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ABSTRACT

We establish a classification scheme for stochastic acceleration models involving low-frequency plasma turbulence
in a strongly magnetized plasma. This classification takes into account both the properties of the accelerating
electromagnetic field, and the nature of the transport of charged particles in the acceleration region. We group the
acceleration processes as either resonant, non-resonant, or resonant-broadened, depending on whether the particle
motion is free-streaming along the magnetic field, diffusive, or a combination of the two. Stochastic acceleration by
moving magnetic mirrors and adiabatic compressions are addressed as illustrative examples. We obtain expressions
for the momentum-dependent diffusion coefficient D(p), both for general forms of the accelerating force and for
the situation when the electromagnetic force is wave-like, with a specified dispersion relation ω = ω(k). Finally, for
models considered, we calculate the energy-dependent acceleration time, a quantity that can be directly compared
with observations of the time profile of the radiation field produced by the accelerated particles, such as those
occuring during solar flares.
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1. INTRODUCTION

The acceleration of particles to non-thermal energies is a
fundamental phenomenon throughout the universe. In particular,
the impulsive phase of a solar flare is characterized by the
acceleration of charged particles, including electrons, protons,
and heavier ion species (see, e.g., Holman et al. 2011; Kontar
et al. 2011a; Zharkova et al. 2011, and references therein). At the
fundamental level, of course, charged particles are accelerated
by an electric field; it is the degree of spatio-temporal coherence
of this electric field that distinguishes acceleration mechanisms.

The action of an accelerating field can be divided into two
main categories, depending on whether it relies on systematic
or stochastic change in the energy of the particles. Systematic
change of energy is involved in a broad range of particle
acceleration mechanisms developed over the years. In the solar
flare context, these include the action of electric fields, either
large-scale sub-Dreicer fields (e.g., Dreicer 1959; Syrovatskii
1966; Sweet 1969; Frost & Dennis 1971; Anzer 1973; Pustilnik
1975; Hoyng 1977; Kuijpers et al. 1981; Benka & Holman
1994; Kontar & Mel’Nik 2003; Zharkova & Gordovskyy 2005;
Petkaki & MacKinnon 2007) or super-Dreicer fields in compact
current sheets (e.g., Sweet 1969; Somov 1986; Takakura 1988;
Litvinenko 1996, 2000; Browning et al. 2010), and acceleration
in collapsing magnetic traps (Gisler & Lemons 1990; Somov
& Kosugi 1997; Somov & Bogachev 2003; Karlický & Kosugi
2004; Grady & Neukirch 2009).

On the other hand, when the energy change has a fluctuating
character, the mechanism of particle acceleration is said to be
stochastic. The classic example is second-order Fermi acceler-
ation (Fermi 1949), which is based on a more random motion
of the scattering centers and/or of the particles. The mechanism
that creates the corresponding distribution of accelerating im-
pulses may involve both plasma waves (e.g., Melrose 1994;
Aschwanden 2002; Petrosian et al. 1994; Miller et al.
1997; Ragot & Schlickeiser 1998; Cairns & McMillan 2005;
Giacalone & Kóta 2006; Bian et al. 2010; Kontar et al.
2012; Melrose 2012), magnetohydrodynamic turbulence (e.g.,
Bykov & Toptygin 1993; Petrosian & Bykov 2008; Bykov &

Fleishman 2009; Chen & Petrosian 2012), or turbulent elec-
tric fields in fragmented current sheets (e.g., Anastasiadis et al.
1997; Arzner & Vlahos 2004; Cargill et al. 2006; Turkmani et al.
2005; Brown et al. 2009; Gordovskyy & Browning 2011).

Extended work on particle acceleration in solar flares has
shown that stochastic acceleration models (e.g., Kennel &
Engelmann 1966; Tsytovich 1966; Hall & Sturrock 1967;
Melrose 1969; Skilling 1975; Wentzel 1974; Barbosa 1979;
Jaekel & Schlickeiser 1992; Schlickeiser & Achatz 1993) not
only avoid some of the fundamental large-scale electrodynamic
issues characteristic of systemic acceleration models (Emslie
& Hénoux 1995; Miller et al. 1997), but also can produce
an acceleration efficiency (Emslie et al. 2008) that is broadly
consistent with that deduced from hard X-ray observations.
Given, then, the likelihood that stochastic acceleration plays
an important role in the acceleration of non-thermal particles
in solar flares, we seek in this work to synthesize various
stochastic acceleration models in a unified manner. In this
way, we highlight their similarities and differences, and we
show how their essential parameters could be constrained
through observation of, e.g., turbulent and directed plasma
motions (Antonucci et al. 1982; Fludra et al. 1989) or magnetic
fluctuations (Kontar et al. 2011b; Bian et al. 2011) in solar flares.

We classify stochastic acceleration models by the nature of
the spatial transport of particles in the acceleration region. We
do this through the Corrsin (1959) approximation, a procedure
for relating Eulerian and Lagrangian correlation functions that
enjoys widespread use in the theory of turbulent transport (see,
e.g., Wang et al. 1995; Vlad et al. 2004; Neuer & Spatschek
2006; Tautz & Shalchi 2010). This approach allows us to
divide stochastic acceleration models into three primary classes:
resonant, resonant-broadening, and non-resonant, depending on
the nature of the transport process affecting the accelerated
particles. The necessary analysis is presented both through
an ordinary space representation and in the Fourier domain,
a representation particularly appropriate when the acceleration
mechanism involves waves. For each case we derive the form
of the diffusion coefficient D(p) (when it exists) as a function
of the particle momentum p. We then use this to obtain the
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characteristic acceleration time as a function of particle energy
E in the nonrelativistic regime.

We also present examples of scenarios that depend on the
specific nature of the force accelerating the particles, with
the turbulent fluctuations being associated either with weak
wave turbulence or strong turbulence. It is emphasized that
stochastic acceleration can also occur when the accelerating
field is coherent, provided the particle transport in this field is
itself stochastic, for instance diffusive.

In Section 2, we review the fundamental concepts of
stochastic acceleration mechanisms through a discussion of the
Obukhov (1959) model, one of the first mathematical formula-
tions of turbulent acceleration. In Section 3, we derive the essen-
tial features of resonant, non-resonant, and resonant-broadened
models, respectively. Examples of different forms of the accel-
erating force are considered in Section 4. A brief discussion of
the energy spectra that result is given in Section 5 and an overall
summary is presented in Section 6.

2. STOCHASTIC ACCELERATION

2.1. Fundamental Concepts

2.1.1. Velocity and Spatial Diffusion

Consider a particle of momentum p subjected to a rapidly
fluctuating force F (t), so that the (one-dimensional) motion of
the particle is described by a set of Langevin equations:

ṗ = F (t); mẋ = p ≡ mv. (1)

The random force F (t) is taken to be a Gaussian process with
zero average 〈F (t)〉 = 0 and non-zero variance 〈F 2〉. The force
F (t) is delta-correlated in time:

C(t, t ′) ≡ 〈F (t) F (t ′)〉 = 2D δ(t − t ′) , (2)

where D is a diffusion coefficient and the averaging is made
over ensemble realizations. As a consequence of stationarity,
the (auto-) correlation function has the property that C(t, t ′) =
C(t − t ′).

The Obukhov (1959) model (1) is the undamped version of
the Ornstein–Uhlenbeck process, described by

ṗ = F (t) − p

τ
; mẋ = p , (3)

where τ is a damping time. From the corresponding
Fokker–Planck equation for the distribution P(p, t) of momen-
tum at time t, one finds that the stationary distribution has a
Gaussian form

P (p) = 1√
2π〈p2〉

exp

(
− p2

2〈p2〉
)

, (4)

where 〈p2〉 = τD is the variance characterizing the momentum
distribution. The mean square displacement grows linearly with
time, 〈x2〉 = 2Dxt , where the spatial diffusion coefficient Dx is
related to the momentum damping rate by Dx = τ (〈p2〉/m2).
Spatial diffusion occurs only for thermalized particles when
the statistics of the process have become stationary, i.e., when
〈p(t) p(t ′)〉 depends only on (t − t ′) according to 〈p(t) p(t ′)〉 =
〈p2〉 exp(−|t − t ′|/τ ).

On the other hand, the undamped (τ → ∞) Obukhov model
results instead in momentum diffusion: the mean energy of
the accelerated particles, 〈p2〉, grows linearly with time. The

equation describing the evolution of the probability density
P (x, p, t) ≡ 〈δ[x − x(t)]δ[p − p(t)]〉 is the Fokker–Planck
equation

∂P (x, p, t)

∂t
+

p

m

∂P (x, p, t)

∂x
= D

∂2P (x, p, t)

∂p2
. (5)

With the initial condition P (x, p, t = 0) = δ(x)δ(p), the solu-
tion of this equation is a Gaussian form exhibiting simultaneous
unbounded spreading with respect to both momentum and po-
sition and with the following scaling behaviors (Thomson &
Benford 1972):

〈p2〉 = 2Dt; 〈x2〉 = 2Dt3

3m2
. (6)

Averaged over position x, the probability density P(p,t) is
a Gaussian with a variance that grows linearly with time.
Similarly, averaged over momentum p, the probability density
P(x,t) is a Gaussian with a variance that has a cubic dependence
on time.3

It should be emphasized that the standard diffusion law
〈p2〉 ∝ t produced by this model is a particular case. In
general, stochastic acceleration processes result in a momentum
diffusion characterized by 〈p2〉 ∝ tα , with α 
= 1. Cases
with 0 < α < 1 are termed sub-diffusive and cases with
α > 1 are termed super-diffusive (Balescu 2000). Anomalous
diffusion occurs when the momentum diffusion coefficient is
zero, infinite, or if it depends on momentum. In general, the
momentum diffusion coefficient is momentum-dependent when
(1) the force itself depends on momentum or (2) the force
depends on position as well as on time.

2.1.2. Spatially Varying Force Fields and Correlation Times

We now consider a non-trivial extension of the Obukhov
model that incorporates an explicit spatial dependence of the
force F(x,t):

ṗ = F (x, t), mẋ = p. (7)

The force is still assumed to be homogeneous and stationary,
with the statistical property 〈F (x, t)〉 = 0. Its Eulerian correla-
tion function is

C(x, t) ≡ 〈F (0, 0) F (x, t)〉. (8)

We next define the Eulerian spatial and temporal scales by

τ = 1

C(0, 0)

∫ ∞

0
dt C(0, t) ; λ = 1

C(0, 0)

∫ ∞

−∞
dx C(x, 0),

(9)
respectively, where

C(0, 0) = 〈F 2〉. (10)

A general expression for the Eulerian correlation function is
therefore

C(x, t) = 〈F 2〉 ĉ

(
x

λ
,

t

τ

)
, (11)

3 The dispersions in velocity and in space are related by 〈p2〉 ∝ 〈x2〉1/3, a
result that can be used to deduce the Kolmogorov law E(k) ∝ k−5/3 of
hydrodynamic turbulence. This was the original motivation for the Obukhov
(1959) model. Later, it was used by Dupree (1966) in his foundation of
resonance broadening theory applied to wave–particle interactions in plasmas.
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where the non-dimensional function ĉ satisfies the following
conditions:

ĉ(0, 0) = 1 ;
∫ ∞

−∞
ĉ
(x

λ
, 0

)
d

(x

λ

)
= 1 ;∫ ∞

0
ĉ

(
0,

t

τ

)
d

(
t

τ

)
= 1. (12)

A suitable function4 satisfying these properties is the Gaussian

ĉ

(
x

λ
,

t

τ

)
= e−πx2/λ2

e−πt2/4τ 2
. (13)

With the spatio-temporal statistics of the force now known,
one can calculate the momentum diffusion coefficient (when
the latter exists) and determine the form of the distribution
function. Taylor (1922) established that the momentum diffusion
coefficient D(p) is related to the time integral of the Lagrangian
correlation function, viz.,

D(p) =
∫ ∞

0
dt CL(p ; t), (14)

where the Lagrangian correlation function of the force is defined
by

CL(p ; t) = 〈F (0, 0) F (x(t), t)〉. (15)

Taylor’s result (14) follows from 〈p2〉 = ∫ t

0 dt ′
∫ t

0 dt ′′〈F (t ′)
F (t ′′)〉 = 2

∫ t

0 dt ′ CL(t ′) (t − t ′) and letting t → ∞ (when
the integral converges). The Lagrangian correlation time τL,
the correlation time associated with the force felt by a particle
along its trajectory, is defined as

τL = 1

CL(0)

∫ ∞

0
dt CL(p; t). (16)

Since 〈F 2〉 = C(0, 0) = CL(t = 0), Equations (10), (14), and
(16) show that the diffusion coefficient, when it exists, is given
by

D(p) = τL 〈F 2〉. (17)

The special cases D = 0 (sub-diffusion) and D → ∞
(super-diffusion), corresponding to τL being zero or infinity,
respectively, have been discussed by Bian & Browning (2008)
on the basis of a generalized Obukhov model.

In general, both τL and 〈F 2〉 may depend on the particle
momentum p, so that D = D(p). We shall find that a typical
dependence D(p) is a power law:

D(p) = D0p
α. (18)

Then, since d〈p2〉/dt = 2D(p) = 2D0p
α , it follows that

〈p2〉 ∝ t2/(2−α), (19)

for α < 2. For α > 2, 〈p2〉 can attain infinite values within
a finite period of time, as can be seen by solving the equation
dp2/dt = 2D0p

α with α > 2.
It is clear from Equation (17) that determination of the

diffusion coefficient essentially involves determination of the

4 Note the appearance of a factor of four in the temporal Gaussian exponent;
this is a direct consequence of the half-space limits [0,∞) of the temporal
integral (versus the full-space limits (−∞, ∞) in the spatial integral) in
Equation (9).

Lagrangian correlation time τL. When the force is independent
of position (as in the Obukhov model), determination of τL is
a trivial task because in this simple case τL = τ , the Eulerian
correlation time. A much more significant challenge is to obtain
the Lagrangian correlation scales (as a function of the Eulerian
ones) when the force depends on position as well as time; indeed,
it is this very spatial dependence of the force that makes the
stochastic acceleration problem inherently nonlinear. A general
strategy can be summarized as follows: we seek the functional
dependence of the Lagrangian correlation time τL (and hence
D) on the Eulerian quantities τ , λ, and possibly5 〈F 2〉. From
dimensional arguments, if the timescale τL depends on the
length scale λ, this dependence is expected to also involve
quantities related to the spatial transport of particles, such as
the particle momentum p (if the particles are free-streaming) or
the particle diffusivity coefficient κ (if the transport of particles
involve some form of spatial diffusion). The pertinent transport
timescales are mλ/p and λ2/κ , respectively.

2.1.3. Remarks

It must be noted that the above analysis is one dimensional.
Nevertheless, it is still a valid description of the behavior of a
distribution of charged particles moving under the influence
of random electric fields in a volume permeated by a uni-
form magnetic field B0, if the x-coordinate is taken to rep-
resent the coordinate parallel to the magnetic field and the
accelerating force6 is expressed as a parallel electric field:
Fx(t) = qE(x, t). It is well known that the presence of a strong
background magnetic field permits the decomposition of the
motion of the charged particles into a guiding-center motion
parallel to the x-axis and a much faster perpendicular gyration
around the guiding magnetic field line. At this stage, we iden-
tify the position x of the particle with that of the gyrocenter;
this approximation will be relaxed later (Section 4.2). The ba-
sic mechanisms for perpendicular acceleration of particles by
transverse electric fields can also be outlined within the context
of a one-dimensional model (Sturrock 1966).

In this work we restrict ourselves to the consideration of
low-frequency turbulence and so do not consider the effect of
gyroresonances. Further, we employ a test-particle approach,
so that effects of the collective behavior of the particles are
neglected. The dissipation of electromagnetic energy resulting
from the stochastic acceleration of particles will be discussed in
a separate publication.

2.2. The Corrsin Approximation

Let us write the Lagrangian correlation function (15) in the
equivalent form

CL(p ; t) =
∫

dx〈F (0, 0) F (x, t) δ[x − x(t)]〉, (20)

where x(t) is a solution of the equations of motion (7). One
way of obtaining a relation between the Lagrangian correlation
CL(p; t) and the Eulerian correlation C(x, t) is to invoke a
procedure due to Corrsin (1959), in which x(t) is replaced by
its statistical average, so that we may replace δ[x − x(t)] in
Equation (20) by 〈δ[x − x(t)]〉. This leads to the factorization

CL(p ; t) =
∫

dx〈F (0, 0)F (x, t)〉 〈δ[x − x(t)]〉 (21)

5 Dupree (1966) was the first to propose a scheme, based on the Obukhov
model, to include the functional dependence of τL on 〈F 2〉.
6 Other possible types of force fields are discussed in Section 4.
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and immediately allows us to write

CL(p ; t) =
∫

dx C(x, t) P (x, t), (22)

where P (x, t) ≡ 〈δ[x − x(t)]〉 is the probability density for a
particle to move from its starting point at the origin to position x
over time t. Equation (22) shows that the Lagrangian correlation
function is the spatial integral of the product of two quantities:

1. C(x,t), the Eulerian correlation function, which depends on
the properties of the force field F(x,t) and

2. the probability function P(x,t), describing the spatial trans-
port of particles in the acceleration region.

This separation into properties of the accelerating force and
properties of the particle trajectories forms the basis for our
classification of acceleration models. Specifically, we shall
categorize stochastic acceleration models primarily through the
nature of the quantity P(x,t), and then sub-categorize them
according to the nature of the force F(x,t) (and hence the Eulerian
correlation C(x,t)) acting on the particles.

With the Lagrangian correlation function CL(p; t) defined as
in Equation (22), the momentum diffusion coefficient D(p) may
be written as

D(p) =
∫ ∞

0
dt

∫ ∞

−∞
dx C(x, t) P (x, t). (23)

At this stage, a preliminary comment can be made. First, let us
use Equation (11) to write Equation (23) in the equivalent form

D(p) = 〈F 2〉
∫ ∞

0
dt

∫ ∞

−∞
dx ĉ

(
x

λ
,

t

τ

)
P (x, t). (24)

We note that when

P (x, t) ∼ δ(x), (25)

then

D(p) = 〈F 2〉
∫ ∞

0
dt ĉ

(
0,

t

τ

)
= τ 〈F 2〉. (26)

This is essentially the Obukhov result τL = τ ; the spatial
dependence of the force, and hence the spatial transport of the
particles, is irrelevant in evaluating the acceleration efficiency
because the temporal variation of the force is taken to be
infinitely fast, i.e., τ → 0. For such a situation, all stochastic
acceleration models reduce to the common limit corresponding
to the Obukhov model.

However, there are certainly situations where it is unreason-
able to assume that the Eulerian correlation time τ → 0. An
obvious example is when the force field acting on the particles
is produced by wave motions, for which case the Eulerian cor-
relation time τ is of the order of the wave period T. This in
turn means that the Lagrangian correlation time τL now has a
dependence on the Eulerian spatial scale λ because the particles
of necessity also feel the spatial variation of the force.

When acceleration results from the action of waves with a
well-defined dispersion relation ω = ω(k), it can be more
convenient to express the momentum diffusion coefficient in
terms of Fourier components of the Eulerian correlation function
of the force field, i.e., in terms of the spectrum of the force field.
The Fourier components F̂k,ω of F(x,t) are defined through

F (x, t) =
∑

k

∑
ω

F̂k,ω ei(kx−ωt), (27)

with k = nδk, ω = mδω, δk = 2π/L, and δω = 2π/T . Here
L and T are the spatial and temporal periods of the force field.
Passing to the continuous case, the Fourier components F̂ (k, ω)
of F(x,t) are defined through

F (x, t) =
∫ ∫

dk dω F̂ (k, ω) ei(kx−ωt). (28)

Thus, the Eulerian correlation function may be written in the
form

C(x, x ′, t, t ′) ≡ 〈F (x, t)F (x ′, t ′)〉

=
∫ ∫ ∫ ∫

dk dk′ dω dω′ 〈F̂ (k, ω) F̂ (k′, ω′)〉 ei(kx+k′x ′−ωt−ω′t ′).

(29)
For the homogeneous and stationary case considered herein,
the right-hand side depends only on the differences x − x ′ and
t − t ′; this is possible only if k′ = −k and ω′ = −ω. This
in turn means that the average 〈F̂ (k, ω) F̂ (k′, ω′)〉 should be
proportional to δ(k + k′) δ(ω + ω′):

〈F̂ (k, ω) F̂ (k′, ω′)〉 = S(k, ω) δ(k + k′) δ(ω + ω′), (30)

which may be taken as a definition of the force spectrum S(k, ω).
The Eulerian correlation function C(x,t) is thus the Fourier

transform of the force spectrum:

C(x, t) =
∫ ∫

dk dω S(k, ω) ei(kx−ωt). (31)

Taking x = 0 and t = 0, we obtain the normalization

C(0, 0) = 〈F 2〉 =
∫ ∫

dk dω S(k, ω). (32)

As an example, for the Gaussian correlation function (13), the
corresponding form of S(k, ω) is

S(k, ω) =
(

λτ

4π

)
〈F 2〉 e−λ2k2/4π e−ω2τ 2/π . (33)

Under the Corrsin approximation, the momentum diffusion
coefficient D(p) (Equation (23)) can also be expressed in terms
of the force spectrum as

D(p) =
∫ ∫

dk dω S(k, ω) G(k, ω) (34)

or, in the discrete case, as

D(p) =
∑

k

∑
ω

|F̂k,ω|2 G(k, ω). (35)

Here the function (which has the dimension of time)

G(k, ω) =
∫ ∞

0
dt

∫
dx P (x, t) eikx(t)−iωt =

∫ ∞

0
dt 〈eikx(t)−iωt 〉

(36)
is the Fourier representation of the propagator describing the
spatial transport of particles, i.e., the Green’s function of the
spatial transport equation; its form depends on the (generally
stochastic) behavior of x(t). Generalization of the above results
to three dimensions is given in the Appendix.
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3. CATEGORIZING ACCELERATION SCENARIOS

The models constructed below are all obtained from
Equation (23) or equivalently from Equation (34). They are
grouped, in order of complexity of the equation for P(x, t), as
resonant, non-resonant, or resonant-broadened.

3.1. Resonant Acceleration Models

In resonant acceleration models, the particle trajectory is free-
streaming; the stochastic equations of motion are ṗ = F (x, t),
x = vt . This means that the probability function P(x,t) satisfies

∂P (x, t)

∂t
+ v

∂P (x, t)

∂x
= δ(x) δ(t), (37)

with solution
P (x, t) = δ(x − vt). (38)

Equation (23) then straightforwardly gives

D(p) =
∫ ∞

0
dt

∫
dx C(x, t) δ(x − vt) =

∫ ∞

0
dt C(vt, t).

(39)
In this case, the Lagrangian correlation function is related to
the Eulerian correlation function by CL(t) = C(vt, t). Note
that when v → 0, CL(t) → C(0, t), therefore the Lagrangian
correlation time τL becomes equal to the Eulerian correlation
time τ , and D(p) → τ 〈F 2〉.

In the Fourier representation, Equation (36) shows that the
propagator is

G(k, ω) =
∫ ∞

0
dt ei(kvt−ωt). (40)

As it stands, this integral is not convergent when t → ∞.
To evaluate the integral, we temporarily add an infinitesimal
damping factor ν = 0+ in the exponential, so that

G(k, ω) =
∫ ∞

0
dt ei(kvt−ωt) e−νt

= i

(kv − ω) + iν

ν→0−→ π δ(ω − kv) + iP
(

1

ω − kv

)
,

(41)

where P is the principal value. The momentum diffusion
coefficient (34) takes the form

D(p) = π

∫ ∫
dk dω S(k, ω) δ(ω − kv) = π

∫
dk S(k, kv).

(42)
Some insight into the diffusion coefficient D(p) may be

earned by normalizing time and space coordinates by the
Eulerian correlation time and length τ and λ, respectively. If
we then define dimensionless frequency and wavenumber by
ω̃ = ωτ and k̃ = λk, respectively, the delta-function term in the
propagator (41) becomes

π δ(ω − kv) = τ g(̃k, ω̃; θ ). (43)

Here the dimensionless propagator

g(̃k, ω̃; θ ) = π δ(ω̃ − θk̃) (44)

is a function of the dimensionless momentum variable

θ = v

λ/τ
= p

p0
, (45)

where the reference momentum p0 = mλ/τ has been defined.
Note that θ is also the ratio of the Eulerian correlation time
τ to the transport timescale λ/v. The expression (42) for the
diffusion coefficient becomes

D(p) =
(

1

λτ

)∫ ∫
dk̃ dω̃ S (̃k, ω̃) τ g(̃k, ω̃; θ ). (46)

Then, noting from Equation (32) that, by definition,

〈F 2〉 =
(

1

λτ

) ∫ ∫
dk̃ dω̃ S (̃k, ω̃), (47)

we can eliminate the factor λτ between Equations (46) and (47),
yielding

D(p) = τ ξ (θ )〈F 2〉, (48)

where the dimensionless function

ξ (θ ) =
∫∫

dk̃ dω̃ S (̃k, ω̃) g(̃k, ω̃; θ )∫∫
dk̃ dω̃ S (̃k, ω̃)

. (49)

Since, by Equation (17), D(p) = τL〈F 2〉, Equation (48) shows
that the Lagrangian correlation time is given by τL = τ ξ (θ ).
Hence the function ξ (θ ) is simply the ratio of the Lagrangian
correlation time τL to the Eulerian correlation time τ . Further,
according to Equation (49), this ratio depends only on the
dimensionless momentum variable θ = p/p0 and on the form
of the (dimensionless) force spectrum S (̃k, ω̃).

We illustrate with the Gaussian spectrum (33), which, in terms
of dimensionless variables, is

S (̃k, ω̃) = S0 e−k̃2/4πe−ω̃2/π . (50)

Substituting this spectrum in Equation (49), we obtain

ξ (θ ) = 1

(1 + 4θ2)1/2
, (51)

so that

D(p) = τ 〈F 2〉
[1 + 4(p/po)2]1/2

. (52)

In the initial stage of the acceleration process, the particle is
moving sufficiently slowly to feel only the temporal variation
of the force: τL ∼ τ when p � p0. If 〈F 2〉 is also independent
of p, D(p) is a constant and so, by Equation (19), 〈p2〉 ∝ t , as
in the Obukhov model. However, as the particle gains speed, it
eventually becomes fast enough that it becomes less sensitive
to the temporal variation of the force and more to its spatial
variation. The Lagrangian correlation time becomes of the order
of the transport timescale which is inversely proportional to
the particle velocity, i.e., τL ∝ p−1. If 〈F 2〉 is independent
of p, then we can use Equation (18) and the defining relation
τacc = p2/D(p) for the acceleration time τacc to obtain, in the
nonrelativistic regime where the particle energy E = p2/2m,

D(p) ∝ p−1; τacc ∝ p3 ∝ E3/2. (53)

It should be noticed that when the force field is the gradient of a
potential so that it is the potential rather than the force that has
a Gaussian correlation function (see the Appendix), then

D(p) ∝ p−3; τacc ∝ p5 ∝ E5/2. (54)
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3.1.1. Resonant Acceleration by Waves

For a wave-acceleration process, we include the dispersion
relation ω(k) in the Fourier spectrum of the force spectrum
S(k, ω), i.e.,

S(k, ω) = S(k) δ[ω − ω(k)]. (55)

From Equation (42), this leads to a diffusion coefficient of the
form

D(p) = 2π

∫
dk S(k) δ[ω(k) − kv], (56)

where the factor of two takes into account waves propagating in
both directions.

The nature of resonant acceleration by waves is as follows: a
particle of momentum p interacts with a wave if the particles’s
velocity is equal to the phase velocity of the wave: v =
ω(k)/k = Vp. However, stochastic resonant acceleration can
occur even in the absence of a dispersion relation. Physically,
this occurs because a particle still interacts with a Fourier
component of the force field such that ω/k = v, even though
ω and k may not be related by a dispersion relation ω(k). Thus,
particles are stochastically accelerated provided the modes that
are experienced by the particles along their trajectory have
random phases. The existence of a broadband spectrum of field
fluctuations, in the frame co-moving with the particles, with
Fourier components not related by a dispersion relation may be
identified with strong turbulence; this situation relaxes some of
the restrictions imposed by a linear dispersion relation.

Sturrock (1966) has shown that (1) by taking into account the
dispersion relation ω = ω(k) in the force field spectrum and (2)
by enforcing conservation of the total combined energy of the
field and the accelerated particles, the self-consistent quasilinear
diffusion equations for wave–particle interaction are recovered
(Sagdeev & Galeev 1969; Escande & Elskens 2003). The energy
gained by the resonant particles is simply lost by the waves
through Landau damping. Sturrock (1966) uses as an example an
electric force produced by Langmuir waves, but the idea readily
generalizes to other forms of wave. A detailed discussion of the
self-consistent quasilinear equations, with emphasis in the role
of resonant and non-resonant particles, can be found in Kaufman
(1972).

In resonant acceleration by plasma waves, the momentum
diffusion generally depends on the spectral properties of the
turbulence. This may be seen by taking a wave frequency
independent of k, i.e., ω = ω0, and a power-law spectrum
S(k) ∝ k−q in Equation (56), resulting in D(p) ∝ p1−q , which
involves the spectral index q of the turbulence.7 By Equation
(19), in such a scenario, the particle energy grows as t2/(1+q).

Again, it is emphasized that Equation (42) is more general
than Equation (56). The former is valid for an arbitrary corre-
lation function rather than one that describes only oscillations
and which therefore, for a given k, has a peak at the frequency
ω(k) of the oscillations.

3.1.2. Remarks

The domain of validity of the quasilinear approximation is
obtained by considering the dimensionless Kubo number K =
τ
√

〈F 2〉/p0 that enters the normalized momentum equation
dp̃/dt = KF̃ , where the length, time, and force have been

7 This is widely studied in the context of high-frequency turbulence of
Langmuir waves, with frequency ω 
 ωpe 
 const and the spectrum
S(k) ∝ k−q (see, e.g., Tsytovich 1995).

normalized to τ , λ, and
√

〈F 2〉, respectively. When K � 1, we
are in the domain of validity of the quasilinear approximation.
This inequality limits the typical amplitude of the force field to

F � λ

τ 2
(57)

and gives quantitative meaning to the “weak-field limit” dis-
cussed by Sturrock (1966). Also, when the spectrum of modes
is discrete, their amplitude must be sufficiently large to permit
resonance overlap, and hence stochasticity, otherwise dynami-
cal trapping of particles become substantial and acceleration is
inhibited. The problem with spectral discreteness can be under-
stood by recalling that the momentum diffusion coefficient in
such a case takes the form

D(p) =
∫ ∞

0
dt

∑
k,ω

|Fk,ω|2 exp[i(kv − ω)t], (58)

which shows that the wavenumber sum inside the time integral
does not decay with time, but instead exhibits recurrences
(Krommes 2002). These recurrences are a consequence of the
periodicity of the force felt by the particles along their trajectory
in the quasilinear approximation x = vt . This effect is similar
to (but not equivalent to) the dynamical trapping of a particle
oscillating in a periodic electric field where both x(t) and p(t) are
periodic functions of time. The momentum diffusion coefficient
can also be written in the form

D(p) = π
∑
k,ω

|Fk,ω|2 δ[ω − kv]. (59)

This form is somewhat is pathological since diffusion occurs
only over a set of separated points in velocity space. As a result,
the distribution function is not affected by the diffusion process
and acceleration does not occur at all.

One way in which the singular nature of the diffusion process
can be removed consists of broadening the resonant propagator
πδ(ω − kv) into a suitable, say Lorentzian, form:

D(p) =
∑
k,ω

|Fk,ω|2 ν

(ω − kv)2 + ν2
, (60)

which may be obtained by replacing ω → ω + iν with ν > 0
in Equation (58); see also Equation (41). Another way of
removing the singularity is to simply replace the discrete sum in
Equation (58) by a continuous one, i.e.,

∑
k,ω

→
∫

dk dω

δk δω
. (61)

Identifying S(k, ω) = |Fk,ω|2/(δk δω), one recovers
Equation (42).

In the non-resonant or resonance-broadened acceleration
models to be presented below, the propagator is no longer
singular, a consequence of the seed stochasticity that is included
in the description of the spatial transport of the particles and
which is not, in general, dynamically related to the accelerating
wave field. For this reason, stochastic acceleration occurs also
when the spectrum of the wave field is singular (discrete or
monochromatic) in these models.
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3.2. Non-resonant Acceleration Models

Non-resonant acceleration models are based on the approxi-
mation that the spatial transport is also stochastic; see, e.g., the
review by Bykov & Toptygin (1993). In the standard case, this
transport is diffusive, i.e., the particle’s position varies according
to a Gaussian process and the mean square displacement grows
linearly with time. In other words, the stochastic equations of
motion are approximated by ṗ = F (x, t), ẋ = ζ (t), where ζ (t)
is a Gaussian white noise with 〈ζ (t)ζ (t ′)〉 = 2κδ(t − t ′), κ being
a spatial diffusion coefficient. The propagator P(x,t) satisfies the
diffusion equation

∂P (x, t)

∂t
− κ

∂2P (x, t)

∂x2
= δ(x) δ(t), (62)

with the standard Gaussian solution

P (x, t) = 1√
4πκt

e−x2/4κt . (63)

Particles perform a standard random walk, with 〈x2〉 = 2κt ;
the characteristic diffusion time that is associated with the
correlation length λ is τD = λ2/κ . In Fourier space, the
propagator

G(k, ω) =
∫ ∞

0
dt 〈ei[kx(t)−ωt]〉

=
∫

dt e−iωt e−k2〈x2〉/2 = 1

iω + νd

= νd − iω

ω2 + ν2
d

,

(64)

where the damping factor νd = κk2, a parameter associated
with the spatial diffusive transport. For a force field with
a continuous spectrum of Fourier components, the diffusion
coefficient becomes

D(p) =
∫ ∫

dk dω S(k, ω)
κk2

ω2 + (κk2)2
, (65)

and involves a Lorentzian of width ν−1
d = (κk2)−1. A similar

expression exists for force fields that consist of discrete sum of
Fourier components:

D(p) =
∑

k

∑
ω

|F̂k,ω|2 κk2

ω2 + (κk2)2
. (66)

If we again normalize time and space by the Eulerian correlation
scales τ and λ, then

κk2

ω2 + (κk2)2
= τ g(̃k, ω̃; ζ ), (67)

where the dimensionless propagator

g(̃k, ω̃; ζ ) = ζ k̃2

ω̃2 + (ζ k̃2)2
(68)

is a function of the dimensionless parameter

ζ = τ

λ2/κ
= τ

τD

, (69)

the ratio of the Eulerian and transport timescales. Again, we can
write the momentum diffusion coefficient in the form

D(ζ ) = τ ξ (ζ )〈F 2〉, (70)

where the non-dimensional parameter

ξ (ζ ) =
∫∫

dk̃ dω̃ S (̃k, ω̃) g(ω̃, k̃; ζ )∫∫
dk̃ dω̃ S (̃k, ω̃)

. (71)

When ζ � 1, i.e., τ � τD , then the propagator reduces to the
delta function, g(̃k, ω̃; ζ � 1) → π δ(ω̃), as in the Obukhov
model. On the other hand, when ζ � 1, i.e., τ � τD , the
dimensionless propagator becomes g(̃k, ω̃; ζ � 1) → (ζ k̃2)−1.
Exact forms for ξ (ζ ) may be obtained for a prescribed spectrum
S (̃k, ω̃) of the force field. However, it is sufficient to note that
when ζ � 1, ξ (ζ ) ∝ ζ 0, and that when ζ � 1, ξ (ζ ) ∝ ζ−1.
Thus, the results are summarized as follows: in the weak
diffusion limit (τ � τD),

D(p) ∼ τ 〈F 2〉, (72)

while, in the strong diffusion limit (τ � τD),

D(p) ∼ τD〈F 2〉. (73)

As for resonant acceleration, the Lagrangian correlation time
interpolates between the Eulerian and the transport timescale,
the latter being now the diffusive timescale. Therefore, if the
force field and the spatial diffusion coefficient κ (and hence the
transport timescale τD) are independent of momentum, in both
weak and strong diffusion limits D(p) is independent of p.

To summarize, for non-resonant acceleration, in the nonrela-
tivistic limit,

D(p) ∝ p0; τacc ∝ p2 ∝ E. (74)

3.2.1. Fractional-order Fermi Acceleration

Anomalous momentum gain with 〈p2〉 growing faster than
linearly in time can occur in non-resonant models, even when
the force field and the transport timescale are independent of
momentum. This may happen for a static (∂/∂t = 0) force field,
i.e., S(k, ω) = S(k) δ(ω), for which by Equation (65),

D(p) = 1

κ

∫
S(k) dk

k2
. (75)

Moreover, let us take the force field to be scale free, for instance

S(k) = S0 = constant, (76)

so that the integral for D(p) diverges at small k like k−1 and
D(p) → ∞. It follows that for a scale-free force, the momentum
gain process is super-diffusive:

〈p2〉 ∝ tβ; β > 1 (77)

at all times. However, if the force has a characteristic scale
λ, the super-diffusive process is limited to times less than the
timescale τD = λ2/κ taken for spatial diffusion over a length λ
to occur. Matching the super-diffusive momentum gain regime
〈p2〉 ∼ tβ to its diffusive counterpart 〈p2〉 ∼ λt ∼ √

κτD t at
t = τD , we see that τ

β

D ∼ τ
1/2
D τD , so that β = 3/2. Hence

〈p2〉 ∼ t3/2 ; t < τD; 〈p2〉 ∼ t ; t > τD. (78)
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Summarizing,

D(p) → ∞; τacc ∝ p4/3 ∝ E2/3. (79)

Super-diffusive momentum transport occurs in scale-free
force fields and is the pre-asymptotic regime of non-resonant
acceleration models involving frozen fields. The reason is that
the random motion of the particles results in multiple returns to
any given position. Because of the static nature of the force field,
the particle experiences the same value of the accelerating field
at each visit to the same position. Such recurrences introduce
correlations in the stochastic acceleration process that are absent
in a non-static environment, rendering the situation more akin to
a systematic one, and hence faster than diffusive. We may thus
call such a stochastic acceleration process Fermi acceleration of
fractional order. The essential difference between second-order
Fermi acceleration and fractional-order Fermi acceleration is
as follows. For the second-order process D(p) exists. It may
produce anomalous (super-diffusive) behavior because of the
dependence of D(p) on p (e.g., D(p) ∝ p; 〈p2〉 ∝ t2; see
Equations (18) and (19)); however, the evolution of f (p,t) is
still given by a standard Fokker–Planck equation. In fractional-
order Fermi acceleration, on the other hand, the anomalous
super-diffusive behavior in momentum space is due to the
fact that the momentum diffusion coefficient is infinite, and
the equation governing the evolution of f (p, t) is not the
Fokker–Planck equation. Stochastic acceleration models based
on the fractional Fokker–Planck equation have been discussed
by Bian & Browning (2008).

3.2.2. Non-resonant Stochastic Acceleration by Turbulent Waves

When ω and k obey a dispersion relation, it follows from
writing S(k, ω) = S(k) δ[ω−ω(k)] that the momentum diffusion
coefficient, when it exists, is

D(p) =
∫

dk S(k)
κk2

ω2(k) + (κk2)2
. (80)

Taking the simple dispersion relation ω(k) = Vpk, and defining
the dimensionless parameter

ζW = λVp

κ
= τD

τW

, (81)

with τW = λ/Vp, yields the following form for the momentum
diffusion coefficient:

D(ζW ) = τD ξ (ζW ) 〈F 2〉. (82)

Here the dimensionless function

ξ (ζW ) =
∫

dk̃ S (̃k) g(̃k; ζW )∫
dk̃ S (̃k)

(83)

and

g(̃k; ζW ) = k̃2

ζ 2
W k̃2 + k̃4

. (84)

Again, an exact expression for ξ (ζW ) may be obtained for a
specified form of the wavenumber spectrum S (̃k). In the limit
ζW � 1, g(̃k, ζW � 1) → k̃−2 , leading to ξ (ζW � 1) →
constant. In the limit ζW � 1, g(̃k, ζW � 1) → ζ−2

W and thus
ξ (ζW � 1) → ζ−2

W . These results are summarized as follows.
When τD � τW , then

D(p) ∼ τD〈F 2〉 , (85)

while, in the limit τD � τW ,

D(p) ∼ τ 2
W

τD

〈F 2〉. (86)

In both cases, therefore,

D(p) ∝ p0; τacc ∝ p2 ∝ E. (87)

3.2.3. Non-resonant Stochastic Acceleration by a
Monochromatic Wave Field

We have already given a general expression (Equation (66))
for the momentum diffusion coefficient that results from non-
resonant acceleration by any periodic force field consisting of a
discrete spectrum of Fourier components. Here we discuss the
illustrative example of a monochromatic mode with frequency
ω0 and wavenumber k0. From Equation (66), the momentum
diffusion coefficient is given in this case by

D(p) = |F̂k0,ω0 |2
κk2

0

ω2
0 +

(
κk2

0

)2 (88)

and the frequency can be taken to obey the linear dispersion rela-
tion ω0 = Vpk0. This result provides a simple explanation of the
reason why particles are stochastically accelerated by adiabatic
compressive forces F = −1/3p ∇ · V (see Section 4.4), even
if the flow V consists of smooth and regular compressions and
expansions. This mechanism was called diffusive compression
acceleration by Jokipii et al. (2003), where it was noted that the
acceleration mechanism has similarities with both second-order
Fermi and diffusive shock accelerations; see also Zhang (2010).
Therefore, a spatially periodic compressive flow produces the
same kind of stochastic acceleration as a strongly turbulent flow
or a shock flow. A legitimate question is thus: What is the form
of the Lagrangian correlation function, or equivalently, what
is the shape of the frequency spectrum of the monochromatic
wave field in the frame of the random walking particle? A sim-
ple calculation shows that this spectrum is broad and has the
Lorentzian form:

I (ω) = |F̂k0,ω0 |2
π

κk2
0

(ω − ω0)2 +
(
κk2

0

)2 . (89)

Note that this spectrum is similar to the one of an harmonic
oscillator in which the frequency is randomly perturbed in time,
i.e., the Anderson–Kubo oscillator (Kubo 1963):

ψ̇(t) = iω(t)ψ; ω(t) = ω0 + Δω(t). (90)

The frequency perturbations are assumed to have a zero average
and a correlation function given by

〈Δω(t) Δω(t ′)〉 = Dω

τ
exp(−|t − t ′|/τ ). (91)

In the white noise limit τ → 0, the spectrum is indeed a
Lorentzian:

I (ω) = 1

π

Dω

(ω − ω0)2 + D2
ω

; (92)

however, in the limit of large τ , i.e., (Dωτ )1/2 � 1, we obtain
the Gaussian spectrum:

I (ω) =
(

2πDω

τ

)−1/2

exp

[−(ω − ω0)2

2Dω/τ

]
, (93)

showing how the broadening of the line shape depends on the
correlation time of the frequency perturbations.
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3.2.4. Remarks

In its original version, the quasilinear diffusion equation is
a Fokker–Planck equation that describes the diffusion of parti-
cles in momentum space due to the action of turbulent waves.
The quasilinear formalism can be seen in a general perspec-
tive by casting it in Hamiltonian form. In the absence of the
accelerating field, the particle motion is described by an un-
perturbed Hamiltonian H0, which is independent of time. This
means that the unperturbed motion occurs at constant energy
and is rectilinear in an infinite homogeneous plasma. The to-
tal single-particle Hamiltonian is then H0 + H1(t) and the
change in the particle’s energy is a consequence of the time-
dependent perturbation H1(t) with H1/H0 ∼ ε � 1. In stan-
dard quasilinear theory, the stochasticity comes from H1(t),
i.e., from the assumption of random phases in the broad spec-
trum of the accelerating field. The smallness parameter ε ex-
presses the condition that the amplitude of the force is small,
so that the acceleration efficiency can be derived using linear
O(ε) theory, hence the terminology “quasilinear.” It is not nec-
essary to assume an infinite, homogeneous plasma, the funda-
mental requirement is simply that H0 is integrable. Quasilinear
diffusion occurs in action space; the unperturbed motion in angle
space is also rectilinear, just as that for the motion in coordinate
space in a homogeneous medium. The accelerating waves are
in resonance with the periodic bounce motion of the particles in
this case

However, there is also another form of quasilinear theory that
can be applied in the opposite case to that above, namely, when
the unperturbed Hamiltonian is non-integrable, giving rise to
chaotic motion of the particles in the absence of the accelerating
field. The unperturbed dynamics described by H0 provides the
source of randomization for stochastic acceleration to occur
under the action of the time-dependent perturbation H1. Notably,
since the unperturbed motion is a seed stochasticity, stochastic
acceleration can occur also when the perturbation is coherent.
Here, we have labeled such quasilinear models as “resonant”
or “non-resonant.” The essence of non-resonant stochastic
acceleration is therefore simply understood by considering the
unperturbed motion to be a spatial random walk, with a mean
free path of the particles smaller than the correlation length of
the field.

3.3. Resonance-broadened Models

In resonance-broadened models, the spatial transport is a
combination of free-streaming and spatial dispersion: x =
vt + Δx, where Δx is a random walk. The idea of resonance
broadening in the context of acceleration of particles was
introduced by Dupree (1966; see also Weinstock 1968; Rudakov
& Tsytovich 1971; Thomson & Benford 1972). The principal
effect of the dispersion can be seen by applying an orbit diffusion
〈Δx2〉 = 2κt around the free-streaming solution; hence, the
propagator P(x,t) evolves according to

∂P (x, v, t)

∂t
+ v

∂P (x, v, t)

∂x
− κ

∂2P (x, t)

∂x2
= δ(x) δ(t). (94)

The solution for the propagator P(x,t) is

P (x, t) = 1√
4πκt

exp

(
− (x − vt)2

4κt

)
. (95)

When κ = 0, P (x, v, t) reduces to δ(x − vt), which is the
usual resonance function of quasilinear theory, considered in

Section 3.1. Hence, the essential effect of the diffusive term is
to produce a broadening of the resonance function.

Equivalently, the expression

D(p) =
∫ ∫

dk dω

∫ ∞

0
dt S(k, ω) e−iωt 〈eikx(t)〉 (96)

is calculated with

x(t) = vt + Δx(t), (97)

where Δx(t) is the deviation from free-streaming motion, which
is assumed to be a standard random walk with 〈Δx2〉 = 2κt . The
momentum diffusion coefficient now involves a velocity-shifted
Lorentzian:

D(p) =
∫ ∫

dk dω S(k, ω)
κk2

(ω − kv)2 + (κk2)2
. (98)

Scaling as usual, we may write the momentum diffusion
coefficient in the form

D(θ; ζ ) = τ ξ (θ; ζ )〈F 2〉, (99)

where θ and ζ are as defined in Equations (45) and (69),
respectively:

ξ (θ; ζ ) =
∫∫

dk̃ dω̃ S (̃k, ω̃) g(ω̃, k̃; θ; ζ )∫∫
dk̃ dω̃ S (̃k, ω̃)

(100)

and

g(̃k, ω̃; θ; ζ ) = ζ k̃2

(ω̃ − θk̃)2 + (ζ k̃2)2
. (101)

This result now involves two non-dimensional parameters θ and
ζ : the model has both a resonant and a non-resonant character
depending on the relative value of these parameters. Obviously,
when both are small we recover the Obukhov model.

3.3.1. Dupree Theory

In formal resonant-broadening theories the resonance is
broadened by a function R(ω − kv, ν), not necessarily a
Lorentzian, which tends to δ(ω − kv) when the frequency
ν → 0. In the theory of Dupree (1966), the accelerating field is
idealized by position-independent Gaussian white noise, i.e., the
Obukhov model, leading to a spatial dispersion with 〈Δx2〉 =
(2/3)Dt3/m2 around the free-streaming motion. Therefore, the
momentum diffusion coefficient originally derived by Dupree
(1966) is

D(p) =
∫

dk dω

∫ ∞

0
dt S(k, ω) ei(kvt−ωt) e−k2Dt3/3m2

. (102)

Here, the spatial transport in the accelerating field is dynamically
correlated with the field itself. It is important to notice that a
characteristic result of this kind of analysis is an implicit, rather
than explicit, relation for D, which appears on both sides of
Equation (102). Formally, this means that in order to obtain the
momentum diffusion coefficient D, we need to solve an equation
of the form

D(p) = τL(D)〈F 2〉, (103)

with τL a function of D; thus D does not straightforwardly scale
as the square of the amplitude of the force.

9
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3.3.2. Remarks

To conclude this section, we mention another form of broad-
ening. In the presence of wave turbulence, for a given wavenum-
ber the frequency spectrum does not have to be sharply peaked
at the frequency corresponding to the dispersion relation ω =
ω(k). When the spectrum of the force field has a peak around
ω(k) with width τ−1

c , the wave spectrum can be modeled as
a broadened delta function, for instance (Bykov & Toptygin
1993), as a Lorentzian:

| F̂ (k, ω) |2 = S(k, ω) δ[ω − ω(k)] →
π−1S(k)

τ−1
c

[ω − ω(k)]2 + (τ−1
c )2

. (104)

Broadening of the propagator δ(ω − kv) and broadening of the
frequency spectrum δ[ω −ω(k)] are formally similar. However,
since they involve two different processes they may still be
assigned two distinctly different physical meanings. The first
is a result of the spatial transport of particles; the second is a
spectral property of the turbulent field involving for instance
nonlinear interactions between the waves themselves. In the
context of particle transport, various mechanisms of resonance
broadening, including wave damping or dynamical turbulence,
have been discussed by Schlickeiser & Achatz (1993) and Bieber
et al. (1994).

3.4. Non-Gaussian Spatial Transport

Up to now we have assumed that the stochastic part of
the spatial transport was described by a standard diffusion
equation. However spatial transport can be described by a
variety of models, including the Chapman–Kolmogorov and
the telegrapher equations (Webb et al. 2006). Let us take, for
instance, the propagator to be the solution of the fractional
diffusion equation

D
β
t P (x, t) = κ DΓ

|x| P (x, t). (105)

This produces anomalous dispersion8 with

〈x2〉 ∝ t2β/Γ (106)

and corresponding non-Gaussian probability distribution func-
tions P(x,t). For instance, resonance broadening by super-
diffusive transport (Levy flights) can be modeled by the fol-
lowing advection–diffusion equation:

∂P (x, t)

∂t
+ v

∂P (x, t)

∂x
= κ DΓ

|x| P (x, t). (107)

Since the Fourier transform is F(DΓ
|x|f (x)) =| k |Γ f (k), we

obtain

D(p) =
∫ ∫

dk dω S(k, ω)
κ|k|Γ

[ω(k) − kv]2 + (κ|k|Γ)2
. (108)

The corresponding transport timescale is correspondingly dif-
ferent from the diffusive timescale ν−1

d found earlier.

8 The standard Gaussian case is recovered with β = 1 and Γ = 2.

3.5. Anisotropic Spatial Transport

We now discuss a simple variation of the cases discussed
above. We still assume the existence of a strong guide field B0
directed along the x-axis and the existence of a stochastic force
parallel to the magnetic field F (x, y, z, t), say a parallel electric
force or magnetic mirror force. The particle transport in this field
is taken to be mainly free-streaming along the magnetic field
but diffusive across the field. Hence, the propagator P (x, y, z, t)
satisfies the advection–diffusion equation

∂P (x, r⊥, t)

∂t
+ v‖

∂P (x, r⊥, t)

∂x
= κ⊥∇2

⊥P (x, r⊥, t), (109)

where ∇⊥ is the two-dimensional Laplacian in the directions
perpendicular to the streaming. The solution is similar to
Equation (95), with κ⊥ being the cross-field spatial diffusion
coefficient. The corresponding momentum diffusion coefficient
is given by

D(p‖) = 2π

∫
k⊥ dk⊥

∫
dk‖

∫
dω S(k⊥, k‖, ω)

× κ⊥k2
⊥

(ω − k‖v‖)2 +
(
κ⊥k2

⊥
)2 , (110)

where the turbulence is also assumed to be isotropic in the plane
perpendicular to B0. As expected, perpendicular diffusion alone
can act to broaden the resonance between the modes and the
particles. Moreover, if these modes are waves with frequency ω,
which is related to the wavenumber k through the anisotropic
dispersion relation ω = ω(k⊥, k‖), then the force field spectrum
S(k⊥, k‖, ω) = S(k⊥, k‖)δ[ω − ω(k⊥, k‖)], and

D(p‖) = 2π

∫
k⊥ dk⊥

∫
dk‖ S(k⊥, k‖)

× κ⊥k2
⊥

[ω(k⊥, k‖) − k‖v‖]2 +
(
κ⊥k2

⊥
)2 . (111)

4. FORMS OF THE ACCELERATING FORCE FIELD

We now move on to consider various possible types of
force fields and the resulting forms of D(p). Recall from
Equation (17) that in general D(p) = τL 〈F 2〉, and it should
be noted that the dependence of D on p can arise both through
the Lagrangian correlation timescale τL and/or because 〈F 2〉 is
itself momentum-dependent.

4.1. Drift-kinetic Equations—Magnetic Mirror
and Parallel Electric Forces

Since turbulent energy is generally a decreasing function of
frequency in magnetized plasmas, it is reasonable to assume
that low-frequency turbulence is most efficient at accelerating
particles. For electromagnetic fluctuations that satisfy ω � ωci ,
where ωci is the ion gyrofrequency, the motion of particle
gyrocenters obeys the drift-kinetic equations

dX
dt

= v‖b + vE×B, (112)

dv‖
dt

= q

m
E‖ − μM∇‖B, (113)

dμM

dt
= 0. (114)

10
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Here vE×B = c(E×B)/B2 is the E×B drift velocity, b = B/B,
B = |B|, and the magnetic moment

μM = v2
⊥

2B
. (115)

The corresponding kinetic equation is thus

∂f

∂t
+ (v‖b + vE×B) · ∇f +

( q

m
E‖ − μM∇‖B

) ∂f

∂v‖
= 0.

(116)

This shows that low-frequency turbulence with ω � ωci

accelerates particles both through the fluctuating parallel electric
force

F‖ = qE‖ (117)

and the fluctuating magnetic-mirror force

F‖ = mv2
⊥

2B
∇‖B. (118)

These two parallel forces are responsible for Landau damping
(or transit-time damping) of various plasma waves via resonant
acceleration of the particles. In general, however, particle accel-
eration through these stochastic forces can be either resonant or
non-resonant. In the latter case, zero-frequency modes are ab-
sorbed through particle acceleration by a process akin to Ohmic
or viscous damping. Acceleration by these forces is also intrinsi-
cally anisotropic. To produce an isotropic distribution function,
therefore, a high level of pitch-angle scattering may also be
required. Thus, a scenario can be envisaged where one compo-
nent of the turbulent fluctuations produces, on a fast timescale,
the isotropization of the distribution function via pitch-angle
scattering. This results in a diffusive transport of the particles
at constant energy with a spatial transport coefficient that is in
general a function of the particle speed. Then, another compo-
nent of the turbulence acts on this diffusive motion to produce
the energy change, resulting in stochastic acceleration of the
particles. This is essentially the Parker (1965) formalism, where
energy changes are a result of large-scale compressions.

4.2. Finite Larmor-radius Effects

In the drift-kinetic approximation, the electromagnetic field
fluctuations are an average of the true fluctuations over the
fast timescales associated with the gyromotion of the particles.
Therefore, in this approximation, the particles feel an effective
low-frequency field, which acts on their gyrocenter. For k⊥ρ �
1 (where ρ = v⊥/ωc is the gyroradius), the particle position
and the gyrocenter position are essentially the same. However,
for k⊥ρ � 1, the effect of the finite gyroradius must be taken
into account. For circular motion, the gyrocenter position X is
related to the particle position x via

X = x − ρ(ϕ), (119)

where ϕ is the phase and ρ is the gyroradius vector defined by

ρ = b0 × v⊥
ωc

. (120)

Upon introducing the Fourier representation F (x, t) =∫∫
dk dω F̂ (k, ω) ei(k·x−ωt) of an arbitrary field F (x, t), one

finds that

〈F (x, t)〉ϕ ≡ F (X, t) =
∫

dk dω F̂ (k, ω) ei(k·X−ωt) 1

2π

×
∫

dϕ eik·ρ(ϕ). (121)

Since k · ρ(ϕ) = k⊥ρ cos ϕ, one can make use of the generating
function for Bessel functions eiz cos ϕ = Σn+∞

n=−∞ in Jn(z) einϕ to
obtain

〈F (x, t)〉ϕ =
∫

dk dω J0(k⊥ρ) F̂ (k, ω) ei(k·X−ωt). (122)

We see that the effective field felt by the particle is reduced by a
factor J0(k⊥ρ) which depends on the perpendicular wavenum-
ber; this correction is a finite-Larmor-radius (FLR) effect. The
FLR effect is most simply accounted for in the Fourier represen-
tation where it enters as a simple renormalization of the force
field spectrum:

S(k, ω) → J 2
0 (k⊥ρ) S(k, ω). (123)

Moreover, we can define the gyrocenter propagator as

G(k, ω) =
∫ ∞

0
dt 〈eik · X(t)−iωt 〉. (124)

The FLR modified momentum diffusion coefficient takes the
form

D =
∫ ∫

dk dω J 2
0 (k⊥ρ) S(k, ω) G(k, ω). (125)

In the case where the unperturbed guiding-center motion is
rectilinear at constant speed v‖ along the magnetic field, k ·
X(t) = k‖v‖t , and therefore

D(p‖, p⊥) = π

∫ ∫
dk dω J 2

0

(
k⊥v⊥
ωc

)
S(k, ω) δ(ω − k‖v‖).

(126)
The momentum diffusion coefficient (126) involved in the

Landau resonance between the field and the particles is written
here in terms of the parallel and perpendicular momentum
components p‖ and p⊥. Alternatively, it can be expressed
in terms of the two independent variables p and μ, where
p =√

p2
⊥+p2

‖ is the magnitude of the momentum and μ = p‖/p is
the direction pitch-angle cosine. For computational applications,
it can also be useful to replace the Bessel function by its Padé
approximation as (see, e.g., Press et al. 1992)

J0(k⊥ρ) ∼ 1

1 + (k⊥ρ)2/4
. (127)

It is important to include the FLR renormalization of the
field spectrum when describing the acceleration and transport
of particles by low-frequency turbulence in situations where the
field fluctuations have significant energy at perpendicular wave
numbers, i.e., at wavelengths of the order of or larger than ρ.
Bian & Kontar (2010) have discussed the spectral structure
of the parallel electric field associated with strong anisotropic
Alfvénic turbulence (Goldreich & Sridhar 1995), showing that
the latter attains maximum energy when k⊥ρi ∼ 1. The
frequency of such anisotropic fluctuations remains well below
the ion cyclotron frequency even at k⊥ρi ∼ 1 (Howes et al.
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2006; Schekochihin et al. 2009). At the cyclotron frequency,
another FLR effect comes into play, which is the interaction
between the gyromotion of the particles and perpendicular
electric fields. The full expression for the quasilinear momentum
diffusion tensor, including both the Landau resonance and
the gyroresonances can be found in Kennel & Engelmann
(1966), Jaekel & Schlickeiser (1992), and Schlickeiser & Achatz
(1993). New forms of the gyrophase-averaged Fokker–Planck
coefficients for particle transport have recently been discussed
by Schlickeiser (2011) and Casanova & Schlickeiser (2012).

4.3. Acceleration by Magnetic Mirrors Produced
by Fast-mode Waves

A popular model for flares is the acceleration by the fluctuat-
ing magnetic mirror force associated with fast-mode turbulence
(Kulsrud & Ferrari 1971; Achterberg 1981; Miller et al. 1996,
1997; Schlickeiser & Miller 1998; Yan et al. 2008). For res-
onant acceleration by waves that possess a parallel electric or
magnetic mirror force (i.e., waves that are subject to Landau or
transit-time damping), we have

D(p‖, p⊥) = 4π2
∫

k⊥ dk⊥
∫

dk‖ S(k⊥, k‖) δ[ω(k⊥, k‖)−k‖v‖],

(128)
where we have neglected the FLR effect discussed above.

For such a resonant acceleration process the force
(Equation (118)) is the gradient of a potential. Hence, by
Equation (54), τL ∝ 1/v3. Since the turbulence is weak, the
Lagrangian timescale should also be proportional to the Alfvén
time τA = λ/VA, where λ is the characteristic length scale,
so that τL ∼ (VA/v)3 (λ/VA). Moreover, the magnitude of the
force (118) is F ∼ mev

2 (1/λ) (B/B0). Hence we expect that

D(p) = τL F 2 ∼ meV
2
A

(
1

λ

) (
B

B0

)2

p. (129)

The exact expression may be obtained as follows. Using ex-
pression (118) for the magnetic mirror force and the dispersion
relation ω = kVA for fast-mode waves (where VA is the Alfvén
speed), we obtain

D(p‖, p⊥) = π2m2
e

B2
0

v4
⊥

∫
k2
⊥ dk⊥

×
∫

dk‖ k2
‖ SB‖(k⊥, k‖) δ(kVA − k‖v‖),

(130)

with SB‖ (k⊥, k‖) the spectrum of the field strength fluctuations
B‖. This diffusion coefficient may also, of course, be written in
terms of the two independent variables p and μ. Assuming that
efficient pitch-angle scattering maintains near-isotropy of the
electron velocity distribution function, the momentum diffusion
coefficient may then be averaged over μ:

D(p) = 1

2

∫ 1

−1
dμD(μ,p), (131)

with the result (Miller et al. 1996, 1997)

D(p) = 1

16
me V 2

A

1

λ

〈
B

B0

〉2

p, (132)

consistent with the estimate (129). Note that for this mechanism,

D(p) ∝ p; τacc ∝ p ∝ E1/2. (133)

Transit-time acceleration by fast modes was also studied by
Schlickeiser & Miller (1998), who use the full expression for the
diffusion tensor (Jaekel & Schlickeiser 1992). They show that
for flat (1 < q � 2) turbulence power spectra, the acceleration
timescale increases as τacc ∝ E(3−q)/2, while for steep spectra
(2 < q < 6) they recover τacc ∝ E1/2 at nonrelativistic energies;
see Equations (102) and (103) in Schlickeiser & Miller (1998).
Yan et al. (2008) also discuss transit-time acceleration by fast
modes in the low-β plasma of the solar corona; they include a
high-k cutoff scale owing to collisionless damping of the fast
waves resulting in τacc ∝ E1/2.

4.4. The Parker Equation—Adiabatic Compression

The interaction of particles with low-frequency compressible
turbulence can also be modeled by the Parker (1965) equation
in which particles are accelerated by a compressive force.
This force or the rate of particle momentum change follows
an equation that is obtained from an adiabatic thermodynamic
process:

dp

dt
= −1

3
∇ · V p. (134)

The evolution of the isotropic part of the distribution function
is given by

∂f

∂t
+ V · ∇f = ∇ · κ∇f +

1

3
p ∇ · V

∂f

∂p
. (135)

Note that spatial diffusion forms the basis of the Parker equation,
such that in this framework stochastic acceleration is always
non-resonant (Bykov & Toptygin 1993; Zhang & Lee 2011;
Jokipii & Lee 2010). When the Peclet number is small (V L/κ �
1) and when V � √

κ/τ , turbulent velocity fluctuations
are unimportant for spatial transport, while still producing
acceleration. However, in general, the presence of turbulent
velocity fluctuations V enhances the spatial transport coefficient
and, hence, the turbulent transport coefficient κt is given by

κt = κ + τ 〈V 2〉 . (136)

The momentum diffusion coefficient in the case of weak
turbulence was written in, e.g., Bykov & Toptygin (1993) as

D(p) = p2

9

∫
dk S(k)

(
κtk

2 + τ−1
c

)
[
ω2(k) +

(
κtk2 + τ−1

c

)2] , (137)

with
∫

dk S(k) = 〈(∇ · V)2〉. (This result can be obtained by
blending Equations (65) and (104).)

When the correlation time τc → ∞, the momentum diffusion
coefficient becomes

D(p) = p2

9

∫
dk S(k)

κtk
2

[ω2(k) + (κtk2)2]
. (138)

The spectral density S(k) is in principle related to the spectrum
of plasma density fluctuations, while the dispersion relation
ω(k) may correspond to any low-frequency compressive modes,
including an anisotropic spectrum of kinetic Alfvén waves (Bian
& Kontar 2010). Both fast and slow magnetosonic wave modes
have been considered (Ptuskin 1988; Chandran 2003; Chandran
& Maron 2004; Cho & Lazarian 2006).
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4.4.1. Example 1: Non-resonant Acceleration by Adiabatic
Compressions Associated with Fast-mode Waves

In this case the dispersion relation ω(k) = kVA. Assuming
isotropic turbulence S(k) dk = 4πk2S(k) dk, it is found that in
the strong diffusion limit κt/λ � VA,

D(p)

p2
→

(
κt

V 2
A

)
〈(∇ · V)2〉, (139)

while in the small diffusion limit κt/λ � VA,

D(p)

p2
→

(
λ2

κt

)
〈(∇ · V)2〉 . (140)

Thus, for this mechanism, we obtain the relations

D(p) ∝ p2; τacc ∝ constant. (141)

Note that Ptuskin (1988) has discussed the case of a power-law
spectrum, i.e., S(k) ∝ kq , and has concluded that the scaling of
D with p is insensitive to the value of the spectral index q.

4.4.2. Example 2: Non-resonant Acceleration by Adiabatic
Compressions Associated with Strong Turbulence

For the case of strong turbulence (Bykov & Fleishman 2009),

D(p) = p2

9

∫
dω

∫
dk S(k, ω)

κtk
2

[ω2 + (κtk2)2]
. (142)

In the weak diffusion limit (κt � λ2/τ ),

D(p)

p2
→ τ 〈(∇ · V)2〉, (143)

while in the strong diffusion limit (κt � λ2/τ ),

D(p)

p2
→

(
λ2

κt

)
〈(∇ · V)2〉. (144)

For both cases, therefore, we obtain the relationships

D(p) ∝ p2; τacc ∝ constant. (145)

Most non-resonant acceleration models are based on the adia-
batic compression relationship (134). Note, however, that com-
pressive waves can non-resonantly accelerate particles through
both the parallel electric force and the magnetic mirror force.

5. ENERGY SPECTRA

In the examples discussed above, the momentum diffusion
coefficient is a power law, i.e., D(p) = D0p

α . Therefore, in
three dimensions, the distribution function f (p, t) obeys the
diffusion equation

∂f (p, t)

∂t
= 1

p2

∂

∂p

[
D0 pα+2 ∂f (p, t)

∂p

]
, (146)

with the normalization provided by
∫ ∞

0 4πp2 f (p, t) dp = 1.
Taking the initial condition as f (p, 0) = δ(p), the general
solution is the stretched exponential

f (p, t) = C

4π
t3/(2−α) exp

[ −p2−α

(2 − α)2D0t

]
, (147)

with the constant C = (2 − α)−(1+α)/(2−α) D
−3/(2−α)
0 Γ[3/(2 −

α)]. This solution is invalid for α > 2 since f becomes a
monotonically increasing function of p. For arbitrary α, a
general solution of Equation (146) can be found with initial
condition f (p, 0) = δ(p−pi), where pi is the initial momentum.
In units such that pi = 1, we obtain (Borovsky & Eilek 1986;
Jokipii & Lee 2010)

1 � α < 2 : f (p, t) = p−(1+α)/2

(2 − α)4πD0t
Il

[
2p(2−α)/2

(2 − α)2 D0t

]

× exp

[
− 1 + p2−α

(2 − α)2 D0t

]
, (148)

where l = (1 + α)/(2 − α), and

α > 2 : f (p, t) = p−(1+α)/2

(α − 2)4πD0t
Il

[
2p(2−α)/2

(α − 2)2 D0t

]

× exp

[
− 1 + p2−α

(α − 2)2 D0t

]
, (149)

where l = (α + 1)/(α − 2). In the limit t → ∞, the α > 2
solution approaches the power-law form

α > 2 : f (p, t → ∞) ∝
(

1

D0t

) 2α−1
α−2

p−(1+α). (150)

The case α = 2 is special (Kardashev 1962):

f (p, t) = 1

4πD0t
p−3/2 exp

(
−9

4
D0t

)
exp

(
− ln2 p

4D0t

)
.

(151)
These solutions generalize to the case where D0 is a function of
time by replacing the term D0t by

∫ t
D0(t ′) dt ′ in the previous

expressions. Thus, power-law spectra can be obtained only for
α > 2 in which case f ∼ p−(1+α); the case α = 2 leads to
f ∼ p−3/2.

For continuous injection of particles in the acceleration
region, i.e., when a source term δ(p − 1) is added to the right
side of the diffusion Equation (146), a stationary power-law
solution may nevertheless result. For such a stationary solution
to exist, the momentum flux D0p

α+2 ∂f/∂p must be constant,
which requires that

f (p) ∼ p−(1+α); α > −1. (152)

Note that this has the same power-law spectral dependence on
momentum as the (time-dependent) α > 2 large-time limit
solution (150).

6. SUMMARY

To summarize, in the stochastic acceleration models dis-
cussed above the momentum diffusion coefficient D(p) may
be written in the equivalent forms

D(p) =
∫ ∫

dt dx C(x, t) P (x, t);

D(p) =
∫ ∫

dk dω S(k, ω) G(k, ω), (153)

where C(x, t) is the Eulerian correlation function of a force
F(x, t), S(k, ω) is the Fourier transform of C(x, t), P(x, t) is
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the solution of the spatial transport equation, and G(k, ω) is
the Fourier transform of the associated Green’s function. Given
these general expressions, stochastic acceleration models are
grouped as resonant, non-resonant, or resonance broadened,
depending on the form of P(x,t) or, equivalently G(k, ω),
which both describe the spatial transport of the particles in
the acceleration region. For each case, we now summarize
the pertinent equation for P(x,t), its solution, and the resulting
G(k, ω).

1. Resonant
∂P (x, t)

∂t
+ v

∂P (x, t)

∂x
= 0 ;

P (x, t) = δ(x − vt);
D(p) = π

∫ ∫
dk dω S(k, ω) δ(ω − kv).

(154)

2. Non-resonant

∂P (x, t)

∂t
= κ

∂2P (x, t)

∂x2
;

P (x, t) = 1√
4πκt

e−x2/4κt ;

D(p) =
∫ ∫

dk dω S(k, ω)
κk2

ω2 + (κk2)2
.

(155)

3. Resonant-broadened
This combines elements of both the resonant and non-
resonant cases:

∂P (x, v, t)

∂t
+ v

∂P (x, v, t)

∂x
= κ

∂2P (x, t)

∂x2
;

P (x, t) = 1√
4πκt

e−(x−vt)2/4κt ;

D(p) =
∫ ∫

dk dω S(k, ω)
κk2

(ω − kv)2 + (κk2)2
.

(156)

FLR effects can be accounted for by writing the momentum
diffusion coefficient as

D(p) =
∫ ∫

dk dω J 2
0 (k⊥ρ) S(k, ω) G(k, ω);

G(k, ω) =
∫ ∞

0
dt 〈eik.X(t)−iωt 〉, (157)

where G(k, ω) is now the propagator associated with the
guiding-center X(t) of the particles.

The momentum dependence of D(p) arises either because
the accelerating force is itself momentum dependent (S(k, ω)
depends on p) or because the spatial transport is momentum
dependent (G(k, ω) depends on p). A typical dependence D(p)
is a power law

D(p) = D0p
α. (158)

Then, since d〈p2〉/dt = 2D(p) = 2D0p
α , it follows that

〈p2〉 ∝ t2/(2−α), (159)

for α < 2. For α > 2, 〈p2〉 can attain infinite values within a
finite period of time. Power-law distribution functions, solutions
of the momentum diffusion equation, are obtained only for
α > 2, in which case f ∼ p−(1+α). When α < 2, the solutions
are stretched exponentials. We also noticed that it may occur
that the momentum diffusion coefficient is not existing because
the integral involved in its expression is non-definite. We gave
a specific example and refer to such an acceleration mechanism
as a fractional-order Fermi process.

All the above models (resonant/broadened/non-resonant)
can apply equally well to describe stochastic acceleration in
a force field that is fragmented, or distributed in clumps, as is
already known for the resonant interaction between particles and
Langmuir waves (Melrose & Cramer 1989). It is noteworthy
that in both the resonant-broadened and the non-resonant
acceleration the spectrum can also be taken to be discrete and
even monochromatic.

In general, the wavenumber k and frequency ω are a priori
independent quantities. However, in the case of acceleration by
waves (e.g., MHD waves, plasma waves), these quantities are
related by a dispersion relation ω = ω(k). In such a case,

S(k, ω) = S(k) δ[ω − ω(k)]. (160)

For strong turbulence, the frequency spectrum of the force field
is broadened around ω(k), so that

S(k, ω) = π−1S(k)
τ−1
c

[ω − ω(k)]2 +
(
τ−1
c

)2 , (161)

where τc is a turbulence correlation timescale. As remarked
above, it is important to note that while broadening of the
function G(k, ω) arises as a transport effect, broadening of the
function S(k, ω) does not. However, the formal consequence
is the same—the introduction of an additional timescale in
the stochastic acceleration model, either as a particle trans-
port timescale ν−1

d = (κk2)−1 or as a turbulence correlation
timescale τc.

As a rule of thumb, the momentum diffusion coefficient takes
the form

D(p) = τL〈F 2〉, (162)

where the Lagrangian correlation time τL is a statistical property
of the field in the frame comoving with the particles. In all
cases, the acceleration efficiency, i.e., 〈p2〉 as a function of
time, is estimated using quasilinear theory. Within quasilinear
theory, the accelerating field acts as a perturbation on the particle
motion that occurs at constant energy and is either integrable
for resonant models or chaotic and diffusive for non-resonant
models.

This general characterization of stochastic acceleration mod-
els allows us to use the dependence of the diffusion coefficient
D on the particle momentum p to compare the acceleration
times, acceleration rates, and energy spectra for a variety of
acceleration models. Specific expressions for the momentum
dependence of the diffusion constant D(p) and for the corre-
sponding energy dependence of the acceleration time τacc(E)
have been provided throughout the text. These predicted scal-
ings can be compared with quantities deduced from observation
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to assess the viability of a given model. Applicable observa-
tions include the rise time of the radiation field (e.g., hard-X-ray
bremsstrahlung, gamma-rays) produced by the accelerated par-
ticles. Hard-X-ray measurements also provide information on
the specific acceleration rate νspecific (particles s−1 per particle;
Emslie et al. 2008), a quantity that measures the fraction of the
ambient particle population that suffers acceleration to energies
equal to or greater than a prescribed energy. With a framework
now in place to determine the diffusion coefficient for a general
stochastic acceleration mechanism, the specific acceleration rate
can be readily assessed and compared with values deduced from
analysis of hard-X-ray observations. This will be the subject of
a future paper.
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APPENDIX

GENERALIZATION OF EQUATIONS OF MOTION TO
THREE DIMENSIONS

Applications of the results of Section 2 are straightforwardly
generalizable to the following equations of motion in three
dimensions:

ṗ = F(x, t), mẋ = p. (A1)

The evolution of the distribution function is given by a
Fokker–Planck equation

∂f (x, p, t)

∂t
+

p
m

· ∇f (x, p, t) = ∂

∂pi

[
Dij (p)

∂f (x, p, t)

∂pj

]
.

(A2)
The expression for the momentum diffusion tensor is similar to
Equation (23) and becomes

Dij (p) =
∫ ∞

0
dt

∫
dx Cij (x, t) P (x, t), (A3)

where the Eulerian correlation tensor of the force field is defined
by

Cij (x, t) = 〈Fi(0, 0) Fj (x, t)〉, (A4)

while Equation (34) becomes

Dij (p) =
∫ ∫

dk dω Sij (k, ω) G(k, ω), (A5)

with definitions of Sij (k, ω) and G(k, ω) similar to those
in Equations (30) and (36). A general decomposition of the
Eulerian correlation tensor, assumed to be homogeneous and
isotropic, is Cij (x, t) = A(x, t) δij +B(x, t) xixj +G(x, t) εij l xl ,
where δij is the Kronecker delta and εij l is the permutation
tensor. The symmetric part of this tensor is invariant relative
to rotations and reflections. The antisymmetric part changes its
sign under reflection and therefore is non-zero only for fields
possessing helicity, i.e., when F·∇×F 
= 0. In a similar way, the
general decomposition of the spectral tensor of the force field is
Sij (k, t) = A(k, ω) δij + B(k, ω) kikj /k2 + G(k, ω) εij l kl/k2.

The particular case of a potential field F = −∇φ, with
k × F(k, ω) = 0 (longitudinal field), yields

Sij (k, ω) = SL(k, ω)
kikj

k2
. (A6)

The case of a solenoidal field ∇ · F = 0, with k · F = 0
(transverse field), reads

Sij (k, ω) = ST (k, ω)

(
δij − kikj

k2

)
. (A7)

Specific geometrical features of the field can be important in
studying momentum and angular momentum injections into the
particle motion (Chechkin et al. 1994). Here we only focus on
the energy transfer from the field to the particles.

For example, these results can be used to calculate the
momentum diffusion tensor resulting from resonant acceler-
ation by a force field which is the gradient of a potential
F = −∇φ. In this case, Cij (x, t) = −∂2Cφ(x, t)/∂xi∂xj and
SL(k, ω) = k2Sφ(k, ω). We also assume that φ has a Gaussian
correlation function. Then a calculation similar to that leading to
Equation (52) yields the following expression for the diffusion
tensor:

Dij (p)

D0
= 1

[1 + (p/p0)2]3/2

pipj

p2

+
1

[1 + (p/p0)2]1/2

(
δij − pipj

p2

)
, (A8)

with D0 = τ 〈φ2〉/λ2. The isotropic part of the distribution
function obeys the diffusion equation (in d dimensions):

∂f (p, t)

∂t
= 1

pd−1

∂

∂p

[
pd−1 D(p)

∂f (p, t)

∂p

]
, (A9)

where

D(p) = D0(
1 + p2/p2

0

)3/2 . (A10)

Note that D(p) ∼ p−3 when p � p0. This D(p) ∼ p−3 behav-
ior, instead of D(p) ∼ p−1 (Equation (53)), is a fundamental
consequence of the force being the gradient of a potential.
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