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ABSTRACT

We present a detailed investigation of the impact of astrophysical processes on the shape and amplitude of the
kinetic SZ (kSZ) power spectrum from the post-reionization epoch. This is achieved by constructing a new model
of the kSZ power spectrum which we calibrate to the results of hydrodynamic simulations. By construction, our
method accounts for all relevant density and velocity modes and so is unaffected by the limited box size of our
simulations. We find that radiative cooling and star formation can reduce the amplitude of the kSZ power spectrum
by up to 33% or 1 μK2 at � = 3000. This is driven by a decrease in the mean gas density in groups and clusters
due to the conversion of gas into stars. Variations in the redshifts at which helium reionization occurs can effect
the amplitude by a similar fraction, while current constraints on cosmological parameters (namely σ8) translate to a
further ±15% uncertainty on the kSZ power spectrum. We demonstrate how the models presented in this work can
be constrained—reducing the astrophysical uncertainty on the kSZ signal—by measuring the redshift dependence
of the signal via kSZ tomography. Finally, we discuss how the results of this work can help constrain the duration
of reionization via measurements of the kSZ signal sourced by inhomogeneous (or patchy) reionization.
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1. INTRODUCTION

In the last few years, significant progress has been made
toward making precision measurements of the temperature
anisotropy in the cosmic microwave background (CMB) at sub-
degree scales. Ground-based experiments such as the South Pole
Telescope (Ruhl et al. 2004) and the Atacama Cosmology Tele-
scope (Kosowsky 2003) have achieved the necessary combina-
tion of sensitivity and angular resolution to measure the primary
CMB temperature anisotropy power spectrum to the seventh
acoustic peak and beyond (Dunkley et al. 2011; Keisler et al.
2011). The Planck3 satellite will measure the CMB temperature
power spectrum at cosmic-variance-limited precision to angular
scales below one-tenth of a degree.

On angular scales smaller than ∼4 arcmin (� � 2700),
the CMB power spectrum is dominated by “secondary”
anisotropies, temperature fluctuations that are generated by the
interaction of CMB photons with large-scale structure between
the observer and the surface of last scattering. The principal
contribution to the secondary anisotropy signals comes from the
Sunyaev–Zel’dovich (SZ) effect, which can be broken down into
two components—the “thermal” and “kinetic” effects. The for-
mer describes the transfer of thermal energy from free electrons
in the hot intracluster medium to CMB photons via inverse-
Compton scattering. CMB photons receive a boost in energy,
distorting the Planckian form of its spectrum. This gives the
thermal SZ (tSZ) effect a unique frequency dependence which
can be utilized by experiments to extract this signal from the
primary CMB signal and foregrounds. The kinetic SZ (kSZ)
effect is caused by the Doppler shifting of CMB photons via
scattering off clouds of electrons with a non-zero bulk velocity
(along the line of sight) relative to the CMB rest frame. Unlike
the tSZ effect, the kSZ has the same frequency dependence as
the primary CMB.

3 http://www.rssd.esa.int/index.php?project=Planck

The tSZ effect has now been detected for both large numbers
of individual clusters (Vanderlinde et al. 2010; Marriage et al.
2011; Williamson et al. 2011; Planck Collaboration et al. 2011;
Marrone et al. 2011) and as a secondary anisotropy signal in
the CMB power spectrum (Lueker et al. 2010; Dunkley et al.
2011; Shirokoff et al. 2011). While the kSZ effect has not yet
been detected in either case, it is likely be done so first in the
power spectrum. CMB temperature fluctuations sourced by the
kSZ effect are proportional to the product of the electron density
and line-of-sight velocity. The lack of an electron temperature
weighting means that the contribution of low-temperature gas is
more significant than for the tSZ effect (which is proportional to
the product of electron density and temperature). On the other
hand, the kSZ signal from individual groups and clusters is
weaker.

The kSZ power spectrum is also sensitive to the details of
reionization (Gruzinov & Hu 1998; Knox et al. 1998; McQuinn
et al. 2005; Zahn et al. 2005; Iliev et al. 2007). In models
of inhomogeneous or patchy reionization—in which different
regions of the universe are reionized at different times—bubbles
of free electrons around UV-emitting sources are embedded in an
otherwise neutral medium. If these bubbles have a large-scale
bulk velocity, then they will impart a temperature anisotropy
onto the CMB. In this work, we refer to the kSZ effect from
reionization as the “patchy” signal, while that from epochs after
reionization is complete is referred to as the “post-reionization”
signal.

Zahn et al. (2005) and McQuinn et al. (2005) demonstrated
that, to first order, the magnitude of the kSZ power from patchy
reionization is dependent on the duration of reionization. Hence,
when combined with measurements of the optical depth to
reionization from the primary CMB power spectrum, the redshift
range spanned by the epoch of reionization can be constrained.
For example, if reionization started at z = 14 and ended at
z= 6, then it would generate roughly 3 μK2 of patchy kSZ power
(at � = 3000), while the range 8 � z � 12 would generate
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1.5 μK2 (McQuinn et al. 2005). While there are several methods
for probing the redshift at which reionization ended (e.g., Oh &
Furlanetto 2005; Fan et al. 2006; Lidz et al. 2006; Becker et al.
2007; Bolton & Haehnelt 2007; Ouchi et al. 2010; Mortlock
et al. 2011 and references therein), there are currently no other
means by which the duration of reionization can be measured,
making the kSZ power spectrum a unique and exciting probe.

The patchy kSZ signal is expected to have a slightly different
angular shape to the post-reionization signal, peaking at a larger
angular scale (� ≈ 2000; Zahn et al. 2005, 2011), corresponding
to the characteristic bubble size during reionization. In princi-
ple, the two components of the kSZ signal can be separated by
a precise measurement of the power spectrum that encompasses
a wide range of angular scales. In practice, however, the pri-
mary CMB signal swamps that of the kSZ at � < 3000, while
extra-galactic foregrounds dominate at � > 5000. Hence, dif-
ferentiating the post-reionization kSZ power from that sourced
by patchy reionization via their angular scale dependence is an
intractable task. To measure the patchy component of this sig-
nal, it is therefore vitally important to have a good theoretical
understanding of the post-reionization contribution.

One of the principal aims of this work is to investigate
the theoretical uncertainty in the post-reionization kSZ power
spectrum. Specifically, we aim to investigate the impact of
astrophysical processes such as radiative cooling of gas, the
formation of stars and galaxies, and feedback from supernovae.
We construct an analytic model for the kSZ power spectrum
which we calibrate to the results of hydrodynamic simulations.
These simulations are run in either just the non-radiative (NR)
regime or including the effects of radiative cooling and star
formation (CSF). We are thus able to compare the impact of
these processes on the kSZ power spectrum. Our model also
enables us to investigate the cosmological scaling of the kSZ
power spectrum.

Several previous studies have measured the kSZ power spec-
trum directly from cosmological simulations by generating syn-
thetic sky maps, projecting through the simulation box stacked
over multiple time steps (White et al. 2002; Hallman et al.
2009; Battaglia et al. 2010). The principal drawback to this
approach is that very large simulation box sizes are necessary
to adequately capture the large-scale velocity flows that con-
tribute significantly to the kSZ signal at small angular scales
(Zhang et al. 2004). As we shall demonstrate, simulations with
box sizes significantly less than 1 Gpc h−1, systematically and
substantially underestimate the kSZ power spectrum. Further-
more, high spatial resolution is required to resolve small-scale
baryonic processes such as CSF.

In this work, we adopt a hybrid approach. We use high-
resolution simulations to capture the effect of nonlinear structure
formation on the gas density power spectrum and use the results
to improve our analytic calculation for the kSZ effect. Our
method accounts for all relevant velocity and density modes,
and circumvents the prohibitive requirement of high spatial
resolution and extremely large cosmological boxes.

This paper is organized as follows: in Section 2, we provide
an overview of the kSZ effect, describe our model for the kSZ
power spectrum, and discuss how we implement the modifica-
tions required to account for the astrophysical processes in our
simulations. In Section 3, we describe the hydrodynamic sim-
ulations used to calibrate our model. In Section 4, we present
results from the simulations, focusing specifically on the gas
density and momentum power spectra and comparing these
with the predictions of our models. In Section 5, we discuss the

kSZ power spectra predicted by our models, their scaling with
cosmological parameters, and the means by which they could
be distinguished observationally. We also investigate the impact
of helium reionization on the power spectrum. Finally, we com-
pare our model with the results of previous work and the latest
observations.

Except when referring to specific simulations with specific
cosmological parameters, throughout this paper we assume a
fiducial, spatially flat, ΛCDM cosmological model consistent
with the WMAP7 best-fit cosmological parameters, namely,
H0 = 71 km s−1 Mpc−1, ΩM = 0.27, Ωb = 0.047, ΩΛ = 0.73,
ns = 0.95, and σ8 = 0.82.

2. MODELING THE KINETIC SZ POWER SPECTRUM

2.1. kSZ Basics

Thomson scattering of CMB photons off clouds of free
electrons with a coherent bulk velocity along the line of
sight from the observer produce fluctuations in the observed
brightness temperature of the CMB,

ΔT

Tcmb
(n̂) = σT

c

∫ zrei

0

dx

dz

dz

(1 + z)
exp(−τ (z))ne(z)v · n̂, (1)

where σT is the Thomson cross-section for an electron, x is the
comoving distance to redshift z, ne is the free electron number
density, and v · n̂ is the component of the peculiar velocity of the
electrons along the line of sight. We are principally concerned
with the kSZ power spectrum in the post-reionization era, so
the upper limit to the integral, zrei, corresponds to the redshift
at which reionization ends (i.e., hydrogen has been entirely
ionized). Unless stated otherwise, we assume a fiducial value of
zrei = 10.

τ is the Thomson optical depth,

τ (z) = σT

∫ z

0

n̄e(z′)
1 + z′

dx

dz′ dz′, (2)

where n̄e is the mean free-electron density,

n̄e = χρg(z)

μemp

, (3)

ρg(z) = ρg,0(1 + z)3 is the mean gas density of the universe
at redshift z, and μemp is the mean mass per electron, where
μe = 1.14. We define χ as the fraction of the total number of
electrons that are ionized. We assume that, for z < zrei, hydrogen
is completely ionized, so χ is dependent on the abundance and
ionization state of helium,

χ = 1 − Yp(1 − NHe/4)

1 − Yp/2
, (4)

where Yp is the primordial helium abundance and NHe is the
number of helium electrons ionized (which can be a function of
redshift). Thus, for Yp = 0.24, χ ={0.86, 0.93, 1} for neutral,
singly, and fully ionized helium. For our fiducial model, we
assume χ = 0.86 (i.e., NHe = 0) at all redshifts. We explore
the effect of helium reionization on the kSZ power spectrum in
Section 5.

Writing ne = n̄e(1 + δ), we define the density weighted
peculiar velocity q = v(1 + δ), so that

ΔT

Tcmb
(n̂) = σT ρg,0

μempc

∫ zrei

0

dx

dz
dz(1 + z)2χ exp(−τ (z))n̂ · q. (5)
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KSZ temperature fluctuations are generated by the projected
contribution of ionized gas with a non-zero peculiar velocity
along the line of sight. A key property of the kSZ signal is that
Fourier modes of q (q̃(k)) which have k parallel to n̂ suffer severe
cancellation when projected along the line of sight. Therefore,
only modes of q̃(k) parallel to n̂ but perpendicular to k can
contribute (see Jaffe & Kamionkowski 1998, for a rigorous
demonstration of this; henceforth, we use ˜ to denote a Fourier
space quantity.).

q can be decomposed into divergence-free (qB) and curl-free
(qE) components, which satisfy �.qB = 0 and � × qE = 0,
respectively. In the Fourier domain, q̃ = q̃E + q̃B , where
q̃E = k̂(q̃ · k̂) and

q̃B(k) = q̃ − k̂(q̃ · k̂). (6)

When projected along the line of sight, the peaks and troughs
of the component of q̃ parallel to k, q̃E , will cancel. Therefore,
only the component of q̃ perpendicular to k, q̃B , contributes to
the kSZ signal (Vishniac 1987; Jaffe & Kamionkowski 1998).

q̃B can be written as a convolution between the Fourier
transform of the velocity and density fields,

q̃B(k) =
∫

d3k′

(2π )3
(k̂′ − μk̂)ṽ(k′)δb(|k − k′|), (7)

where μ = k̂ · k̂′. In the linear regime, ṽ(k) is parallel to k̂,
so only the vδ component of q can contribute to qB . The kSZ
power spectrum is thus generated by the cross-term δv (Ostriker
& Vishniac 1986; Vishniac 1987).

In the small angle limit, the kSZ angular power spectrum can
be calculated using Limber’s approximation,

C� = 8π2

(2� + 1)3

(
σT ρg,0

μempc

)2 ∫ zrei

0
(1 + z)4χ2Δ2

B(�/x, z)

× exp
(−2τ (z)

)
x

dx

dz
dz, (8)

where k = �/x, Δ2
B(k, z) = k3PB(k, z)/(2π2), and the power

spectrum of the curl component of the momentum field, PB, is
defined by (2π )3PBδ(k − k′) = 〈q̃B (k)q̃∗

B(k′)〉.
Vishniac (1987) first calculated an expression for Δ2

B (see also
Jaffe & Kamionkowski 1998; Dodelson & Jubas 1995; Ma &
Fry 2002),

Δ2
B(k) = k3

2π2

∫
d3k′

(2π )3

[
(1 − μ2)Pδδ(|k − k′|)Pvv(k′)

− (1 − μ2)k′

|k − k′| Pδv(|k − k′|)Pδv(k′)
]
, (9)

where Pδδ and Pvv are the linear theory density and velocity
power spectra, and Pδv is the density–velocity cross spectrum
(for clarity, we have suppressed the redshift dependence of Δ2

B (k)
and P (k)). In the linear regime, the continuity equation allows
us to relate the peculiar velocity field with density perturbations,
ṽ(k) = ik̂(f ȧ/k)δ̃(k), where f = d log D/d log a and D is the
linear growth factor. Therefore,

Pvv(k) =
(

f ȧ

k

)2

Pδδ(k) ; Pδv(k) =
(

f ȧ

k

)
Pδδ(k). (10)

Plugging these into Equation (9), we obtain

Δ2
B(k) = k3

2π2
ȧ2f 2

∫
d3k′

(2π )3
Pδδ(|k−k′|)Pδδ(k′)I (k, k′), (11)

where

I (k, k′) = k(k − 2k′μ)(1 − μ2)

k′2(k2 + k′2 − 2kk′μ)
. (12)

Combining Equations (8) and (9) gives the well-known
Ostriker–Vishniac effect, which is the linear-theory part of the
kSZ power spectrum.

2.2. Nonlinear Contributions

Several previous studies have investigated the impact of
nonlinear structure formation on the kSZ power spectrum,
showing that nonlinear corrections become large for angular
scales � > 1000 (Hu 2000; Ma & Fry 2002; Zhang et al. 2004).
Hu (2000) and Ma & Fry (2002) demonstrate that one can
include the effect of nonlinear density fluctuations to the kSZ
power spectrum by exchanging the linear theory matter power
spectrum, Pδδ , in Equation (11) with the nonlinear matter power
spectrum, P NL

δδ , so that

Δ2
B(k) = k3

2π2
ȧ2f 2

∫
d3k′

(2π )3
P NL

δδ (|k−k′|)Pδδ(k′)I (k, k′). (13)

Ma & Fry (2002) argue that the kSZ signal is less sensitive to
nonlinear velocity fluctuations than nonlinear density fluctua-
tions due to the 1/k2 weighting in the former. Using hydrody-
namical simulations, Zhang et al. (2004) and Shao et al. (2011)
show that, for k > 2 h Mpc−1, the power in the curl compo-
nent of the velocity field (generated by nonlinear gravitational
collapse) can exceed the linear theory prediction. To account
for this, they suggest a phenomenological correction in which
Pδδ(k′) is replaced by its nonlinear counterpart. In this work, we
follow the nonlinear correction proposed by Ma & Fry (2002)
given in Equation (13). However, we investigate to what degree
velocity fluctuations in the nonlinear regime may effect the kSZ
power spectrum in Section 5.

Throughout this work, we calculate the nonlinear density
power spectrum, P NL

δδ using the HaloFit prescription of Smith
et al. (2003). We find that the dark matter (DM) power spectrum
predicted by HaloFit is within 8% of that measured in our
NR simulations for k < 4 h Mpc−1 (Rudd et al. 2008),
although it systematically underestimates the power spectrum
at k > 1 h Mpc−1. Heitmann et al. (2010) found similar results
comparing HaloFit to a large suite of N-body simulations over
a wide range of cosmological models.

There is a much larger discrepancy between HaloFit and
our simulation that includes CSF. The formation of dense
clumps of stars and gas at the center of halos produces a
steepening of the DM density profile at small radii, increasing
the density of the halo core. This process is sometimes referred
to as “halo (or adiabatic) contraction” (Blumenthal et al.
1986; Gnedin et al. 2004, 2011). The matter power spectrum
measured in DM only simulations, or by halo models calibrated
on such simulations (such as HaloFit), no longer matches
that measured in simulations that include radiative cooling at
wavenumbers k > 1 h Mpc−1 (Jing et al. 2006; Rudd et al.
2008; Duffy et al. 2010; van Daalen et al. 2011).

We incorporate the effects of halo contraction using the simple
modification to HaloFit suggested by Rudd et al. (2008). This
is implemented by multiplying the matter power spectrum by
the ratio of Fourier-transformed NFW density profiles (Navarro
et al. 1997) with two different concentrations,

PDMcsf(k, z) = Φ(k, z)2PDMonly(k, z), (14)
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where

Φ(k, z) =
[
λ(Rvirk/c2, c2)

λ(Rvirk/c1, c1)

]
. (15)

λ(Rvir, k, c) is the Fourier transform of an NFW halo of virial
radius Rvir,4 and (c2, c1) are the concentrations of the halo
including and omitting the effects of radiative CSF, respec-
tively.5 We apply the correction to the matter power spec-
trum given by Equation (14), using c1 = 5, c2 = 8.5, and
Rvir(z = 0.55) = 1.1 comoving Mpc h−1 (corresponding to a
virial mass of Mvir = 1.07 × 1014 h−1 M
).

This procedure is clearly a very simplistic approximation to
the effects of halo contraction on the matter power spectrum.
The correction to the power spectrum is determined entirely
by the effect of a change in concentration on the density profile
of a halo with a characteristic mass and redshift. However, in
Section 4, we demonstrate that it does provide a good agreement
between our model and the CSF simulations at small scales.

2.3. Thermal Pressure of Baryons

In previous work, it has commonly been assumed that
δgas = δDM, that is, perturbations in the gas density exactly
follow those of the DM at all scales (Dodelson & Jubas 1995;
Jaffe & Kamionkowski 1998; Ma & Fry 2002; Zhang et al.
2004). However, thermal pressure between baryons should erase
density fluctuations in the gas distribution at small scales.
Furthermore, radiative CSF can significantly modify the gas
density power spectrum at both large and small scales (Jing
et al. 2006; Rudd et al. 2008; Casarini et al. 2011; van Daalen
et al. 2011).

In order to accurately predict the kSZ power spectrum, we
must be able to relate the power spectrum of gas density
fluctuations, Pgas (or more precisely, fluctuations in the number
density of free electrons), with that of the DM. We incorporate
the effects of baryon physics into a window function W (k), such
that

P NL
gas (k, z) = W 2(k, z)P NL

DM(k, z). (16)

This then replaces the nonlinear matter power spectrum in
Equation (13). Note that we assume the velocity field of the
gas follows that of the DM, which is a reasonable assumption
at large scales.

In the NR regime, the qualitative shape of W 2(k) is simple to
imagine. At large scales, and before the onset of gravitational
collapse, we expect W 2(k) ≈ 1. However, at small scales, the gas
thermal pressure force suppresses gas density perturbations and
so W 2(k) will tend to zero as k increases. Therefore, W 2(k) acts
as a filter, smoothing the gas density at some characteristic scale.
As we shall demonstrate, the form of W 2(k) for our simulation
including radiative CSF has a more complex dependence on k.

Gnedin & Hui (1998) demonstrate that, for coupled density
perturbations in the linear regime, the ratio of gas to DM density
fluctuations is well described by the form

WG98(k, z) = 0.5

(
exp

( − k2/k2
f

)
+

1

[1 + 4(k/kf )2]1/4

)
,

(17)

4 The virial mass and radius are defined by Mvir = (4/3)πR3
virΔcρc(z), where

Δc is the virial overdensity given in Bryan & Norman (1998) and ρc(z) is the
critical density at redshift z.
5 See Rudd et al. (2008) for an analytic expression for λ.

where the (redshift-dependent) characteristic filter scale kf is
given by

1

k2
f (t)

= 1

D(t)

∫ t

0
a2(t ′)dt ′

D̈(t ′) + 2H (t ′)Ḋ(t ′)
k2
J (t ′)

∫ t

t ′

dt ′′

a2(t ′′)
.

(18)
Here, kJ is the Jean’s scale,

kJ(t) = a

cS(t)

√
4πGρm(t), (19)

where ρm is the mean matter density of the universe and
cS = √

dP/dρ is the mean sound speed at time t. As noted
by Gnedin et al. (2003), the filter scale at a given time is not
directly proportional to the Jeans scale at the same time, but to
the integral over the thermal history of the gas up to that point.

Hu (2000) and McQuinn et al. (2005) used Equation (17) to
approximate the effects of thermal pressure in their calculations
of the (post-reionization) kSZ power spectrum. In this work,
we measure the shape and evolution of W 2(k) in hydrodynamic
simulations and apply the results to our model for the power
spectrum.

2.4. Final Model

Our full model for the kSZ power spectrum is given by
Equation (8), where the expression for Δ2

B including nonlinear
corrections, the gas window function, and halo contraction is

Δ2
B(k) = k3

2π2
ȧ2f 2

∫
d3k′

(2π )3
W 2(|k − k′|)Φ2(|k − k′|)

× P NL
δδ (|k − k′|)Pδδ(k′)I (k, k′). (20)

We remind the reader that the superscript NL represents the
nonlinear matter power spectrum, calculated using the HaloFit
procedure of Smith et al. (2003). Otherwise, we use the linear-
theory matter power spectrum.

One of the principal aims of this work is to explore the
impact of astrophysical processes such as radiative cooling,
star formation, and supernova feedback on the kSZ power
spectrum. This is achieved by measuring the window function
W 2(k) in hydrodynamic simulations both including and omitting
these processes. By plugging the results into our model, we
are able to calculate the effect of these processes on the
kSZ power spectrum. To investigate the impact of nonlinear
structure formation and halo contraction, we measure the curl
component of the momentum power spectrum, Δ2

B , directly from
our simulations and compare with the analytic prediction given
by Equation (20).

Based on our hydrodynamic simulations, we investigate three
models for the kSZ power spectrum, labeled DM (dark matter),
NR (non-radiative), and CSF (cooling and star formation). The
three models differ principally in the gas window function,
W 2

i (k), used to relate the nonlinear DM power spectrum to
the gas density power spectrum, where i = {1,W 2

NR,W 2
CSF}

for the {DM, NR, CSF} models. For the CSF model, we also
include the halo contraction correction to the DM density power
spectrum, Φ(k, z), given by Equation (14). For the DM and NR
models, we set this equal to one at all k and z.

In our model, simulations are used to determine the gas
density power spectrum, whereas the velocity modes are entirely
calculated from linear theory. Our technique thus circumvents
the problems relating to the truncation of large-scale velocity
modes due to a limited simulation box size (see Section 4.2).
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Table 1
List of Simulations

Name Lbox Ωm ΩΛ h Ωbh
2 σ8 ns nDM mp Δx

(h−1 Mpc) (h−1 kpc)

L60NR 60 0.3 0.7 0.7 0.021 0.9 1.0 2563 0.92 1.8
L60CSF 60 0.3 0.7 0.7 0.021 0.9 1.0 2563 0.92 3.6
BolshoiNR 250 0.27 0.73 0.7 0.023 0.82 0.95 10243 1.08 3.8

Notes. Lbox is the simulation box side length, nDM and mp are the number of dark matter particles and their mass
(in units of 109 h−1M
), and Δx is the peak spatial resolution of the simulation.
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1 10
0

2

4

6

full kSZ

Ostriker−Vishniac

Figure 1. Contribution, d2C�/dzd ln(k), to the total kinetic SZ power at
� = 3000 by density fluctuations at a given redshift and spatial scale. In each
panel, the contours enclose the regions that contribute 25%, 50%, and 75 %
of the total power (from inner to outer contours). The top panel shows mass
and redshift dependence for the full kinetic SZ power spectrum including the
nonlinear density fluctuations. The lower panel shows the same contours for the
Ostriker–Vishniac effect, in which only the linear density power spectrum is
used. The dashed blue lines represent the size–distance relation, k = �/x(z), for
� = 3000. Kinetic SZ power is generated by density fluctuations in the range
0.3 � k � 10 h Mpc−1, with nonlinear fluctuations boosting the signal in the
high-k, low redshift regime.

(A color version of this figure is available in the online journal.)

Indeed, our simulations accurately resolve the range of spatial
scales over which density fluctuations contribute significantly
to the kSZ power spectrum for 1000 � � � 10,000. We now
demonstrate this point explicitly.

In Figure 1, we plot the contribution to the total kSZ power
at � = 3000 by density fluctuations at a given redshift and
spatial scale k = 3000/x. In each panel, the contours enclose
the regions that contribute 25%, 50%, and 75% of the total
power (inner to outer contours). The top panel shows contours
for the full kSZ power spectrum including the nonlinear density
fluctuations. The lower panel shows the same contours for the
Ostriker–Vishniac effect, in which only the linear-regime matter
power spectrum is used. The dashed blue lines show the relation
k = �/x(z) at � = 3000. The shape of the contours follows
that expected for the distance–size relation at a constant angular
scale. In this figure, W 2(k) is fixed to one at all scales.

Comparing the two panels clearly demonstrates the impact of
nonlinear density perturbations on the kSZ power. The full kSZ
contours extend to larger k and lower redshift, where the impact
of the nonlinear corrections to the power spectrum is largest.
More than 50% of the full kSZ power is sourced by density

fluctuations in the range 0.6 � k � 5 h Mpc−1 and 0 � z � 3,
while wavenumbers up to k = 8 h Mpc−1 provide a non-
negligible contribution. In contrast, we find that the principal
contribution of velocity modes to the kSZ signal comes from
the range of scales encompassed by 0.005 � k � 0.5 h Mpc−1

and thus from much smaller k than the density fluctuations. This
emphasizes that the kSZ power spectrum is generated by small
scale density fluctuations caught up in large-scale velocity flows.
The OV signal is spread over a larger redshift range, but limited
to contributions from density fluctuations at k � 2 h Mpc−1.
Our simulations accurately resolve density fluctuations over the
full range of k plotted and are thus well suited to calibrating our
model.

3. SIMULATIONS

Our simulations are performed using the Adaptive Refine-
ment Tree N-body + gas-dynamics code (Kravtsov et al. 2002;
Rudd et al. 2008), which is an Eulerian code that uses adaptive
refinement in space and time, and non-adaptive refinement in
mass (Klypin et al. 2001) to achieve the dynamic range nec-
essary to resolve the cores of halos formed in self-consistent
cosmological simulations.

The simulation properties, their associated box sizes, cosmo-
logical parameters, and resolutions are summarized in Table 1.
Two of the three simulations (BolshoiNR and L60NR) are per-
formed in the NR regime where baryons are shock heated during
structure formation but unable to radiatively cool. BolshoiNR
is a large simulation designed to study the formation of galaxy
clusters. L60NR and L60CSF are realizations of the same set
of initial density fluctuations simulated with varying physical
processes included and were previously used to study baryon
effects on the matter power spectrum in Rudd et al. (2008).

A complete description of the physical processes imple-
mented in the L60CSF simulation can be found in Rudd et al.
(2008). Briefly, gas is converted to collisionless stellar parti-
cles using a Kennicutt–Schmidt type density relation for a gas
consumption timescale of ∼2.7 Gyr. Mass, energy, and metals
are returned to the inter-stellar medium through prescriptions
for Type II and Ia supernovae and stellar mass loss via winds.
Radiative cooling rates are tabulated over a range of gas tem-
perature, density, and metallicity including a redshift-dependent
cosmological UV background (Haardt & Madau 1996) using the
CLOUDY code (ver. 96b4; Ferland et al. 1998). In constructing
these rates, the collisional and UV ionization equilibria are ex-
plicitly calculated. This allows the direct determination of the
fraction of ionized electrons in each mesh cell, χ , rather than
assuming a universally averaged value.

One of the main effects of CSF is to lower the volume-
averaged gas density significantly below the cosmic baryon
density due to the conversion of gas into stars. At z = 4, the
gas fraction is ρg/ρbar = 0.99 (where ρbar is the mean baryon
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density of the universe), whereas by z = 0 it has fallen to
0.8. As noted by Rudd et al. (2008), the conversion of gas
into stars in the simulation is significantly more efficient than
is observed—especially in the highest density regions—due to
the well-known overcooling problem (see also Kravtsov et al.
2005, 2009). At the high-mass end, the halos in this simulation
have a stellar mass fraction at z = 0 that is approximately
50% greater than observed for group and cluster-mass objects
(Gonzalez et al. 2007; Giodini et al. 2009). We note that, while
the star formation rate at high redshift z > 4 is likely to be
underestimated (as many halos are poorly resolved at these
epochs; Springel & Hernquist 2003), Figure 1 indicates that
the majority of the kSZ power at � = 3000 is sourced at lower
redshift. Overall, the L60CSF simulations should therefore
underestimate the amplitude of the gas density—and thus the
kSZ—power spectrum. On the other hand, the absence of these
processes in our NR simulations results in a mean gas density
in halos that is substantially larger than that observed. The
BolshoiNR simulation should thus overestimate the kSZ power.
Therefore, while neither simulation represents the real universe,
we expect them to provide well-motivated lower and upper limits
to theoretical estimates of the kSZ power spectrum. These limits
can be utilized to place constraints on the kSZ signal from
reionization.

To compare with these two limiting cases, we also reran
the L60CSF simulation having turned off radiative cooling at
z = 1.8 (henceforth referred to as L60CSFz2). While this run
should be considered unrealistic, it serves two useful purposes.
First, it allows us to investigate whether a radical change in the
star formation prescription can significantly modify the shape
of the window function, W 2(k), and the kSZ power spectrum
away from that predicted by either the BolshoiNR or L60CSF
simulations. This then enables us to evaluate how robust our
estimate of W 2(k) is to changes in baryon physics: does it vary
smoothly between the non-radiative and overcooling cases, or
does it depend sensitively on the star formation prescription?
Second, the final stellar (and gas) mass fraction in halos of mass
M500 > 1012 h−1 M
 at z = 0 in this simulation lies in-between
the values produced by the BolshoiNR and L60CSF simulations.
For example, for halos of mass M500 = 5 × 1013 M
, the ratio
of stellar (gas) mass to total mass in the L60CSFz2 simulation
is approximately 0.12 (0.8) of the universal baryon fraction
compared to 0 (0.9) for BolshoiNR and 0.6 (0.45) for L60CSF.
Therefore, this run provides a useful intermediary case between
the full cooling plus star formation and non-radiative cases.
In Section 6, we discuss future work that is required to make
precision estimates of the kSZ power spectrum.

The BolshoiNR and L60CSF are the primary simulations used
to gauge the effects of CSF and to calibrate our models. As indi-
cated in Table 1, the BolshoiNR simulation has the largest box
size (250 Mpc h−1). The range of scales resolved by this simula-
tion encompasses the wavenumbers 0.03 � k � 100 h Mpc−1

(we conservatively use an upper limit of 1/8 the Nyquist
wavenumber corresponding to the spatial resolution). Mildly
overdense structures (δ ≈ 10) are followed at a grid resolu-
tion of approximately 60 h kpc−1, corresponding to an upper
limit on k of about 7 h Mpc−1. Therefore, this simulation has
adequate resolution in low density regions to account for the
potential contribution of filamentary structures to the kSZ sig-
nal (Atrio-Barandela et al. 2008). The L60CSF simulation has
a box size of 60 Mpc h−1, resolving fluctuations over the range
0.1 � k � 110 h Mpc−1. The resolution in lower-density re-
gions is approximately 200 h kpc−1, so it is possible that density

fluctuations in these regions are slightly underestimated. How-
ever, Hallman et al. (2009) demonstrate that the contribution of
regions of density δ < 50 to the kSZ power spectrum in their
simulations is an order of magnitude below that of denser re-
gions. Therefore, comparing with the upper panel of Figure 1,
it is clear that our simulations adequately resolve density fluc-
tuations over the range of scales that contribute the bulk of the
kSZ signal.

While we do not directly present results from the L60NR
simulation, we use this to check the effect of varying the
simulation box size (by comparing BolshoiNR and L60NR)
and separate it from the effect of adding baryonic physics (by
comparing L60NR and L60CSF).

4. RESULTS

4.1. Gas Window Function

In the left panel of Figure 2, we plot the window function
W 2(k) = Pgas(k)/PDM(k) for the BolshoiNR simulation, where
Pgas and PDM are the measured gas and DM density power
spectra. The points show the results over a range of time steps,
corresponding to a = 0.4 to 1.0 in steps of 0.1 (from upper to
lower at k = 2 h Mpc−1). The black solid lines are fits to the
simulation results using the fitting function given below. The
red lines show the linear-theory window function of Gnedin &
Hui (1998) given by Equation (17).

Fluctuations in the gas density follow those of the DM at large
scales (k < 1 h Mpc−1), but are rapidly suppressed toward
smaller scales as the gas thermal pressure begins to counter
gravity in overdense regions. Note that the largest value of k
plotted is significantly below the maximum that is resolvable for
the simulation. Hence, the truncation of power at small scales in
Pgas is due to a physical smoothing of the gas density by thermal
interactions rather than an artificial smoothing due to the finite
resolution of the simulation.

We find that the following fitting function provides a good
description of the BolshoiNR simulation results,

WNR(k, a) = 0.5

(
exp (−k/k′

f ) +
1

1 + (g(a)k/k′
f )7/2

)
, (20)

where k′
f = 12.6a−1+6.3 and g(a) = 0.84a−1. We have verified

that Equation (21) also provides a good match to the window
function measured from the L60NR simulation. The difference
between the BolshoiNR and L60NR simulation box sizes and
cosmological parameters do not significantly affect our results.

At the final output, the characteristic filter scale, k′
f , is

approximately a factor of 3.3 less than that of the linear-theory
prediction given by Equation (18). This is also evident from
comparing the window function suggested by Gnedin & Hui
(1998, red lines) with the simulation results; the smoothing
of the gas density fluctuations occurs at much smaller scales
than in the simulation. The difference between the Gnedin
& Hui (1998) window function and the simulation results is
due to shock heating of the gas in the simulation as density
perturbations become nonlinear. To calculate the Jean’s scale in
Equation (18), we assume that the gas is initially coupled to the
CMB temperature, but then evolves adiabatically, Tgas ∝ 1/a2,
until it reaches a minimum temperature of 300 K (which is
also imposed in the simulation). The lower gas temperature at
late times results in a large Jeans wavenumber, and thus the
smoothing of the gas density is limited to very small scales
(e.g., {kJ , kf } ≈ {32, 63} h Mpc−1 at a = 1). However, in

6



The Astrophysical Journal, 756:15 (14pp), 2012 September 1 Shaw, Rudd, & Nagai

10
−1

10
0

10
1

0.4

0.6

0.8

1

k [h/Mpc]

W
2 N
R
(k

)

10
0

10
1

0.5

1

1.5

2

k [h/Mpc]

W
2 C
S
F
(k

)

Figure 2. Left: the ratio of the gas density to dark matter density power spectra, W 2(k), measured in the BolshoiNR simulation (black symbols) and the linear
perturbation theory prediction of Gnedin & Hui (1998; red solid lines). For each, the results are shown from a = 0.4 to 1 (where a is the scale factor for the size of
the universe) in steps of Δa = 0.1 (from top to bottom at k = 2 h Mpc−1). The black solid lines show the fit to the simulation points given by Equation (21). Right:
the ratio of the free electron density to dark matter density power spectra in the L60CSF simulation (black lines). The results are shown from a = 0.3 to 1 in steps of
Δa = 0.1 (from top to bottom). Also plotted is the ratio of the free electron density to dark matter density power spectrum for the L60CSFz2 simulation (in which
radiative cooling is turned off at z = 1.8) at a = 0.4, 0.5, 0.68 and 1 (from top to bottom at k = 10 h Mpc−1).

(A color version of this figure is available in the online journal.)

the simulation, as halos collapse and grow, accretion shocks
heat much of the gas to temperatures significantly above the
300 K temperature floor (note that this simulation, unlike the
L60CSF run, does not include a UV background). The mean
(mass-weighted) gas temperature in the simulation is in excess
of 106 K at z = 0. Thus, we see smoothing of the gas distribution
at much larger scales in the simulation than predicted by purely
adiabatic evolution.

On the right side of Figure 2, we show the window function,
WCSF(k), measured in our L60CSF simulation at the time steps
corresponding to a = 0.3 to 1.0 in steps of 0.1 (black lines,
from top to bottom at k = 1 h Mpc−1; for clarity, we represent
the simulation results with lines rather than symbols). In this
simulation, we are able to measure the ionization fraction of
hydrogen in each cell. We therefore plot the ratio of the free-
electron (rather than the gas) density power spectrum to that
of the DM. However, since the global neutral fraction is very
small, using the gas density produces similar results.

The inclusion of gas CSF produces a very different window
function to the NR simulation. First, the overall amplitude at
large scales is clearly time dependent. At k = 0.2 h Mpc−1,
W 2(k) varies from 0.92 at a = 0.2 to 0.62 at a = 1.0. For
the BolshoiNR simulation, we found that W 2

NR(k = 0.2) ≈ 1
at every time step. The difference is due to the evolving gas
fraction within halos in the CSF simulation. At a = 1, the
square of the ratio of the gas to total baryon density in the box
is (ρg/ρbar)2 = 0.64 (shown as the horizontal dot-dashed line).
The low gas density within halos in this simulation significantly
reduces the power spectrum of gas density fluctuations relative
to the DM. This is particularly evident at low k as the two-halo
contribution to the gas density power spectrum is proportional
to the square of the mean gas density in halos (Semboloni
et al. 2011). Therefore, as the gas density is reduced, so is
the amplitude of W 2

CSF(k) at large scales.
At intermediate scales, W 2(k) slowly decreases, but starts

rising again at k > 5 h Mpc−1. The increase in power toward
small scales is due to the cooling of gas at the center of halos,
steepening the density profile at small radii relative to the DM,
and thus boosting the small-scale power. For earlier outputs

(upper lines), we see that the power in the free-electron density
can greatly exceed that of the DM (W 2

CSF(k) > 1). With time,
this bias gradually disappears due to two effects. First, as the
simulation progresses, the cold gas in halo cores is converted
to stars. Second, the gas in the very center of halos can cool
to the point at which hydrogen is no longer ionized, reducing
the free-electron density. However, the neutral fraction always
remains small and thus the former is the dominant effect. Using
the gas (rather than free-electron) power spectrum produces very
similar results.

The blue lines in the right-hand panel of Figure 2 show
the window function obtained for the L60CSFz2 simulation,
in which radiative cooling is artificially turned off at zoff = 1.8.
The results are given for the time steps corresponding to a =
0.4, 0.5, 0.68, and 1 (from top to bottom at k = 10 h Mpc−1).
Switching off radiative cooling has a clear effect on the gas dis-
tribution across the range of scales probed. After zoff , the cold,
dense clumps of gas in halo cores begin to heat and expand,
rapidly suppressing small-scale density fluctuations. The reduc-
tion of small-scale power thus occurs in both CSF simulations,
but for very different reasons: in L60CSF, cold gas is converted
into stars, whereas in L60CSFz2 the gas mixes with its warmer
surroundings and begins to expand. This also results in a dif-
ferent behavior at large spatial scales. In L60CSFz2, the gas
becomes less centrally concentrated in halos, reducing the sup-
pression in power (relative to the DM) that is seen in the L60CSF
simulation. As the simulation progresses toward z = 0, W 2(k)
thus increases slightly at small k. By the final output, the shape
of the window function is beginning to resemble that of the
BolshoiNR simulation (left-hand panel of Figure 2). Therefore,
once cooling is turned off, the window function obtained from
the L60CSFz2 simulation begins to transition from a CSF-like
shape to an NR-like shape. We show the effect of this on the
kSZ power spectrum in Section 5.

The form of W 2
CSF(k) is evidently more complicated than

W 2
NR(k). To incorporate the CSF window functions into our

calculation of the kSZ power spectrum, we instead interpo-
late between the simulation results for the redshifts between
outputs. We assume that W 2(k) remains fixed at its value at
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Figure 3. Power spectrum of the curl component of the momentum field in the
BolshoiNR simulation at four time steps: z = 4, 1.87, 1, and 0 (top left, top right,
lower left, lower right). The black dots represent the simulation results, the blue
lines give the analytic prediction of ΔBk/H (z) in two regimes: the linear regime
calculation given by Equation (11) (dotted) and the nonlinear version given by
Equation (13) (solid). The red line shows the “truncated” model (see the text).

(A color version of this figure is available in the online journal.)

k = 0.2 h Mpc−1 for scales with k < 0.2 h Mpc−1. For epochs
earlier than a = 0.3 (z > 2.33), we assume that W 2

CSF(k)
smoothly converges toward unity at all scales.

4.2. Momentum Power Spectrum

We now compare the power spectrum of the curl component
of the gas momentum field, Δ2

B , predicted by our model with
that measured directly from the simulations. This comparison
enables us to test whether our model accurately captures the
impact of nonlinear structure growth and baryonic physics in
the simulations. This is of particular importance as the kSZ
power spectrum is a weighted integral of Δ2

B over redshift. We
also use our model to demonstrate the impact on Δ2

B of the
truncation of large-scale velocity modes due to the finite size of
our simulated volumes.

To measure Δ2
B in our simulations, we use a 10243 mesh rather

than the fully refined mesh in each simulation. Hence, we are
limited to a narrower range of scales than for the density power
spectra. For the BolshoiNR simulation (which has a box side
length of 250 Mpc h−1), this range is 0.03 � k � 12 h Mpc−1.
For the L60CSF simulation (60 Mpc h−1 box), the range is
0.1 � k � 50.

In Figure 3, we plot Δ2
B for the BolshoiNR simulation at

four time steps, corresponding to z = 4, 1.87, 1, and 0. The
momentum power is shown in terms of the dimensionless
quantity ΔBk/H (z). The black dots represent the measured
simulation power spectrum. The blue lines give the analytic
prediction in two regimes: the linear regime calculation (the
Ostriker–Vishniac effect) given by Equation (11) (dotted) and
our fiducial model given in Equation (20), which includes the
nonlinear corrections to the density power spectrum (solid).
Both include the window function, W 2

NR(k).
Nonlinear density fluctuations become significant when

Δbk/H (z) ≈ 1. Our full nonlinear model reproduces the sim-
ulation results extremely well at k > 0.1 h Mpc−1, but lies
systematically above the simulation points at lower k. This is
simply due to the finite volume of the simulation box. Δ2

B(k) is
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Figure 4. Same as Figure 3 but for the L60CSF simulation. The black dots
represent the simulation results, the solid and dashed blue lines give the analytic
prediction of ΔBk/H (z) including and omitting the halo contraction correction,
respectively. The red line shows the “truncated” model (see the text).

(A color version of this figure is available in the online journal.)

generated by a convolution between velocity modes at
wavenumber k′ with density modes at |k − k′|. The largest con-
tribution comes from velocity modes at large scales coupling to
density modes at smaller scales. Velocity modes on scales larger
than the simulation box size are not accounted for, resulting in
an underestimate of the momentum power.

To demonstrate that this is indeed the case, we recalculate
Δ2

B , placing an upper and a lower limit on the integral over k′ in
Equation (20) such that only the velocity modes encompassed
by the simulation box are included. The red lines in each panel of
Figure 3 show the results of this “truncated” model. It accurately
reproduces the simulation on all scales. This was previously
demonstrated by Zhang et al. (2004), who performed a similar
test by calculating a discretized version of Equation (20)
and compared the results with their simulations. Despite the
overall very good agreement, the truncated model does slightly
underestimate the simulation results at k > 2 h Mpc−1. This
may be due to the impact of a nonlinear, curl component of the
velocity field generated by shell-crossing during halo formation
(as suggested by Zhang et al. 2004; Shao et al. 2011). To mitigate
this, Zhang et al. (2004) suggest replacing Pδδ in Equation (13)
with its nonlinear counterpart. When we do so, we find that the
ratio of model to simulation increases slightly, from 0.88 to 0.94
at k = 2 h Mpc−1.

In Figure 4, we plot the curl component of the gas momentum
power spectrum in the L60CSF simulation (black dots) at the
same four time steps. In this figure, the blue lines show the results
omitting (dashed) and including (solid) the halo contraction
correction applied to the (nonlinear) density power spectrum
described in Section 2.2. Both lines include the window function
W 2

CSF(k) measured in the L60CSF simulation.
At the low-k end, the simulation points again lie systemat-

ically below the model. However, for this simulation, the dis-
crepancy extends to much higher k. The L60CSF simulation box
is more than a factor of four times smaller than the BolshoiNR
simulation (see Table 1), and so the velocity mode truncation is
more severe. We note that our L60NR simulation underestimates
Δ2

b (relative to our NR model) by a similar amount, confirming
that the box-size effect is independent of the baryonic physics
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Figure 5. Kinetic SZ power spectrum for our three models: DM, NR, and CSF
(solid black, red, and blue lines). The black dashed line shows the linear theory
version of the DM model (the Ostriker–Vishniac effect). The blue dashed line
shows kSZ power spectrum calculated using the L60CSFz2 window function.
The vertical dotted lines denote the approximate range in � over which current
small-scale CMB experiments such as SPT and ACT are sensitive to kSZ power.

(A color version of this figure is available in the online journal.)

included in the simulation. As in Figure 3, the red lines show
our model prediction having limited the calculation to include
only those scales encompassed by the simulation. The model
again reproduces the simulation results very well (although at
a = 1 it appears to slightly overestimate the momentum power
at scales around k = 1 h Mpc−1).

The dashed lines demonstrate the model with no halo con-
traction correction. It is clear that, without this correction, the
model underestimates Δ2

B for wavenumbers k > 10 h Mpc−1,
especially at z = 0. The solid blue line demonstrates that our
simple correction does a reasonable job of reproducing the simu-
lated momentum power spectrum. However, as Figure 1 demon-
strates, these scales do not contribute significantly to the kSZ
power spectrum at � = 3000.

5. KINETIC SZ POWER SPECTRUM

We now utilize the gas window functions measured in our
NR and CSF simulations to explore the impact of baryonic
physics on the shape and amplitude of the kSZ power spectrum.
As described in Section 2.4, we evaluate three baseline models:
DM, NR, and CSF. For the DM matter model W 2(k) = 1, for the
NR and CSF we use the window functions W 2

NR,CSF(k) measured
in our simulations. We also investigate the redshift dependence
of the kSZ power spectrum, and its scaling with cosmological
parameters for each model. Finally, we compare the results
presented in this work with those of previous theoretical studies
as well as the latest observational constraints.

5.1. The Impact of Baryon Physics

In Figure 5, we plot the kSZ power spectrum for our three
models: DM, NR, and CSF (solid black, red, and blue lines). The
dashed lines represent variants to the DM and CSF models. The
black dashed line shows the linear theory version of the DM
model, which we label OV (Ostriker–Vishniac). The blue
dashed line shows the kSZ power spectrum calculated using
the L60CSFz2 simulation window function. The power spectra
are plotted in terms of D� = �(� + 1)C�/2π .

Comparing the dashed and solid black lines demonstrates
the impact of nonlinear structure growth on the kSZ power

spectrum. Including the nonlinear corrections significantly
boosts kSZ power at all but the largest angular scales. At
� = 3000, nonlinear corrections have increased the kSZ sig-
nal by a factor of two. By � = 10,000, this has increased to
a factor of 3.5. The kSZ effect is sourced by small-scale den-
sity fluctuations caught up in large-scale bulk velocity flows.
Therefore, the large boost in the amplitude of small-scale den-
sity perturbations due to nonlinear gravitational collapse also
enhances the kSZ power, especially at small angular scales.

The difference between the DM and NR models is small. At
� = 3000 (10,000), the BolshoiNR window function reduces the
kSZ power from the DM model by 0.20 (0.72) μK2. The NR
window function suppresses power at scales k � 8 h Mpc−1

(see the left panel of Figure 2). As demonstrated by Figure 1,
gas density fluctuations at these scales contribute little to the
kSZ power spectrum (at � = 3000). The application of W 2

NR(k)
thus translates into only a small reduction of power (relative to
the DM model) at the angular scales most sensitively probed by
current small-scale CMB experiments.

The window function measured in the L60CSF simulation
has a greater impact on the kSZ power spectrum. The large-
scale suppression of the gas density power spectrum seen in
Figure 2 produces a significant reduction in kSZ power at all
angular scales. At � = 3000, the power is reduced by 1.05 μK2

(32%) and by 1.43 μK2 (36%) at � = 10,000, relative to the
NR model. As discussed in the previous section, this reduction
in power is primarily driven by the decreased gas density in
halos due to overcooling and excessive star formation. A similar
reduction in kSZ power was noted by Trac et al. (2011) when
the stellar mass fraction in groups and clusters was increased
in their semi-analytic model, reducing the gas fraction by an
equivalent amount.

The blue dashed shows the results using the window function
measured in the L60CSFz2 model. The amplitude of the power
spectrum in this case is close to the mean of the NR and CSF
models, with the shape unchanged. A comparison to Figures 1
and 2 provides a clear explanation. Figure 1 demonstrates that
the peak of the kSZ contribution comes from spatial scales
corresponding to 1 h Mpc−1 < k < 3 h Mpc−1 at redshift
z ∼ 1. At these scales and redshifts, the L60CSFz2 window
function lies almost directly between that of the BolshoiNR and
L60CSF simulations, and thus the kSZ power spectrum also lies
in between these two cases. The dominant factor determining
the amplitude of kSZ power thus appears to be the mean gas
density in halos, which is controlled by the star formation rate.

We have also investigated the impact of nonlinear velocity
fluctuations by replacing the linear density power spectrum
(i.e., the velocity component of the Δ2

B) with its nonlinear
counterpart, as suggested by Zhang et al. (2004). We find that, at
� = 3000 (10,000), the amplitude of the kSZ power spectrum in
the NR model increases by 1% (4%). We have chosen to omit this
correction from our fiducial models, as the velocity contribution
to Δ2

B in Equation (13) is determined by the gradient of the
density field and is therefore curl free. Hence, it is not clear how
one should correctly account for nonlinearities in the velocity
field. Nevertheless, the impact on the kSZ power spectrum is
likely to be small.

In Figure 6, we plot the relative contribution to the kSZ power
spectrum of slices in redshift over the range 0 � z � zrei, at
� = 3000. The solid lines show the differential contribution,
dD�/dz, and the dashed lines show the cumulative contribution,
D�(< z)/D�(< zrei), where zrei = 10. The line colors represent
our different models, DM (black), NR (red), CSF (blue) and also
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Figure 6. Contribution of slices in redshift to the kSZ power spectrum at
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DM model (gray). Also plotted is the kSZ redshift distribution predicted by the
L60CSFz2 simulation (green).

(A color version of this figure is available in the online journal.)

the OV contribution to the DM model (gray). For comparison,
we also plot the results obtained using the L60CSFz2 window
function (green).

Comparing the differential redshift contribution of the DM
and OV models again demonstrates the enhancement provided
by nonlinear structure formation at low redshift. Half of the
kSZ signal in the DM model comes from z < 2, whereas
the equivalent fraction for the OV is attained at much higher
redshifts (z ∼ 5).

The NR model has a similar redshift distribution to the DM
model. However, the CSF model predicts a redshift distribution
that is significantly flatter. While the differential redshift distri-
bution peaks at the same redshift, the amplitude of the peak is
considerably lower. The half-way point of the cumulative dis-
tribution is at a much higher redshift, z ∼ 4, than for the DM
and NR models. The right panel of Figure 2 shows that the
effects of CSF, which reduce the gas density in halos, become
increasingly more significant toward lower redshift. This coun-
teracts the boost to the kSZ signal provided by nonlinear density
fluctuations such that the redshift distribution of the CSF more
closely resembles that of the OV model.

The L60CSFz2 simulation, in which radiative cooling
is turned off at z = 1.8, produces a kSZ redshift distribution
that lies almost exactly in between the NR and CSF models. The
distribution diverges from the L60CSF line at z = 1.8 and then
remains at roughly 2/3 the amplitude of the NR model. This
is to be expected; once cooling is turned off, gas is no longer
being consumed by star formation. Hence, at lower redshifts,
the differences between the L60CSFz2 and the NR model cease
to grow. These results suggest that other (and less sudden) vari-
ations in the star formation history would produce a predictable
change in the kSZ redshift distribution: the decrease compared
to the NR case would depend on the integrated star formation
rate to that redshift. While it may underestimate the star forma-
tion rate at high redshift (due to the limited mass resolution), the
CSF model only diverges significantly from the OV prediction
at z < 4. Given the overcooling problem at low redshift, it is
reasonable to assume that the NR and CSF cases encompass
the expected redshift distribution of the kSZ power spectrum at
� = 3000.

The redshift distribution of the kSZ power spectrum can
potentially be measured using kSZ tomography (Ho et al. 2009;
Shao et al. 2011). The tomography method utilizes catalogs
of galaxies with precisely measured spectroscopic redshifts
to reconstruct the large-scale velocity field from the three-
dimensional galaxy distribution. When integrated along the
line of sight, the product of the reconstructed velocity and
density fields provides an estimator for the kSZ temperature
fluctuations. This estimator can be broken down into redshift
slices and cross-correlated with a map at CMB frequencies
enabling the true kSZ contribution from within that redshift
slice to be measured.

Shao et al. (2011) demonstrate that by combining Planck
with BigBOSS (Schlegel et al. 2011), it will be possible
to measure the kSZ power from the redshift range 0.2 �
z � 0.6 to better than 10% precision at � = 3000,
and within the range 0.6 � z � 1 to better than 20%.
Utilizing data from higher angular resolution CMB exper-
iments such as ACT should significantly increase the pre-
cision of these measurements. This will not only provide
a unique, temperature-independent probe of the intergalac-
tic medium at lower densities than those typically probed by
x-ray and tSZ surveys, but would place tight constraints on the
models of the kSZ power spectrum presented here. Figure 6
demonstrates that much of the theoretical uncertainty on the
kSZ signal comes from within the range 0 � z � 2; kSZ to-
mography can provide a powerful probe of the kSZ effect over
the lower half of this redshift range.

5.2. Cosmological Scaling

We have discussed in detail the theoretical uncertainty in the
kSZ power spectrum from astrophysical sources. However, the
kSZ signal also scales sensitively with cosmological parameters.
There is therefore an additional uncertainty on theoretical
estimates of the kSZ power spectrum due to the precision with
which these parameters have been measured. In this section, we
investigate how the amplitude of the kSZ power spectrum scales
with cosmological parameters—in particular, σ8 and τ—and
how this scaling varies between our NR and CSF models.

We assume that D� scales as a power law with each cosmo-
logical parameter p, i.e., D� ∝ pα . We vary each parameter by
20% of its fiducial value (holding the other parameters fixed)
and measure the value of α. We have verified that the power-law
scaling is appropriate for all parameters. The results are pre-
sented in Tables 2 and 3. We give the results over the angular
multipole number range 1000 < � < 10,000. Also given are
the band powers, D�, for each model.

The kSZ power spectrum amplitude is most sensitive to σ8,
scaling as σ 4.3−5.1

8 from � = 1000 to 10,000 (NR model).
This scaling is simple to understand. The kSZ power spectrum
involves the product of the density and velocity power spectra;
in the linear regime each contributes a power of two to the
scaling with σ8. The OV power spectrum thus scales exactly as
σ 4

8 . Nonlinear corrections to the matter power spectrum steepen
the σ8 dependence. This steepening is related to the fraction of
the kSZ signal that originates at low redshift where the nonlinear
corrections have grown large. Figure 6 shows that the maximal
contribution to the OV signal comes from z = 2, whereas the full
kSZ signal for the DM model peaks at z = 0.5. This shift in the
redshift contribution is driven by nonlinear structure formation,
which explains the steeper σ8 dependence. The same argument
applies to the difference in the σ8 scaling between the NR and
CSF models; a smaller fraction of the signal derives from low
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Table 2
kSZ Cosmological Scaling: NR

� D� H0 σ8 Ωb zrei τ

(μK2) (70 km s−1 Mpc−1) 0.82 0.047 10.0 0.076

1000 1.97 1.18 4.31 2.29 0.46 0.32
2000 2.82 1.51 4.48 2.18 0.46 0.32
3000 3.24 1.68 4.62 2.13 0.43 0.30
4000 3.49 1.80 4.73 2.10 0.40 0.28
5000 3.66 1.88 4.81 2.08 0.37 0.26
6000 3.77 1.95 4.88 2.06 0.34 0.24
7000 3.85 2.00 4.94 2.05 0.32 0.22
8000 3.90 2.05 4.99 2.03 0.30 0.21
9000 3.93 2.09 5.04 2.02 0.29 0.20
10000 3.95 2.13 5.07 2.01 0.28 0.19

Notes. The scaling α of the kSZ power spectrum with cosmological parameters,
p, for the NR model, where we assume D� ∝ pα . The fiducial parameters
are given in the second line and the corresponding values of D� in the second
column.

redshift in the latter and so the scaling with σ8 is weaker. We
note that changing σ8 principally varies the overall amplitude of
the kSZ signal; while the scaling does have some � dependence,
the impact on the shape of the power spectrum is small over the
parameter space explored.

Some of the tightest constraints on σ8 to date have been ob-
tained from measurements of the primary CMB power spec-
trum and the abundance of galaxy clusters. For example,
Vikhlinin et al. (2009) used a sample of 86 clusters to obtain
σ8(ΩM/0.25)0.47 = 0.81 ± 0.01 ± 0.02 (statistical and system-
atic errors, respectively). Using the CSF model scaling, this
translates to an uncertainty of approximately ±15% on the kSZ
power spectrum at � = 3000. This is equivalent to the un-
certainty in D� provided by baryon physics presented in the
previous section.

The magnitude of the kSZ signal is also sensitive to the optical
depth to reionization, τ , which is directly related to the redshift
at which reionization occurs (see Equation (2)). In Tables 2
and 3, we give the scaling of D� with both τ and zrei. The
CSF model has a greater sensitivity to each of these parameters
as a slightly larger fraction of the signal is generated at high
redshift. In principle, the post-reionization kSZ power spectrum
could be used to measure zrei. In practice, the uncertainty on
other cosmological parameters washes out this information.

To this point, we have ignored the effect of helium reioniza-
tion. The amplitude of the kSZ signal also scales as the square of
the ionization fraction, χ2, which is dependent on the ionization
state of helium. Our fiducial model assumes that helium remains
neutral at all epochs. If, instead, we assume that helium is singly
or doubly ionized at zrei, then the amplitude of the kSZ power
spectrum will increase by a (�-independent) factor of 1.16 or
1.33, due to the increase in the free electron density. A more
realistic model in which helium is singly ionized at z = 6 and
doubly ionized at z = 3 (e.g., Furlanetto & Oh 2008) would
increase the kSZ power by a factor of 1.22 (1.26) at � = 3000
(10,000) relative to our baseline, neutral helium, model. Hence,
the level of uncertainty on the kSZ power spectrum due to he-
lium reionization is equivalent to that due to the uncertainty
on σ8.

5.3. Comparisons with Simulations

A number of previous studies have used the output of
cosmological simulations to make predictions for the shape and
amplitude of the kSZ power spectrum (da Silva et al. 2001;

Table 3
kSZ Cosmological Scaling: CSF

� D� H0 σ8 Ωb zrei τ

(μK2) 70 km s−1 Mpc−1 0.82 0.047 10.0 0.076

1000 1.43 1.09 4.19 2.31 0.63 0.43
2000 2.00 1.46 4.33 2.18 0.66 0.45
3000 2.19 1.65 4.46 2.12 0.64 0.44
4000 2.27 1.78 4.57 2.09 0.60 0.41
5000 2.32 1.87 4.67 2.06 0.55 0.38
6000 2.36 1.94 4.76 2.04 0.52 0.35
7000 2.40 2.00 4.83 2.02 0.48 0.33
8000 2.44 2.06 4.89 2.01 0.45 0.31
9000 2.48 2.10 4.95 2.00 0.42 0.29
10000 2.52 2.14 4.99 1.99 0.40 0.27

Note. Same as Table 2 but for the CSF model.

White et al. 2002; Hallman et al. 2009; Trac et al. 2011; Battaglia
et al. 2010). Rather than calibrating an analytic model to their
simulations (as we have done), these studies generate mock
sky maps of the temperature fluctuations sourced by the kSZ
effect. Maps are typically constructed by stacking outputs of
the simulated volume over a range of time steps, often rotating
or translating each output to prevent the repetition of structures
along the line of sight and generate a larger simulated sky area.

Comparing our model predictions with those made from syn-
thetic sky maps is a non-trivial task. The simulations encompass
a range of cosmological parameters and often have a more lim-
ited redshift range than our fiducial model (where zrei = 10;
for simplicity, we refer to the highest redshift output of each
simulation as “zrei”). Furthermore, as we described in detail in
Section 4, the limited size of the simulation volume results in the
truncation of large-scale velocity modes and thus a significant
underestimate of the kSZ signal. For example, we estimate that
a simulation box of side length 100 Mpc h−1 would underes-
timate the kSZ power at � = 3000 by 60%. A box size of at
least 1 Gpc h−1 is required to fully account (to within 1% of
the total power) for all the velocity modes that contribute to the
kSZ power spectrum at � = 3000.

To compare our model with that of previous studies, we
must correct their results to account for the limited simulation
box size, the variations in the maximum redshift assumed,
and differing cosmological parameters. We use our NR model
as a baseline to rescale the simulation results to our fiducial
cosmology (namely, σ8 = 0.82, Ωb = 0.047, and zrei = 10)
and to estimate the amount by which the kSZ amplitude must
be increased to account for velocity mode truncation. We also
include a helium correction such that the level of helium
ionization is consistent with our fiducial model (i.e., neutral
at all epochs).

The predictions for the kSZ effect from simulations presented
in previous work are shown in Table 4. The table shows three
columns for the kSZ power at � = 3000 (D3000), the first shows
the raw prediction for D3000 taken from each work. The second
column shows the kSZ power rescaled to our fiducial cosmology
using the scalings given in Table 2. The third column shows
D3000 having additionally corrected for the simulation box size
in each case.

We consider the results from the smoothed particle hydro-
dynamics (SPH) simulations of White et al. (2002, henceforth
WHS02), the Eulerian ENZO simulations of Hallman et al.
(2009, hereafter H09), and both the non-radiative (NR) simu-
lations and those including cooling, star formation, and active
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Table 4
kSZ Predictions from Simulations

Paper D3000 (μK2)

Unnorm. Cosm Cor. Box Cor.

WHS02 3.00 1.57 3.91
H09 7.40 8.50 9.45
B10, NR 2.50 2.42 4.03
B10, AGN 1.50 1.45 2.42
TBO11, adiabatic 2.50 2.70 2.70
TBO11, standard 2.10 2.27 2.27
This work, DM . . . . . . 3.44
This work, NR . . . . . . 3.24
This work, CSF . . . . . . 2.19

Notes. The amplitude of the kSZ power predicted by hydrodynamical simula-
tions in previous work. We show the results from the SPH simulations of White
et al. (2002; WHS02); the ENZO simulations of Hallman et al. (2009, H09); both
the non-radiative (NR) simulations and those including cooling, star formation,
and AGN feedback from Battaglia et al. (2010; B10); and the “adiabatic” and
“standard” models from the N-body plus semi-analytic approach of Trac et al.
(2011; TBO11).

galactic nucleus (AGN) feedback performed by Battaglia et al.
(2010, hereafter B10). The WHS02 simulation includes radia-
tive cooling, star formation, and galactic winds (although they
note these processes may be inhibited by the limited mass res-
olution of their simulation). The H09 simulation is run in the
NR regime. We also include the “adiabatic” and “standard”
semi-analytic models of Trac et al. (2011, hereafter TBO11)
(see also Sehgal et al. 2010). The adiabatic model assumes that
gas resides in hydrostatic equilibrium in the potential well of
DM halos identified in their N-body simulation. The standard
model also includes simple prescriptions for star formation and
non-gravitational energy feedback from supernovae and AGNs.

The cosmological rescaling for the WHS02 and H09 simula-
tions are fairly large as both these simulations were run assuming
σ8 = 0.9 and zrei = 19 and 3, respectively. The box-size cor-
rections are largest for WHS02, who used a 100 Mpc h−1 box,
and B10, who generated their kSZ predictions using simulation
box sizes of 165 Mpc h−1.

In general, the simulations predict between 2.27 and
3.91 μK2, depending on the level of gas physics included, al-
though H09 measure an amplitude of more than twice the upper
end of this range. They are therefore consistent with the predic-
tions of our NR (3.2 μK2) and CSF (2.2 μK2) models. B10 find
that the inclusion of radiative cooling, star formation, and AGN
feedback reduces the kSZ power by 1μK2. The semi-analytic
models of TBO11 lie on the low end of the range of simulations
discussed here. Their “adiabatic” model is similar to our NR
model, while their “standard” model includes prescriptions for
star formation and energy feedback. The effect of these pre-
scriptions is to reduce the kSZ signal by 0.4 μK2. They also
explore the kSZ signal obtained when the stellar mass in groups
and clusters was increased beyond that of the standard model,
finding a further reduction of 0.3 μK2. This supports our asser-
tion that the CSF model—which predicts the lowest amplitude
of all—provides a robust lower limit on the kSZ power spec-
trum due to the reduction of the mean gas density in groups and
clusters via star formation.

5.4. Comparisons with Observations

To date, the kSZ effect has not yet been detected observa-
tionally. However, both the Atacama Cosmology Telescope and

the South Pole Telescope have placed upper limits on the am-
plitude of the kSZ power at � = 3000. From 296 deg2 of data,
Dunkley et al. (2011) obtained a 2σ upper limit of D� = 8 μK2.
More recently, Shirokoff et al. (2011) obtained an upper limit of
D� = 6.5 μK2 (also 2σ ) from 210 deg2. Therefore, observations
do not currently constrain any of the models that we have pre-
sented in this work, although the predictions of the simulations
of Hallman et al. (2009) are inconsistent with the most recent
measurements.

The main difficulty in measuring kSZ power lies with dis-
entangling the signal from both the tSZ effect and bright fore-
grounds, primarily dusty, star-forming galaxies (DSFGs). Un-
fortunately, the angular shape of both the tSZ and DSFG power
spectra is similar to that of the kSZ signal, so it is difficult to
separate these signals in �-space. However, each has a very dif-
ferent frequency dependence; multifrequency observations will
be extremely effective in separating these components. Combin-
ing SPT or ACT data with Planck and Herschel should enable
a significant detection of kSZ power in the near future.

6. DISCUSSION AND CONCLUSION

The kSZ power spectrum is generated by the coupling
between large-scale velocity flows and small-scale density
perturbations. To predict its amplitude and shape, it is necessary
to understand the behavior of the power spectrum of gas
density fluctuations over the range of scales corresponding to
0.1 � k � 10 h Mpc−1. In this work, we have introduced a
new model for the kSZ power spectrum that accounts for the
effect of baryonic physics on the power spectrum of gas density
fluctuations and thus on the kSZ power spectrum.

To this end, we defined a window function, W 2(k) =
Pgas(k)/PDM(k), to provide a mapping between DM and gas
density power spectra in our calculations. We utilized hydrody-
namic simulations—run in both the NR regime and including
radiative CSF—to measure the window functions and investi-
gated their effect on the kSZ power spectrum. We have presented
three models for the kSZ power spectrum: DM (dark matter) in
which gas density fluctuations follow those of the dark matter
at all scales, NR (non-radiative), and CSF (cooling and star for-
mation) in which we use the window functions measured in our
hydrodynamic simulations.

There is only a small difference between the DM and NR
models. Gas density fluctuations in our NR simulations are
suppressed at spatial scales smaller than those that contribute
significantly to the kSZ power spectrum (for � < 10,000).
At � = 3000, the NR model predicts D� = 3.24 μK2, only
0.20 μK2 below the DM model. However, the CSF power
spectrum has a significantly lower amplitude as well as a
flatter shape than either the NR or DM models. At � = 3000,
the CSF model predicts D� = 2.19 μK2, 1.25 μK2 below the
DM model. The reduction in power is driven by the decrease
in the mean gas density in group- and cluster-mass halos due to
the high-levels of CSF in our simulation. This in turn reduces
the amplitude of the gas density power spectrum and thus the
kSZ power spectrum.

To investigate the impact on the shape and amplitude of the
kSZ power spectrum of variations in star formation history, we
rerun our CSF simulation having turned off radiative cooling at
z = 1.8. We find that the resulting window function smoothly
evolved from a CSF-like shape to an NR-like shape, with the
amplitude (at large scales/low k) lying midway between the two
cases. The amplitude of the kSZ power spectrum for this new
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model is thus also midway between that of the NR and CSF
models.

We have argued that our NR and CSF models provide
reasonable upper and lower limits to the effect of astrophysical
processes on the kSZ power spectrum. The NR model is
calibrated from a simulation that included no CSF and thus
no means of reducing the gas density. On the other hand,
our CSF model is calibrated to a simulation that suffers from
the overcooling problem, i.e., from excessive CSF. Hence, we
expect our CSF model to underestimate the true kSZ signal.
Nevertheless, the difference between the NR and CSF models at
� = 3000 is only 1 μK2. Taking the mean of these two models,
we find that the astrophysical uncertainty on the kSZ power
spectrum amplitude is roughly ±20%. This is significantly less
than that of the tSZ power spectrum, for which the current
theoretical uncertainty on the amplitude is ±50% (Shaw et al.
2010; Trac et al. 2011).

There are two caveats to this argument. First, our fiducial
models assume that helium remains neutral at all epochs. Singly
or doubly ionized helium would increase the amplitude of our
models by up to 33%, depending on the redshifts at which
helium reionization occurs. Second, the amplitude of the kSZ
power spectrum is sensitive to cosmological parameters, namely,
σ8, Ωb, H0, and τ (and, equivalently, zrei). We have investigated
the scaling of our models with cosmological parameters, find-
ing that D3000 ∝ σ 4.5

8 Ω2.1
b H 1.7

0 τ 0.44 for the CSF model. The
current 1σ uncertainty on σ8 obtained from cluster number
counts (Vikhlinin et al. 2009) translates to a ±15% uncertainty
on D3000.

We have compared our models with predictions made directly
from hydrodynamic simulations (White et al. 2002; Hallman
et al. 2009; Battaglia et al. 2010; Trac et al. 2011). These studies
measured the kSZ power spectrum using synthetic kSZ maps
constructed by the stacking of simulation box outputs. A serious
drawback of this approach is that velocity modes are truncated
at the scale of the simulation box. For boxes of side length
1 Gpc h−1, this can result in a significant underestimate of
the kSZ signal. We used our model to correct the predictions
of the simulations in previous studies for this effect, as well
as differences in cosmological parameters. We then found a
reasonably good agreement among different simulation results
and the range predicted by our models.

In this work, we consider only the homogeneous- or
post-reionization contribution to the kSZ signal. It is well
known that models of inhomogeneous reionization, in which
different regions of the universe are reionized at differ-
ent times, predict a patchy kSZ signal. Zahn et al. (2005)
and McQuinn et al. (2005) demonstrate that, to first or-
der, the magnitude of the patchy signal is dependent on
the duration of reionization. Given current technology, the
kSZ power spectrum thus provides a unique probe of the red-
shift range spanned by the epoch of reionization. However,
current observations only provide a measure of the sum of
the patchy- and post-reionization kSZ power spectra at angu-
lar scales around � = 3000. Therefore, in order to extract the
patchy component, it is important to have a good theoretical un-
derstanding of the post-reionization contribution. In this work,
we have performed a detailed investigation of the theoretical
uncertainty on the post-reionization kSZ power spectrum due to
astrophysical processes, cosmological parameters, and helium
reionization. Adding these in quadrature produces a total uncer-
tainty of ∼30% on the amplitude of the post-reionization kSZ
power spectrum at � = 3000.

Improvements in our understanding of the kSZ power spec-
trum can be made both theoretically and observationally.
Models and simulations of the kSZ power spectrum can be
further developed to make improved theoretical predictions.
The overcooling problem may be mitigated by the inclusion of
energy feedback from active galactic nuclei in our simulations
(Sijacki et al. 2007; Booth & Schaye 2009; Battaglia et al. 2010;
McCarthy et al. 2010; Teyssier et al. 2011). Feedback from
AGNs can heat gas sufficiently in high density regions to slow
the local cooling (and thus star formation) rate. da Silva et al.
(2001) demonstrated that the inclusion of a preheating model
to their simulations suppressed star formation and increased the
kSZ power with respect to simulations without preheating. On
the other hand, Battaglia et al. (2010) also demonstrate that
AGNs also heat gas out to large cluster radii, flattening the den-
sity profile, reducing the gas fraction in groups and clusters.
The net impact of AGN feedback on the SZ power spectrum
will depend on the extent to which these two effects balance one
another. Recent models of AGNs in simulations have typically
been tuned to match local (z ∼ 0) observations, however, as we
have demonstrated, a significant contribution of the kSZ comes
from larger redshifts where the star formation histories of halos
are relatively unconstrained. Furthermore, higher (sub-kpc) res-
olution simulations may be required to resolve star formation in
lower mass halos.

From an observational perspective, small-scale CMB exper-
iments have currently only placed upper limits on the ampli-
tude of the kSZ power spectrum and do not constrain any of
our models (Shirokoff et al. 2011; Dunkley et al. 2011). How-
ever, with increasing area and frequency coverage, observations
will become significantly more constraining in the near future.
kSZ tomography has the potential to constrain models of the
post-reionization signal by measuring its redshift dependence.
This can be achieved by cross-correlating a kSZ estimator con-
structed from spectroscopic galaxy catalogs with a CMB map
(Ho et al. 2009; Shao et al. 2011). We have investigated the
contribution of slices in redshift to the total kSZ power for
each of our models. We found that the principle difference be-
tween the NR and CSF models comes from sources in the range
0 � z � 2. Upcoming surveys have the potential to measure the
redshift distribution of the kSZ effect out to z ∼ 1 using kSZ to-
mography. This therefore provides a potentially powerful means
of constraining our kSZ power spectrum models.
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