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ABSTRACT

The bulk of the solar chromosphere is weakly ionized and interactions between ionized particles and neutral
particles likely have significant consequences for the thermodynamics of the chromospheric plasma. We investigate
the importance of introducing neutral particles into the MHD equations using numerical 2.5D radiative MHD
simulations obtained with the Bifrost code. The models span the solar atmosphere from the upper layers of the
convection zone to the low corona, and solve the full MHD equations with non-gray and non-LTE radiative transfer,
and thermal conduction along the magnetic field. The effects of partial ionization are implemented using the
generalized Ohm’s law, i.e., we consider the effects of the Hall term and ambipolar diffusion in the induction
equation. The approximations required in going from three fluids to the generalized Ohm’s law are tested in our
simulations. The Ohmic diffusion, Hall term, and ambipolar diffusion show strong variations in the chromosphere.
These strong variations of the various magnetic diffusivities are absent or significantly underestimated when, as has
been common for these types of studies, using the semi-empirical VAL-C model as a basis for estimates. In addition,
we find that differences in estimating the magnitude of ambipolar diffusion arise depending on which method is
used to calculate the ion–neutral collision frequency. These differences cause uncertainties in the different magnetic
diffusivity terms. In the chromosphere, we find that the ambipolar diffusion is of the same order of magnitude or
even larger than the numerical diffusion used to stabilize our code. As a consequence, ambipolar diffusion produces
a strong impact on the modeled atmosphere. Perhaps more importantly, it suggests that at least in the chromospheric
domain, self-consistent simulations of the solar atmosphere driven by magnetoconvection can accurately describe
the impact of the dominant form of resistivity, i.e., ambipolar diffusion. This suggests that such simulations may
be more realistic in their approach to the lower solar atmosphere (which directly drives the coronal volume) than
previously assumed.
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1. INTRODUCTION

Most of the models and simulations of the solar atmosphere
solve the magnetohydrodynamics (MHD) equations, implicitly
assuming that the plasma is magnetized, i.e., fully ionized or
with the ion–neutral collision frequency lower than the ion
gyrofrequency (Schaffenberger et al. 2005; Vögler et al. 2005;
Stein & Nordlund 2006; Gudiksen et al. 2011, among others).
However, since the photosphere and parts of the chromosphere
are unmagnetized, i.e., the ions are not necessarily tied to the
field lines, we expect that neutral particles can have a significant
impact on the dynamics of this region (Vernazza et al. 1981;
Fontenla et al. 1990, 1993). Therefore, it is likely that, under
some conditions, the photosphere and chromosphere should be
treated as a three-component fluid, where the dynamics of the
neutrals, ions, and electrons are treated separately. Under the
assumption of a weakly ionized plasma, one can return to a
one-component fluid. However, new terms known as the Hall
term and ambipolar diffusion appear in the induction equation
(Parker 1963, 2007; Pandey & Wardle 2008). The latter term
is a consequence of the ion–neutral dissipation which can be
derived from the Cowling resistivity (Khodachenko et al. 2004,
2006; Leake & Arber 2006). This form of the induction equation
is known as the generalized Ohm’s law (Cowling 1957).

A large number of papers in recent years have investigated
the effects of the ion–neutral interactions on single-fluid MHD.

Leake & Arber (2006) simulated 2.5D simulations of flux
emergence and observed that the ambipolar diffusion leads to an
increase of the rates of magnetic field emergence and a resultant
magnetic field that is much more diffuse than the case with only
Ohmic diffusivity. In addition, the magnetic field that emerges
into the corona is found to be more force free, since currents
are aligned to the field. This is because ambipolar diffusion
acts on the currents perpendicular to the magnetic field. Arber
et al. (2007) extended this simulation to three dimensions (3D)
where the previous results were confirmed, and in addition found
that, as a result of including neutrals, flux emergence lifts less
chromospheric material to great heights. This effect suppresses
the Rayleigh–Taylor instability between the emerging flux and
the corona.

The interaction between ions and neutrals can also dissipate
Alfvén waves as a result of the small but finite coupling time
between ions and neutrals. This type of damping can heat and
accelerate the plasma in the upper chromosphere and in spicules
(De Pontieu & Haerendel 1998; De Pontieu 1999; James &
Erdélyi 2002; James et al. 2003; Erdélyi & James 2004),
and incur wave energy leakage at the footpoints of coronal
loops (De Pontieu et al. 2001) and in the network (Goodman
2000). Khodachenko et al. (2004), using the temperature and
density structure from the 1D VAL-C model, concluded that
the collisional friction damping of MHD waves is often more
important than the viscous damping for waves propagating
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in the partially ionized plasmas of the solar photosphere,
chromosphere, and prominences. Estimates of the efficiency
of the damping of waves were made by Leake et al. (2005) as
well as by the previous authors.

Pandey & Wardle (2008) determine that waves can be affected
by the Hall term at both low and high fractional ionization
because the Hall regime wave damping is inversely proportional
to the fractional ionization. Thus the Hall term may also be
important at high fractional ionization in contrast to ambipolar
diffusion, which is important only at low fractional ionization.

Khomenko & Collados (2012) performed various simplified
scenarios where they studied the impact of the ambipolar
diffusion in the chromosphere. They conclude that current
dissipation enhanced by the action of ambipolar diffusion is
an important process that is able to provide a significant energy
input into the chromosphere. Heating from ambipolar diffusion
leads to thermodynamic evolution in the chromosphere on
timescales of about 10–100 s.

All the models above, even the 2D and 3D models, are
based on a 1D semi-empirical atmosphere (e.g., VAL-C)
and/or a simplified approach to the energy balance in the
chromosphere (adiabatic or Newtonian cooling). In addition,
none of the partial-ionization effects have been considered
in full magnetoconvection simulations. Cheung & Cameron
(2012) have made progress in this direction and performed
full magnetoconvection simulations of an umbra taking into ac-
count partial-ionization effects. However, their simulations only
extend up to the upper photosphere.

In this paper, we use the Bifrost code (Gudiksen et al. 2011) to
create a self-consistent and fully dynamic model atmosphere of
the Sun, from the convection zone to the corona, to consider the
importance of the Hall term and ambipolar diffusion relative
to the Ohmic and artificial diffusion. Unlike other models,
Bifrost includes an advanced treatment of radiative losses in
the chromosphere based on recipes derived from dynamic non-
LTE radiative 1D hydrodynamic simulations. Such a treatment
is crucial for a consideration of the effects of partial ionization,
as shown in what follows. The code and the implementation of
the generalized Ohm’s law are described in Section 2. The tests
performed for the code validation are discussed in Section 2.2.
We describe the different forms of diffusion in 2D MHD
simulations in Section 3.1. Finally, the various simplifications
made in order to obtain the generalized Ohm’s law following
Pandey & Wardle (2008) have been investigated and tested for
the 2D MHD simulations in Section 3.2. The paper finishes by
addressing the conclusions and discussion.

2. EQUATIONS AND NUMERICAL METHOD

The magnetic upper photosphere and chromosphere is weakly
ionized and the interaction between ionized particles and neutral
particles potentially has important consequences for the thermo-
dynamics (Fontenla et al. 1993) of this region. We investigate
these consequences in the solar atmosphere. In order to model
the solar atmosphere we solve the MHD equations in 2.5D. The
model spans from the upper layers of the convection zone to the
low corona. We have implemented the effects of partial ioniza-
tion into the induction equation through the Hall and ambipolar
diffusion terms as described below.

The Bifrost (Gudiksen et al. 2011) code is a staggered mesh,
explicit code that solves the MHD partial differential equations,
including non-LTE and non-gray radiative transfer with scatter-
ing, and conduction along the magnetic field lines. A lookup
table, based on LTE, is used to compute the temperature, pres-

sure, opacities and other radiation quantities, and ionization
state, given the pressure and the internal energy of the plasma.
Spatial derivatives and the interpolation of variables are done
using high-order polynomials. The equations are stepped for-
ward in time using the explicit third-order predictor–corrector
procedure described by Hyman et al. (1979). In order to sup-
press numerical noise, high-order artificial diffusion is added
both in the forms of a viscosity and in the form of a magnetic
diffusivity (see Gudiksen et al. 2011 for details).

The Bifrost code includes an advanced treatment of the
effects of radiation on the local energy balance, which is crucial
if one wants to accurately determine the ionization degree.
The radiative flux divergence from the photosphere and lower
chromosphere is obtained by angle and wavelength integration
of the transport equation assuming isotropic opacities and
emissivities. The transport equation assumes that opacities are
in LTE using four group mean opacities to cover the entire
spectrum (Nordlund 1982). This is done by formulating the
transfer equation for each of the four bins, calculating a mean
source function in each bin. These source functions contain an
approximate coherent scattering term and an exact contribution
from thermal emissivity. The resulting 3D scattering problems
are solved by iteration, based on one-ray approximation in the
angle integral for the mean intensity, a method developed by
Skartlien (2000).

In the mid and upper chromosphere, the Bifrost code includes
non-LTE radiative losses from tabulated hydrogen continua, hy-
drogen lines, and lines from singly ionized calcium as functions
of temperature and column mass (Carlsson & Leenaarts 2012).
These radiative losses depend on the computed non-LTE escape
probability as a function of column mass and are based on a 1D
dynamical chromospheric model in which the radiative losses
are computed in detail (Carlsson & Stein 1992; Carlsson & Stein
1994, 1997, 2002).

The energy dissipated by Joule heating is given by QJoule =
E · J, where the electric field E is calculated from the current
J, taking into account high-order artificial resistivity. The resis-
tivity is computed using a hyper-diffusion operator (Gudiksen
et al. 2011). This entails that the Joule heating due to artificial
diffusion is set proportional to the current squared times a factor
that becomes large (of order 10) when magnetic field gradients
are large, and is unity otherwise.

2.1. Generalized Ohm’s Law Theory

2.1.1. Multi-fluid

Most codes treat the solar atmosphere as a single fluid where
collisional frequencies are considered sufficient to ensure that
all species are well coupled and that the momentum and energy
equations can be added without the introduction of frictional
or similar terms. However, as chromospheric temperatures are
likely to drop to a few 103 K or even lower (Leenaarts et al.
2011), there is a high probability that plasma is only partially
ionized and that “slippage” effects could become important. In
this case, the MHD equations should be treated by considering
the plasma as consisting of three fluids: ions, electrons, and
neutral particles. The mass density for each type of particle is
governed by the continuity equation applied to each species
separately:

∂ρj

∂t
+ ∇ · ρj uj = 0, (1)

where ρj = mjnj , uj , nj, and mj are the mass density, velocity,
number density, and particle mass of the ion, electron, and
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neutral species, i.e., j = i, e, n, respectively. The mass transfer
term as a result of ionization and recombination has been
neglected. This approximation is valid for a one-fluid approach
if the system is in ionization balance, and there is no decoupling
of ions and neutrals.

The momentum equation, written in SI units, for each species,
is as follows:

ρi

(
∂

∂t
+ ui · ∇

)
ui = − ∇Pi + niZqe (E + ui × B)

− ρi

∑
j=e,n

νij (ui − uj ) (2)

ρe

(
∂

∂t
+ ue · ∇

)
ue = − ∇Pe − niqe (E + ue × B)

− ρe

∑
j=i,n

νej (ue − uj ) (3)

ρn

(
∂

∂t
+ un · ∇

)
un = −∇Pn − ρn

∑
j=e,i

νnj (un − uj ), (4)

where qe and Z are respectively the electron charge and ion
charge. E and B are the electric and magnetic fields and Pj =
nikTi is the partial pressure of the jth species, k is Boltzmann’s
constant, and νij is the collision frequency for species i with
species j. We assume that collisions are sufficiently numerous
that the ion and electron temperatures can be considered the
same (Ti = Te). All three equations are linked through the last
term, i.e., the exchange of momentum between the particles,
where we have ignored the thermal force. In a similar manner
as for the continuity equation, the momentum transfer term as a
result of ionization and recombination has been neglected.

The number of equations thus increases considerably
compared with single-fluid MHD, but by considering some sim-
plifications, as described by Cowling (1957), Parker (2007),
and Pandey & Wardle (2008), one can easily generalize the
MHD equations for each species to a single fluid (see below
too). Therefore, the mass density is governed by the continuity
equation for the bulk fluid as follows:

∂ρ

∂t
+ ∇ · ρu = 0, (5)

where the density for the bulk fluid is the sum of the different
particle densities (ρ = ρi + ρe + ρn), and considering ρi/ρ �
ρe/ρ, then ρ ≈ ρi + ρn. In a similar manner, the velocity of the
bulk fluid is u ≈ (ρiui + ρnun)/ρ, where the electron inertia
is implicitly neglected in the definition of the bulk velocity.
If we define the neutral density fraction (D = ρn/ρ), then
u ≈ (1 − D)ui + Dun. Finally, the current density is given
by J = neqe(ui − ue) (assuming singly charged ions). Since
Equation (5) is the same as for the single-fluid formulation,
the continuity equation does not need any modification in the
Bifrost code.

Following Pandey & Wardle (2008), the single-fluid momen-
tum equation can be recovered if we neglect the effects of the
electron inertia. Because it is implicitly neglected in the defini-
tion of the bulk velocity, it can also be neglected in the continuity
and momentum equations. For simplicity, the ions are assumed
to be singly charged, and we adopt charge neutrality (ni = ne).
In addition, the drift momentum is assumed to be considerably
smaller than the fast momentum (ρ

√
v2

a + c2
s ) so that

ρiρnu
2
D � ρ2

(
v2

a + c2
s

)
, (6)

where uD = ui − un, va = B/
√

μoρ, and cs = √
γP/ρ are

respectively the drift, Alfvén, and sound velocities in the bulk
fluid; μo is the vacuum permeability, and γ is the ratio of specific
heats. When the plasma does not fulfill Equation (6), the fluids
are strongly decoupled. This happens when the ion–neutral
collision frequency is low. When the drift momentum is low,
the drift momentum can be neglected for small dynamical
frequencies (i.e., changes of the plasma properties on timescales
commensurate with such frequencies):

ω � ρ√
ρiρn

(
Dβe

1 + Dβe

)
νni, (7)

where βe = ωce/νe, the ratio of the cyclotron frequency and
the collisional frequency. With these assumptions we recover
the single-fluid momentum equation as it is implemented in the
Bifrost code (see Pandey & Wardle 2008, for details):

ρ

(
∂

∂t
+ u · ∇

)
u = −∇P + J × B. (8)

2.1.2. Induction Equation

The Ohmic diffusion, Hall term, and ambipolar diffusion are
given by

ηohm = 1

σ
(9)

ηhall = |B|
qene

(10)

ηamb = (|B|ρn/ρ)2

ρiνin

= (|B|ρn/ρ)2

ρnνni

. (11)

The electrical conductivity (σ ) in the absence of a magnetic field
is

σ = q2
e ne

meνe

, (12)

where the sums of the collision frequencies are written as

νe = νen + νei (13)

νi = νin + νie. (14)

In order to obtain the induction equation, the following
assumptions are made.

1. First, the electric field

E + ui × B = −∇Pe

neqe

+
J
σ

+
J × B
qene

− meνen

qe

uD (15)

is deduced from the electron momentum equation assuming
zero electron inertia and is expressed in the ion’s rest frame.

2. The plasma obeys

ρeνen � ρiνin. (16)

3. The term

ρiρn

ρ

[
duD

dt
− (uD · ∇)ui − (ui · ∇)uD

]
(17)

can be neglected when the dynamical frequency of the
plasma is small:

ω � νniρ/ρi. (18)
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4. Biermann’s battery contribution, from the ∇Pe/qene term
in Equation (15), is neglected.

5. The term Dβi/βe is small and of order �10−3, so it is also
neglected, where βj = ωcj/νj is the ratio of the cyclotron
frequency to the sum of the jth particle collision frequency.

6. Finally, terms due to the pressure gradient ∇P × B are
negligible compared to the induction term u × B when the
dynamical frequency is small:

ω �
(

v2
a

c2
s

)
ρ2

ρiρn

νni . (19)

Under these assumptions the electric field is defined as

E = J
σ

+
J × B
qene

− D2 J × B × B
ρiνin

, (20)

and the magnetic field evolution is governed by the induction
equation, derived from the Maxwell equations, and under the
considerations listed above (see Parker 2007; Pandey & Wardle
2008 for details):

∂B
∂t

= ∇ ×
[

u × B − ηJ − ηhall

|B| J × B +
ηamb

B2
(J × B) × B

]
.

(21)
The right-hand side of the induction equation has the convective,
Ohmic, Hall, and ambipolar terms, from left to right respectively.
Note that for simplicity we are referring to the Ohmic and
ambipolar terms as diffusion terms, but strictly speaking none
of them can be cast in the form of a diffusion equation (Parker
1963 already used ambipolar diffusion terminology). The two
new terms (Hall and ambipolar) are implemented in the Bifrost
code in the induction equation and in the electric field.

Note that from Equation (21), the Hall and ambipolar terms
can be considered as advection terms:

∂B
∂t

= ∇ × [u × B − ηJ − uH × B + uA × B] , (22)

where the Hall velocity is uH = (ηhallJ)/|B| and the ambipolar
velocity is uA = (ηambJ × B)/B2.

The generalized Ohm’s law is implemented in the code
using the same scheme as used for the MHD equations, i.e.,
a sixth-order explicit method (Gudiksen et al. 2011). From
expression (22) it is clear that the Hall term and ambipolar
diffusivity give rise to two new constraints on the Courant,
Friedrichs, & Lewy (CFL) condition which restrict the time-
step interval (Courant et al. 1928) (ΔtH = Δx/uH and ΔtA =
Δx/uA). Both velocities are a function of the current (∇ × B),
i.e., both CFL conditions are quadratic functions in Δx, and
the time step will decrease quadratically with increasing spatial
resolution. We note that for the simulation with mean magnetic
field strength in the photosphere of the order of 100 G, the
ambipolar and Hall velocities are maximal in the cold regions in
the chromosphere with, respectively, uA ≈ 100 km s−1 and
uH ≈ 1 km s−1. As a result of this, the CFL criteria are
approximately ΔtA ≈ 0.3 s and ΔtH ≈ 20 s with Δx ≈ 32 km,
compared with the strictest CFL condition in the simulation
of Δt ≈ 3 10−3 s. Therefore, as long as we do not increase the
magnetic field and/or the spatial resolution too much, we do not
need to change to an implicit implementation of our equations.

2.1.3. The Energy Equation

As mentioned above, the energy dissipated by Joule heating
is given by QJoule = E · J. In the previous section, the Hall term

Table 1
Simulation Description

Name Collision Frequency Min/Mean/Max |B| [G]

WA Case A 0.003/0.25/3
WB Case B 0.003/0.25/3
WC Case C 0.003/0.25/3
SA Case A 0.1/90/920
SB Case B 0.1/90/920
SC Case C 0.1/90/920

Notes. The left column lists the names of the different 2D simulations, middle
column lists the method used to calculate the collision frequency between ions
and neutrals. The last column shows the minimum, mean, and maximum values
of the unsigned magnetic field strength in the photosphere.

and ambipolar diffusivity were shown to lead to changes in the
electric field. These changes need to be taken into account when
computing the energy due to the dissipation of the magnetic
field. Note, however, that because the Hall term in the electric
field is a function of J × B, then (J × B) · J is zero, i.e., the
Hall term does not produce any energy dissipation at all. The
only terms which directly dissipate electromagnetic energy by
dissipation are by Ohmic and by ambipolar diffusion. In the
Bifrost code the former is negligible compared to the artificial
diffusion needed to stabilize the code at numerically resolvable
scales and is therefore set to zero.

In contrast to the artificial resistivity present in the code, the
Hall term and ambipolar diffusion are calculated as a function of
the electron density and, for the latter, of the collision frequency
between the different species in the solar atmosphere. In order
to avoid instabilities from rapid heating processes due to the
new terms, it is sometimes necessary to further limit the time
steps (beyond the CFL condition) because the timescales of
the energy dissipation of the ambipolar diffusion are short. As
a result, the energy distribution in the chromosphere changes
rapidly and the source and sink terms in the energy equation,
such as radiative processes, need to be updated more often than
is the case without ambipolar diffusion.

2.1.4. Collision Frequencies

The collision frequency between electrons and ions can be
found in, e.g., Priest (1982) and is given by

νei = 3.759 10−6neT
−3/2 ln Λ (23)

and
νen

νei

= 5.2 10−11 nn

ne

T 2

ln Λ
, (24)

where ln Λ is the Coulomb logarithm (all in SI units).
As in De Pontieu et al. (2001), we follow three different

approximations in computing the collision frequency between
ions and neutral particles: as described by Osterbrock (1961) and
De Pontieu & Haerendel (1998, hereafter case A), as described
by von Steiger & Geiss (1989, hereafter case B), and as described
by Fontenla et al. (1993, hereafter case C), see the Appendix.
Table 1 lists the 2D simulations for which we investigate the
effects of these different methods to calculate νin. We note
that the appendix of De Pontieu et al. (2001) contains two
typos: their formula (A6) should be divided by 2 to provide the
correct expression for the collision frequency between neutral
hydrogen and protons, and formula (A12) should be replaced
by our formula. Our formula provides the correct equation for
the collision frequency between neutral hydrogen and protons,
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Table 2
Atomic Info

Name H He C N O Ne Na Mg

Abundance 12. 11. 8.55 7.93 8.77 8.51 6.18 7.48
Mass ion 1.008 4.003 12.01 14.01 16. 20.18 23. 24.32
Xi 13.595 24.58 11.256 14.529 13.614 21.559 5.138 7.644

Name Al Si S K Ca Cr Fe Ni

Abundance 6.4 7.55 7.21 5.05 6.33 5.47 7.5 5.08
Mass ion 26.97 28.06 32.06 39.1 40.08 52.01 55.85 58.69
Xi 5.984 8.149 10.357 4.339 6.111 6.763 7.896 7.633

Notes. The atomic species, abundances (log of number of atoms per 1012

Hydrogen atoms), mass ion (uma), and ionization fraction (eV) of the 16 most
important atomic species in the solar atmosphere are listed from the top to
the bottom row. The various collision frequencies and the electron density are
calculated, taking into account the atomic species in this table.

according to the recipe derived by De Pontieu & Haerendel
(1998) and Osterbrock (1961).

Throughout the paper, we will focus on the results of case B
since it is more recent and the most extensive.

In order to calculate the various collision frequencies, the ion
and neutral fractions are calculated from the Saha–Boltzman
equation. The electron density is also computed on the basis of
LTE; in practice this is done via a table lookup in the Bifrost
code. In the pre-computed table, the 16 most important atomic
species in the solar atmosphere are taken into account. Table 2
lists the atomic species, abundances, and ionization fraction (Xi).

2.2. Tests

One of the main objectives of this work is to study the
importance and validity of the generalized Ohm’s law in
a “realistic” 2.5D simulation of the solar atmosphere. We
describe three different tests done for the implementation of
the generalized Ohm’s law, which also illustrate the role and
importance of each form of diffusivity. For two of the tests, we
imposed a velocity equal to zero at all times in the full domain.
We also run separate tests using only the Hall term or ambipolar
diffusion.

2.2.1. 1D Hall Test

First, we test that our code correctly includes the Hall term.
In this test case, we set the velocities and ambipolar diffusion to
zero and consider the induction equation in 1D:

∂By

∂t
= −ηhallBx

∂2Bz

∂x2
(25)

∂Bz

∂t
= ηhallBx

∂2By

∂x2
. (26)

For this test, we set Bx constant (Bx = 0, 1121, and 2242 G
are shown with orange diamond symbols, and blue and green
lines in Figure 1). With higher Bx, the rate at which By and Bz

change with time increases. However, the total magnetic flux
should remain the same at all times, since the Hall term cannot
convert the magnetic flux into thermal or kinetic energy. Note
also that the Hall term will give rise to a non-zero Bz (and
therefore a non-zero uz in a dynamic simulation) even if the
field originally has no component in the z-direction. Figure 1
shows By in the top panel and Bz in the bottom panel for four
different runs. All cases have the same jump in By (black triangle

Figure 1. By (top panel) and Bz (bottom panel) as a function of x are shown for
the different 1D simulations with constant Hall term at time t = 20 s. The initial
condition is the same for all simulations (shown with black triangles). The runs
have different constant Bx values: Bx = 0 G (orange diamonds), Bx = 1121 G
(blue line), Bx = 2242 G with the Hall term (green line), and Bx = 2242 G
without the Hall term (red line). Note that the orange diamonds, red line, and
black triangles overlap.

(A color version of this figure is available in the online journal.)

symbols in the top panel) and a constant Hall term. The test
shown with the red line in Figure 1 does not have the Hall term
and Bx = 2242 G. All of these tests are shown at the same
instant (t = 20 s).

The rate of change of By and Bz is as expected, i.e., the
case with Bx = 2242 G leads to an increase of unsigned total
flux of Bz (integrated along the x-axis) that is twice as large as
the case where Bx = 1121 G. Moreover, the case Bx = 0 G
behaves similarly to the case with no Hall term. The magnetic
flux is in all cases conserved. This gives us confidence that our
implementation of the Hall term in the code is satisfactory.

2.2.2. 1D Ambipolar Test

In 1D, the induction equation for By is

∂By

∂t
= ηamb

∂

∂x

(
B2

y

∂By

∂x

)
. (27)

Apart from the trivial solution, By = constant, it is clear
that Equation (27) also permits a steady solution of the form of
By ∝ x1/3 (see Brandenburg & Zweibel 1994, for details). In
this expression we should keep in mind that the code includes
numerical diffusivity in addition to ambipolar diffusion. We
consider the evolution of an initially sinusoidal profile of By.
This profile evolves, and strong gradients become stronger
approaching the form By ∝ x1/3 as time progresses. Figure 2
shows the initial condition of By (solid line) and at t = 50 s
(dashed line) which is close to the steady solution. Observe
that where the gradient of By is large By closely follows the
expression By ∝ x1/3 (dash-dotted line).

Ambipolar diffusion converts magnetic energy into thermal
energy as discussed above. In this 1D test, we turn off the
heating from artificial diffusion and only allow heating from the
ambipolar diffusivity. Such heating in this simple simulation
must follow the expression

∂e

∂t
= ηambJ

2
z B2

y . (28)
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Figure 2. From the ambipolar test, By is shown as a function of x at t = 50 s. The
initial condition is shown in solid line. The dashed line shows By at t = 50 s.
The dash-dotted line shows a function proportional to x1/3 which is what would
be expected from the analytical considerations.

Figure 3. Test of ambipolar diffusion on the energy balance. Energy is shown
as a function of x at t = 2.1 s. The energy from the model is shown with the
black diamonds and the energy extracted from Equation (29) is shown with the
red line. Note that the red line is overlapping with the black diamonds.

(A color version of this figure is available in the online journal.)

Figure 3 shows the energy profile with x of this test (black
diamonds) at t = 2.1 s. Calculating the right-hand side of this
expression using the sinusoidal shape of By from the initial
condition, then deriving Jz, we calculate the energy to be

e = einit + ηambJ
2
z B2

yΔt, (29)

where Δt is the time increment. This relationship is shown with
the red line in Figure 3. The black diamonds overlaps the red
line as would be expected. This indicates we have correctly
implemented ambipolar diffusion in the code.

2.2.3. Collision Frequencies Test: VAL-C Model

In order to test whether the absolute values of the diffusion
terms are calculated correctly, we use three different sources
for the neutral–ion collision frequency (νni , see Section 2.1.4).

Figure 4. Neutral–ion collision frequency as a function of height for the quiet-
Sun model of Vernazza et al. (1981), using different formulae for νni : the dotted
line is case A, the solid line is case B, and the dashed line is case C.

This also allows us to study the uncertainties involved in the
various formulae for the collision frequency, as already studied
for 1D-static models by De Pontieu et al. (2001). We test our
implementation in the Bifrost code by using the densities and
temperatures from the VAL-C atmospheric model (Vernazza
et al. 1981) which allows us to compare our results with those
found in the published literature. Indeed, we correctly obtain the
neutral–ion collision frequencies as a function of height as can
be seen by comparing our Figure 4 with Figure 2 in De Pontieu
et al. (2001). The large dip in the collision frequency at 0.5 Mm
is due to the low number of ions (mostly non-hydrogen species)
in this region.

2.3. Initial and Boundary Conditions

Let us now consider the importance and validity of the
generalized Ohm’s law in a “realistic” 2.5D simulation of the
solar atmosphere. The 2.5D computational domain stretches
from the upper convection zone to the lower corona and is
evaluated on a non-uniform grid of 512 × 325 points spanning
16 × 16 Mm2. The frame of reference for the model is chosen
so that x is the horizontal direction and z is the vertical direction
(Figure 5). The grid is non-uniform in the vertical z-direction
to ensure that the vertical resolution is good enough to resolve
the photosphere and the transition region with a grid spacing of
28 km, while becoming larger at coronal heights where gradients
are smaller.

We run two different initial conditions with different values
for the unsigned magnetic field strength but with similar field
configurations (Figure 5). By is originally set to zero. The initial
model starts with a magnetic field that is inclined some 5◦
with respect to the vertical axis and the two different setups
for the unsigned field strengths in the photosphere are 0.25 G
and 90 G. These two initial conditions are run for the three
different formulae that were mentioned above to calculate the
collision frequency νin. The simulations with the initially weak
magnetic field using cases A, B, or C for the neutral–ion collision
frequency are labeled WA, WB, or WC, while the strong field
simulations using cases A, B, or C for the neutral–ion collision
frequency are labeled SA, SB, or SC, respectively. Table 1 lists
the different simulations.

In the following we will refer in our analysis to simulations
WB and SB, unless otherwise noted.
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Figure 5. 2D snapshots of the two initial 2.5D MHD models. The initial conditions with weak (simulations labeled WA, WB, and WC) and strong magnetic fields
(SA, SB, and SC) are shown respectively in the left and right panels. The color scale shows the temperature in logarithmic scale and the magnetic field is shown with
white lines.

(A color version of this figure is available in the online journal.)

3. RESULTS

The simulations presented include the dynamic processes
(including radiative losses) of the photosphere and chromo-
sphere and a self-maintained chromosphere and corona. This is
a very different type of model as compared to semi-empirical
models such as the VAL-C model, or previous simulations inves-
tigating the effects of partial ionization which had a simplified
treatment of the energy balance (and ionization degree). It is thus
of significant interest to determine how dynamic atmospheres
such as those from our simulations impact the importance of the
ambipolar diffusion and the Hall terms (also assuming differ-
ent approximations to the collision frequency), and to compare
the results with those from the models based on a VAL-C type
atmosphere.

The basic structure of our modeled chromospheres is shown
in Figure 5. A full description of their properties fall outside
the scope of this paper but we will mention the most important
as concerns ambipolar diffusion and the Hall term: the basic
thermodynamic state of the chromosphere is maintained by the
continual injection of acoustic shocks from the photosphere.
These perturbations are due to the chaotic generation of waves
in the convection zone of which waves with periods of order
3 minutes will propagate and steepen in the chromosphere, as
is well known and as extensively studied by Carlsson & Stein
(1992, 1994). The propagation of waves will be modified in the
presence of a magnetic field (Bogdan et al. 2003; De Pontieu
et al. 2004; Heggland et al. 2007, 2011; McIntosh et al. 2011,
among others) but will nevertheless steepen and form strong
shocks, with high temperatures in the shock fronts and very
low temperatures in the regions behind (Leenaarts et al. 2011).
These “cold chromospheric bubbles” can be seen in both panels
of Figure 5 which show temperatures as low as 2000 K or lower.
In the strong field case, the Lorentz force is clearly important,
pushing the corona upward and allowing cool material to exist at

great heights, much higher, up to 5 Mm above the photosphere,
than that found in semi-empirical models where the maximum
chromospheric height is found to be of order 2–2.5 Mm. The
distribution of density and temperature with height in dynamical
“realistic” simulations is discussed in much greater detail in,
e.g., Leenaarts et al. (2011).

3.1. Collision Frequencies and Diffusivities

As mentioned, most studies of the effects of ion–neutral
collisions in the chromosphere have been based, in some form,
on semi-empirical models (VAL-C or FAL-C models as shown
in Figure 4). However, the chromosphere and transition region
are clearly highly dynamic, and it is of great importance
to know the effects of the neutral–ion interactions in such
dynamic atmospheres. First of all, we are interested in studying
the relative importance of the different diffusivities in the
chromosphere and transition region. Figures 6 and 7 show the
Ohmic diffusion, artificial diffusion, Hall term, and ambipolar
diffusion from top to bottom and left to right for simulations
WB and SB, respectively.

On comparing the different diffusivities, we find that in the
entire chromosphere, the Hall term is on average two orders of
magnitude larger than Ohmic diffusion. This is true for both
simulations WB and SB and is perhaps more easily seen by
considering the ratios of the diffusivities plotted in Figure 8.
Ambipolar diffusion is roughly four orders of magnitude larger
in the weak field (WB) case and fully six orders of magnitude
larger than Ohmic diffusion for the strong field SB case.
Ambipolar diffusion is considerably larger for SB than for
WB because ambipolar diffusion depends quadratically on the
magnetic field strength. Note that while Ohmic diffusion has
a significant magnitude throughout the atmosphere, ambipolar
diffusion is important only in the chromosphere.

Numerical simulations must include some form of artificial
diffusion in order to compensate for the fact that they do not
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Figure 6. Comparison of the different diffusivity terms for simulation WB at t = 500 s. ηohm, ηart, ηhall, and ηamb are shown from top to bottom and left to right
respectively in logarithmic scale. Note that more than nine orders of magnitude are shown.

(A color version of this figure is available in the online journal.)

Figure 7. Comparison of the different diffusivities for simulation SB at t = 500 s. The layout is the same as in Figure 6.

(A color version of this figure is available in the online journal.)

have infinite spatial resolution. In the Bifrost code this is done
through a so-called hyper-diffusivity which in practice means
that the diffusion coefficient is increased in regions that require
high diffusivity, i.e., where gradients are large. The magnitude
of this artificial diffusion is set by the spatial resolution. To
some degree this behavior is similar to Ohmic diffusion, but
there are also significant differences. Simulations run at the

highest possible spatial resolution cannot even come close to the
diffusion values found in Ohmic diffusion. This is a well-known
problem for numerical simulations of the solar atmosphere.

For the simulations reported here, we find an artificial
diffusivity in the chromosphere that is three orders of magnitude
larger than the Ohmic diffusivity and that is up to five orders of
magnitude larger than the Ohmic diffusivity in the corona. By
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Figure 8. Ratio between the Hall term and Ohmic diffusion (left panels) and ambipolar and Ohmic diffusion (right panels) for the SB simulation (top panels) and WB
(bottom panels) at t = 500 s.

(A color version of this figure is available in the online journal.)

design, the artificial diffusion is largest where the shocks and
other high-gradient phenomena are located. Moreover, since
the grid is non-uniform and the grid resolution decreases with
height, artificial diffusion will on average be larger in the corona
than in the lower layers. In contrast, the Ohmic diffusion is
largest in the upper photosphere and chromosphere. As a result
of these differences between artificial diffusion and Ohmic
diffusion, the magnetic Reynolds number on the Sun and in
the simulations is completely different: the magnetic Reynolds
number is several orders of magnitude higher in the solar
atmosphere than even the highest resolution simulations. Since
Ohmic diffusion is negligible compared to artificial diffusion,
we do not include its effects either in the induction equation or
in the energy equation. In a similar manner, as a result of the
low resolution of these simulations, the artificial diffusion will
mask the Hall term, but here we are interested in describing
the stratification of the Hall term and ambipolar diffusion in
self-consistent magnetoconvection simulations.

One of the most interesting results of our calculations is that,
on the other hand, ambipolar diffusion is of the same order or,
in some regions, even larger than the artificial diffusion in the
chromosphere. This is a perhaps surprising, but crucial, property
of the chromosphere. It allows us to use our numerical simu-
lations to study the effects of ambipolar diffusion while using
the correct physical magnitudes of the coefficients. As a result,
the chromosphere may be the only region where simulations are
close to reality once all the physics are included in the code,
despite the necessarily limited resources of today’s computing
technology. This has an impact beyond the chromosphere, since
it directly affects discussions on whether these self-consistent
magnetoconvective simulations provide a realistic driver and
boundary to the corona. For example, recent simulations by
Hansteen et al. (2010) suggest a preponderance of heating in
the lower atmosphere (first few Mm above the photosphere),
implying that much of the coronal heating occurs toward the

footpoints (Martı́nez-Sykora et al. 2011). The large ambipolar
dissipation we find here suggests that such simulations (which
only include artificial resistivity) are actually much more realis-
tic than previously thought, including the predictions of heating
low down.

The Ohmic diffusivity, Hall term, and ambipolar diffusivity
depend on the electron density, while the Ohmic and ambipo-
lar diffusivites also depend on collision frequencies which are
shown in Figures 9 and 10 for the weak field WB and strong field
SB simulations (see the Appendix). Note that the Ohmic diffu-
sivity is proportional to the collision frequency, while ambipolar
diffusivity is inversely proportional to the collision frequency.
On average, the collision frequency between electrons and ions
is larger than the ion–neutral, electron–neutral, and neutral–ion
collision frequencies in the chromosphere, in the WB simula-
tion one order of magnitude larger and in the SB simulation
two orders of magnitude. This difference in collision frequen-
cies between the WB and SB simulations is mainly because
the chromosphere is hotter in the SB simulation as a result of
ambipolar heating.

The electron–ion collision frequency also shows strong vari-
ation throughout the chromosphere, by almost five orders of
magnitude in both simulations. This variation is due to the elec-
tron density variation in the chromosphere (see second row in
Figure 11 and Equation (23)). As a result, the electron–ion
collision frequency is lower inside the cold chromospheric
bubbles than in the shock fronts. In the chromosphere, the
electron–neutral and ion–neutral collision frequencies are simi-
lar in magnitude. However, the ion–neutral collision frequency
shows a stronger variation in space in the middle chromosphere
than the electron–neutral collision frequency. This is especially
true in the cold chromospheric bubbles, where the ion–neutral
collision frequency is significantly lower. What causes these
differences? First, we note that ρn shows less variation in
horizontal cuts in the lower chromosphere than ρi because the
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Figure 9. Comparison of the different collision frequencies for the WB simulation at t = 500 s. νei , νen, νin, and νni are shown from top to bottom and left to right
respectively in logarithmic scale.

(A color version of this figure is available in the online journal.)

Figure 10. Comparison of the different collision frequencies for the SB simulation at t = 500 s. The layout is the same as in Figure 9.

(A color version of this figure is available in the online journal.)

region is mostly dominated by neutrals. As a result of this,
the neutral density is almost similar to the total density. In the
cold bubbles, hydrogen is mostly neutral, and the only ions are
provided by the heavier metals. While both the electron–neutral
and ion–neutral collision frequencies are dependent on the
neutral density (which does not vary much in the lower chromo-
sphere), the dominance of metals in providing ions implies that

the average mass per ion increases significantly in the cold bub-
bles (compared to the rest of the chromosphere). The associated
drop of average thermal speed (for the heavy ions compared to
protons) is the reason for the sharp drop in ion–neutral collision
frequency in the bubbles (compared to the rest of the chro-
mosphere). The neutral–ion collision frequency is even lower
than the ion–neutral collision frequency in the bubbles, because
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Figure 11. Ambipolar diffusion, electron density, absolute value of the magnetic field, ratio between neutral and total density, and ion density are shown from top to
bottom for the WB simulation (left panels) and SB (right panels) at t = 500 s.

(A color version of this figure is available in the online journal.)

there are so few ions available to collide with (bottom panels in
Figure 11).

We now consider which parameters are responsible for the
changes in diffusivities throughout the solar atmosphere. In
both simulations (WB and SB), the strongest Ohmic diffusivity
is concentrated in the lower-middle chromosphere while it is

weaker in the corona and convection zone. In the chromosphere,
the Ohmic diffusivity varies over a range of almost four orders
of magnitude. This variation in the chromosphere is due to the
strong variation of the electron density and collision frequency
of electrons with neutrals and ions (Figures 9–11). Ohmic
diffusion is large in the expanding cool bubbles and low where
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Figure 12. Minimum (dashed line), median (solid line), and maximum (dashed line) of νin (top panels) and ηamb (bottom panels) as function of height are shown for
the simulation labeled WB (black in left panels), SB (black in right panels), and for the VAL-C atmosphere (red). The VAL-C ambipolar diffusion is calculated taking
into account the maximum, minimum, and median magnetic field of the 2D models as a function of height. The minimum, median, and maximum are calculated in
horizontal planes for the instant t = 500 s.

(A color version of this figure is available in the online journal.)

temperatures are higher. This is because the Ohmic diffusion
variations are dominated by the variations in electron density,
which is very low in the cool bubbles and large in shock fronts.
The collision frequency of electrons with ions and neutrals does
not drop as precipitously in the cold bubbles since there are
plenty of neutrals to collide with in these bubbles.

The Hall term is largest in the lower-middle chromosphere
and in the corona (Figure 8). This is because it is inversely
proportional to the electron density which is small in both
regions. We see that for both simulations, the Hall term is larger
than the Ohmic diffusivity in the chromosphere and corona,
but not in the photosphere nor in the convection zone. In the
cooler regions of the chromosphere, the Hall term is relatively
even higher than in the shock fronts, and up to three orders of
magnitude greater than the Ohmic diffusivity. Such differences
are a bit larger in the WB simulation, since electron density
is smaller in the cold chromospheric bubbles in the weak field
model. This difference in the electron density between WB and
SB is because the cold bubbles have cooler temperatures in the
WB simulation than in the SB simulation. In the intergranular
lanes in the photosphere, the Hall term is the most important
diffusion term after the artificial diffusion. Therefore, since the
Hall term is proportional to the strength of the magnetic field,
this term may be important to consider in magnetoconvective
simulations that include strong magnetic fields.

Ambipolar diffusion is important in the region from the up-
per photosphere to the upper chromosphere. In the photosphere,
ambipolar diffusion shows some importance in intergranu-
lar lanes which have strong concentrations of magnetic field
(Figure 11). Therefore, the strong field in the SB simulation
shows considerably more diffusivity in intergranules with high
magnetic flux concentrations than in the weak field WB
simulation. In the chromosphere, ambipolar diffusion domi-
nates almost everywhere except for in the lower chromosphere
in shock fronts. The largest difference between ambipolar and
Ohmic diffusion is located in the cold chromospheric bubbles
and near the upper-chromosphere/lower transition region. Note
that for the SB simulation the ratio between ambipolar and
Ohmic diffusion is almost four orders of magnitude larger than
in the WB simulation due to the quadratic dependence of the am-
bipolar diffusivity on the magnetic field strength. The ambipolar
diffusivity is large in the cold bubbles since the ion density and
the ion–neutral collision frequencies are low, but mainly because
the ion density is extremely low (five orders of magnitude lower
than in the chromospheric shock fronts). In the upper chromo-
sphere, the ambipolar diffusivity becomes relatively strong due
to low densities—which lead to low ion–neutral collision fre-
quencies—but only in those regions where the magnetic field
strength is high. In the cold bubbles the ion density is low be-
cause of the adiabatic expansion and cooling, whereas in the
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Figure 13. Joint probability distribution function (JPDF) of the temperature against the ion–neutral collision frequency (top) and ambipolar diffusivity (bottom) for
the simulations labeled WB (left) and WC (right). JPDF is calculated and integrated over 220 s above the photosphere. The color bar is in logarithmic scale. The
median as a function of temperature for the WB and WC cases is shown in solid and dashed lines, respectively.

(A color version of this figure is available in the online journal.)

upper chromosphere, it is because the density drops by 2–3
orders of magnitude compared to the lower chromosphere. As
shown in Figure 11, the ambipolar diffusivity depends strongly
on the ion and neutral density and thus on the ionization state
of the chromospheric plasma. However, it is well known that
in the middle and upper chromosphere the ionization and re-
combination rates are fairly slow for hydrogen, which will not
be in ionizational equilibrium (Carlsson & Stein 2002). This
suggests that, in order to treat ambipolar diffusion realistically,
it is necessary to solve the full time-dependent rate equations
for hydrogen ionization (Leenaarts et al. 2007).

3.1.1. Comparison with VAL-C Model

The VAL-C model does not provide a good description of
the strong temporal and spatial variations found in the physical
variables of the chromosphere. In the section above, we have
seen that the different collision frequencies and diffusivities
show spatial variations of several orders of magnitude at the
same height in the chromosphere. The lower chromosphere
changes rapidly due to the shock fronts; these lead to changes
in the thermodynamic structure of the lower chromosphere
on timescales shorter than a minute. As a result of this, cold
chromospheric bubbles appear and disappear in minutes. Due
to the ambipolar diffusion, plasma is heated in the cold bubbles
on timescales shorter than those characterizing the shock front.
As a result of the spatial and temporal variations, the neutral–ion
collision frequency varies by almost eight orders of magnitude

in the chromosphere in the 2D simulation, whereas the VAL-C
model has a unique value for the collision frequency at every
height (Figure 12). In the cold chromospheric bubbles, the
collision frequency drops to considerably lower values than
those found in the VAL-C model. This is a result of the low
ion number density in these areas, which are overestimated in
the VAL-C model.

We use the maximum, minimum, and median magnetic fields
of the 2D models (SB and WB) as a function of height in order
to calculate the range of ambipolar diffusivities in the semi-
empirical VAL-C model. The ambipolar diffusion has a very
wide range of values, 8 orders of magnitude in simulation SB
and 11 orders of magnitude for simulation WB. These variations
are almost 6 or 8 orders of magnitude larger than in the VAL-C
model. The ambipolar diffusivity in the 2D simulations is much
higher in most of the chromosphere compared to what is found
in the VAL-C model. The reason for the large difference of the
neutral–ion collision frequency and the ambipolar diffusivity
in the VAL-C model (compared to the 2D model) is because
the VAL-C model does not capture the thermodynamics of
the cold chromospheric bubbles where the neutral–ion collision
frequency drops precipitously.

These large differences in both the neutral–ion collision fre-
quency and ambipolar diffusivities, found between the VAL-C
model and our simulation, should lead to a re-examination of
previous results related to the generalized Ohm’s law (see ref-
erences) using semi-empirical models to define the density and
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Figure 14. Layout is the same as Figure 13. However, the simulations are SB (left) and SC (right).

(A color version of this figure is available in the online journal.)

temperature structure. We also reiterate the importance of tak-
ing into account the likely dynamic state of hydrogen ionization
(Leenaarts et al. 2007).

3.1.2. Other Methods to Calculate Collision Frequencies

We considered three different methods to calculate νin

(Section 2.1.4), and thus, the ambipolar diffusivity. Do the dif-
ferent methods give similar values of the collision frequency
and/or diffusion for the different models? We note that the evo-
lution of the simulations using the different methods to calculate
the collision frequency (WA, WB and WC, and SA, SB, and SC)
diverge within a few minutes. We therefore integrate the proper-
ties of the models in time in order to study the different values of
the collision frequency and ambipolar diffusion, and proceed as
follows. In Figure 13, we show the joint probability distribution
function (JPDF) of the temperature versus the ion–neutral colli-
sion frequency (top) and the ambipolar diffusivity (bottom) for
the simulations labeled WB (left) and WC (right). In Figure 14,
we show the cases SB and SC in a similar manner. We have
integrated over 4 minutes. Note that the variations of the y-axes
are logarithmic and cover more than 10 orders of magnitude.
We mostly focus on cases B and C since those are the most
recent, and include more advanced calculations of the collision
frequencies.

The values for νin and ηamb differ in range and mean values
for the different cases in each simulation. These differences
are significant in certain temperature ranges. The differences

between the different methods to calculate the ion–neutral
collision frequency are similar for both atmospheres (weak and
strong magnetic field strength). For instance, at log(T ) ≈ 3.7
(5000 K), case B shows ion–neutral collision frequencies that are
a factor of two larger than for case C. At temperatures larger than
log(T ) ≈ 3.7, the collision frequency for case B is almost two
orders of magnitude smaller than in case C. As a result, in certain
temperature ranges, the largest values of the ambipolar diffusion
for case B are almost two orders of magnitude larger than for
case C. For temperatures lower than log(T ) ≈ 3.6 (4000 K),
the median collision frequency as a function of temperature is
roughly similar between cases B and C, but not the distribution,
as can be seen: case B reaches collision frequencies smaller than
case C.

At temperatures larger than log(T ) ≈ 3.8 (6300 K), the
collision frequencies for case C are one order of magnitude
larger than for case B. As a result, the median of the ambipolar
diffusion for cases WC and SC is one order of magnitude smaller
than for WB and SB.

In order to have a better impression where in the atmosphere
the ion–neutral collision frequency and ambipolar diffusion dif-
fer between the different cases, we take the same atmospheric
model (simulation WB or SB at t = 2500 s) and calculate
from these two models the collision frequency and ambipolar
diffusivity using the different methods (Figures 15 and 16). It
is interesting and important to see that at the precise location
where the ambipolar diffusion is really high (in cold chromo-
spheric bubbles and in the upper chromosphere), the different
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Figure 15. Ratio of the ion–neutral collision frequency (left panels) and ambipolar diffusivity (right panels) between case A to case B (top panels) and case C to
case B (bottom panels), for the atmosphere with weak magnetic field strength. The white contours show where these ratios are equal to one. Note that the color scheme
is in a logarithmic scale. We used the same atmospheric model for all three cases, i.e., before the simulations diverge with time, but then calculated the collision
frequency and ambipolar diffusion using the different formulae of each case.

(A color version of this figure is available in the online journal.)

methods differ most. In the cold chromospheric bubbles for both
atmospheres (weak and strong magnetic field), the collision fre-
quency using case B is almost four times smaller than case A,
but similar to case C. As a result, the ambipolar diffusivity is
more than two times smaller using the method of case B than for
case A. In the upper chromosphere or shock fronts, the collision
frequency using case B is almost two times larger than case A
and slightly larger than with case C. As a result, the ambipolar
diffusivity using case B is more than three times smaller than
case A and almost three times smaller than case C. However,
in the proximity of the transition region, the collision frequency
for case B is a bit smaller than case A and more than 10 times
smaller than case C. As a result of this, the ambipolar diffusivity
using case B is a bit larger than case A and more than 10 times
larger than case C.

These large differences between each method are due to
the different temperature dependences (see the Appendix).
As mentioned, these differences lead to rapidly diverging
thermodynamic evolution in the various models. Thus, it is
important to take into account this uncertainty in calculating
the collision frequencies when the generalized Ohm’s law is
modeled.

3.2. Approximations to the Generalized Ohm’s Law

The generalized Ohm’s law is based on several approxima-
tions and considerations. In this section, we describe where

these approximations fail and the implications of this failure.
We employ the atmospheres of the WB and SB simulations in
this discussion.

3.2.1. Approximations in the Momentum Equation

Let us establish and validate the different assumptions under-
lying the generalized Ohm’s law as implemented in the code,
and see if they are fulfilled in the fully dynamic self-consistent
simulations. One of the first consideration is that the ion den-
sity dominates over the electron density (ρi/ρ � ρe/ρ). Every-
where in the atmosphere, the values of ion and electron densities
remain within the range that fulfill ρi/ρ � ρe/ρ so that electron
inertia can be neglected.

In order to neglect the effects of drift momentum in the
momentum equation, the drift momentum has to be smaller than
the fast momentum (ρ

√
v2

a + c2
s , see Equation (6) and Pandey

& Wardle 2008). This approximation is fulfilled in most of the
atmosphere under both strong and weak field conditions. The
only exception is in the weak field atmosphere, where some
low-density areas just below the transition region show a ratio
of order 0.1–1 (see Figure 17). This is because the ion–neutral
collision frequency drops significantly there, so that the drift
between ions and neutrals becomes rather large. As a result,
in these small regions the plasma becomes decoupled from the
neutrals, and it may be necessary to add the drift momentum
to the momentum equation, and/or solve the MHD equations
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Figure 16. Same as Figure 15 for the atmosphere with strong magnetic field.

(A color version of this figure is available in the online journal.)

Figure 17. Drift momentum has to be smaller than the fast momentum
(Equation (6)). The ratio between both terms, i.e., ρiρnu2

D and ρ2(v2
a + c2

s )
is shown for the simulations labeled WB (top panel) and SB (bottom panel)
at t = 500 s. The color bar is in logarithmic scale and it is the same for both
panels.

(A color version of this figure is available in the online journal.)

using multiple fluids. In the weak field atmosphere, a few of the
cold, expanding bubbles show ratios of order 0.1, so that the
fast momentum does stay in excess of the drift momentum. This
suggests that the region below the transition region is the only
concern for this particular condition.

3.2.2. Approximations in the Induction Equation

To allow the removal of the time dependence of the drift mo-
mentum equation (Pandey & Wardle 2008), the electron density
times the collision frequency of electrons with neutrals has to
be smaller than the ion density times the collision frequency
of ions with neutrals (ρeνen � ρiνin). This approximation is
fulfilled in most of the atmosphere with the exception of some
areas in the upper photosphere and in the cold chromospheric
bubbles (Figure 18). In the cold bubbles, the electron–neutral
collision frequency is almost similar to the ion–neutral collision
frequency. In the upper photosphere, the collision frequency of
electrons with neutrals is relatively large so ρeνen � ρiνin is
not fulfilled. Therefore, in these regions, the proper way to solve
the ambipolar term in the induction equation is by calculating
the drift velocity using the fully time-dependent equation of uD

(Pandey & Wardle 2008).
Some of the approximations used in deriving the equations

require that the dynamical frequency remains smaller than the
frequencies shown in Figure 19. The typical timescales on which
the simulated atmosphere evolves is of order 10 s or longer, i.e.,
a dynamic frequency of ≈0.5 Hz or lower: if the frequencies
shown in Figure 19 are higher than ≈0.5 Hz, the assumptions
underlying the generalized Ohm’s law are fulfilled.
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Figure 18. Following Equation (16), the ratio between ρeνen and ρiνin is shown
for the simulations labeled WB (top panel) and SB (bottom panel) at t = 500 s.
The color bar is the same for both panels and it is in logarithmic scale.

(A color version of this figure is available in the online journal.)

The first assumption is that the time derivative of the drift
velocity can be neglected. Following Equation (18), this can
be done only if the dynamical frequency is smaller than the
frequency (ρ/ρi)νni shown in the top panels of Figure 19.
The latter frequency is very high in the upper photosphere
and the chromosphere, and stay well above the dynamical
frequency of our simulations (≈0.5 Hz). Only in the vicinity
of the transition region does (ρ/ρi)νni become small enough
that it is of the same order as the dynamical frequency of the
simulations. As a result, we may need to take into account the
derivative terms shown in Equation (17) only in this small region
in the vicinity of the transition region.

A second assumption is that the dyadic product of the drift
velocity in the momentum equation can be neglected (Pandey &
Wardle 2008). This term can only be neglected if the dynamic
frequency stays well below the frequency defined in Equation (7)
and shown in the middle panels in Figure 19. We find that in the
cold chromospheric bubbles (in the weak field case) and in the
upper chromosphere (in both weak and strong field cases), this
assumption sometimes fails. In these regions, we may thus need
to take into account the momentum drift term in the momentum
equation.

A final assumption is that the terms of the form ∇P × B
in the induction equation can be neglected. This can only be
done when the dynamic frequency stays below the frequency
defined in Equation (19) and shown in the bottom panels in
Figure 19. This bound for the dynamical frequency strongly
depends on magnetic field strength of the model. We find that
for the weakly magnetic atmosphere case (WB) this limit is
low, and the assumption fails in the upper chromosphere and
cold bubbles. In the strongly magnetic atmosphere (SB) the
assumptions only fails in the upper part of the chromosphere.

In summary, for the weak field atmosphere we cannot neglect
the time derivative and dyadic product of the drift velocity, and
the ∇P × B terms (in the momentum and induction equation
respectively) in the cold bubbles and just below the transition
region. In all other regions in the weak field atmosphere, the
assumptions underlying the generalized Ohm’s law are fulfilled.

For the strong field atmosphere, the generalized Ohm’s law
works well in most of the chromosphere, except in the region
just below the transition region where the time derivative and
dyadic product of the drift velocity and the ∇P ×B terms cannot
be neglected.

4. DISCUSSION AND CONCLUSIONS

We have implemented the partial-ionization effects in the
Bifrost code in the form of the Hall term and ambipolar diffu-
sion. The code has been tested and verified with different tests
that are presented in this paper. The code allows the simula-
tion of the solar atmosphere, from the upper convection zone to
the lower corona, with a magnetoconvective photosphere, and
a fully dynamic and self-maintained chromosphere and corona.
We studied the different diffusivities in two different models:
one is weakly magnetic and the other is rather strongly mag-
netic. The magnetic field strength of the latter model is similar
to that found in the quiet Sun, including the network.

In short, the Ohmic diffusion is roughly three orders of
magnitude smaller than the Hall term in the chromosphere, and
the latter is three orders of magnitude smaller than the artificial
diffusion. Unlike Ohmic diffusion, the Hall term depends on the
magnetic field, as does ambipolar diffusion which is strongly
dependent on the magnetic field strength. As a result of this, the
ambipolar diffusivity is clearly different for the two models;
in regions with large ambipolar diffusivity we find it is of
the same order as the artificial diffusion in the chromosphere
for the weakly magnetic model (WB), and more than one
order of magnitude larger than the artificial diffusivity for
the strongly magnetic model (SB). The fact that the artificial
diffusivity is actually smaller than the ambipolar diffusivity
under many chromospheric conditions has some very important
consequences. It means that these simulations are capable of
providing a surprisingly realistic view of the consequences of
the ambipolar diffusion in the chromosphere and corona. This
has an impact beyond the chromosphere, since it directly affects
discussions on whether these self-consistent magnetoconvective
simulations provide a realistic driver and boundary to the corona.
These results will be described in detail in a follow-up paper.

Another important result is that both the Hall term and
ambipolar diffusivity vary by several orders of magnitude in
the chromosphere as a result of the time-varying dynamics and
the strong variations in temperature, electron, ion and neutral
density, and magnetic field strength in this region. This strong
variation is not taken into account in any of the previous studies
which use either 1D semi-empirical VAL-C type models or lack
more sophisticated approaches to the radiation, ionization, and
energy balance. The largest values of the ambipolar diffusivity
are located in the cold chromospheric bubbles that have low
temperatures due to strong adiabatic expansion, and in the upper
chromosphere because the neutral–ion collision frequency is
small. However, the ambipolar diffusion is strongly dependent
on the ionization degree, and as shown by Leenaarts et al. (2007),
time-dependent hydrogen will change the ratio between neutrals
and ions compared to LTE conditions. The Bifrost code can treat
the time-dependent ionization of hydrogen and we plan to run

17



The Astrophysical Journal, 753:161 (20pp), 2012 July 10 Martı́nez-Sykora, De Pontieu, & Hansteen

Figure 19. Study of the validity of the assumptions underlying the generalized Ohm’s law. The dynamic frequency of the simulations (≈0.5 Hz) should remain lower
than the frequency limits shown in the different panels for simulations WB (left panels) and SB (right panels) at t = 500 s. The frequencies follow the expressions
of Equation (18) (top panels), Equation (7) (middle panels), and Equation (19) (bottom panels). The color bar for each frequency is located at the top side and is in
logarithmic scales. The white color is where the temperature is above 3 × 104 K.

(A color version of this figure is available in the online journal.)

new simulations, taking into account both the generalized Ohm’s
law and time-dependent hydrogen ionization.

We have compared different methods to calculate the colli-
sion frequency between neutrals and ions. Both the ion–neutral
collision frequency and ambipolar diffusivity differ consider-
ably as a function of the method used to calculate this collision
frequency. Since ambipolar diffusion has a significant impact
on the thermodynamic evolution of these models, the simula-
tions rapidly diverge. When comparing each method we find
that the largest differences are located in regions where the am-
bipolar diffusivity is large: in the cold chromospheric bubbles
and in the upper chromosphere in the vicinity of the transition
region. These differences bring a new uncertainty to the results
(Section 3.1.2) and highlight the need for a detailed considera-
tion of the relevant collisional processes in the chromosphere.

Finally, we investigated the different approximations underly-
ing the generalized Ohm’s law as described in detail by Pandey
& Wardle (2008). In both models, most of the simplifications
are applicable with some exceptions. In the upper chromosphere
the collision frequency is too low; as a consequence, the velocity
drift can be large. Therefore, we may need to define the velocity

drift and add an extra term in the momentum equation related
to the momentum drift between ions and neutrals. In the upper
photosphere and in cold chromospheric bubbles the ambipolar
term in the induction equation may need to be calculated using
the drift velocity. Moreover, the drift velocity should be cal-
culated using the time-dependent form (as shown in Pandey &
Wardle 2008). This is necessary because the ion density and the
ion–neutral collision frequency drop in these cold areas as op-
posed to the electron density and the electron–neutral collision
frequency.

The 2D simulations have been run with the Njord and
Stallo cluster from the Notur project, and the Pleiades clus-
ter through computing grants SMD-07-0434, SMD-08-0743,
SMD-09-1128, SMD-09-1336, SMD-10-1622, SMD-10-1869,
SMD- 11-2312, and SMD-11-2752 from the High End Comput-
ing (HEC) division of NASA. We thankfully acknowledge the
computer and supercomputer resources of the Research Coun-
cil of Norway through grant 170935/V30 and through grants of
computing time from the Programme for Supercomputing. This
work has benefited from discussions at the International Space
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Science Institute (ISSI) meeting on “Heating of the magnetized
chromosphere” from 2012 February 21–24, where many aspects
of this paper were discussed with other colleagues. To analyze
the data we have used IDL. B.D.P. was supported through NASA
grants NNX08BA99G, NNX08AH45G, and NNX11AN98G.

APPENDIX

COLLISION FREQUENCIES

In order to calculate the collision frequency between ions
and neutral particles we use three different approximations
(following the approach by De Pontieu et al. 2001): one
described by Osterbrock (1961, hereafter case A), one described
by von Steiger & Geiss (1989, hereafter case B), and one by
Fontenla et al. (1993, hereafter case C).

As a first approach (case A), we take the formulae from
Osterbrock (1961) and De Pontieu & Haerendel (1998), where
the collision frequency between neutral hydrogen and protons
(νHp) are given by

νHp = 5 10−19

√
1

2

√
8kT

πmH
np, (A1)

where mH is the hydrogen atom mass and np is the proton
number density. Note that De Pontieu et al. (2001) had a typo
with a factor of two. The collision frequency (νHm) of neutral
hydrogen with an ionized metal is defined as

νHm = 8 10−20

√
mm

mm + 1

√
8kT

πmH
nm, (A2)

where mm and nm are the atomic mass number of metal ions and
the number density of metal ions of type m, respectively. The
collisions between neutral helium and ions are given by

νHep = 4 10−20

√
1

5

√
8kT

πmH
np (A3)

νHep = 4 10−20

√
mm

mm + 1

√
8kT

πmH
nm. (A4)

For the second approach (case B), following De Pontieu et al.
(2001), von Steiger & Geiss (1989) describe the collision rate
as follows:

νHp = 118

√
T

104

(
1 − 0.125 log

T

104

)2
np

1016
(A5)

νHm = 21.05

√
Am

Am + 1
Zm

nm

1016
. (A6)

For the helium–proton and helium–metal collision frequen-
cies we follow Geiss & Buergi (1986):

νHep = 2.2
np/106√
T/104

Zm (A7)

νHem = 5.84

√
Am

Am + 1
Zm

nm

1016
, (A8)

where Zm is the ionization weight and we considered that the
ions have only one ionization state, i.e., Zm = 1. Note that
De Pontieu et al. (2001) have a typo where the expression for
νHep is missing the square root symbol for the temperature and
the constant 2.2 is also different.

Finally, we find the collision frequencies for Case C in the
appendix of Fontenla et al. (1993).

Using these collision frequencies (Equations (A1)–(A8)), the
collision frequency of neutral hydrogen with all ions is given by

νHi = νHp + νHC + νHN + νHO + νHNe + νHNa + νHMg + νHAl

(A9)

+ νHSi + νHS + νHK + νHCa + νHCr + νHFe + νHNi (A10)

and similarly for the collision frequency of neutral helium with
all ions. Finally, the average neutral–ion collision frequency is
given by

νni = ρH

ρn

νHi +
ρHe

ρn

νHei . (A11)

Note that in the main text we often use νin, which can
be derived from νni using momentum conservation (ρjνjk =
ρkνkj ).
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