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ABSTRACT

The recent implementation of radiative transfer algorithms in numerous hydrodynamics codes has led to a dramatic
improvement in studies of feedback in various astrophysical environments. However, because of methodological
limitations and computational expense, the spectra of radiation sources are generally sampled at only a few evenly
spaced discrete emission frequencies. Using one-dimensional radiative transfer calculations, we investigate the
discrepancies in gas properties surrounding model stars and accreting black holes that arise solely due to spectral
discretization. We find that even in the idealized case of a static and uniform density field, commonly used
discretization schemes induce errors in the neutral fraction and temperature by factors of two to three on average,
and by over an order of magnitude in certain column density regimes. The consequences are most severe for radiative
feedback operating on large scales, dense clumps of gas, and media consisting of multiple chemical species. We
have developed a method for optimally constructing discrete spectra, and show that for two test cases of interest,
carefully chosen four-bin spectra can eliminate errors associated with frequency resolution to high precision.
Applying these findings to a fully three-dimensional radiation-hydrodynamic simulation of the early universe, we
find that the H ii region around a primordial star is substantially altered in both size and morphology, corroborating
the one-dimensional prediction that discrete spectral energy distributions can lead to sizable inaccuracies in the
physical properties of a medium, and as a result, the subsequent evolution and observable signatures of objects
embedded within it.
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1. INTRODUCTION

Energy injection by radiative processes fundamentally
changes the evolution of astrophysical systems, whether it be in
the context of star formation, galaxy evolution, or the growth
of supermassive black holes (SMBHs). For instance, ultraviolet
photons from the universe’s first stars (Population III (PopIII)
stars; Abel et al. 2002) photodissociate the primary coolant
(H2) that first enabled their formation. Very recent radiation-
hydrodynamic calculations of PopIII stars find that PopIII star
masses may be limited by protostellar radiative feedback, per-
haps explaining the lack of evidence for exotic pair instability
supernovae in the early universe (Hosokawa et al. 2011). Con-
ventional metal line cooling driven star formation can be af-
fected by radiative feedback as well. Krumholz (2006) showed
that photoheating around newly formed stars can strongly sup-
press fragmentation in surrounding protostellar clouds, while
Dale et al. (2005) see both positive and negative feedback op-
erating in radiation-hydrodynamic simulations of star cluster
formation. Radiative feedback could also be a barrier to effi-
cient black hole (BH) growth in the early universe (Alvarez
et al. 2009), as X-rays from accreting BHs efficiently photoheat
surrounding gas, leading to smaller Bondi–Hoyle accretion rates
(Bondi & Hoyle 1944).

The mere presence of ionizing/dissociating photons ensures
a change in the chemical and thermal state of a gas, though the
magnitude of these changes hinges squarely on the number of
photons propagating through the gas and their spectral energy
distribution (SED). Holding the bolometric luminosity of a
radiation source constant, even subtle changes in the SED

can lead to noticeable differences in the properties of the
surrounding medium. For example, adjusting the X-ray power-
law index of a BH accretion spectrum results in ionization fronts
which differ by factors of ≈2–3 in radius, and temperature
profiles varying by 102–103 K on scales of several hundred kpc
(Thomas & Zaroubi 2008). Simply truncating the emission of
identical X-ray SEDs at harder energies (0.4 keV rather than
0.2 keV) causes a drastic reduction in heating, ionized fractions,
and H2 fractions surrounding “miniquasars” at high redshift
(Kuhlen & Madau 2005).

Unfortunately, not all radiative transfer algorithms are able to
represent radiation sources with continuous SEDs, or perhaps
cannot afford the additional computational expense associated
with the frequency dependence of the radiative transfer equation.
The natural first step is to represent sources as monochromatic
emitters, choosing an emission frequency characteristic of the
full SED. Some authors have improved upon the monochro-
matic treatment using “multi-group” methods, which average
SED properties and absorption cross-sections over one or more
frequency bandpasses (Gnedin & Abel 2001; Aubert & Teyssier
2008), while others have sampled continuous SEDs at nν fre-
quencies, which are generally evenly spaced bins (in linear or
log-space) between the hydrogen ionization threshold and an
upper frequency cutoff. In either case, there is no clear method
of deciding how many frequency-averaged bandpasses or dis-
crete emission frequencies are required for a given problem,
and though the standard multi-group treatment is physically
motivated, it does not guarantee that the photoionization and
photoheating rates are adequately reproduced as a function of
column density.
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Frequency resolution has recently been studied in radiation-
hydrodynamic settings by Wise & Abel (2011) and Whalen &
Norman (2008). Wise & Abel (2011) find that for the expansion
of an H ii region around a 105 K blackbody source in a hydrogen-
only medium, the density, temperature, velocity, and ionization
profiles are well converged for nν � 4. Use of a monochro-
matic spectrum for this problem introduces significant errors
since all photons are absorbed at a characteristic column den-
sity, whereas multi-frequency treatments achieve some column
density dependent behavior and can thus mimic the behavior of
a truly continuous spectrum. Whalen & Norman (2008) stud-
ied the effects of frequency resolution in the setting of I-front
instabilities, and did not achieve convergence until nν � 80
(logarithmically spaced between 13.6 and 90 eV).

The convergence for the test of Wise & Abel (2011) using
only four frequency bins is reassuring, though the prospects
for convergence are less clear if one were interested in the ab-
sorption processes of multiple chemical species, ionization and
heating due to X-rays and their energetic secondary photoelec-
trons (Shull & van Steenberg 1985; Furlanetto & Stoever 2010),
or inhomogeneous media. Kramer & Haiman (2008, hereafter
KH08) briefly compared monochromatic and continuous treat-
ments of absorbed power-law X-ray sources in a study of ioniza-
tion front thickness around high-z quasars (the I-front thickness
is a potentially powerful indirect probe of the ionizing spectrum
of high-z quasars). The hydrogen and helium I-front thickness is
expected to grow over the lifetime of a quasar given the discrep-
ancy in evolution timescales between the largest and smallest
scales. At small radii, photoionization equilibrium is reached
quickly since ionizing photons are abundant, whereas geomet-
rical dilution and attenuation of the initial radiation field slow
ionization evolution considerably on large scales, effectively
“stretching out” the I-fronts of hydrogen and helium with time.
A monochromatic representation of the quasar SED leads to a
reduction in this effect, but also leads to severe errors in the
overall ionization structure (see Figure 3 of KH08). These er-
rors are of the same order of magnitude as those resulting from
the neglect of physical effects, such as ionization via helium
recombination photons (KH08, Figure 6), or ionization from
secondary electrons (KH08, Figure 7). These effects are likely
important in studies of radiative feedback from stars and active
galactic nuclei (AGNs), and most certainly in efforts to simulate
cosmological reionization. An effort must be made to ensure
that the SEDs used in numerical simulations accurately reflect
the properties of their continuous analogs, especially if it is
spectrum-dependent effects in which we are most interested.

We will focus on the following questions in this paper. How
significant are the errors in the temperature and ionization
state of a medium that arise solely due to the discretization
of SEDs? How many frequencies are required to minimize
such errors, where must they be positioned in frequency space,
and how should their relative luminosities be apportioned? For
what numerical methods is it possible to represent sources with
continuous SEDs, or are there perhaps advantages in discretizing
SEDs, even when it is not required by the algorithm of choice?
Answers to these questions may lead to revised interpretations
of previous studies which used discrete radiation fields, but more
importantly, will reduce the guesswork involved in discretizing
SEDs, and promote frequency resolution to the same status as
spatial, temporal, and mass resolution, which are more easily
selected on a problem-by-problem basis.

In Section 2, we will introduce the one-dimensional radiative
transfer framework used to obtain the solutions presented in later

sections. In Section 3, we quantitatively assess the accuracy with
which multi-frequency calculations reproduce the ionization
and heating profiles of continuous SEDs. Section 4 is devoted
to introducing a technique for optimally selecting discrete SED
templates, and Section 5 will present the results obtained with
this method, including applications to one-dimensional and
fully three-dimensional radiation-hydrodynamic calculations.
Discussion and conclusions can be found in Sections 6 and 7,
respectively. Validation of the radiative transfer code used
for this work and further details regarding the optimization
algorithm can be found in the Appendix.

2. RADIATIVE TRANSFER FRAMEWORK

One dimensional radiative transfer calculations around point
sources have been used to model cosmological reionization
(Fukugita & Kawasaki 1994), the thickness of quasar ioniza-
tion fronts (KH08), the time evolution of ionization and heating
around first stars, galaxies, and quasars (Thomas & Zaroubi
2008; Venkatesan & Benson 2011), and their associated observ-
able signatures. Given that our focus is on frequency resolution,
it would be unnecessary to perform calculations in a more com-
plex setting than this, with additional unrelated physics. As
a result, our one-dimensional methods strongly resemble those
used by previous authors, though for completeness, we will reit-
erate the aspects of these methods most pertinent to the problem
at hand.

In general, the chemical and thermal evolution of gas sur-
rounding a radiation source is governed by a set of differential
equations describing the number densities of all ions and the
temperature of the gas. Assuming a medium consisting of hy-
drogen and helium only, we first solve for the abundances of
each ion via

dnH ii

dt
= (ΓH i + γH i + βH ine)nH i − αH iinenH ii (1)

dnHe ii

dt
= (ΓHe i + γHe i + βHe ine)nHe i + αHe iiinenHe iii

− (βHe ii + αHe ii + ξHe ii)nenHe ii (2)

dnHe iii

dt
= (ΓHe ii + γHe ii + βHe iine)nHe ii − αHe iiinenHe iii.

(3)

Each of these equations represents the balance between ion-
izations of species H i, He i, and He ii, and recombinations of
H ii, He ii, and He iii. Associating the index i with absorb-
ing species, i = H i, He i, He ii, and the index i ′ with ions,
i ′ = H ii, He ii, He iii, we define Γi as the photoionization
rate coefficient, γi as the secondary ionization rate coefficient,
αi ′ (ξi ′) as the case-B (dielectric) recombination rate coeffi-
cients, βi as the collisional ionization rate coefficients, and
ne = nH ii + nHe ii + 2nHe iii as the number density of electrons.

At each time step, we also solve for the temperature evolution,
dTk/dt , which is given by

3

2

d

dt

(
kBTkntot

μ

)
= f heat

∑
i

niHi −
∑

i

ζineni −
∑

i ′
ηi ′neni ′

−
∑

i

ψineni − ωHe iinenHe ii, (4)

where Hi is the photoelectric heating rate coefficient (due to
electrons previously bound to species i), ωHe ii is the dielectric
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recombination cooling coefficient, and ζi , ηi ′ , and ψi are the
collisional ionization, recombination, and collisional excitation
cooling coefficients, respectively. The constants in Equation (4)
are the total number density of baryons, ntot = nH +nHe +ne, the
mean molecular weight, μ, Boltzmann’s constant, kB, and the
fraction of secondary electron energy deposited as heat, f heat.
We use the formulae in Appendix B of Fukugita & Kawasaki
(1994) to compute the values of αi , βi , ξi , ζi , ηi ′ , ψi , and ωHe ii.

The most critical aspect of propagating the radiation field in
our one-dimensional simulations is computing the ionization
(Γi , γi) and heating (Hi) rate coefficients accurately. In order
to directly relate our results to fully three-dimensional radia-
tive transfer calculations, we have chosen to adopt a photon-
conserving (PC) algorithm nearly identical to those employed
by several widely used codes, like C2Ray (Mellema et al. 2006;
Friedrich et al. 2012), and Enzo (Wise & Abel 2011). Our code
is able to compute Γi , γi , and Hi in a non-photon-conserving
(NPC) fashion as well, to enable comparison with previous one-
dimensional work such as Thomas & Zaroubi (2008). The two
formalisms are equivalent in the limit of very optically thin cells,
a condition that can be met easily in one-dimensional calcula-
tions but is rarely computationally feasible in three dimensions.
For NPC methods, if the optical depth of an individual cell is
substantial, the number of ionizations in that cell will not equal
the number of photons absorbed for that cell, i.e., photon num-
ber will not be conserved. This problem was remedied by Abel
et al. (1999), who inferred the number of photoionizations of
species i in a cell from the radiation incident upon it and its
optical depth

Δτi,ν = niσi,νΔr. (5)

It is most straightforward to imagine our one-dimensional grid as
a collection of concentric spherical shells, each having thickness
Δr and volume Vsh(r) = 4π [(r + Δr)3 − r3]/3, where r is
the distance between the origin and the inner interface of each
shell. The ionization and heating rates can then be related to
the number of absorptions in any given shell (thus preserving
photon number), as

Γi = Ai

∫ ∞

νi

Iνe
−τν (1 − e−Δτi,ν )

dν

hν
(6)

γij = Aj

∫ ∞

νj

(
ν − νj

νi

)
Iνe

−τν (1 − e−Δτj,ν )
dν

hν
(7)

Hi = Ai

∫ ∞

νi

(ν − νi)Iνe
−τν (1 − e−Δτi,ν )

dν

ν
, (8)

where we have defined the normalization constant Ai ≡
Lbol/niVsh(r), and denote the ionization threshold energy for
species i as hνi . Iν represents the SED of radiation sources, and
satisfies

∫
ν
Iνdν = 1, such that LbolIν = Lν .

Equation (7) represents ionizations of species i due to fast
secondary electrons from photoionizations of species j, which
has number density nj, and ionization threshold energy, hνj . f ion

i

is the fraction of photoelectron energy deposited as ionizations
of species i. In the remaining sections, we only include the
effects of secondary electrons when considering X-ray sources,
which emit photons in the range 102 eV < E < 104 eV. In this
regime, the values of f heat and f ion

i computed via the formulae
of Shull & van Steenberg (1985) are sufficiently accurate, but for
radiation at lower energies where f heat and f ion

i have a stronger

energy dependence, the fitting formulae of Ricotti et al. (2002)
or the lookup tables of Furlanetto & Stoever (2010) would
be more appropriate. The total secondary ionization rate for a
given species, γi , is the sum of ionizations due to the secondary
electrons from all species, γi = f ion

i

∑
j γijnj /ni .

The optical depth, τν = τν(r), in the above equations is the to-
tal optical depth at frequency ν due to all absorbing species, i.e.,

τν(r) =
∑

i

∫ r

0
σi,νni(r

′)dr ′

=
∑

i

σi,νNi(r), (9)

where Ni is the column density of species i at distance r from the
source. We calculate the bound–free absorption cross-sections
using the fits of Verner et al. (1996) throughout.

The values of Γi , γi , and Hi are completely predetermined
for a given radiation source, and as a result, can be tabulated as
a function of column density to avoid evaluating the integrals in
these expressions numerically “on-the-fly” as a simulation runs
(e.g., Mellema et al. 2006; Thomas & Zaroubi 2008). Isolating
the frequency-dependent components of Equations (6)–(8), we
can define the integrals

Φi(τν) ≡
∫ ∞

νi

Iνe
−τν

dν

hν
(10)

Ψi(τν) ≡
∫ ∞

νi

Iνe
−τν dν, (11)

allowing us to re-express the rate coefficients as

Γi = Ai[Φi(τν) − Φi(τ
′
i,ν)] (12)

γij = Aj

hνi

{Ψj (τν) − Ψj (τ ′
j,ν) − hνj [Φj (τν) − Φj (τ ′

j,ν)]}
(13)

Hi = Ai{Ψi(τν) − Ψi(τ
′
i,ν) − hνi[Φi(τν) − Φi(τ

′
i,ν)]},

(14)

where τ ′
i,ν ≡ τν + Δτi,ν . Later references to “continuous SEDs”

signify use of this technique, where the integral values Φi and Ψi

are computed over a column density interval of interest a priori
using a Gaussian quadrature technique, rather than on-the-fly
via discrete summation.

Tabulating Equations (10) and (11) grants a significant speed-
up computationally, but also forms the basis of our frequency
resolution optimization strategy (Section 4). Note, however,
that in general the dimensionality of these lookup tables is
equal to the number of absorbing species (through Δτi,ν), so
the tables for simulations including hydrogen only are one
dimensional, while those including hydrogen and helium are
three dimensional. If we chose to adopt the secondary electron
treatment of Ricotti et al. (2002) or Furlanetto & Stoever (2010),
our lookup tables would inherit an additional dimension, as
the secondary ionization and heating factors f ion

i and f heat

would depend both on photon energy and the hydrogen ionized
fraction, xH ii.

Equations (12)–(14) are completely general for PC algo-
rithms, whether the source SEDs are discrete or continuous—the
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only difference being for discrete SEDs, the integrals in
Equations (10) and (11) become sums over the number of dis-
crete emission frequencies, nν . In practice, computing Γi , γi ,
and Hi is more straightforward for sources with discrete SEDs,
as we can simply count the number of ionizations caused by
photons at each individual frequency, and convert this into the
amount of excess electron kinetic energy available for further
heating and ionization. When testing the accuracy of discrete so-
lutions in later sections we employ this method, where radiation
is emitted at nν frequencies, with each frequency νn carrying a
fraction In of the source’s bolometric luminosity. The photoion-
ization and heating coefficients can then be expressed as

Γi,n = AiIn

hνn

e−τνn (1 − e−Δτi,νn ) (15)

γij,n = Γj,νn
(νn − νj )/νi (16)

Hi,n = Γi,νn
h(νn − νi). (17)

The total rate coefficients can be found by summing each of
these expressions over all frequencies, n = 1, 2, 3, . . . , nν .
These equations are identical to Equations (12)–(14) for the
discrete SED case, but are perhaps more intuitive.

For simplicity, our current treatment neglects a few physical
processes that are cosmological in origin, or simply do not
rely on the radiation field directly. These include cooling via
free–free emission and hydrogen and helium ionizations due
to helium recombination photons (which depend on the gas
kinetic temperature and electron density), and cosmological
effects such as Hubble cooling, Compton cooling off cosmic
microwave background (CMB) photons, and photoionization by
Wien-tail CMB photons (which depend on kinetic temperature,
redshift, and the Hubble parameter).

Two additional approximations are implicit in the remainder
of this paper. They are (1) the infinite speed-of-light approxima-
tion and (2) the on-the-spot approximation (we use the case-B
recombination coefficients in Equations (1)–(3)). The former
approximation could be dubious for very bright sources in low-
density media, while the latter is generally not a good assump-
tion, as discussed at length in Cantalupo & Porciani (2011). As
a result, the absolute accuracy of our solutions is not guaranteed
in regimes where careful treatment of the speed of light and
recombination photons is necessary, but this is acceptable since
we only care about the relative differences among our solu-
tions. The optimized SEDs of Section 5 will apply equally well
to simulations including more ionization and/or heating/cooling
processes, so long as they do not depend directly on the radiation
field (e.g., ionization of H i and He i by helium recombination
photons; Friedrich et al. 2012).

3. ASSESSING THE CONSEQUENCES OF DISCRETE
RADIATION FIELDS

To quantify the differences between the ionization and tem-
perature profiles around sources with continuous and discrete
SEDs, we will simulate two test problems. First, the standard
case of a 105 K blackbody in a hydrogen-only medium, and
second, a power-law X-ray source in a medium consisting of
both hydrogen and helium.

3.1. 105 K Blackbody

The 105 K blackbody problem has been studied extensively
(e.g., test problem 2 in the Radiative Transfer Comparison
Project; Iliev et al. 2006, hereafter RT06) due to its simplicity,
and perhaps also because the surface temperatures of PopIII stars
are expected to be ∼105 K (Schaerer 2002). We adopt nearly
the identical setup as in RT06, i.e., a uniform hydrogen-only
medium with number density nH = 10−3 cm−3, initial ionized
fraction xH ii = 1.2 × 10−3, initial temperature T0 = 102 K,
and a 105 K blackbody with an ionizing photon luminosity of
Q̇ = 5×1048 s−1. The only difference between our simulations
and RT06 is that we use a domain Lbox = 10 kpc in size, rather
than Lbox = 6.6 kpc, to allow for a comparison of discrete
and continuous solutions at slightly larger radii. We evolve the
simulations for 500 Myr on a grid of 200 linearly spaced cells
between 0.1 < r/kpc < 10, ignoring the details of secondary
ionization (i.e., all photoelectron energy is deposited as heat).

In Figure 1, we compare the ionization and temperature
profiles around two 105 K “blackbody” sources of constant
ionizing photon luminosity Q̇ = 5 × 1048 s−1—one a true
blackbody emitter with a continuous SED spanning the range
13.6–100 eV (black lines), and the other with a monochromatic
SED at hν1 = 29.6 eV, the average energy of ionizing photons
for this source (red lines). We can see the same qualitative results
that have been pointed out by previous authors, namely, that
monochromatic sources of radiation fail to ionize (top panels)
and heat (lower panels) gas at large radii as significantly as
continuous sources, since all photons are absorbed near a single
characteristic column density, representing the point where
τν1 ≈ 1, i.e., Nchar ∼ σ−1

ν1
. The relative error in the position of

the ionization front, ΔrIF, where rIF ≡ r(xH i = xH ii = 0.5),
is 8% after 10 Myr, 10% after 100 Myr, and 11% after
500 Myr. In the optically thin regime, the monochromatic
spectrum overestimates ionization by factors of two to three on
average and up to an order of magnitude at all times, though
the latter effect is primarily because the neutral fraction is
a steeply declining function with decreasing radius, and the
I-fronts of the two solutions are offset. Outside the I-front, the
situation is more interesting as the gas is mostly neutral. After
100 Myr of evolution, the ionized fraction outside the I-front is
underestimated by a factor of two on average, and by as much
as a factor of six.

The temperature evolution, shown in the bottom panels of
Figure 1, is significantly more troubling. The monochromatic
source captures the temperature well within the ionization
front where the gas is in photoionization equilibrium, but
quickly diverges from the continuous solution outside. Like
the ionization profiles, discrepancies grow with time. After
10 Myr of evolution, the monochromatic source underestimates
the temperature at large radii by a factor of two on average,
and by a factor of seven at the point of greatest discrepancy.
After 100 (500) Myr, the discrete solution underestimates the
temperature by up to a factor of 17 (41).

If considering the heating and ionization around a single
PopIII star, the errors induced by monochromatic treatments
may not be cause for concern upon first inspection since PopIII
stars are expected to live only a few Myr, and we can see
that errors are less significant at early times. However, the
intergalactic medium (IGM) is subject to the ionization and
heating caused by all sources, whose cumulative impact will be
substantial even though the ionization and heating caused by
individual sources may be very small. Globally, then, the IGM
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Figure 1. Comparison of ionization (top) and temperature (bottom) profiles around a 105 K blackbody source after 10 Myr (left) and 100 Myr (right) using continuous
(black) and monochromatic (red) SEDs. Solid lines in the top panels correspond to the neutral fraction (xH i), while dashed lines correspond to the ionized fraction
(xH ii). We apply these line color and line style conventions for all radial profiles presented in this paper.

(A color version of this figure is available in the online journal.)

is insensitive to individual stellar lifetimes, and instead evolves
as it would if ionizing photons originated from a single, very
luminous, very long lived object.

This manner of thinking has already materialized in the
realm of large volume cosmological simulations, where “star
particles” are generally as luminous as one or more star clusters,
and “galaxy particles” behave in a way that is consistent with the
integrated properties of an entire galactic stellar population (and
perhaps active nucleus). Such approximations are necessary
with limited spatial resolution, but more than adequate for
studies of the IGM. Over time though, errors in gas properties
due to poor frequency resolution will accrue, as it is the
combined properties of all radiation sources which affect IGM
properties, however short-lived each individual source may be.

3.2. Power-law X-Ray Source

To address the effects of discrete SEDs in environments where
multiple chemical species are important and large attenuating
columns are possible, we now turn our attention to a power-
law X-ray source embedded in a 1 Mpc domain consisting of
hydrogen and helium, with a primordial helium abundance (by
mass) of Y = 0.2477.

Our selection of parameters for this problem is motivated
by studies of high-redshift quasars, and particularly their role
in the epoch of reionization (e.g., Venkatesan et al. 2001).
X-rays have long mean free paths, and as a result are capable of
ionizing and heating gas on very large (∼Mpc) scales. Large-
scale heating is responsible for driving the high-redshift all-
sky 21 cm signal toward emission, and inducing fluctuations
in 21 cm power spectra on large angular scales (for a review
of 21 cm cosmology, see Furlanetto et al. 2006). An early
X-ray background may also be important in interpreting the

optical depth to electron scattering of the CMB (e.g., Ricotti
et al. 2005; Shull & Venkatesan 2008).

While supernovae and/or X-ray binaries could be important
sources of hard photons in the early universe, we assume
the source of X-rays is persistent—an accreting SMBH with
mass M• = 106 M� and radiative efficiency of ε• = 10%,
which leads to a bolometric luminosity of Lbol = ε•Ledd 	
1.26 × 1043 erg s−1. Here, Ledd = 4πGM•mpc/σT is the
Eddington luminosity, where mp is the proton mass and σT

the Thomson cross-section. The mass (and thus luminosity) of
the SMBH is allowed to grow as it accretes,

M•(t) = M•(0)exp

[
1 − ε•

ε•

(
t

tedd

)]
, (18)

where tedd = 0.45 Gyr is the e-folding timescale for SMBH
growth (an Eddington, or Salpeter time). The SED is taken to
be a power law of the form

Iν ∝
(

hν

keV

)1−α

, (19)

where α is the spectral index. We adopt α = 1.5, over the energy
range 102–104 eV. The surrounding medium has a constant
mass density of ρ = 5.4 × 10−28 g cm−3 (cosmic mean at
redshift z = 10), initial ionized fractions xH ii = xHe ii = 10−4,
xHe iii = 0, and initial temperature T0 = 102 K. The domain for
this problem is divided into 400 cells linearly spaced between
0.01 < r/Mpc < 1, and is evolved for ε•tedd = 45 Myr.

In Figure 2, we compare the hydrogen and helium ioniza-
tion profiles for two X-ray sources having the same bolometric
luminosity. One, a continuous power-law source as described
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Figure 2. Comparison of hydrogen (top) and helium (bottom) ionization profiles
around an α = 1.5 power-law X-ray source after 45 Myr using continuous
(black) and monochromatic (red) SEDs.

(A color version of this figure is available in the online journal.)

above, and the other a monochromatic source of 0.5 keV photons
(a fiducial monochromatic emission energy). The monochro-
matic source underestimates the radii of both the hydrogen and
helium ionization fronts by a factor of ∼2.3, and overestimates
the hydrogen neutral fraction on average by a factor of three, and
at most by a factor of 20 within the hydrogen I-front. The same
general picture applies to helium, where errors in the neutral
helium fraction are enormous since the He i–He ii I-front is very
sharp (as it was for hydrogen in the previous section), and xHe ii
and xHe iii are in error by factors of 2–20 depending on radius.

Errors in the temperature profile are less extreme, as shown in
Figure 3. On small scales, the monochromatic source captures
the temperature quite well, but at large radii, the monochromatic
source overestimates temperatures by a factor of two on average.

The disparity in the magnitude of ionization and temperature
errors is a reflection of the strong frequency dependence
of the bound–free absorption coefficients. Photoionization of
hydrogen or helium by 0.5 keV photons is rare, but when it
does occur, at least ∼90% of the original photon energy is left
to be deposited mostly as heat, unless the free electron density
is very low. Because the ionization of hydrogen and helium by
the monochromatic source is very inaccurate, errors in the free
electron density will substantially alter the amount of secondary
electron energy deposited as heat, rather than further ionization.

The consequences of miscalculating ionization and heating
could affect efforts to model and interpret current and future
21 cm measurements, since the primary 21 cm observable,
the differential brightness temperature (δTb), depends on the
hydrogen neutral fraction, UV radiation field, electron density,
and the gas kinetic temperature (TK) (Furlanetto et al. 2006).

Figure 3. Comparison of temperature profiles around an α = 1.5 power-law
X-ray source after 45 Myr using continuous (black) and monochromatic (red)
SEDs.

(A color version of this figure is available in the online journal.)

Neglecting the presence of a Lyα background, the scaling

δTb ∝ T 0.4
K (1 + δ)(1 + z)−1/2 ×

{
xH ine, ne � nH i

x2
H i, ne � nH i

(20)

holds approximately in regimes where TCMB � TK � 104 K.
In the immediate vicinity of radiation sources where gas

is entirely ionized, δTb → 0 due to the leading xH i term,
but at large radii where the ionizing flux is weaker, the δTb

signatures of stars and quasars could vary significantly solely
due to miscalculations of xH i, ne, and TK . The above scalings
have especially strong consequences for gas within a few Mpc
of strong X-ray sources, where hydrogen is weakly ionized,
temperatures are of the order of 102–103 K, and the free electron
density is enhanced due to efficient ionization of helium by the
hard radiation field. In the earliest stages of reionization where
TK < TCMB(z) and the Lyα background is important, errors in
xH i, ne, and TK will lead to errors in δTb as well, though in a
less straightforward way, since the spin temperature, TS, must
be computed carefully.

4. OPTIMIZATION STRATEGY

To avoid errors of the sort described in the previous sec-
tion, we have developed a technique for optimally constructing
discrete SEDs that preserves the ionization and heating prop-
erties of their continuous counterparts. Although ray-tracing
algorithms are capable of tabulating the relevant ionization and
heating quantities (Equations (10) and (11)), few codes have
taken advantage of this, and have instead cast monochromatic
rays (e.g., state of the art reionization simulations with nν = 5;
Trac et al. 2008). Monte Carlo codes (e.g., CRASH; Maselli
et al. 2003) have been used to simulate reionization with nν � 20
multi-frequency photon packets (Ciardi et al. 2012), though such
a large number of frequencies may be computationally debil-
itating for some algorithms, or unnecessary depending on the
problem of interest.

Even when the algorithm of choice is compatible with
propagating continuous radiation fields via tabulation of
Equations (10) and (11), it may not be computationally advanta-
geous. The overhead alone can in fact be substantial, particularly
in the case of source-dependent SEDs—for example, the SED of
a stellar population as a function of age, or BH accretion spectra
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Table 1
Optimal SEDs for 105 K Blackbody Sources

nν n = 1 n = 2 n = 3 n = 4

1 (29.61, 0.89) . . . . . . . . .

2 (27.93, 0.68) (62.04, 0.21) . . . . . .

3 (20.58, 0.39) (40.75, 0.39) (69.23, 0.11) . . .

4 (17.98, 0.23) (31.15, 0.36) (49.09, 0.24) (76.98, 0.06)

Notes. Each entry is the (hνn, In) pair for bin n. Energies are in units of eV, and
normalizations are expressed as fraction of the bolometric luminosity.

that vary with mass or luminosity. Such situations would re-
quire a separate lookup table for Equations (10) and (11) at each
age/mass/luminosity of interest for a given radiation source. In
addition, there are algorithms for which propagating continuous
radiation fields in large volumes become completely intractable,
yet large volumes are a necessity for the science questions of
interest (e.g., reionization). For more discussion on these issues,
see Section 6.

As introduced in Section 2, our optimization strategy relies
on the fact that the SED of a radiation source appears only
in the quantities Φi and Ψi (see Equations (10) and (11)). If
we can construct a discrete SED that reproduces the values
of Φi and Ψi to a high degree of accuracy over a column
density interval of interest, then the discrete radiation field is
indistinguishable from its continuous counterpart, and we have
successfully preserved the true radiative properties of the source.

For sources with discrete SEDs, Equations (10) and (11)
become

Φ′
i

(
τνn

) ≡
nν∑

n=1

In

hνn

e−τνn (21)

Ψ′
i

(
τνn

) ≡
nν∑

n=1

Ine
−τνn , (22)

where we have used primes to indicate that these quantities
are computed by direct summation over n = 1, 2, . . . , nν

frequencies, rather than by a continuous integral.
Ensuring that Φi = Φ′

i and Ψi = Ψ′
i is a minimization

problem of dimensionality 2nν , since each additional frequency
bin lends two degrees of freedom—its frequency (νn), and the
fraction of the bolometric luminosity assigned to that frequency
(In). Our goal is to minimize the difference between continuous
and discrete solutions, i.e.,

Φi − Φ′
i = 0

Ψi − Ψ′
i = 0. (23)

These functions span several orders of magnitude over a broad
range in column density, making it more practical to seek
solutions to

log

(
Φi

Φ′
i

)
= 0

log

(
Ψi

Ψ′
i

)
= 0 (24)

which place equal emphasis on all column densities. Preserving
the high column density behavior of Φi and Ψi is especially
important for very luminous sources and/or environments with

Table 2
Optimal SEDs for α = 1.5 Power-law X-Ray Sources

nν n = 1 n = 2 n = 3 n = 4

1 (999.98, 1.00) . . . . . . . . .

2 (255.87, 0.17) (2553.6, 0.83) . . . . . .

3 (171.93, 0.08) (518.22, 0.14) (3098.5, 0.78) . . .

4 (146.11, 0.05) (307.30, 0.07) (704.56, 0.14) (3564.2, 0.73)

Note. Same as Table 1 but for an α = 1.5 power-law X-ray source.

dense clumps in the immediate vicinity of the source, since the
actual photoionization and heating rates are a combination of
Φi , Ψi , and the normalization factor Ai ∝ Lbol/r2.

For a given nν and source SED, we solve Equation (24) using
the optimization technique Simulated Annealing (Kirkpatrick
et al. 1983; Ĉerný 1985), which traverses our 2nν dimensional
parameter space in search of the frequency–normalization pairs
(νn, In) that best reproduce the values of Φi and Ψi . We
leave a more detailed description of the algorithm and our
implementation of it to the Appendix.

5. RESULTS

5.1. Optimal Discrete SEDs

We have obtained optimal SEDs for a 105 K blackbody
emitting in the range 13.6–100 eV, and an α = 1.5 power-law
X-ray source with emission spanning the interval 102–104 eV.
In each case, we set the upper column density limit for
our optimization to be the column density of a fully neutral
medium, i.e., Nmax

H i = nHLbox and Nmax
He i = nHeLbox, where

we use Lbox to denote the size of the domain, as in RT06.
For the 105 K blackbody simulations, this works out to be
Nmax

H i = 3.1 × 1019 cm−2, and for the power-law X-ray
simulations, Nmax

H i 	 ×1022 cm−2 and Nmax
He i 	 ×1021 cm−2. For

cosmological simulations with periodic boundary conditions,
the upper column density limits would need to be chosen based
on a maximum length scale of interest, or for radiative feedback
focused simulations, by the column density of the densest
objects of interest (damped Lyα systems, for example). Such
choices are already made in ray-tracing calculations to limit
computational expense. Generally, rays are terminated once the
emission has been attenuated by a large factor.

The only situation in which we do not evaluate the full
cost function is nν = 1, where we instead optimize for
the optically thin regime alone (i.e., only the first term of
Equation (A2)), where Φi and Ψi are ∼ constant with column
density. In this case, the optimal solutions are simply those that
preserve the bolometric luminosity of the source and the total
number of ionizing photons, and can be verified analytically
(Equations (10) and (11)). For the case of a hydrogen and helium
medium, we have found that neglecting He ii opacities mitigates
the computational cost of the computation while resulting in no
appreciable changes in our optimal SEDs and thus negligible
changes in Φ′ and Ψ′. The main results are summarized in
Figures 6 and 7 and Tables 1 and 2, all results derived from
K = 2 × 104 and K = 104 Monte Carlo trials, for the 105 K
blackbody and α = 1.5 power-law source, respectively.

From Tables 1 and 2, it is clear that the optimal emission
frequencies for both sources are not evenly spaced above the
hydrogen or helium ionization thresholds, either in linear or log-
space. In each case, the addition of a new frequency bin leads
to a decrease in both the emission frequency and normalization
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(a)

(b)

Figure 4. Top panels: comparison of ΦH i and Φ′
H i (a) and ΨH i and Ψ′

H i (b) as a
function of H i column density for a 105 K blackbody, showing the numerically
computed continuous integral (solid black), best-fit composite four-bin discrete
sum (blue crosses), and the contribution from each individual discrete frequency
bin (dashed blue). Annotations represent the (hνn, In) pairs for each frequency
group, drawn from Table 1. Bottom panels: percent error between discrete and
continuous solutions. The solid blue line is the error for the four-bin optimal
solution, while the errors induced by three-, two-, and one-bin solutions are
shown in magenta, green, and red, respectively.

(A color version of this figure is available in the online journal.)

of all other bins. This signifies (1) the efficacy with which high
energy photons photoionize and photoheat gas at large column
densities (a regime inaccessible to lower energy photons which
become optically thick at small columns), and (2) the increase
in excess electron kinetic energy available for further ionization
and heating with increasing photon energy. The former effect
is most important for the blackbody source, which we can see
in Figure 4. Not surprisingly, it is the lowest energy photons
(hν1 = 17.98 eV) in the nν = 4 spectrum that are responsible
for the ionization (through Φ) in the optically thin regime, while
successively higher frequency bins become the primary agents
of ionization as we move to higher column densities. The same
trend does not hold completely in Figure 4(b), as in this case it
is the second and third energy bins that provide the bulk of the
heating (through Ψ) at low column densities.

(a)

(b)

Figure 5. Same as Figure 4 but for an α = 1.5 power-law X-ray source.

(A color version of this figure is available in the online journal.)

For the X-ray source, the second effect dominates, as the
optical depth at any column density is small for most photons
considered (102 < hν < 104 eV) over the entire domain. As
shown in Figure 5, the photons responsible for the majority of
the heating (through Ψ) over all column densities are those in
the highest energy bin, the same photons which are the least
effective at ionization. The trends and errors of Figure 5 are the
same for Φi and Ψ as a function of helium column density.

In Figures 6 and 7, we show the probability distribution
functions (PDFs) for the position and normalization of the
optimal SED frequency bins obtained (drawn from Tables 1
and 2). Solutions are less tightly constrained as nν is increased,
as evidenced by a broadening in the distributions of frequency
and normalization for each bin. This behavior is expected, given
that each new bin contributes to the magnitude of Φ and Ψ in
some region of column density space previously occupied by
one or more other frequencies.

Holding In constant, a decrease in νn will cause a negative
vertical shift in the contribution of bin n to the magnitude of
Φ, for example, but will simultaneously add power at larger
column densities, since the turnover point for bin n occurs at
Nchar ∼ σ−1

νn
, and σνn

∼ ν−3. To avoid an increase in f, the
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(a)

(b)

Figure 6. Emission energy (a) and normalization (b) probability distribution
functions (PDFs) of optimized discrete 105 K blackbody spectrum using
nν = 1, 2, 3, 4 (from bottom to top). In each panel, the gray histogram denotes
the initial guesses for all Monte Carlo trials, and the black, blue, red, and green
histograms show the end point for the first, second, third, and fourth bins,
respectively (ordered by increasing emission frequency).

(A color version of this figure is available in the online journal.)

power lost at small column densities has to be compensated for,
either by a decrease in νn−1, or an increase in In−1, where n − 1
denotes the bin with frequency νn−1 < νn. As a result, there
are degeneracies between all bins, and the magnitude of the
degeneracy is greatest for bins positioned closest in frequency
space. In order to tighten the PDFs for each optimal frequency
bin, one or more terms would need to be added to f, in order
to assign preference to one set of bins over another. For our
purposes, any SED that minimizes f is just as good as any other,
but additional terms in the cost function are certainly justifiable
in the case of a ray-tracing calculation, where higher emission
frequencies increase the computational cost of a calculation
since their mean free paths are long. Adding a term to f that
scales with νn would encourage optimal SEDs with the smallest
emission frequencies possible, for example.

Optimization for nν > 4 is certainly possible, though
unnecessary in our case. At a given frequency, the transition
from optically thin τ = 0 to optically thick (τ � 1) in
the functions Φ and Ψ occurs over an order of magnitude in
column density (by definition, see Equation (9)). For both SEDs
we have investigated, the column density regime of interest
spans fewer than four orders of magnitude, motivating our

(a)

(b)

Figure 7. Same as Figure 6 but for an α = 1.5 power-law X-ray source.

(A color version of this figure is available in the online journal.)

choice of 1 � nν � 4. We have performed optimizations
with nν > 4, but the addition of each additional bin when
nν > log10(Nmax/Nmin) reduces the error between Φ and Φ′,
and Ψ and Ψ′ much less significantly than additional bins when
nν � log10(Nmax/Nmin). For a given nν , increasing Nmax will
simply increase max|Φ − Φ′| and max|Ψ − Ψ′|.

5.2. Confirmation with One-dimensional Calculations

To verify the solutions of the previous section, we ran simu-
lations identical to those of Section 3 but with our optimal dis-
crete SEDs. We compute Γi , γi , and Hi via Equations (15)–(17)
“on-the-fly,” rather than generating lookup tables of Φi and Ψi .
As expected, accurate preservation of the quantities Φi and Ψi

over the column density ranges of interest renders ionization
and temperature profiles around sources of discrete radiation
indistinguishable from their continuous counterparts.

In Figure 8, we compare ionization and heating around a
105 K blackbody after 100 Myr of evolution as in Section 3,
showing the solution obtained with our optimal monochromatic
(red) and four-bin (blue) SEDs. The continuous and four-bin
solutions are indistinguishable.

In Figure 9, we perform the same analysis for the α = 1.5
power-law simulations. Our optimal four-bin SED reproduces
the hydrogen and helium ionization profiles (and thus electron
density) and temperature of a continuous SED to high precision.
The most noticeable errors are in the hydrogen neutral fraction
within the hydrogen ionization front, where errors between
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Figure 8. Comparison of ionization (top) and temperature (bottom) profiles
around a 105 K blackbody source after 100 Myr showing the solutions obtained
using continuous (black), monochromatic (red), and optimal four-bin discrete
(blue circles/squares) SEDs.

(A color version of this figure is available in the online journal.)

four-bin and continuous solutions are still only ∼1%. Errors
in xHe iii are negligible, justifying our neglect of NHe ii in the
optimization process.

It should be noted that our optimal monochromatic SED
for the X-ray source performs even more poorly than the
fiducial 0.5 keV SED. This signifies a general problem with
monochromatic emission for any spectrum with a hard compo-
nent. Whereas the monochromatic optimization (τν = 0) works
quite well in the 105 K blackbody case since hydrogen absorbs
UV photons readily, X-rays are not so readily absorbed by hy-
drogen and/or helium. As a result, the characteristic column
density where most 1 keV photons are absorbed lies outside of
our domain, leading to severe underionization (of all species)
and underheating. The reason the 0.5 keV SED works better
is because its characteristic absorption column is smaller, lying
within our domain. We have experimented with relaxing the op-
tically thin requirement for monochromatic optimization, and
find that it is equally difficult to preserve ionization and heating
profiles with emission at a single frequency.

5.3. Three-dimensional Radiation-hydrodynamic
Simulations with Enzo

To study the impact of spectral discretization in a more com-
plex setting, we ran RT06 test problem 2 with hydrodynamics,
as well as two fully three-dimensional cosmological radiation-
hydrodynamic simulations similar to those of Abel et al. (2007)
and Alvarez et al. (2009), both with the Enzo code (Bryan &

(a)

(b)

Figure 9. Comparison of hydrogen and helium ionization (a), and temperature
(b) profiles around a power-law X-ray source after 50 Myr showing the solutions
obtained using continuous (black) and optimal four-bin discrete (blue symbols)
SEDs.

(A color version of this figure is available in the online journal.)

Norman 1997; O’Shea et al. 2004).4 All analysis was performed
with yt (Turk et al. 2011).

The results of the RT06 radiation-hydrodynamic test problem
are shown in Figure 10, where we compare the solutions
obtained using the four-bin SED employed by Wise & Abel
(2011) in addition to our own (Table 1). The solutions are
indistinguishable, which is expected given the relatively small
range of column density explored in this problem.

The cosmological simulations follow the formation of a
100 M� PopIII star, its brief 2.7 Myr lifetime in which it emits

4 Revision f4a8b5f5e6c5, modified to form only one star and use optimal
SEDs.
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Figure 10. Comparison of the four-bin solutions of Wise & Abel (2011; black) and our own (blue crosses) in a radiation-hydrodynamic simulation using the Enzo
code. The setup is the same as in RT06 test problem 2, except hydrodynamics is included.

(A color version of this figure is available in the online journal.)

1.2 × 1050 ionizing photons per second, and the X-ray emission
resulting from accretion onto a remnant BH assumed to form
via direct collapse after stellar death (as in Alvarez et al. 2009).
The accretion rate, and thus luminosity assuming ε• = 10%,
is the Bondi–Hoyle accretion rate of the cell in which the BH
resides. The simulation volume is 0.25 Mpc h−1 on a side, with
1283 particles and cells on the root grid. A single nested grid
occupies the inner one-eighth of the volume at twice the root
grid resolution, where eight additional levels of adaptive-mesh
refinement are allowed, yielding a peak spatial resolution of
0.23 pc h−1.

We run two simulations, each identical to the other except
for the choice of discrete SED. Our “control” simulation uses
monochromatic SEDs—the PopIII star is a monochromatic
source of E = 29.6 eV photons, while the X-ray source emits at
E = 2 keV. The second simulation employs the optimal four-bin
SEDs found in Tables 1 and 2.

As shown in Figure 11, the magnitude of the errors between
monochromatic and nν = 4 solutions is even more significant in
the cosmological problem than in the RT06 test problem, since
the ionizing luminosity of the blackbody source considered
is nearly two orders of magnitude larger (1.2 × 1050 versus
5 × 1048 s−1). For very luminous sources, even small errors in
Φ and Ψ will become noticeable as characteristic timescales for
photoionization and heating are short.

During the BH phase of evolution, there are more ways
for the monochromatic and multi-frequency solutions to differ
aside from the SEDs being employed. The accretion luminosity
depends on local gas properties, which will be different in
each simulation due to errors accrued during the PopIII star’s
lifetime. Properties of the broader medium will of course
vary for the same reason, leading to changes in how far soft
X-rays are able to propagate before being absorbed. Throughout
the 100 Myr of evolution, we simulate after the PopIII star’s
death, the Bondi–Hoyle accretion rate and thus luminosity of
the accreting BH is on average an order of magnitude smaller
in the nν = 4 simulation than for the monochromatic case.
Errors in ionization and temperature exceeding an order of
magnitude persist throughout the BH phase as well. Rather

(a)

(b)

Figure 11. Ratio of slices of the ionized fraction (a) and temperature (b) obtained
using our optimized nν = 4 blackbody SED (xH ii4 , T4) and the standard
monochromatic SED (xH ii1 , T1). Both slices are 2.25 Myr after the formation
of a Population III star. Contours (from center outward) correspond to hydrogen
column densities of NH i = 2 and 4 × 1019 cm−2.

(A color version of this figure is available in the online journal.)
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than attempt to disentangle the BH phase induced errors from
the preexisting errors, we simply emphasize that SED-induced
errors will compound in feedback situations like this, since
the initial conditions of each subsequent generation of objects
will have been contaminated by errors associated with the
previous one.

We cannot comment on the relative errors between monochro-
matic and multi-frequency treatments beyond the outermost
column density contour, as our optimization extended only to
NH i = 3.1 × 1019 cm−2. Future work focused on larger cos-
mological volumes, more luminous sources, and harder radia-
tion fields will need to construct optimal SEDs valid beyond
NH i = 1020 cm−2, at least.

6. DISCUSSION

Algorithms developed for the purpose of studying point-
source radiation (e.g., ray-tracing) are, in principle, capable
of propagating continuous radiation fields, that is, tabulating
Equations (10) and (11) and computing ionization and heating
rates via Equations (12)–(14). The reason many have not taken
this approach could be due to the additional computational
overhead involved with using continuous SEDs—the quantities
Φi and Ψi must be tabulated over the complete column density
interval of interest. This includes column densities of all
absorbing species, each of which must extend from the smallest
expected column (i.e., the column density of a “fully ionized”
cell—we adopted a minimum species fraction of xmin = 10−5)
up to the largest expected column (i.e., the column density
of a fully neutral medium). The dimensionality of Φi and
Ψi can be increased even further if, for example, energy-
dependent secondary electron treatments (e.g., Ricotti et al.
2002; Furlanetto & Stoever 2010) or time-dependent SEDs are
of interest.

For the simulations of Section 3.2, we generated three-
dimensional lookup tables for Φi and Ψi covering the column
density range 1011 < NH i < 1021, and 1010 < NHe i, NHe ii <
1020, sampling NH i at 200 points, and NHe i and NHe ii with
100 points each, resulting in six three-dimensional tables, each
consisting of 2 × 106 elements. We found that poorer sampling
(e.g., tables of dimension 100 × 50 × 50) leads to artificial
“notches” in ionization and temperature profiles due to errors
in the trilinear interpolation. In our case, ΦH i = ΦHe i = ΦHe ii
and ΨH i = ΨHe i = ΨHe ii since all emission occurs above
102 eV, making the lower limit of integration for each quantity
identical. In the general case, where emission extends all the
way to the hydrogen ionization threshold, all six quantities
would be unique. Generating these tables can take hundreds
of CPU hours or more for a single SED depending on the
number of column density elements. In addition, the radiative
transfer solver requires additional modules to read in the lookup
table, and perform interpolation four times per absorbing species
per grid element (see Equations (12)–(14)). For sources with
discrete SEDs, one can simply compute the photoionization
rate for each neutral species, from which point the secondary
ionization and heating rate coefficients are obtained in a simple
algebraic fashion (see Equations (15)–(17)).

For high-resolution simulations focused on a single source
of radiation (e.g., Kuhlen & Madau 2005; Alvarez et al. 2009),
the additional effort required to accommodate continuous ra-
diation fields seems well worth it to ensure that the ionization
and thermal state of the gas is captured accurately. However,
in large-scale simulations of cosmic reionization, which may
spawn hundreds of thousands or perhaps millions of radiat-

ing “star particles” (depending on the simulation volume, res-
olution, etc.), ray-tracing methods are certainly not the most
computationally advantageous algorithm. This is because the
computational cost of a ray-tracing calculation scales with the
number of radiation sources and the number of frequency bins
in each source SED (though the former cost can be mitigated by
merging nearby radiation sources; Trac & Cen 2007; Okamoto
et al. 2012). If photons with long mean free paths are of in-
terest, the simulation will be even more expensive since rays
must be followed to larger distances, i.e., more ray segments
and iterations of the numerical solver are required. An appeal-
ing option is to instead use moment-based methods such as the
Variable Eddington Tensor approach (e.g., Gnedin & Abel 2001;
Petkova & Springel 2009), flux-limited diffusion (e.g., Reynolds
et al. 2009), or other variations (González et al. 2007; Aubert &
Teyssier 2008; Finlator et al. 2009), as the computational cost
of such algorithms is independent of the number of radiation
sources and the mean free paths of photons, scaling only with
the number of frequency bins in each source spectrum.

As discussed in Section 1, multi-group schemes common
in the literature are an improvement over fiducial discrete
SEDs, though it is not generally clear how many bandpasses
are required for a given problem, or where they should lie in
frequency space. Moreover, multi-group radiation suffers from
the same problem as discrete polychromatic emission: photons
at each frequency are absorbed near a characteristic column
density, Nchar. Computing new spectrum-weighted absorption
cross-sections, σ̄n, for each frequency group merely shifts the
location of Nchar.

In principle, our minimization technique could be used to
optimally select which bandpasses should be used for a multi-
group algorithm, though in practice it would be much more
computationally expensive. Rather than varying the location (νn)
or normalization (In) of frequency bin n on each Monte Carlo
step, one would instead vary the position of bandpass edges,
which would change the mean photon energy in each bandpass
(hν̄n) and spectrum-weighted cross-section, σ̄n (e.g., Aubert &
Teyssier 2008). Because hν̄n and σ̄n are integral quantities,
they would need to be computed numerically on each Monte
Carlo step, and thus hundreds of thousands of times for a single
optimization.

7. CONCLUSIONS

We have shown that the manner in which a discrete SED is
constructed can induce substantial errors in simulation results,
both in the ionization and temperature profiles around stars
and quasars. But, these errors can be avoided to a large degree
using only four discrete emission frequencies if source SEDs
are designed via the methods of Section 4. Discrete SEDs
constructed in a simple way (e.g., bins linearly spaced in
frequency) will perform more poorly than optimally selected
SEDs with the same number of bins, since it is the column
density interval of interest that dictates the range of photon
energies required, and the power to which each is assigned.

In general, discrete SED treatments fail to ionize and/or
heat gas at large column densities, i.e., large physical scales
or environments with dense clumps of gas. This has strong
implications for simulations dedicated to understanding the
magnitude and mode of radiative feedback on gas surrounding
radiation sources. Current questions of this sort include whether
or not radiation stimulates or suppresses further star formation
in nearby protostellar clouds, and if radiative feedback can stifle
the growth of SMBHs at high redshift.
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As expected, extending our one-dimensional work to three
dimensions produces ionized regions around a first star and
remnant BH that deviate significantly in ionized fraction, tem-
perature, size, and morphology. Such findings have implications
in radiative feedback, but also in studies of both hydrogen and
helium reionization. Certainly, miscalculations of the ionization
state of gas surrounding galaxies in the early universe will lead
to errors in the volume averaged neutral fraction, volume filling
factor of ionized gas, and the optical depth of the CMB to elec-
tron scattering (τe). As we demonstrated in Section 3, such errors
also introduce uncertainties in the interpretation of future 21 cm
measurements, since the primary observable quantity (δTb) de-
pends directly on the hydrogen neutral fraction, electron density,
and gas kinetic temperature.

Our optimizations in this work are by no means comprehen-
sive, having selected two commonly used radiation sources (UV
blackbody and X-ray power law) as test cases to demonstrate
the method. However, optimization for more complex spectra
is straightforward, and any new optimizations run will be made
publicly available by the authors. The minimization code and
one-dimensional radiative transfer codes are both available upon
request. We leave more detailed investigations of reionization
and radiative feedback, including multiple radiation sources and
multi-frequency radiation transport, to future work.
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APPENDIX A

OPTIMIZATION VIA SIMULATED ANNEALING

To solve Equation (24), we employ the Monte Carlo method
of Simulated Annealing (Kirkpatrick et al. 1983; Ĉerný 1985).
For a given source and nν , we run K Monte Carlo trials,
each consisting of L steps, aimed at determining the optimal
values of In and νn for nν frequency bins. We do not require
the bolometric luminosity of sources to be conserved (i.e.,∑nν

n=1 In �= 1 is allowed), since some photons may traverse
the entire one-dimensional “volume” without ionizing a single
atom, or some fraction of the luminosity may be emitted
below the hydrogen ionization threshold. Inclusion of such
photons would be computational effort wasted in a fully three-
dimensional ray-tracing calculation, for example, since their
mean free paths are very long, and once absorbed they may
contribute negligibly to ionization and heating.

Each random walk begins with randomly generated values of
νn distributed between the hydrogen ionization threshold and the
maximum emission frequency in the spectrum, and randomly
generated values of In that sum to unity. Subsequent steps vary
the energy or normalization of (randomly chosen) frequency
bin n. In order to steer each random walk toward the global

minimum, we first evaluate the quantity

P = exp[−(fk,l − fk,l−1)/TSA], (A1)

where k = 0, 1, 2, . . . , K represents the current step in the
current random walk, l, where l = 0, 1, 2, . . . , L, and f is the
“cost function,” a measure of how good our current solution
is. We adopt a cost function which is the sum of errors in
Φi and Ψi over the column density range of interest. For
each species (i), and each integral quantity (Φ, Ψ), we add
the maximum deviation from continuous and discrete solutions
in the optically thin limit (first term in Equation (A2)), the
maximum deviation over the entire column density range
(second term in Equation (A2)), and the average deviation over
the entire column density range (final term in Equation (A2)),
all in dex, i.e.,

fk,l =
∑

i

∑
Λ=Φ,Ψ

{
max

[
log

(
Λi

Λ′
i(νk,l, Ik,l)

)
τ=0

]

+ max

[
log

(
Λi

Λ′
i(νk,l, Ik,l)

)
τ>0

]

+

〈
log

(
Λi

Λ′
i(νk,l, Ik,l)

)
τ>0

〉}
. (A2)

At each step in a given random walk, we also generate a
random number, q ∈ [0, 1], that will determine whether we
keep our current guess, (νk,l, Ik,l), or revert to our previous
guess, (νk,l−1, Ik,l−1). The condition for keeping our current
guess is P � q.

The key aspect of this analysis is how we vary the control
parameter TSA, which is called the temperature in analogy with
Boltzmann’s equation (we add the subscript SA to distinguish
the gas kinetic temperature from this unphysical Simulated
Annealing temperature). Equation (A1) tells us that regardless
of the value of TSA, if fk,l < fk,l−1 (i.e., our most recent
guess is better than the last), then P � 1, and we have a
100% chance of keeping our current guess. In other words,
our method of controlling the TSA only effects how we deal with
bad guesses—decreasing the temperature means we become
less tolerant of bad guesses. There are many ways of doing this
(Press et al. 1992), but for simplicity we adopt the following
technique. Every s/nν steps per frequency bin, we take

T → λT , (A3)

where λ is an experimentally determined quantity of the order of
unity. For all results presented here, we have adopted λ = 0.98,
and s/nν = 10. We change the number of steps per random
walk depending on the dimensionality, 2nν . We have found
through experimentation that a good rule of thumb is L = 5000
steps per trial, K, per frequency bin nν for our choice of λ and
s/nν . These control parameters are fairly conservative—further
experimentation with them may yield converged solutions for
fewer trials, K, and steps, L.

APPENDIX B

CODE VERIFICATION

Our one-dimensional radiative transfer code solves
Equations (1)–(4) using the implicit Euler method for integration
and a Newton–Raphson technique for root finding. Each simu-
lation is initialized on a grid of Nc cells between L0 and Lbox,

13

http://lunar.colorado.edu


The Astrophysical Journal, 756:94 (15pp), 2012 September 1 Mirocha et al.

(a) (b)

Figure 12. Test 1: (a) comparison of the numerical (dashed) and analytic (solid) solutions for the position of an expanding ionization front as a function of time in a
hydrogen-only, isothermal medium (RT06 problem 1; top), and the ratio of the calculated and analytic solutions as a function of time and grid resolution (bottom).
The numerical solution displayed in the top panel is from the highest resolution simulation (800 grid cells, i.e., Δx = Lbox/800). (b) Radial profiles of the neutral
(solid) and ionized (dashed) fractions at t = 10, 100, and 500 Myr.

(A color version of this figure is available in the online journal.)

such that the finest resolution element is Δx = (Lbox − L0)/Nc,
or simply Δx = 1/Nc in code units. Gas inside of the start
radius, L0, contributes no optical depth, and Equations (1)–(4)
are not solved. For the purposes of this section, we chose to use
Nc linearly spaced cells between L0 and Lbox, though our code
allows arbitrarily structured grids.

In order to track the propagation of ionization fronts accu-
rately, we limit the time step based on a maximum neutral frac-
tion change as introduced in Shapiro et al. (2004)

Δti = εion
ni

|dni/dt | , (B1)

where we include all absorbing species, i = H i, He i, He ii, and
set Δt = min(Δti). We additionally require that the time step
increase by a factor of two at most, as in Wise & Abel (2011). For
all simulations presented in this work, we have set εion = 0.05.

The primary solver implemented in our code assumes that
the speed of light is infinite. Such an algorithm is appealing
for two main reasons, aside from the fact that it is a very
good approximation for the problems presented in this work.
First, treating the speed of light explicitly introduces additional
computational overhead as “photon packages” must be launched
from the radiation source at each time step and tracked until they
exit the domain. In the earliest stages of I-front propagation, the
time step can be very small (as required by Equation (B1)),
meaning the total number of photon packages, Np, will be much
larger than the total number of grid cells, Nc. Whereas c = ∞
treatments only require Equations (1)–(4) to be solved once
per cell, finite speed-of-light treatments require this system of
equations to be solved for each photon package. At later times,
when Np < Nc, solving the ion and heat equations is cheaper
for finite speed-of-light treatments, though this offers no real
advantage since the majority of the computational expense is
at early times when I-front propagation is fastest. We have also
included a finite c solver to accommodate a broader class of
problems that may be of interest in future work.

The second advantage of assuming c = ∞ is that it allows
the code to be efficiently parallelized. If c = ∞, cells in
the domain can be solved in arbitrary order by a single

processor, or simultaneously by a network of processors, since
the radiation incident on any cell is predetermined at the outset
of each individual time step. Previous authors have ensured
causality by solving cell k before cell k + 1 at time t (where
increasing k corresponds to increasing r), but this is not in fact
necessary—causality is ensured by the monotonicity of column
density with distance. In other words, when c = ∞, Ni does not
change within any given time step, and so the column density
(and thus radiative flux) to cell k is less than the column density
(and flux) to cell k+1, meaning the solution of Equations (1)–(4)
in cell k + 1 is completely independent of the properties of cell
k at time t + Δt .

To demonstrate the functionality of the code, we repeat
tests 1 and 2 from the Radiative Transfer Comparison Project
(Iliev et al. 2006, hereafter referred to as RT06) on a grid of
200 linearly spaced cells. Test 1 is the expansion of an H ii
region in a hydrogen-only, isothermal medium surrounding a
monochromatic source of 13.6 eV photons. We adopt the same
parameters used in RT06: constant temperature T = 104 K,
uniform hydrogen number density nH = 10−3 cm−3, ionized
fraction x = 1.2 × 10−3, in a box Lbox = 6.6 kpc in size, and
with photon luminosity Q̇ = 5×1048 s−1. The classical analytic
solution for the radius of an ionization front is

rIF(t) = rs(1 − e−t/trec )1/3, (B2)

where rs is the Strömgren radius,

rs =
(

3Q̇

4παH iin
2
H i

)1/3

, (B3)

and the recombination time, trec, is defined as

trec ≡ 1

αH iinH i
. (B4)

This solution is approximate even in isothermal media, given
that it assumes a constant neutral hydrogen density, nH i. More
accurate analytic solutions exist (Osterbrock & Ferland 2006),
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(a) (b)

Figure 13. Test 2: (a) radial profiles of the neutral (solid) and ionized (dashed) fractions at t = 10, 100, and 500 Myr. (b) Radial profiles of the kinetic temperature at
t = 10, 100, and 500 Myr (solid, dashed, and dotted lines, respectively).

and predict a departure from the classical solution at t/trec 	 1,
which grows to a ∼5% difference by t/trec 	 4. Our numerical
solution (see Figure 12(a)) captures this behavior very well. In
Figure 12(b), we show radial profiles of the ionized and neutral
fractions at three stages of the I-front expansion, which are again
in very good agreement with the calculations presented in RT06.

Test 2 is the same as Test 1, except now the temperature is
allowed to evolve according to Equation (4), and the monochro-
matic radiation source is replaced by a 105 K blackbody spec-
trum. Radial profiles of the neutral and ionized fractions and
temperature can be seen in Figure 13. Again, our numerical
solutions are in very good agreement with previous work.
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