family of solutions in-
cludes the case of p0(φ) prescribed as a discontinuous function
corresponding to a discontinuous dM(A1, A)/dA. Suppose that
p0(φ) is discontinuous across a flux surface φ = φ1, a constant;
then Equations (63) and (64) demand that both (dA/dφ)2 and
Q2 are also discontinuous across φ = φ1. The latter implies that
the magnetic pressure given by

B2 =
(

dA

dφ

)2

|∇φ|2 + Q2 (65)

is discontinuous across φ = φ1. Independent of whether or not
p0(φ) is continuous, the total pressure is

p +
B2

8π
=

[
P0 − 1

4π

∫ (
dA

dφ

)2

dφ

]
exp(−k0z) +

λ0

8π
, (66)

derived from the force-balance equation (4). Thus, we are
assured that the discontinuities in fluid pressure and magnetic
pressures in the above construction automatically satisfy the
continuity of the total pressure as a requirement for the surface
of discontinuity dA/dφ to be in force balance. We leave the
reader to explore the properties of this family of solutions.

The sets of continuous and discontinuous equilibrium solu-
tions are infinite, spanned by all forms of dM(A1, A)/dA, all
sharing the same field lines displayed in Figure 5. Clearly, the
set of continuous equilibria is a subset of measure zero of the
set of all realizable equilibria.

4.3. Discontinuous Tangential Fluid Displacement
at a Magnetic Flux Surface

The nonlinear Grad–Shrafanov equation (21) for a prescribed
temperature θ (A), constant on each flux surface but allowed to
be of different values on different flux surfaces, is generally
analytically intractable and non-trivial to solve numerically.
We turn to the 2D extension of the 1D isothermal KS slab,
in an entirely different geometry, by Low & Petrie (2005) for an
explicit illustration of inevitable discrete currents arising from
distributions of temperature and total frozen-in mass that are
discontinuous across magnetic flux surfaces.

The 1D KS slab solution described by Equations (51)–(53)
has three free parameters, (B1, B2, B3). Let us set B1 = 0,
limiting our attention to fields that lie in the y − z plane, and
redefine B2 = B0 cos Φ, 2B3 = B0 sin Φ in terms of two
equivalent free parameters B0 and Φ. With k = k0B3/B2 =
(1/2Λ0) tan Φ, we obtain the solution

A = B0 cos Φ
(

z − 2Λ0 log

[
cosh

(
1

2Λ0
tan Φ(y − y0)

)])
,

(67)

B = B0

[
0, cos Φ, sin Φ tanh

(
1

2Λ0
tan Φ(y − y0)

)]
, (68)

ρg = B2
0

8πΛ0
sin2 Φsech2

(
1

2Λ0
tan Φ(y − y0)

)
, (69)

p = Λ0ρg, (70)

where we have introduced a constant translation displacement y0
in the y-direction with no loss of generality. The weight defined
by Equation (54) is now expressed as

W = 1

4π
B2

0 sin 2Φ. (71)
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Figure 6. Magnetic flux surface x = x0 across which the equilibrium field B(x, y), given by Equation (68), is discontinuous in both field intensity and direction such
that the total pressure is continuous to ensure force balance everywhere on x = x0. Shown are two sets of field lines, the thick lines on one side overlaid on the thin
lines on the other side of x = x0 for each of two exact solutions described in the text. In the left panel the two sets of field lines for a solution have the same isothermal
temperature but different total masses loaded per unit magnetic flux; see Figure 1. The two sets of field lines in y → ±∞ have different constant gradients, and the
discrete current flowing in x = x0 is everywhere intense. In the right panel the two sets of field lines for the other solution have different isothermal temperatures but
the same total mass loaded per unit magnetic flux; see Figure 2. The two sets of field lines in y → ±∞ have the same constant gradient, and the discrete current
flowing in x = x0 is intense only in the neighborhood of y = 0 but vanishes in y → ±∞.

We have done no more than rewrite the 1D solution in another
equivalent form.

What is interesting is that if we now formally take B0 a
constant in space but let Φ, Λ0, y0 be arbitrary functions of x,
we still have a solution to the force-balance equation (4), which,
for our purpose here, we rewrite as

1

4π
(B · ∇) B − ∇

(
p +

B2

8π

)
− ρgẑ = 0. (72)

First, the variation with x introduced retains the solenoidal
condition on B. Direct evaluation shows that p + B2/8π =
B2

0/8π , uniform in 3D space, and (B · ∇)B gives only a vertical
component that balances the weight ρg exactly. Thus, the force
balance is satisfied for all prescribed Φ(x), Λ0(x), and y0(x).
This was shown by Low & Petrie (2005), except that they
had not realized that the scale height Λ0, too, may vary freely
with x, allowing for a corresponding temperature T = T0(x),
for a solution of this kind. Finally, an arbitrary function y0(x)
displaces the solutions on different x-planes arbitrarily, creating
quite complex structures (Low & Petrie 2005; Petrie & Low
2005).

Each of these 2D equilibrium states is a bowed magnetic field
lying in planes of constant x, wherein By = B0 cos Φ(x) and
the temperature T = T0(x) are uniform, supporting the weight
W (x), given by Equation (71), frozen into the field. The 1D KS
slab corresponds to Φ, Λ0, and y0 being the same constants on all
x-planes as magnetic flux surfaces. Arbitrary loadings of weight
W (x) and different temperatures T0(x) on these flux surfaces
are admissible, giving rise to field patterns varying across the
flux surfaces in terms of the sag of the bowed field, density, and

field intensity as functions of x. The original study of Low &
Petrie (2005) was interested in continuous variations.

The study in the present paper introduces a new interest,
namely, the equilibrium states of fields endowed by their
resistive past with a distribution of total mass in magnetic
flux tubes that is not continuous across flux tube boundaries.
Once the discontinuous distribution has been acquired and the
frozen-in condition restored as an excellent approximation, the
field will relax into an equilibrium state that is expected to
be discontinuous in fluid and field properties across the flux
surfaces. Taking the final equilibrium state to be isothermal
on flux surfaces as a simplifying assumption, we have two
independent origins for the discontinuity, one being the different
constant temperatures on isothermal flux surfaces and the other
being the different total mass per unit magnetic flux in flux tubes
on either side of a flux surface. We present examples of these
two properties.

Figure 1 shows three solutions of different total weight W
at the same temperature T0 and scale height Λ0. A continuous
variation with x through these three solutions gives an every-
where continuous equilibrium state varying with x and y. A
prescription of W (x) that jumps discontinuously from two dif-
ferent states in Figure 1 across a flux surface x = x0, a constant,
would have the superimposed field lines shown on the left in
Figure 6. Everywhere on x = x0 we see a discontinuous B
across this flux surface, a magnetic tangential discontinuity car-
rying a discrete current flowing in that flux surface. Note that
independent of the choice of W (x) and T0(x), the total pressure
p + B2/8π = B2

0/8π is uniform in space and therefore con-
tinuous across x = x0, satisfying the condition for x = x0 to
be in force balance. In this case, not only is the direction of B
discontinuous across x = x0, but so is B2, from which follows
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that the density and pressure are both discontinuous across that
surface. As long as electrical conductivity is perfect, this dis-
continuous equilibrium is admissible as a steady state, but our
interest in obtaining this solution is to make the point that elec-
trical conductivity in a real solar plasma is extremely high but
finite, so that the formation of this singularity leads to resistive
dissipation and magnetic reconnection.

As pointed out by Low & Petrie (2005), the far fields on
different x-planes have different inclinations to the horizontal
because the sets of field lines in the x-planes are loaded with
different weight W. It is simple to show that B in the far region
y → ±∞, ρ → 0 and the sheared field is in a force-free
state ∇ × B = α(x)B with α = ±dΦ(x)/dx. This field feeds
into or takes out field-aligned currents from both sides of the
2D slab in order to regulate the cross-field current flowing in
the x-direction within the slab. This current density distribution
self-consistently accounts for just the right amount of cross-field
current in the slab so that Lorentz force is nonzero and exactly
supports the weight of the slab in the different x-planes.

The solution on the right in Figure 6 corresponds to the
three solutions in Figure 2 with different temperature T0 on
different x-planes but the same weight W. Using these solutions
to construct a 2D solution varying with x and y, let us suppose
that T = T0(x) jumps discontinuously from one state to another
in Figure 2 across x = x0. Then, the fields on the two sides
of x = x0 seen projected on x = x0 are different, as shown
on the right in Figure 6, producing a discrete current flowing
on that surface. Again, the field, density, and pressure are all
discontinuous across x = x0. Since the weight W is the same
for all x, that is, Φ is a constant, it follows that α = 0, and
the far field in y → ±∞ does not vary with x, evident in
the right panel of Figure 6. The current density generating the
x-varying supporting Lorentz force in the 2D slab is not strictly
in the x-direction, meandering around in the x−y plane but
confined around the central plane y = 0 of the slab. Again, the
discrete current in x = x0 must dissipate at the small resistivity
of a real plasma, leading to reconnection and changes in mass
distribution over the magnetic flux.

5. SUMMARY AND CONCLUSION

Our theoretical investigation, in Papers I and II here, provides
a basis to hypothesize that the ever-restless dynamical state
of the interior of a certain class of quiescent prominences
observed with Hinode/SOT and SDO/AIA has its origin in
the spontaneous formation and resistive dissipation of discrete
currents under the condition of high electrical conductivity.
The long-lived polar-crown prominences, prior to eruption,
exemplify this class; see the discussions in Paper I.

The formation and resistive dissipation of discrete currents
are an endless, intermittent process first conceived by Parker
(1972, 1994) to explain the magnetic heating of solar and stellar
coronae. The version of this theory we pursue here centers
on the highly anisotropic thermal conductivity in the corona.
An examination of the weak cross-field thermal and resistive
diffusivities in a magnetized fully ionized gas described by
Spitzer (1962) indicates that the former is by far the weaker
effect in the low-β corona and prominences. In the idealization
of neglecting cross-field thermal conduction, the temperature
is allowed to be discontinuous across magnetic flux surfaces,
naturally producing finite jumps in fluid pressure across these
surfaces. In an evolution to equilibrium under the frozen-in
condition, the field readily becomes tangentially discontinuous
across each of these surfaces, producing a discrete current and

a magnetic-pressure jump across the surface to balance the
fluid-pressure jump. In a real plasma of an extremely high
but finite electrical conductivity, this evolution proceeds with
a steepening of field gradients during the time the frozen-in
approximation is good, only to result in such extreme gradients
that dissipation at the small resistivity of the fluid becomes
significant. The resistive removal of the strong gradients then
restores the frozen-in condition only to evolve to the next bout
of gradient steepening and resistive dissipation.

A comment is in order on the theoretical approach in
our treatment of this intrinsically time-dependent process. To
relate this process to the observed corona requires powerful
numerical simulations in multi-dimensional space and a multi-
fluid description for physical completeness (Gilbert et al. 2002,
2007; Greenfield et al. 2011). Considering that the process is
not well understood, this series of papers aims at its basic
effects in the one-fluid description. To avoid having to solve
a time-dependent problem, we have treated the equivalent static
problem by examining a static equilibrium as an end-state of
a hydromagnetic evolution under the frozen-in condition. The
connection between an equilibrium state of interest with the
possible evolutions ending in this state can be made. This is done
by explicitly imposing a specific field topology and a specific
mass function, both invariant under the frozen-in condition, to
constrain the equilibrium state.

To illustrate the point, the Grad–Shafranov PDE (35) describ-
ing an isothermal equilibrium state has the free functions p0(A)
and Q(A). If we are generating a state without further con-
straints, these free functions may be prescribed a priori and we
have the classical problem posed by an elliptic PDE. When the
invariants of a frozen-in evolution are imposed on an equilibrium
state of interest, the functions p0(A) and Q(A) are to be solved
as unknowns together with A(y, z). We prescribe the mass func-
tion M(A1, A), a frozen-in invariant, instead of p0(A); the two
are related by Equation (60). The function M(A1, A) is well
defined independent of whether the system is in equilibrium,
whereas p0(A) is meaningful only in an equilibrium state. Sim-
ilarly, Q(A) is an unknown and must be subject to an integral
equation relating it for all time to the invariant amount of flux in
the x-direction lying between any two constant-A flux surfaces,
in perfect analogy with Equation (60). In this formulation of
the problem, the functions p0(A) and Q(A) are unknowns gov-
erned by integral equations to be coupled to the Grad–Shafranov
PDE (35). The inevitable discontinuous solutions we must admit
come from the structure of this system of integro-PDEs.

This static problem is just as formidable as its equivalent
time-dependent problem, so we probe for physical properties by
analyzing the three families of solutions presented. In general
terms, the inevitable discrete currents can arise in four indepen-
dent ways. The first is basically a thermal collapse, treated in
Paper I with a tractable 1D process in the 1D KS slab. The dis-
crete current comes from a discontinuity in the bowed field to
generate a discrete Lorentz force to support the thermally col-
lapsed mass sheet. The other three ways of spontaneously form-
ing discrete currents are multi-dimensional effects. The one of
immediate interest arises from the temperature being discontin-
uous across a flux surface because the cross-field thermal con-
ductivity is completely suppressed. The jump in fluid pressure
implied by the temperature discontinuity requires a discrete cur-
rent to create a compensating cross-field jump in magnetic pres-
sure. Another way for producing a pressure jump comes from
a discontinuous loading of mass in the field under the frozen-
in condition, that is, the invariant function dM(A1, A)/dA is
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discontinuous. These two ways of spontaneous formation of dis-
crete currents in equilibrium states are neatly illustrated by the
analytical solutions presented in Section 3. Finally, the fourth
way for a discrete current to arise is the general formation of
tangential discontinuities in the field inevitable if a complex 3D
field topology is to be preserved as it relaxes into equilibrium
under the frozen-in condition, with or without the presence of
fluid pressure and gravity (Parker 1994). The above classifica-
tion is helpful for sorting out the basic effects, but in a complex
magnetic field in the corona, all these effects are irrepressible
and coupled to one another.

Among the properties we have illustrated, one stands out for
emphasis. Although we could only construct extremely ideal-
ized equilibrium solutions, they are sufficient for pointing out a
general property. When a discrete current dissipates resistively
in the presence of a finite, as opposed to an infinitesimal, jump
in density across it, a finite amount of mass is transferred across
a flux surface. That finite amount is uncontrolled, and it follows
that no single cross-field transfer of mass can preserve an ev-
erywhere continuous dM(A1, A)/dA or create an everywhere
continuous dM(A1, A)/dA from an initially discontinuous one.
This leads to the physical picture that once initiated, the bouts of
spontaneous formation and resistive dissipation of discrete cur-
rents must repeat intermittently forever until the free energy runs
out (Janse & Low 2010). The origin of this property is ultimately
high electrical conductivity. It is high electrical conductivity that
creates such high magnetic gradients that resistivity, small but
not zero, becomes significant. In this manner, despite the high
magnetic Reynolds numbers in the quiescent prominence, the
flow has an intermittent component that is more resistive than
these numbers would have suggested. The prominence fields are
strong, in the range of 5–60 G (Casini et al. 2003; Leroy 1989;
Lopez Ariste & Casini 2003; Trujillo Bueno et al. 2002). Even
though the plasma-β is small, the field in our physical picture
must also actively evolve with the fluid. As we have pointed
out in Section 4.1.5, this process can explain the significant
drainage of prominence mass as observed by Liu et al. (2012),
in particular, and may be relevant to advancing the proposal by
Berger et al. (2011) that the quiescent prominence is a magneto-
thermal convective process. The rudimentary theoretical ideas
we have described provide motivation for further investigation
using high-power numerical simulation.
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