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ABSTRACT

Rapid orbital drift of macroscopic dust particles is one of the major obstacles to planetesimal formation in
protoplanetary disks. We re-examine this problem by considering the porosity evolution of dust aggregates. We apply
a porosity model based on recent N-body simulations of aggregate collisions, which allows us to study the porosity
change upon collision for a wide range of impact energies. As a first step, we neglect collisional fragmentation
and instead focus on dust evolution outside the snow line, where the fragmentation has been suggested to be less
significant than inside the snow line because of the high sticking efficiency of icy particles. We show that dust
particles can evolve into highly porous aggregates (with internal densities of much less than 0.1 g cm−3) even if
collisional compression is taken into account. We also show that the high porosity triggers significant acceleration
in collisional growth. This acceleration is a natural consequence of the particles’ aerodynamical properties at
low Knudsen numbers, i.e., at particle radii larger than the mean free path of the gas molecules. Thanks to this
rapid growth, the highly porous aggregates are found to overcome the radial drift barrier at orbital radii less
than 10 AU (assuming the minimum-mass solar nebula model). This suggests that, if collisional fragmentation is
truly insignificant, formation of icy planetesimals is possible via direct collisional growth of submicron-sized icy
particles.
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1. INTRODUCTION

Growth of dust particles is a key process in protoplanetary
disks. Current theories of planet formation assume kilometer-
sized solid bodies called “planetesimals” to form from dust
contained in protoplanetary disks. As the dominant component
of disk opacity, dust also affects the temperature and observa-
tional appearance of the disks. Furthermore, dust particles are
known to efficiently capture ionized gas particles in the gas disk,
thereby controlling its magnetohydrodynamical behavior (Sano
et al. 2000).

Theoretically, however, how the dust particles evolve into
planetesimals is poorly understood. One of the most serious
obstacles is the radial inward drift of macroscopic aggregates
due to the gas drag (Whipple 1972; Adachi et al. 1976;
Weidenschilling 1977). Because of the gas pressure support
in addition to the centrifugal force, protoplanetary disks tend to
rotate at sub-Keplerian velocities. By contrast, dust particles are
free from the pressure support, and hence tend to rotate faster
than the gas disk. The resulting headwind acting on the dust
particles extracts their angular momentum and thus causes their
drift motion toward the central star. In order to go beyond this
“radial drift barrier,” dust particles must decouple from the gas
drag (i.e., grow large) faster than they drift inward. However,
previous work by Brauer et al. (2008a) showed that dust particles
finally fall onto the central star unless the initial dust-to-gas
mass ratio is considerably higher than the canonical interstellar
value.

Several mechanisms have so far been suggested to explain
how dust particles overcome the radial drift barrier. A clas-
sical idea is that dust particles “jump” across the barrier by
forming a gravitationally unstable thin dust layer at the mid-
plane and directly collapsing into planetesimal-sized objects

(Safronov 1969; Goldreich & Ward 1973; Hayashi et al. 1985).
However, this classical scenario has been challenged by the
fact that the dust layers are easily stirred up by disk turbulence
(Weidenschilling & Cuzzi 1993; Turner et al. 2010). Moreover,
the dust sublayer is known to induce the Kelvin–Helmholtz
instability, which prevents further sedimentation of dust even
without disk turbulence unless the dust-to-gas surface density
ratio is considerably high (Sekiya 1998). Recently, a two-fluid
instability of dust and gas was discovered (Youdin & Goodman
2005), which can lead to the fast formation of gravitationally
bound dust clumps (e.g., Johansen & Youdin 2007; Johansen
et al. 2007; Bai & Stone 2010a). However, this mechanism
requires marginally decoupled dust particles, the formation of
which is already questioned by the radial drift barrier itself.
Other possibilities include the trapping of dust particles in vor-
tices (e.g., Barge & Sommeria 1995; Klahr & Henning 1997)
and at gas pressure maxima (e.g., Kretke & Lin 2007; Brauer
et al. 2008b; Suzuki et al. 2010; Pinilla et al. 2012).

This study re-examines this problem by considering a new
physical effect: the porosity evolution of dust aggregates. Most
previous coagulation models (e.g., Nakagawa et al. 1981;
Tanaka et al. 2005; Brauer et al. 2008a; Birnstiel et al. 2010)
assumed that dust particles grow with a fixed internal density.
In reality, however, the internal density of aggregates changes
upon collision depending on the impact energy. The evolution
of porosity directly affects the growth history of the aggregates
since the porosity determines the coupling of the aggregates to
the gas motion. For example, Ormel et al. (2007) and Zsom
et al. (2011) simulated dust growth with porosity evolution at
fixed disk orbital radii and found that porous evolution delays
the settling of dust onto the disk midplane. However, how the
porosity evolution affects the radial drift barrier has so far been
unaddressed.
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How the internal structure changes upon collision by labo-
ratory (e.g., Blum & Wurm 2000; Weidling et al. 2009) and
numerical (e.g., Dominik & Tielens 1997; Wada et al. 2008;
Suyama et al. 2008, 2012) collision experiments has been stud-
ied over last two decades. One robust finding of these studies
is that aggregates grow into low density, fractal objects if the
impact energy is lower than a threshold Eroll determined by
material properties (Blum & Wurm 2000; Suyama et al. 2008;
Okuzumi et al. 2009). The fractal dimension df of the resulting
aggregates depends weakly on the size ratio between targets and
projectiles, and falls below two when the target and projectile
have similar sizes (Mukai et al. 1992; Okuzumi et al. 2009).
The fractal dimension of two is equivalent to an internal density
decreasing inversely proportional to the aggregate radius. The
density decrease occurs because each merger event involves the
creation of “voids” whose volume is comparable to those of the
aggregates before the merger (Okuzumi et al. 2009). Suyama
et al. (2008) estimated the collision energy of aggregates in
protoplanetary disks as a function of size and showed that ag-
gregates composed of 0.1 μm sized particles undergo fractal
growth in planet-forming regions until their size reaches cen-
timeters. This means that the building blocks of planetesimals
should once have evolved into very fluffy objects with mean in-
ternal densities many orders of magnitude lower than the solid
material density.

More strikingly, recent N-body experiments suggest that the
porosity of aggregates can be kept considerably high even
after the collision energy exceeds the threshold Eroll. Wada
et al. (2008) numerically simulated head-on collisions between
equal-sized fractal aggregates of df ≈ 2 and found that the
fractal dimension after the collision does not exceed 2.5 even at
high collision energies. Suyama et al. (2008) confirmed this
by repeating head-on collisions of the resulting aggregates
at fixed collision velocities. Furthermore, compaction is even
less efficient in offset collisions, where the collision energy
is spent for stretching rather than compaction of the merged
aggregate (Wada et al. 2007; Paszun & Dominik 2009). These
results mean that the creation of voids upon merger is non-
negligible even when the impact energy is large; in other
words, the voids are only imperfectly crushed in collisional
compaction. Because of technical difficulties, these theoretical
predictions have not yet been well tested, either by laboratory or
microgravity experiments. Nevertheless, it is worth investigating
how aggregates grow and drift inward if they evolve into highly
porous objects.

In this study, we simulate the temporal evolution of the radial
size distribution of aggregates using the advection–coagulation
model developed by Brauer et al. (2008a). Unlike the previous
work, we allow the porosities of aggregates to change upon
collision, depending on their impact energies. To do so, we adopt
the “volume-averaging method” proposed by Okuzumi et al.
(2009). In this method, aggregates of equal mass are regarded
as having the same volume (or equivalently, the same internal
density) at each orbital distance, and the advection–coagulation
equation for the averaged volume is solved simultaneously with
that for the radial size distribution. To determine the porosity
change upon collisional sticking, we use an analytic recipe
presented by Suyama et al. (2012) that well reproduces the
collision outcomes of recent N-body simulations (Wada et al.
2008; Suyama et al. 2008) as a function of the impact energy.
These theoretical tools allow us to study for the first time how
the porosity evolution affects the growth and radial drift of dust
aggregates in protoplanetary disks.

In order to clarify the role of porosity evolution, we ignore
many other effects relevant to aggregate collision, including
Coulomb interaction (Okuzumi 2009; Okuzumi et al. 2011a,
2011b; Matthews et al. 2012), bouncing (Zsom et al. 2010,
2011; Windmark et al. 2012), and collisional fragmentation
(Brauer et al. 2008a, 2008b; Birnstiel et al. 2009, 2012).
Coulomb repulsion due to negative charging can significantly
slow down the initial fractal growth, but may be negligible once
the collisional compaction becomes effective (Okuzumi et al.
2011b). Bouncing is often observed in laboratory experiments
for relatively compact (filling factor �0.1) aggregates, but is
less likely to occur when aggregates are highly porous as we
consider in this study (Langkowski et al. 2008; Wada et al. 2011).
Seemingly more problematic is fragmentation at high-speed
collisions. This is particularly so when the aggregates are mainly
composed of silicate particles for which catastrophic disruption
begins at collision speeds as low as a few m s−1 (Blum &
Wurm 2008; Wada et al. 2009; Güttler et al. 2010). By contrast,
collisional fragmentation may be less problematic for aggregates
made of icy particles for which a higher sticking threshold
has been anticipated (Chokshi et al. 1993; Dominik & Tielens
1997; Gundlach et al. 2011). For instance, N-body collision
experiments by Wada et al. (2009) suggest that aggregates
made of 0.1 μm sized icy grains do not experience catastrophic
disruption at collision velocities up to 35–70 m s−1. For this
reason, instead of neglecting collisional fragmentation, we focus
on dust evolution outside the snow line in protoplanetary disks.
A more comprehensive model including the above-mentioned
effects will be presented in future work.

We will show that dust particles evolve into highly porous
aggregates even if collisional compaction is taken into account.
Furthermore, we will show that the porosity evolution triggers
significant acceleration in collisional growth at early stages,
allowing the dust aggregates to grow across the radial drift
barrier in inner regions of protoplanetary disks. Interestingly,
this acceleration involves neither enhancement of the collision
velocity nor suppression of the radial drift speed of marginally
decoupled aggregates. As we will see, this acceleration is a
natural consequence of the particles’ aerodynamical property
at low Knudsen numbers, i.e., at particle radii larger than
the mean free path of the gas molecules, and the porosity
evolution only allows the dust aggregates to reach that stage
with small aggregate masses. Our model calculation shows that
the breakthrough of the radial drift barrier can occur in “planet-
forming” regions, i.e., at <10 AU from the central star. This
result suggests that, if the fragmentation of icy aggregates is
truly negligible, the formation of icy planetesimals is possible
via direct collisional growth of dust particles even without an
enhancement of the initial dust-to-gas mass ratio.

This paper is organized as follows. In Section 2, we describe
the disk and collision models that we use in this study. Simu-
lation results are presented in Section 3, which we interpret in
terms of the timescales for collisional growth, and radial inward
drift in Section 4. The validity and limitations of our model are
discussed in Section 5, and our conclusions are presented in
Section 6.

2. MODEL

2.1. Disk Model

We adopt the minimum-mass solar nebula (MMSN) model of
Hayashi (1981) with a solar-mass central star. The radial profiles
of the gas surface density Σg and disk temperature T are given
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by Σg = 152(r/5 AU)−3/2 g cm−2 and T = 125(r/5 AU)−1/2 K,
respectively, where r is the distance from the central star. In
this study, we focus on dust evolution outside the snow line,
which is located at r ≈ 3 AU in the adopted disk model. The
vertical structure is assumed to be in hydrostatic equilibrium,
and hence the vertical structure of the gas density ρg is given
by ρg = (Σg/

√
2πhg) exp(−z2/2h2

g), where hg = cs/Ω is the
gas scale height, cs is the isothermal sound speed, and Ω is
the Kepler frequency. The isothermal sound speed is given by
cs = √

kBT/mg , where kB is the Boltzmann constant and mg
is the mean molecular mass. We assume the mean molecular
weight of 2.34, which gives mg = 3.9 × 10−24 g and cs =
6.7×104(r/5 AU)−1/4 cm s−1. The assumed stellar mass (1 M�)
leads to Ω =

√
GM�/r3 = 1.8×10−8(r/5 AU)−3/2 rad s−1 and

hg/r = 0.05(r/5 AU)1/4, where G is the gravitational constant.
In reality, protoplanetary disks can be heavier than the

MMSN. The gravitational stability criterion (Toomre 1964)
Σg < Ωcs/πG ≈ 5.6 × 103(r/5 AU)−7/4 g cm−2 allows the
surface density to be up to about 10 times higher than the MMSN
value. The dependence of our result on the disk mass will be
analytically discussed in Section 4.

Initial dust particles are modeled as compact spheres of equal
size a0 = 0.1 μm and equal internal density ρ0 = 1.4 g cm−3,
distributed in the disk with a constant dust-to-gas surface density
ratio Σd/Σg = 0.01. The mass of each initial particle is m0 =
(4π/3)ρ0a

3
0 = 5.9 × 10−15 g. In the following, we will refer to

the initial dust particles as “monomers.” We define the radius of
a porous aggregate as a = [(5/6N )

∑N
i=1

∑N
j=1(xi − xj )2]1/2,

where N is the number of the constituent monomers and
xk(k = 1, 2, . . . , N) is the position of the monomers (Mukai
et al. 1992). This definition is in accordance with previous
N-body experiments (Wada et al. 2008; Suyama et al. 2008;
Okuzumi et al. 2009) on which our porosity model is based (see
Section 2.3.1).

Disk turbulence affects the collision and sedimentation of dust
particles. To include these effects, we consider gas turbulence in
which the turnover time and the mean-squared random velocity
of the largest turbulent eddies are given by tL = Ω−1 and δv2

g =
αDc2

s , respectively, where αD is the dimensionless parameter
characterizing the strength of the turbulence. The assumption
for tL is based on theoretical anticipation for turbulence in
Keplerian disks (Dubrulle & Valdettaro 1992; Fromang &
Papaloizou 2006; Johansen et al. 2006). The diffusion coefficient
for the gas is given by Dg = δv2

gtL = αDc2
s /Ω. If the gas

diffusion coefficient is of the same order as the turbulent
viscosity, αD is equivalent to the so-called alpha parameter
of Shakura & Sunyaev (1973). However, for simplicity, we
do not consider the viscous evolution of the gas disk. We
adopt αD = 10−3 in our numerical simulations. A higher
value of αD would cause catastrophic collisional fragmentation
of aggregates, which is not considered in this study (see
Section 5.3).

2.2. Evolutionary Equations

We solve the evolution of the radial size distribution of dust
aggregates using the method developed by Brauer et al. (2008a).
This method assumes the balance between sedimentation and
turbulent diffusion of aggregates in the vertical direction. Thus,
the vertical number density distribution of aggregates is given
by a Gaussian (N /

√
2πhd ) exp(−z2/2h2

d ), where N (r,m) is
the column number density of aggregates per unit mass and

hd (r,m) is the scale height of aggregates at orbital radius r and
with mass m (Dubrulle et al. 1995). This approach is valid if
the coagulation timescale is longer than the settling/diffusion
timescale, which is true except for very tiny particles with short
collision times (Zsom et al. 2011).

The evolution of the radial size distribution N (r,m) is given
by the vertically integrated advection–coagulation equation,
which reads (Brauer et al. 2008a)

∂N (r,m)

∂t
= 1

2

∫ m

0
K(r,m′,m − m′)N (r,m′)N (r,m − m′)dm′

− N (r,m)
∫ ∞

0
K(r,m,m′)N (r,m′)dm′

− 1

r

∂

∂r
[rvr (r,m)N (r,m)] , (1)

where vr is the radial drift velocity and K is the vertically
integrated collision rate coefficient given by

K(r,m1,m2) = σcoll

2πhd,1hd,2

∫ ∞

−∞
Δv exp

(
− z2

2h2
d,12

)
dz. (2)

Here, σcoll is the collisional cross section, hd,1 and hd,2 are
the scale heights of the colliding aggregates 1 and 2, Δv is the
collision velocity, and hd,12 = (h−2

d,1 +h−2
d,2)−1/2. As mentioned in

Section 1, we neglect electrostatic and gravitational interactions
between colliding aggregates and assume perfect sticking upon
collision. Thus, the collisional cross section is simply given by
σcoll = π (a1 +a2)2, where a1 and a2 are the radii of the colliding
aggregates. The validity of neglecting fragmentation will be
discussed in Section 5.3.

The dust scale height hd in the sedimentation–diffusion equi-
librium has been analytically obtained by Youdin & Lithwick
(2007). For turbulence of tL = Ω−1 and Dg = αDc2

s /Ω, it is
given by

hd = hg

(
1 +

Ωts

αD

1 + 2Ωts

1 + Ωts

)−1/2

, (3)

where ts is the stopping time of the aggregates. We use this
expression in this study.

For the stopping time, we use

ts =

⎧⎪⎪⎨
⎪⎪⎩

t
(Ep)
s ≡ 3m

4ρgvthA
, a <

9

4
λmfp,

t (St)
s ≡ 4a

9λmfp
t

(Ep)
s , a >

9

4
λmfp,

(4)

where vth = √
8/πcs and λmfp are the thermal velocity and mean

free path of gas particles, respectively, and A is the projected
area of the aggregate. The mean free path is related to the gas
density as

λmfp = mg

σmolρg

, (5)

where σmol = 2 × 10−15 cm2 is the collisional cross sec-
tion of gas molecules. Our gas disk model gives λmfp =
120(r/5 AU)11/4 cm at the midplane. Equation (4) satisfies the
requirement that the stopping time must obey Epstein’s law
ts = t

(Ep)
s at a 	 λmfp and Stokes’ law ts = t (St)

s at a 
 λmfp,
respectively. Since t (St)

s ∝ at
(Ep)
s , an aggregate growing in the

Stokes regime decouples from the gas motion more quickly than
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in the Epstein regime. In reality, Stokes’ law breaks down when
the particle Reynolds number (the Reynolds number of flow
around the particle) is much greater than unity, but we neglect
this in our simulations for simplicity. We will discuss this point
further in Section 5.1.

The radial drift velocity is taken as

vr = − 2Ωts

1 + (Ωts)2
ηvK, (6)

where

2η ≡ −
(

cs

vK

)2 ∂ ln
(
ρgc

2
s

)
∂ ln r

(7)

is the ratio of the pressure gradient force to the stellar gravity
in the radial direction and vK = rΩ is the Kepler velocity
(Adachi et al. 1976; Weidenschilling 1977; Nakagawa et al.
1986). The radial drift speed has a maximum ηvK, which is
realized when Ωts = 1. In our disk model, η scales with r as
η = 4.0 × 10−3(r/5 AU)1/2, and the maximum inward speed
ηvK = 54 m s−1 is independent of r. Since η is proportional
to the gas temperature, the maximum drift speed would be
somewhat lower in colder disk models (Kusaka et al. 1970;
Hirose & Turner 2011). Equation (6) neglects the frictional
backreaction from dust to gas assuming that the local dust-
to-gas mass ratio is much lower than unity or the stopping
time of aggregates dominating the dust mass is much longer
than Ω−1. We examine the validity of this assumption in
Section 5.2.1.

In this paper, we also consider the collisional evolution of
aggregate porosities. We treat the mean volume V = (4π/3)a3

of aggregates with orbital radius r and mass m as a time-
dependent quantity. The evolutionary equation for V(r,m) is
given by

∂ (VN )

∂t
= 1

2

∫ m

0
[V1+2K](r,m′,m − m′)

× N (r,m′)N (r,m − m′)dm′

− V (r,m)N (r,m)
∫ ∞

0
K(r,m,m′)N (r,m′)dm′

− 1

r

∂

∂r
[rvr (r,m)V (r,m)N (r,m)], (8)

where

[V1+2K](r,m1,m2) = σcoll

2πhd,1hd,2

∫ ∞

−∞
V1+2Δv

× exp

(
− z2

2h2
d,12

)
dz (9)

with V1+2 being the volume of merged aggregates (described
in Section 2.3.1). Equation (8) is identical to the original
evolutionary equation for V derived by Okuzumi et al. (2009,
their Equation (16)) except that here we take the vertical
integration of the equation and take into account the radial
advection of dust. In deriving Equation (8), we have assumed
that the dispersion of the volume is sufficiently narrow at every
r and m (see Okuzumi et al. 2009). This “volume-averaging”
approximation allows us to follow the porosity evolution of
aggregates without solving higher-order moment equations
for the volume, and hence with small computational costs.
This approximation is valid unless the porosity distribution at

Figure 1. Schematic illustration of our porosity change model. Porous aggre-
gates with volumes V1 and V2 (a) before contact, and (b) just after contact. At this
moment, the volume of the new aggregate is given by V1+2,HS = V1 +V2 +Vvoid,
where Vvoid = Vvoid(V1, V2) is the volume of newly formed voids (Equa-
tion (11)). If the collision energy Eimp is much smaller than the rolling en-
ergy Eroll, the final volume of the new aggregate is equal to V1+2,HS. (c) If
Eimp � Eroll, collisional compression occurs. In this case, the final volume
V1+2(<V1+2,HS) depends on Eimp.

(A color version of this figure is available in the online journal.)

fixed r and m is significantly broadened by, e.g., collisional
fragmentation cascades (Okuzumi et al. 2009).

2.3. Dust Model

2.3.1. Porosity Change Recipe

The functional form of V1+2 determines the evolution of
aggregate porosities in our simulation. In this study, we give
V1+2 as a function of the volumes of the colliding aggregates,
V1 = V (r,m1) and V2 = V (r,m2), and the impact energy
Eimp = m1m2Δv2/[2(m1 + m2)]. Before introducing the final
form of our porosity change recipe (Equation (15)), we briefly
review recent N-body collision experiments on which our recipe
is based.

Collisional compression depends on the ratio between Eimp
and the “rolling energy” Eroll (Dominik & Tielens 1997; Blum
& Wurm 2000; Wada et al. 2007). The rolling energy is de-
fined as the energy needed for one monomer to roll over 90◦
on the surface of another monomer in contact (Dominik &
Tielens 1997). When Eimp 	 Eroll, two aggregates stick with-
out visible restructuring (the so-called hit-and-stick collision;
see Figure 1(b)). In this case, the volume of the merged ag-
gregate is determined in a geometric manner, i.e., indepen-
dently of Eimp. When Eimp � Eroll, internal restructuring oc-
curs through inelastic rolling among constituent monomers
(Dominik & Tielens 1997; see also Figure 1(c)). In this case,
the final volume V1+2 depends on Eimp as well as on V1
and V2.

For hit-and-stick collisions (Eimp/Eroll → 0), Okuzumi et al.
(2009) obtained an empirical formula for V1+2,

V1+2 = V1+2,HS ≡ V1 + V2 + Vvoid, (10)
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where V1 and V2(�V1) are the volumes of the two colliding
aggregates, and

Vvoid = min

{
0.99 − 1.03 ln

(
2

V1/V2 + 1

)
, 6.94

}
V2 (11)

is the volume of the voids created in the collision (see
Figure 1(b)). For V1 ≈ V2, the void volume is approximately
equal to V1, and hence the volume of the new aggregate is
approximately given by V1+2 ≈ 3V1. This is equivalent to a
fractal relation V ∝ m3/df , where df ≈ 2 (see Section 4.2.1 of
Okuzumi et al. 2009).

In the limit of Eimp 
 Eroll and for a head-on collision of
equal-sized aggregates (V1 = V2), Suyama et al. (2008) showed
that V1+2 obeys the relation

Eimp = −
∫ V1+2

26/5V1

P (V )dV. (12)

Here, P ≡ −dEimp/dV is the dynamic compression strength
of the merged aggregate given by (Wada et al. 2008)

P (V ) = 2

(
5

3

)6
bEroll

V0

(
ρint(V )

ρ0

)13/3

N
2/3
1+2, (13)

where b = 0.15 is a dimensionless fitting parameter, V0 =
m0/ρ0 = (4π/3)a3

0 is the monomer volume, N1+2 = 2m1/m0 is
the number of monomers contained in the merged aggregate, and
ρint = 2m1/V is the internal density of the merged aggregate.
If we substitute Equation (13) into Equation (12), we obtain the
equation that explicitly gives V1+2 as a function of Eroll and V1,

V1+2 =
[

(3/5)5Eimp

N5
1+2bErollV

10/3
0

+
(
2V

5/6
1

)−4

]−3/10

. (14)

This equation basically expresses the energy balance in colli-
sional compression, but some caution is needed in interpreting
it. Firstly, the initial state for the compression is chosen to be
V = 26/5V1, although the volume just after contact is V = 3V1
(see above). This is based on the fact that compaction from
V = 3V1 to V = 26/5V1 occurs through partial compression
of the new voids, which requires little energy (Suyama et al.
2008). Secondly, the dynamic compression strength P depends
on mass N1+2 as well as on internal density ρint, meaning that P
is not an intensive variable. This is due to the fact that dynam-
ically compressed parts in the merged aggregate have a fractal
structure with a fractal dimension of 2.5 (Wada et al. 2008).
In fact, Equations (12)–(14) are more naturally described in
terms of variables in the 2.5-dimensional space, Vf ∝ a5/2,
ρf ∝ N1+2/Vf , and Pf = −dEimp/dVf (see Wada et al. 2008;
Suyama et al. 2008). An important point here is that aggregates
become stronger and stronger against dynamic compression as
they grow because of the N

2/3
1+2 factor in P.

Equations (10) and (14) express how the volume of the merged
aggregate is determined in the limits of Eimp 	 Eroll and
Eimp 
 Eroll, respectively. To properly take into account the
intermediate cases (Eimp ∼ Eroll), we adopt an updated analytic

formula given recently by Suyama et al. (2012). This reads

V1+2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(
1 − Eimp

3bEroll

)
V

5/6
1+2,HS +

Eimp

3bEroll

(
V

5/6
1 + V

5/6
2

)]6/5

(
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(
V
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2

)−4
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(
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+ V
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1+2,HS

]−3/10

(
if V

5/6
1+2,HS < V

5/6
1 + V

5/6
2

)
,

(15)
where N1+2 is now defined as (m1 + m2)/m0. Note that this
equation reduces to Equation (10) when Eimp 	 Eroll, and
to Equation (14) when V1 = V2 and Eimp 
 Eroll. Suyama
et al. (2012) derived Equation (15) by taking into account small
energy losses in the partial compression of the new voids. In
addition, unlike Equation (14), Equation (15) takes into account
the cases where colliding aggregates have different volumes and
masses (V1 �= V2, m1 �= m2). Suyama et al. (2012) confirmed
that Equation (15) reproduces the results of numerical colli-
sion experiments within an error of 20% as long as the mass
ratio m2/m1(�1) between the colliding aggregates is larger
than 1/16.

We comment on three important caveats regarding our poros-
ity recipe. Firstly, Equation (15) is still untested for cases where
colliding aggregates have very different sizes (m2/m1 < 1/16).
Therefore, the validity of using Equation (15) is at present only
guaranteed for the case where “similar-sized” (m2/m1 � 1/16)
collisions dominate the growth of aggregates. We will carefully
check this validity in Section 3.2. Secondly, Equation (15) ig-
nores offset collisions, in which a considerable fraction of the
impact energy is spent for stretching rather than compaction
(Wada et al. 2007; Paszun & Dominik 2009). For this reason,
Equation (15) underestimates the porosity increase upon colli-
sion. Thirdly, we do not consider non-collisional compression
(e.g., static compression due to gas drag forces), which could
contribute to the compaction of very large aggregates. We will
discuss the second and third points in more detail in Section 5.4.

In addition to V, we need to know the projected area A of ag-
gregates to calculate the stopping time ts . Unfortunately, a naive
relation A = πa2 breaks down when the fractal dimension of
the aggregate is less than 2, since πa2 increases faster than mass
for this case while A does not. A projected area growing faster
than mass means a coupling to the gas becoming stronger and
stronger as the aggregate grows, which is clearly unrealistic. To
avoid this, we use an empirical formula by Okuzumi et al. (2009)
that well reproduces the mean projected area A of aggregates
with monomer number N = m/m0 and radius a for both frac-
tal and compact aggregates. With this formula, all aggregates
in our simulations are guaranteed to decouple from the gas as
they grow. We remark that this treatment is only relevant for
fractal aggregates with df � 2; for more compact aggregates,
the empirical formula reduces to the usual relation A ≈ πa2.

The rolling energy Eroll has so far not been measured
for submicron-sized icy particles, but can be estimated in
the following way. It is anticipated by microscopic friction
theory (Dominik & Tielens 1995) that the critical rolling
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force Froll ≡ Eroll/(πa0/2) is a material constant (i.e., Eroll
is proportional to the monomer radius a0). A rolling force of
Froll = (1.15 ± 0.24) × 10−3 dyn has recently been measured
for micron-sized ice particles (Gundlach et al. 2011). Given
that Froll is independent of a0, the measured force implies the
rolling energy of Eroll = (πa0/2)Froll ≈ 1.8 × 10−8 erg for
a0 = 0.1 μm. We use this value in our simulations.

2.3.2. Collision Velocity

We consider Brownian motion, radial and azimuthal drift,
vertical settling, and turbulence as sources of the collision
velocity, and give the collision velocity Δv as the root sum
square of these contributions,

Δv =
√

(ΔvB)2 + (Δvr )2 + (Δvφ)2 + (Δvz)2 + (Δvt )2, (16)

where ΔvB , Δvr , Δvφ , Δvz, and Δvt are the relative velocities
induced by Brownian motion, radial drift, azimuthal drift,
vertical settling, and turbulence, respectively.

The Brownian-motion-induced velocity is given by

ΔvB =
√

πm1m2

8(m1 + m2)kBT
, (17)

where m1 and m2 are the masses of the two colliding aggregates.
The relative velocity due to radial drift is given by Δvr =

|vr (ts,1) − vr (ts,2)|, where ts,1 and ts,2 are the stopping times of
the colliding aggregates, and vr is the radial velocity given by
Equation (6). Similarly, the relative velocity due to differential
azimuthal motion is given by Δvφ = |v′

φ(ts,1) − v′
φ(ts,2)|, where

v′
φ = − ηvK

1 + (Ωts)2
(18)

is the deviation of the azimuthal velocity from the local Kepler
velocity (Adachi et al. 1976; Weidenschilling 1977; Nakagawa
et al. 1986). Here, we have neglected the backreaction from
dust to gas as we did for the radial velocity (see Sections 2.3.2
and 5.2.1).

For the differential settling velocity, we assume Δvz =
|vz(ts,1) − vz(ts,2)|, where

vz = − Ω2tsz

1 + Ωts
. (19)

Equation (19) reduces to the terminal settling velocity vz =
−Ω2tsz in the strong coupling limit Ωts 	 1, and to the
amplitude of the vertical oscillation velocity at Ωts 
 1 (Brauer
et al. 2008a).

For the turbulence-driven relative velocity, we use an analytic
formula for Kolmogorov turbulence derived by Ormel & Cuzzi
(2007, their Equation (16)). This analytic formula has three
limiting expressions (Equations (27)–(29) of Ormel & Cuzzi
2007):

Δvt ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δvgRe1/4
t Ω|ts,1 − ts,2|, ts,1 	 tη,

(1.4 . . . 1.7) × δvg

√
Ωts,1, tη 	 ts,1 	 Ω−1,

δvg

(
1

1 + Ωts,1
+

1

1 + Ωts,2

)1/2

, Ωts,1 
 1,

(20)

where Ret is the turbulent Reynolds number, tη = Re−1/2
t tL

is the turnover time of the smallest eddies, and the numerical

prefactor (1.4 . . . 1.7) in the second equality depends on the ratio
between the stopping times, ts,2/ts,1. The turbulent Reynolds
number is given by Ret = Dg/νmol, where νmol = vthλmfp/2 is
the molecular viscosity. For ts,1 ∼ ts,2, the maximum induced
velocity is Δvt ≈ δvg , which is reached when Ωts,1 ≈ 1.

When two colliding aggregates belong to the Epstein regime
and their stopping times are much shorter than tη(	Ω−1),
the relative velocity driven by sedimentation and turbulence is
approximately proportional to the difference between the mass-
to-area ratios m/A of two colliding aggregates. In this case, as
pointed out by Okuzumi et al. (2011a), the dispersion of the
mass-to-area ratio becomes important for fractal aggregates of
df � 2, since the mean mass-to-area ratio of the aggregates
approaches a constant, and hence the difference in m/A(m)
vanishes. To take into account the dispersion effect, we evaluate
the differential mass-to-area ratio as |Δ(m/A)|2 = |m1/A1 −
m2/A2|2 + ε2[(m1/A1)2 + (m2/A2)2], where Aj = A(mj )
(j = 1, 2) are the mean projected area of aggregates with mass
mj (see Section 2.3.1) and ε is the standard deviation of the
mass-to-area ratio divided by the mean (for the derivation, see
the Appendix of Okuzumi et al. 2011a). We assume ε = 0.1
in accordance with the numerical estimate by Okuzumi et al.
(2011a).

2.4. Numerical Method

We solve Equations (1) and (8) numerically with an explicit
time-integration scheme and a fixed-bin method. The radial do-
main is taken to be outside the snow line, 3 AU � r � 150 AU,
discretized into 100 rings with an equal logarithmic width
Δ ln(r[AU]) = (ln 150 − ln 3)/100. The advection terms are
calculated by the spatially first-order upwind scheme. We im-
pose the outflow and zero-flux boundary conditions at the in-
nermost and outermost radii (r = 3 AU and 150 AU), re-
spectively; thus, the total dust mass inside the domain is a
decreasing function of time. Our numerical results are unaf-
fected by the choice of the boundary condition at the out-
ermost radius, since dust growth at this location is too slow
to cause appreciable radial drift within the calculated time.
The coagulation terms are calculated by the method given by
Okuzumi et al. (2009). Specifically, at the center of each radial
ring we divide the mass coordinate into linearly spaced bins
mk = km0(k = 1, 2, . . . , Nbd) for m � Nbdm0 and logarith-
mically spaced bins mk = mk−1101/Nbd (k = Nbd + 1, . . .) for
m > Nbdm0, where Nbd is an integer. We adopt Nbd = 40; as
shown by Okuzumi et al. (2009), the calculation results con-
verge well as long as Nbd � 40. The time increment Δt is
adjusted at every time step so that the fractional decreases in
N and VN fall below 0.5 (i.e., Δt < −0.5(∂ lnN /∂t)−1 and
Δt < −0.5(∂ ln VN /∂t)−1) at all bins.

3. RESULTS

3.1. Compact Aggregation

To begin with, we show the result of compact aggregation.
In this simulation, we fixed the internal density ρint ≡ m/V
of the aggregates to the material density ρ0 = 1.4 g cm−3,
and solved only the evolutionary equation for the radial size
distribution N (r,m) (Equation (1)), as in previous studies (e.g.,
Brauer et al. 2008a). Figure 2 shows the snapshots of the radial
size distribution at different times. Here, the distribution is
represented by the dust surface density per decade of aggregate
mass, ΔΣd/Δ log m ≡ ln(10)m2N (r,m). At each orbital radius,
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Figure 2. Aggregate size distribution ΔΣd/Δ log m at different times t for the
compact aggregation model (ρint = 1.4 g cm−3) as a function of orbital radius
r and aggregate mass m. The dotted lines mark the aggregate size at which Ωts
exceeds 0.1.

(A color version of this figure is available in the online journal.)
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Figure 3. Radial profiles of the total dust surface density Σd at different times
for the compact aggregation model (ρint = 1.4 g cm−3).

dust growth proceeds without significant radial drift until the
stopping time of the aggregates reaches Ωts ∼ 0.1 (the dotted
lines in Figure 2). However, as the aggregates grow, the radial
drift becomes faster and faster, and further growth becomes
limited only along the line Ωts ∼ 0.1 on the r–m plane.
Figure 3 shows the evolution of the total dust surface density
Σd ≡ ∫

mNdm = ∫
(ΔΣd/Δ log m)d log m. We see that a

significant amount of dust has been lost from the planet-forming
region r � 30 AU within 105 yr. In this region, the dust surface
density4 scales as r−1, and hence the dust-to-gas surface density
ratio ∝ r−1/Σg ∝ r1/2 decreases toward the central star.

4 It can be analytically shown (Birnstiel et al. 2012) that the dust surface
density profile obeys a scaling Σd ∝√

Σg/(r2Ω) (∝ r−1 for Σg ∝ r−3/2) when
radial drift balances with turbulence-driven growth.
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Figure 4. Aggregate size distribution ΔΣd/Δ log m at r = 5 AU and t =
2000–4470 yr for the compact aggregation model. The dashed and solid arrows
indicate the aggregate sizes at which a = λmfp and Ωts = 1, respectively. Shown
at the top of the panel is the aggregate radius a. The vertical bars indicate the
weighted average mass 〈m〉m (Equation (21)).

Figure 4 shows the evolution of the dust size distribution
observed at r = 5 AU. Here, in order to characterize the typical
aggregate size at each evolutionary stage, we introduce the
weighted average mass 〈m〉m defined by

〈m〉m ≡
∫

m2Ndm∫
mNdm

= 1

Σd

∫
m

ΔΣd

Δ log m
d log m. (21)

The weighted average mass approximately corresponds to the
aggregate mass at the peak of ΔΣd/Δ log m (see, e.g., Ormel
et al. 2007; Okuzumi et al. 2011a). In Figure 4, the weighted
average mass at each time is indicated by the short vertical
line. At r = 5 AU, the growth–drift equilibrium is reached
at t ≈ 4000 yr, and the typical size of the aggregates is
〈m〉m ≈ 500 g in mass (≈4 cm in radius, ≈0.07Ω−1 in stopping
time). Note that the final aggregate radius is much smaller than
the mean free path λmfp of gas molecules (the dashed arrow in
Figure 4), which means that the gas drag onto the aggregates is
determined by Epstein’s law. As we will see in the following,
porosity evolution allows aggregates to reach the Stokes drag
regime at much smaller Ωts .

3.2. Porous Aggregation

Now we show how porosity evolution affects dust evolu-
tion. Here, we solve the evolutionary equation for V(r, m)
(Equation (8)) simultaneously with that for N (r,m)
(Equation (1)). The result is shown in Figure 5, which displays
the snapshots of the aggregate size distribution ΔΣd/Δ log m and
internal density ρint = m/V at different times t as a function
of r and m. The evolution of the total dust surface density Σd is
shown in Figure 6.

The left four panels of Figure 5 show how the radial
size distribution evolves in the porous aggregation. At t <
103 yr, the evolution is qualitatively similar to that in compact
aggregation (Section 3.1). However, in later stages, the evolution
is significantly different. We observe that aggregates in the inner
region of the disk (r < 10 AU) undergo rapid growth and
eventually overcome the radial drift barrier lying at Ωts ∼ 1
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Figure 5. Aggregate size distribution ΔΣd/Δ log m (left four panels) and internal density ρint = m/V (right four panels) at different times t for the porous aggregation
model as a function of orbital radius r and aggregate mass m. The dashed lines mark the aggregate size at which Ωts exceeds unity.

(A color version of this figure is available in the online journal.)
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Figure 6. Radial profiles of the total dust surface density Σd at different times
for the porous aggregation model.

(dashed lines in Figure 5) within t ∼ 104 yr. At this stage,
the radial profile of the total dust surface Σd is hardly changed
from the initial profile, as seen in Figure 6. In the outer region
(r > 10 AU), aggregates do drift inward before they reach
Ωts ∼ 1 as in the compact aggregation model. However, unlike
in the compact aggregation, the inward drift results in the pileup
of dust materials in the inner region (r ≈ 4–9 AU) rather than
the loss of them from outside the snow line (see Figure 6). This
occurs because most of the drifting aggregates are captured
by aggregates that have already overcome the drift barrier. As a
result, the dust-to-gas mass ratio in the inner regions is enhanced
by a factor of several in 105 yr.

The right four panels of Figure 5 show the evolution of the
internal density ρint = m/V as a function of r and m. The
first thing to note is that the dust particles grow into low-

density objects at every location until their internal density
reaches ρint ∼ 10−5–10−3 g cm−3. In this stage, the internal
density decreases as ρint ≈ (m/m0)−1/2ρ0, meaning that the
dust particles grow into fractal aggregates with the fractal
dimension df ≈ 2 (Okuzumi et al. 2009). The fractal growth
generally occurs in early growth stages where the impact energy
is too low to cause collisional compression, i.e., Eimp 	 Eroll
(e.g., Blum 2004; Ormel et al. 2007; Zsom et al. 2010). At
m ∼ 10−4–10−6 g, the fractal growth stage terminates, followed
by the stage where collisional compression becomes effective
(Eimp 
 Eroll). In this late stage, the internal density decreases
more slowly or is kept at a constant value depending on the
orbital radius. We will examine the density evolution in more
detail in Section 3.2.2.

Figure 7 shows the evolution of the mass distribution function
at r = 5 AU during t ≈ 1200–2500 yr. The evolution of the
weighted average mass 〈m〉m is shown in Figure 8. It is seen
that the acceleration of the growth begins when the aggregate
size a exceeds the mean free path of gas molecules, λmfp (the
dashed arrow in Figure 7). This suggests that the acceleration
is due to the change in the aerodynamical property of the
aggregates. At a ≈ λmfp, the gas drag onto the aggregates begins
to obey Stokes’ law. In the Stokes regime, the stopping time
ts of aggregates increases rapidly with size (see Section 2.2).
This causes the quick growth of the aggregates since the
relative velocity between aggregates increases with ts (as long as
Ωts < 1). As a result of the growth acceleration, the aggregates
grow from a ≈ λmfp to Ωts ≈ 1 within 300 yr, which is short
enough for them to break through the radial drift barrier.

The decrease in the internal density plays an important role
in the growth acceleration. More precisely, the low internal
density allows the aggregates to reach a ≈ λmfp at early growth
stages, i.e., at small Ωts . In fact, the growth acceleration was not
observed in the compact aggregation, since the aggregate size
is smaller than the mean free path at all Ωts < 1 (see Figure 4).
A more rigorous explanation for this will be given in Section 4.
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3.2.1. Projectile Mass Distribution

As noted in Section 2.3.1, our porosity change model has
only been tested for collisions between similar-sized aggregates.
To check the validity of using this model, we introduce the
projectile mass distribution function (Okuzumi et al. 2009):

Cmt
(mp) ≡ mpK(mp,mt )N (mp)∫ mt

0 m′
pK(m′

p,mt )N (m′
p)dm′

p

, mp � mt,

(22)
which is normalized so that

∫ mt

0 Cmt
(mp)dmp = 1. The denom-

inator of Cmt
(mp) is equal to the growth rate t−1

grow ≡ d ln mt/dt
of a target having mass mt (see Okuzumi et al. 2009). Hence, the
quantity Cmt

(mp)dmp measures the contribution of projectiles
within mass range [mp,mp + dmp] to the growth of the target.

Figure 9 shows the projectile mass distribution per unit
ln mp, mpCmt

(mp), for targets with mass mt = 〈m〉m at
r = 5 AU and at different t. We see that the growth of
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Figure 9. Normalized projectile mass distribution per unit logarithmic projectile
mass, mpCmt (mp), for a target with mass mt = 〈m〉m at different times
t(=1289–2450 yr) at r = 5 AU for the porous aggregation model (see
Equation (22) for the definition of Cmt (mp)). The filled circles show the values
for equal-sized collisions, mp = mt (=〈m〉m). The dotted and solid arrows
indicate the target mass at which ts = tη and Ωts = 1, respectively.

(A color version of this figure is available in the online journal.)

the mt = 〈m〉m target is dominated by projectiles within a
mass range 0.1mt � mp � mt . In fact, the projectile mass
distribution integrated over 0.1mt � mp � mt exceeds 50%
for all the cases presented in Figure 9. This means that the
growth of aggregates is indeed dominated by collisions with
similar-sized ones as required by the limitation of our porosity
model. This is basically a consequence of the fact that the
aggregate mass distribution ΔΣd/Δ log m is peaked around the
target mass m ∼ 〈m〉m (see Figure 7). The mass ratio mp/mt

at the peak of mpCmt
(mp) reflects the size dependence of the

turbulence-driven relative velocity Δvt , which is the main source
of the collision velocity in our simulation. At t � 2000 yr
(〈m〉m � 103 g), the dominant projectile mass is lower than
mt (= 〈m〉m), since both the target and projectiles are tightly
coupled to turbulence (i.e., ts(mt ), ts(mp) < tη) and hence Δvt

vanishes at equal-sized collisions (see the first expression of
Equation (20)). At t � 2000 yr (〈m〉m � 103 yr), the target
decouples from small turbulent eddies (ts(mt ) > tη). This results
in a shift of the dominant collision mode to mp ≈ mt because
Δvt no longer vanishes at equal-sized collisions (see the second
expression of Equation (20)).

3.2.2. Density Evolution History

To see the density evolution history in detail, we plot in
Figure 10 the temporal evolution of the weighted average mass
〈m〉m and the internal density of aggregates with mass m = 〈m〉m
at orbital radii r = 5 AU and 20 AU.

As mentioned above, dust particles initially grow into frac-
tal aggregates of df ≈ 2 until the impact energy Eimp becomes
comparable to the rolling energy Eroll. With this information, one
can analytically estimate the aggregate size at which the frac-
tal growth terminates. Our simulation shows that the collision
velocity between the fractal aggregates is approximately given
by the turbulence-driven velocity in the strong-coupling limit
(Equation (20) with ts 	 tη). Assuming that the colli-
sions mainly occur between aggregates of similar sizes (see
Section 3.2.1), the reduced mass and the collision velocity
are roughly given by m/2 and δvgRe1/4

t Ωts , respectively. In
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Figure 10. Temporal evolution of the weighted average mass 〈m〉m and the
internal density ρint(〈m〉m) at orbital radii r = 5 AU (upper panel) and 20 AU
(lower panel). Shown at the top of the panels is the aggregate radius a(〈m〉m)
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sizes at which Eimp = Eroll, a = λmfp, ts = tη , and Ωts = 1, respectively.
At r = 20 AU, dust growth stalls due to the radial drift barrier (cross symbol)
before reaching Ωts = 1.

(A color version of this figure is available in the online journal.)

addition, we use the fact that fractal aggregates with df ≈ 2
have a mass-to-area ratio which is comparable to their con-
stituent monomers. This means that the stopping time of the
aggregates is as short as the monomers and is hence given by
Epstein’s law. Thus, the impact energy is approximated as

Eimp ≈ m

4
Δv2

t ≈ 3

8
m

(
δvgRe1/4

t Ω
ρgvth

)2(3m

4A

)2

. (23)

Furthermore, using the definitions for ρg , vth, and Ret, we
have ρgvth = (2/π )ΣgΩ and Ret = αDΣgσmol/(2mg) for
the midplane. Substituting them into Equation (23) and using
δvg = √

αDcs and m/A ≈ m0/(πa2
0) = 4ρ0a0/3, we obtain

Eimp ≈ 3π2

32
√

2
α

3/2
D mc2

s

(
Σgσmol

mg

)1/2(
ρ0a0

Σg

)2

. (24)

Thus, the impact energy is proportional to the mass. We define
the rolling mass mroll by the condition Eimp = Eroll. Using
Equation (24), the rolling mass is evaluated as

mroll ≈ 32
√

2

3π2

Eroll

c2
s α

3/2
D

(
mg

Σgσmol

)1/2( Σg

ρ0a0

)2

∼ 10−4 g

(
αD

10−3

)−3/2(
T

100 K

)−1( Σg

100 g cm−2

)3/2

×
(

Froll

10−3 dyn

)(
ρ0

1 g cm−3

)−2(
a0

0.1 μm

)−1

, (25)

where we have used that Eroll = (πa0/2)Froll (see Section 2.3.1).
Using the relations a ≈ (m/m0)1/2a0 and ρint ≈ (m/m0)−1/2ρ0
for df ≈ 2 aggregates, the corresponding radius and internal
density are found to be

aroll ∼ 1 cm

(
mroll

10−4 g

)1/2

, (26)

ρint, roll ∼ 10−5 g cm−3

(
mroll

10−4 g

)−1/2

. (27)

The triangles in Figure 10 mark the rolling mass at r = 5 AU
and 20 AU predicted by Equation (25). The analytic prediction
well explains when the decrease in ρint terminates.

The density evolution is more complicated at m > mroll,
where collisional compression is no longer negligible (i.e.,
Eimp > Eroll). At r = 5 AU, the internal density is approxi-
mately constant until the stopping time reaches Ωts = 1, and
then decreases as ρint ∝ m−1/5. At r = 20 AU, by contrast, the
density is kept nearly constant until m ∼ 102 g (a ∼ 102 cm),
and then decreases as ρint ∝ m−1/8.

As shown below, the density histories mentioned above can be
directly derived from the porosity change recipe we adopted. Let
us assume again that aggregates grow mainly through collisions
with similar-sized ones (m1 ≈ m2 and V1 ≈ V2). In this case,
the evolution of ρint at Eimp 
 Eroll is approximately given by

Equation (14). Furthermore, we neglect the term (2V
5/6

1 )−4 in
Equation (14) assuming that the impact energy is sufficiently
large (which is true as long as Ωts < 1; see below). Given these
assumptions, the internal density of aggregates after collision,
ρint = 2m1/V1+2, is approximately given by

ρint ≈
(

3

5

)3/2(
Eimp

N1+2bEroll

)3/10

N
−1/5
1+2 ρ0, (28)

where N1+2 = 2m1/m0. Since the impact energy Eimp ≈
m1(Δv)2/4 is proportional to N1+2(Δv)2, Equation (28) implies
that

ρint ∝ (Δv)3/5m−1/5, (29)

where we have dropped the subscript for mass for clarity.
Equation (29) gives the relation between ρint and m if we
know how the impact velocity depends on them. Explicitly,
if Δv ∝ mβρ

γ
int, Equation (29) leads to

ρint ∝ m(3β−1)/(5−3γ ). (30)

In our simulation, the main source of the relative velocity
is turbulence. The turbulence-driven velocity depends on ts as
Δvt ∝ ts at ts 	 tη and Δvt ∝ √

ts at tη 	 ts 	 tL(=Ω−1)

10
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(see Equation (20)). As found from Equation (4), the stopping
time depends on ρint and m as ts ∝ m/A ∝ m/a2 ∝ m1/3ρ

2/3
int in

the Epstein regime (a 	 λmfp) and as ts ∝ ma/A ∝ m2/3ρ
1/3
int

in the Stokes regime (a 
 λmfp). Using these relations with
Equation (30), we find four regimes for density evolution,

ρint ∝

⎧⎪⎨
⎪⎩

m0, a 	 λmfp and ts 	 tη,

m1/4, a 
 λmfp and ts 	 tη,

m−1/8, a 	 λmfp and tη 	 ts 	 tL,

m0, a 
 λmfp and tη 	 ts 	 tL.

(31)

The circles, diamonds, and square in Figure 10 mark the size
at which a = λmfp (i.e., t

(Ep)
s ∼ t (St)

s ), ts = tη, and Ωts = 1,
respectively. At r = 5 AU, the sizes at which a = λmfp and
ts = tη nearly overlap, and hence only two velocity regimes
ts = t

(Ep)
s 	 tη and tη 	 ts = t (St)

s 	 tL are effectively relevant.
For both cases, Equation (31) predicts flat density evolution. At
r = 20 AU, there is a stage in which ts 
 tη and a 	 λmfp, for
which Equation (31) predicts ρint ∝ m−1/8. These predictions
are in agreement with what we see in Figure 10.

Equation (28) does not apply to the density evolution at
Ωts > 1, where the collision velocity no longer increases and
hence collisional compression becomes less and less efficient as
the aggregates grow. However, if we go back to Equation (14)
and assume that the impact energy Eimp is sufficiently small, we
obtain V1+2 ≈ 26/5V1, or equivalently V1+2/m

6/5
1+2 ≈ V1/m

6/5
1 ,

where m1+2 = 2m1 is the aggregate mass after a collision. This
implies that V/m6/5 is kept constant during the growth, i.e.,
V ∝ m6/5, and hence we have ρint = m/V ∝ m−1/5. This is
consistent with the density evolution at Ωts > 1 seen in the
upper panel of Figure 10.

4. CONDITION FOR BREAKING THROUGH
THE RADIAL DRIFT BARRIER

In this section, we explain why porous aggregates overcome
the radial drift barrier in the inner region of the disk. We do this
by comparing the timescale of aggregate growth and radial drift.
We assume that dust aggregates grow mainly through collisions
with similar-sized aggregates. As shown in Section 3.2.1, this is
a good approximation for the growth of aggregates dominating
the total mass of the system (i.e., aggregates with mass m ∼
〈m〉m). The growth rate of the aggregate mass m at the midplane
is then given by

dm

dt
= ρdσcollΔv = Σd√

2πhd

AΔv, (32)

where ρd = Σd/(
√

2πhd ) is the spatial dust density at the
midplane, and we have approximated σcoll as the projected
area A. Equation (32) can be rewritten in terms of the growth
timescale as

tgrow ≡
(

d ln m

dt

)−1

=
√

2π
hd

Δv

m/A

Σd

= 4
√

2π

3

hd

Δv

ρinta

Σd

,

(33)

where we have used that m = (4π/3)ρinta
3 and A = πa2. Here,

we compare tgrow with the timescale for the radial drift given by

tdrift ≡
∣∣∣∣d ln r

dt

∣∣∣∣
−1

= r

|vr | . (34)

Now we focus on the stage at which the radial drift velocity
reaches the maximum value, i.e., Ωts = 1. At this stage, the
dust scale height is given by hd ≈ (2αD/3)1/2hg according
to Equation (3). In addition, we set Δv ≈ √

αDcs since the
collision velocity between Ωts = 1 particles is dominated
by the turbulence-driven velocity. Using these relations and
hg = cs/Ω, we can rewrite Equation (33) as

tgrow|Ωts=1 = 4

3

√
4π

3

(ρinta)Ωts=1

ΣdΩ

≈ 40

(
Σd/Σg

0.01

)−1 (ρinta)Ωts=1

Σg

tK, (35)

where tK = 2π/Ω is the Keplerian orbital period. Thus,
the growth timescale is shorter when the mass-to-area ratio
m/A ∝ ρinta is smaller. Note that tgrow|Ωts=1 is independent
of αD since both hd and Δv scale with

√
αD . By contrast, the

drift timescale for Ωts = 1 particles is

tdrift|Ωts=1 = 1

ηΩ
≈ 40

(
η

4 × 10−3

)−1

tK . (36)

The ratio of the two timescales is(
tgrow

tdrift

)
Ωts=1

= 4

3

√
4π

3
η

(ρinta)Ωts=1

Σd

≈ 1

(
η

4 × 10−3

)(
Σd/Σg

0.01

)−1 (ρinta)Ωts=1

Σg

. (37)

The ratio (tgrow/tdrift)Ωts=1 determines the fate of dust growth
at Ωts = 1. If (tgrow/tdrift)Ωts=1 is very small, dust particles
grow beyond Ωts = 1 without experiencing significant radial
drift; otherwise, dust particles drift inward before they grow. We
expect growth without significant drift to occur if(

tgrow

tdrift

)
Ωts=1

� 1

30
, (38)

where the threshold value 1/30 takes into account the fact that
tgrow is the timescale for mass doubling while the particles
experience the fastest radial drift over decades in mass. Below,
we examine in what condition this requirement is satisfied.

The ratio (ρinta)Ωts=1/Σg depends on the drag regime at
Ωts = 1. We consider the Epstein regime first. Using ρg =
Σg/(

√
2πhg) and hg = cs/Ω, one can rewrite Epstein’s law as

Ωts = (π/2)ρinta/Σg . Thus, for Ωts = 1, we have a surprisingly
simple relation

(ρinta)Ωts=1

Σg

= 2

π
. (39)

Inserting this relation into Equation (35), we obtain

tgrow|Ωts=1 ≈ 30

(
Σd/Σg

0.01

)−1

tK . (40)

Hence, the growth condition (Equation (38)) is not satisfied for
the standard disk parameters η ≈ 10−3 and Σd/Σg = 0.01, in
agreement with the results of our own and previous (Brauer
et al. 2008a) simulations. Note that the right-hand side of
Equation (40) is independent of ρint. Thus, the porosity of
aggregates has no effect on the radial drift barrier within the
Epstein regime.

11



The Astrophysical Journal, 752:106 (18pp), 2012 June 20 Okuzumi et al.

The situation differs in the Stokes drag regime. A similar
calculation as above leads to

(ρinta)Ωts=1

Σg

= 9

2π

λmfp

a|Ωts=1
(41)

and

tgrow|Ωts=1 ≈ 60

(
Σd/Σg

0.01

)−1
λmfp

a|Ωts=1
. (42)

Note that the growth timescale is inversely proportional to
the aggregate radius, in contrast to that in the Epstein regime
(Equation (40)) being independent of aggregate properties.
Substituting Equations (36) and (42) into the growth condition
(Equation (38)), we find that the aggregates break through the
radial drift barrier in the “deep” Stokes regime, a|Ωts=1/λmfp �
45. Unlike Equation (40), Equation (42) implicitly depends
on ρint through aΩts=1/λmfp (see below), so the porosity of
aggregates does affect the growth timescale in this case. It is
interesting to note that the speed-up of dust growth occurs even
though the maximum collision velocity is the same. Indeed, the
collision velocity depends only on Ωts and is thus independent of
the drag regime. We remark that Stokes’ law breaks down when
a becomes so large that the particle Reynolds number becomes
much larger than unity, as already mentioned in Section 2.2. We
will show in Section 5.1 that this fact sets the minimum value
of tgrow|Ωts=1 to ≈0.3tK ; see Equation (47).

The internal density of aggregates controls the growth
timescale through the aggregate size a at Ωts = 1. For given
ρint, one can analytically calculate a|Ωts=1 from Equations (39)
and (41). Explicitly,

a|Ωts=1 = 2Σg

πρint
(43)

for the Epstein regime, and

a|Ωts=1 = 3

(2π )1/4

√
mghg

ρintσmol
(44)

for the Stokes regime, where we have used λmfp = mg/(ρgσmol)
and ρg = Σg/(

√
2πhg). For fixed ρint, a|Ωts=1 decreases with

increasing r in the Epstein regime, but increases in the Stokes
regime. The upper panel of Figure 11 plots a|Ωts=1 for three
different values of the aggregate internal density ρint. If dust
particles grow into compact spheres (ρint ∼ 1 g cm−3), Epstein’s
law governs the motion of Ωts = 1 particles in almost the
entire snow region (r > 3 AU). However, if dust particles
grow into highly porous aggregates with ρint ∼ 10−5 g cm−3,
the particles growing at r � 60 AU enter the Stokes regime
before Ωts reaches unity. The lower panel of Figure 11 shows
the two timescales tgrow|Ωts=1 and tdrift|Ωts=1 as calculated from
Equations (35) and (36), respectively. We see that compact
particles with ρint ∼ 1 g cm−3 do not satisfy the growth
condition (Equation (38)) outside the snow line, while porous
aggregates with ρint ∼ 10−5 g cm−3 do in the region r � 10 AU.
These explain our simulation results presented in Section 3.

Finally, we remark that a high disk mass (i.e., a high Σg

with fixed Σd/Σg) favors the breakthrough of the radial drift
barrier. Figure 12 shows the size a and the timescales tgrow
and tdrift at Ωts = 1 for a disk 10 times heavier than the
MMSN. We see that the growth condition (Equation (38)) is
now satisfied at r � 25 AU for ρint = 10−5 g cm−3 and at
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Figure 11. Size a (upper panel) and growth timescale tgrow (lower panel) of
dust aggregates at Ωts = 1 as a function of orbital radius r for internal densities
ρint = 1.4 g cm−3 (solid line), 10−2 g cm−3 (dashed line), and 10−5 g cm−3

(dotted line). The MMSN with the dimensionless diffusion coefficient αD =
10−3 is assumed for the disk model. The thick line in the upper panel indicates
a = 9λmfp/4, at which the drag law changes from the Epstein regime to the
Stokes regime. The thick line in the lower panel shows the drift timescale tdrift at
Ωts = 1 (independent of ρint). For ρint = 10−5 g cm−3, tgrow|Ωts=1 satisfies the
growth criterion (Equation (38)) at r � 10 AU. In reality, tgrow|Ωts=1 does not
fall below the value given by Equation (47) (thin dotted line) because of the effect
of the gas drag at high particle Reynolds numbers (see Section 5.1). However,
this does not change the location where the growth condition is satisfied.

(A color version of this figure is available in the online journal.)

r � 7 AU even for ρint = 10−2 g cm−3. This is because a higher
Σg leads to a shorter λmfp and hence allows aggregates to reach
the Stokes regime a/λmfp 
 1 at larger r or with higher ρint
(note that the enhancement of Σg by a constant remains η and
hence tdrift|Ωts=1 unchanged). Interestingly, our porosity model
predicts that ρint|Ωts=1 is independent of Σg . In fact, substituting
Equation (44) with (Δv)Ωts=1 ≈ √

αDcs and N1+2 ∝ ρinta
3 into

Equation (28), we obtain the equation for ρint|Ωts=1 that does not
involve Σg .

5. DISCUSSION

So far we have shown that the evolution of dust into highly
porous aggregates is a key to overcome the radial drift barrier.
However, in order to clarify the role of porosity evolution, we
have ignored many other effects relevant to dust growth in
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Figure 12. Same as Figure 11, but for a disk 10 times heavier than the
MMSN. The growth criterion (Equation (38)) is satisfied at r � 25 AU for
ρint = 10−5 g cm−3 and at r � 7 AU for ρint = 10−2 g cm−3.

(A color version of this figure is available in the online journal.)

protoplanetary disks. In this section, we discuss how the ignored
effects would affect dust evolution.

5.1. Effect of the Friction Law at High Particle
Reynolds Numbers

In this study, we have assumed that the stopping time ts obeys
Stokes’ law whenever a � λmfp. In reality, Stokes’ law applies
only when the particle Reynolds number (the Reynolds number
of the gas flow around the particle) Rep ≡ 2a|vd − vg|/νmol
is less than unity, where |vd − vg| is the gas–dust relative
velocity. When Rep � 1, i.e., when the particle becomes so
large and/or the gas–dust relative velocity becomes so high, the
stopping time becomes dependent on the particle velocity (see,
e.g., Weidenschilling 1977). In this subsection, we discuss how
this effect affects our conclusion.

In general, the stopping time at a 
 λmfp can be written as

ts = 2m

CDρg|vd − vg|A, (45)

where CD is a dimensionless coefficient that depends on Rep.
Stokes’ law, which applies when Rep 	 1, is given by
CD = 24/Rep. In the opposite limit, Rep 
 1, the drag

coefficient CD approaches a constant value (typically of order
unity; e.g., CD ≈ 0.5 for a sphere with 103 � Rep � 105),
which is known as Newton’s friction law. Thus, in the Newton
regime, the stopping time depends on the particle velocity, unlike
in the Stokes regime. In this case, one has to calculate the
stopping time and particle velocity simultaneously since the
particle velocity in turn depends on the stopping time.

In the previous sections, we have ignored the Newton regime
to avoid the above-mentioned complexity. However, it is easy to
calculate the growth timescale in the Newton regime for given
Ωts , for which the gas–dust relative velocity can be known
in advance. Below, we show that the Newton drag sets the
minimum value of tgrow|Ωts=1 (Equation (35)) for given orbital
radius and internal density, which was not taken into account in
Section 4. At the midplane, Equation (45) can be rewritten as
Ωts = (2

√
2π/CD)(cs/|vd −vg|)m/(ΣgA), where we have used

that ρg = ΣgΩ/(
√

2πcs). When Ωts = 1, the gas–dust relative
velocity is dominated by the dust radial velocity vr = −ηvK , so
we can set |vd − vg| ≈ ηvK . Thus, at the midplane, we obtain
a relation

(ρinta)Ωts=1

Σg

≈ 3CD

8
√

2π

ηvK

cs

≈ 0.07

(
CD

0.5

)
ηvK

cs

, (46)

where we have used that m/A = 4ρinta/3. If CD reaches
a constant, (ρinta)Ωts=1/Σg no longer depends on aggregate
properties. Putting this equation into Equation (35), we have

tgrow|Ωts=1 ≈ 0.3

(
Σd/Σg

0.01

)−1(
CD

0.5

)(
ηvK/cs

0.08

)
tK . (47)

When CD = 24/Rep, Equation (47) reduces to the equation
for the Stokes drag (Equation (42)), where tgrow|Ωts=1 decreases
with increasing aggregate size a. However, when Rep becomes
so large that CD reaches a constant value, tgrow|Ωts=1 no longer
decreases with increasing a. Thus, we find that the Newton
drag sets the minimum value of tgrow|Ωts=1. For our disk model,
in which Σd/Σg = 0.01 and ηvK/cs = 0.08(r/5 AU)1/4, the
minimum growth timescale is ≈0.2–0.3(CD/0.5)tK at r ≈
3–10 AU.

Since the Newton drag regime was ignored in our model, the
growth rate of aggregates was overestimated at high Rep. As seen
in the lower panel of Figure 11, the growth timescale tgrow|Ωts=1

for the ρint = 10−5 g cm−3 aggregates falls below the minimum
possible value given by Equation (47) at r � 7 AU. This implies
that dust growth is somewhat artificially accelerated in our
simulation presented in Section 3.2. However, this artifact is not
the reason why porous aggregates grow across the radial drift
barrier in the simulation. Indeed, the drift timescale tgrow|Ωts=1
is ≈40tK at these orbital radii, and hence the minimum growth
timescale still satisfies the condition for breaking through the
drift barrier, Equation (38) (see Section 4). Thus, highly porous
aggregates are still able to break through the radial drift barrier
even if Newton’s law at high particle Reynolds numbers is taken
into account.

In summary, we have shown that Newton’s friction law
(CD ≈ constant) at high particle Reynolds numbers sets a
floor value for the growth timescale at Ωts = 1. In the
numerical simulation presented in Section 3.2, the neglect of the
Newton drag regime causes artificial acceleration of the growth
of Ωts � 1 aggregates. However, comparison with the drift
timescale shows that the floor value of tgrow|Ωts=1 is sufficiently
small for dust to grow across Ωts = 1. Therefore, the deviation

13



The Astrophysical Journal, 752:106 (18pp), 2012 June 20 Okuzumi et al.

from Stokes’ law at high particle Reynolds numbers has little
effect on the successful breakthrough of the radial drift barrier
observed in our simulation.

5.2. Effects of Frictional Backreaction

So far we have neglected the frictional backreaction from
dust to gas when determining the velocities of dust aggregates
(Equations (6) and (18)). Here, we discuss the validity of this
assumption.

5.2.1. Effect on the Equilibrium Drift Velocity

Frictional backreaction generally modifies the equilibrium
velocities of both gas and dust. The equilibrium velocities in
the presence of the backreaction are derived by Tanaka et al.
(2005) for arbitrary dust size distribution. The result shows that
the radial and azimuthal velocities vr and vφ = v′

φ + vK of dust
particles with stopping time ts are given by

vr = 1

1 + (Ωts)2
vg,r +

2Ωts

1 + (Ωts)2
v′

g,φ, (48)

v′
φ = − Ωts

2[1 + (Ωts)2]
vg,r +

1

1 + (Ωts)2
v′

g,φ, (49)

where

vg,r = 2Y

(1 + X)2 + Y 2
ηvK, (50)

v′
g,φ = − 1 + X

(1 + X)2 + Y 2
ηvK, (51)

are the radial and azimuthal components of the gas velocity
relative to the local circular Keplerian motion, respectively, and

X =
∫

ρd (m)

ρg

1

1 + (Ωts(m))2
dm, (52)

Y =
∫

ρd (m)

ρg

Ωts(m)

1 + (Ωts(m))2
dm, (53)

with ρd (m) being the spatial mass density of dust particles
per unit aggregate mass.5 In the limit of X, Y → 0, the gas
velocities approach vg,r → 0 and v′

g,φ → −ηvK , and hence
Equations (48) and (49) reduce to Equations (6) and (18),
respectively. Thus, the dimensionless quantities X and Y measure
the significance of the frictional backreaction. As found from
the integrands in Equations (6) and (18), the backreaction is non-
negligible when the local dust-to-gas mass ratio exceeds unity
and the aggregates dominating the dust mass couple tightly to
the gas.

To test the effect of fractional backreaction, we have also
simulated porous aggregation using Equations (48) and (49)
instead of Equations (6) and (18) for the aggregate velocities.
However, it is found that the effect of backreaction is so small
that the resulting dust evolution is hardly distinguishable from
that presented in Section 3. The upper panel of Figure 13
shows the temporal evolution of the gas velocities vg,r and v′

g,φ

observed in this simulation as a function of the weighted average
mass 〈m〉m. We see that the observed gas velocities deviate at
most only by 9 m s−1 ≈ 0.17ηvK from the velocities when the
backreaction is absent (dotted lines). As a result, the inward

5 Equations (48)–(53) are equivalent to the “multi-species NSH solution” of
Bai & Stone (2010a, their Equations (A4) and (A5)).
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Figure 13. Radial and azimuthal velocities of gas (upper panel) and radial
velocity of dust (lower panel) at r = 5 AU as a function of the weighted average
mass 〈m〉m. The solid black and gray curves in the upper panel show vg,r and
v′
g,φ = vg,φ −vK , respectively, obtained from the simulation including porosity

evolution of aggregates and fractional backreaction from dust to gas. The dotted
curves are the velocities when the fractional backreaction is neglected.

velocity −vr of aggregates with m = 〈m〉m is decreased only by
15% even when Ωts(〈m〉m) ≈ 1 (see the black solid curve in the
lower panel of Figure 13). The above result can be understood
in the following way. As found from the definitions of X and
Y (Equations (52) and (53)), the effect of the backreaction is
significant only when the density of dust coupled to the gas
(Ωts � 1) is comparable to or higher than the gas density. When
Ωts(〈m〉m) � 1, the density of the coupled dust at the midplane
is �Σd/hd |Ωts=1 ∼ Σd/(hg

√
αD) ∼ (0.01/

√
αD)ρg,mid ∼

0.3ρg,mid � ρg,mid, where ρg,mid is the midplane gas density and
we have used that hd |Ωts=1 ∼ √

αDhg ∼ 0.03hg (Equation (3))
and Σd/Σg ≈ 0.01 (the latter is true as long as Ωts(〈m〉m) � 1).
When Ωts(〈m〉m) � 1, the dust density does exceed the gas
density at the midplane, but the most part of the dust mass is
now carried by decoupled (Ωts > 1) aggregates, which do not
affect the gas motion.6 Thus, the density of coupled dust is
always lower than the gas density, and hence the backreaction
effect is insignificant at all times.

Furthermore, the effect on the differential drift velocity is even
less significant because the decreases in the inward velocities
nearly cancel out. As an example, the gray solid and dotted
curves in the lower panel of Figure 13 show the differential radial
velocity Δvr between aggregates of stopping times ts = ts(〈m〉m)
and 0.3ts(〈m〉m) obtained from the simulations with and without
the backreaction, respectively. We see that the maximum values
of |Δvr |, which are reached when Ωts(〈m〉m) ≈ 0.7, differ only
by 5%. Therefore, the frictional backreaction from dust to gas

6 Indeed, X and Y are insensitive to Ωts 
 1 particles because the factors
1/[1 + (Ωts )2] ≈ t−2

s and Ωts/[1 + (Ωts )2] ≈ t−1
s decrease faster than the

spatial dust density ρd ∝ Σd/hd ∝ t
1/2
s increases (see Equation (3)).
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hardly affects the drift-induced collision velocity between dust
aggregates.

5.2.2. Streaming Instability

The backreaction of dust on gas causes another phenomenon,
the so-called streaming instability (Youdin & Goodman 2005).
This means that the equilibrium gas–dust motion as described
by Equations (6)–(18) is unstable against perturbation. One
important consequence of this instability is rapid clumping of
marginally decoupled (Ωts ∼ 1) dust particles (e.g., Johansen
& Youdin 2007; Johansen et al. 2007; Bai & Stone 2010a).
The clumping proceeds in a runaway manner (i.e., turbulent
diffusion no longer limits the clumping) once the dust density
exceeds the gas density at the midplane (e.g., Johansen & Youdin
2007; see also the analytic explanation of this by Johansen et al.
2009). The runaway clumps could eventually be gravitationally
bound and form 100 km sized planetesimals (Johansen et al.
2007). For more tightly coupled (Ωts 	 1) particles, however,
the clumping occurs only moderately unless the dust-to-gas
surface density ratio is high and/or the radial drift speed is
low (Johansen et al. 2009; Bai & Stone 2010b). This is also true
for loosely coupled particles (Ωts 
 1) for which the interaction
with the gas is weak.

As seen in Section 3.2, porous aggregates are able to reach
Ωts ∼ 1 in inner regions of disks. These aggregates likely trigger
the streaming instability and can even experience runaway
collapse. However, it is not obvious whether the clumps really
do experience the runaway collapse, since the growth timescale
of the Ωts ∼ 1 aggregates can be as short as one orbital period
(see Section 5.1), which is comparable to the growth time of the
streaming instability at Ωts = 1 (Youdin & Goodman 2005). If
the aggregates cross Ωts ∼ 1 faster than the clumps develop,
planetesimal formation will occur via direct collisional growth
rather than gravitational instability. In order to address this issue,
we will need to simulate coagulation and streaming instability
simultaneously.

5.3. Fragmentation Barrier

In this study, we have assumed that all aggregate collisions
lead to sticking. This assumption breaks down if the collisional
velocity is so high that the collision involves fragmentation
and erosion. If the mass loss due to fragmentation and erosion
is significant, it acts as an obstacle to planetesimal formation
(the so-called fragmentation barrier; e.g., Brauer et al. 2008a).
Here, we discuss the validity and possible limitations of this
assumption.

Recent N-body simulations predict that very fluffy aggregates
made of 0.1 μm sized icy particles experience catastrophic
disruption at collision velocities Δv � 35 m s−1 (Wada et al.
2009). If a large aggregate grows mainly through collisions
with similar-sized ones (which is true in our simulations; see
Figure 9), the collision velocity at Ωts ≈ 1 is dominated by the
turbulence-driven velocity Δvt ≈ δvg ≈ √

αDcs (Section 2.3.2).
If the disk is optically thin and moderately turbulent (αD =
10−3) as in our model, the collision velocity is ≈21 m s−1 at r =
5 AU, so catastrophic disruption is likely insignificant for such
collisions. However, if turbulence is as strong as αD = 10−2, the
collision velocity at r = 5 AU and Ωts = 1 goes up to 67 m s−1.
In protoplanetary disks, strong turbulence with αD � 10−2 can
be driven by magnetorotational instability (MRI; e.g., Balbus &
Hawley 1998). If such strong turbulence exists, fragmentation
becomes no more negligible even for icy aggregates. Besides,

the collision velocity can become higher than the above estimate
when a large aggregate collides with much smaller ones,
since the collision velocity is then dominated by the radial
drift motion. For example, the differential radial drift velocity
between an Ωts = 1 aggregate and a much smaller one is as
high as ≈ηvK ≈ 56 m s−1 in optically thin disks. At such a high
velocity, erosion by small aggregates can also slow down the
growth of Ωts ≈ 1 aggregates, although net growth might be
possible (see, e.g., Teiser & Wurm 2009; Teiser et al. 2011).

On the other hand, resupply of small dust particles by
fragmentation/erosion has positive effects on dust growth. First,
small dust particles stabilize MRI-driven turbulence because
they efficiently capture ionized gas particles and thereby re-
duce the electric conductivity of the gas (e.g., Sano et al. 2000).
This process generally leads to the reduction of the gas ran-
dom velocity (and hence the reduction of turbulence-induced
collision velocity), especially when the magnetic fields thread-
ing the disk are weak (Okuzumi & Hirose 2011). In addition,
small fragments enhance the optical thickness of the disk, and
thus reduce the temperature of the gas in the interior of the disk
(given that turbulence is stabilized there). Since the radial drift
velocity is proportional to the gas temperature, this leads to the
reduction of the drift-induced collision velocity. In the limit of
large optical depths, the gas temperature is reduced by a factor
≈(h/r)1/4 ≈ 0.5 near the midplane (Kusaka et al. 1970), re-
sulting in the reduction of the drift-induced collision velocity to
28 m s−1. These effects may help the growth of large aggregates
beyond the fragmentation barrier.

The size of monomers is another key factor. Although we
have assumed monodisperse monomers of a0 = 0.1 μm, the
size of interstellar dust particles ranges from nanometers to
microns. It is suggested both theoretically (Chokshi et al. 1993;
Dominik & Tielens 1997) and experimentally (Blum & Wurm
2008) that the threshold velocity for sticking is roughly inversely
proportional to a0. Thus, inclusion of larger monomers generally
leads to a decrease in the sticking efficiency. However, it is not
obvious whether aggregates composed of multi-sized interstellar
particles are mechanically weaker or stronger than aggregates
considered in this study. For example, if the monomer size
distribution dn0/da0 obeys that of interstellar dust particles,
dn0/d log a0 ∝ a

−5/2
0 (Mathis et al. 1977), the total mass of

the aggregates is dominated by the largest ones (m0 ∝ a3
0 and

hence m0dn0/d log a0 ∝ a
1/2
0 ). Nevertheless, the existence of

smaller monomers can still be important, since the binding
energy per contact Ebreak is proportional to a

4/3
0 (Chokshi

et al. 1993; Dominik & Tielens 1997) and hence the total
binding energy tends to be dominated by the smallest ones
(Ebreakdn0/d log a0 ∝ a

−7/6
0 ). The net effect of multi-sized

monomers needs to be clarified by future numerical as well
as laboratory experiments.

Another issue concerning the growth efficiency of icy ag-
gregates arises from sintering. Sintering is the redistribution
of ice molecules on solid surfaces due to vapor transport and
other effects. In this process, ice molecules tend to fill dipped
surfaces (i.e., surfaces with negative surface curvature) since
the equilibrium vapor pressure decreases with decreasing sur-
face curvature. In an aggregate composed of equal-sized icy
monomers, this process leads to growth of the monomer con-
tact areas (Sirono 2011b) and consequently to enhancement
of the aggregate’s mechanical strength such as Froll. Signifi-
cant growth of the contact areas could cause the reduction of
the aggregate’s sticking efficiency since the dissipation of the
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collision energy through internal rolling/sliding motion could
then be suppressed (Sirono 1999). Furthermore, if the monomers
have different sizes, sintering leads to the evaporation of smaller
monomers (having higher positive curvature), which may result
in the breakup of the aggregate (Sirono 2011a). Therefore, sin-
tering can prevent the growth of icy aggregates near the snow
line where sintering proceeds rapidly. Sirono (2011b) shows that
the timescale of H2O sintering falls below 103 yr in the region
between the snow line (3 AU) and 7 AU for the radial temper-
ature adopted in our study. This is comparable to the timescale
on which submicron-sized icy particles grow into macroscopic
objects in this region (see Figure 7). However, if the disk is pas-
sive and optically thick (Kusaka et al. 1970), no icy materials
(including H2O and CO2) undergo rapid sintering at r � 4 AU
(Sirono 2011b). Moreover, the required high optical depth can be
provided by tiny fragments that would result from the sintering-
induced fragmentation itself. Consistent treatment of the two
competing effects is necessary to precisely know the location
where sintering is really problematic.

To summarize, whether icy aggregates survive catastrophic
fragmentation and erosion crucially depends on the environment
of the protoplanetary disks as well as on the size distribution
of the aggregates and constituent monomers. However, we
emphasize that icy aggregates can survive within a realistic
range of disk conditions as explained above. Indeed, the range is
much wider than that for rocky aggregates for which catastrophic
disruption occurs at collision velocities as low as a few m s−1

(Blum & Wurm 2008; Wada et al. 2009; Güttler et al. 2010).
In order to precisely predict in what conditions icy aggregates
overcome the fragmentation barrier, we need to take into account
the mass loss due to fragmentation/erosion and the reduction
of collision velocities due to the resupply of small particles in a
self-consistent way. This will be done in our future work.

5.4. Validity and Limitations of the Porosity Model

Aggregates observed in our simulation have very low internal
densities. This is a direct consequence of the porosity model
we adopted (Equation (15)). Here, we discuss the validity and
limitations of our porosity model.

As mentioned in Section 2.3.1, our porosity change recipe
at Eimp � Eroll is based on head-on collision experiments of
similar-sized aggregates. In our simulation, dust growth is in-
deed dominated by collisions with similar-sized aggregates (see
Section 3.2.1), so our result is unlikely affected by the limitation
of the porosity model regarding the size ratio. By contrast, the
neglect of offset collisions may cause underestimation of the
porosity increase, since the impact energy is spent for stretching
rather than compaction at offset collisions (Wada et al. 2007;
Paszun & Dominik 2009). If this is the case, then the break-
through of the radial drift barrier can occur even outside 10 AU.

On the other hand, the formation of very low density dust
aggregates is apparently inconsistent with the existence of
massive and much less porous aggregates in our solar system.
For example, comets, presumably the most primitive dust
“aggregates” in the solar system, are expected to have mean
internal densities of ρint ∼ 0.1 g cm−3 (e.g., Greenberg & Hage
1990). Since our porosity model does not explain the formation
of such large and less porous “aggregates,” some compaction
mechanisms have yet to be determined.

One possibility is static compression due to gas drag and self-
gravity. Although static compression is ignored in our porosity
model, it can contribute to the compaction of aggregates that
are massive or decoupled from the gas motion. For relatively

compact (ρint ∼ 0.1 g cm−3) dust cakes made of micron-sized
SiO2 particles, static compaction is observed to occur at static
pressure >100 Pa (Blum & Schräpler 2004; Güttler et al. 2009).
By contrast, the static compression strength has not yet been
measured so far for icy aggregates with very low internal
densities (ρint 	 0.1 g cm−3). However, for future reference,
it will be useful to estimate here the static pressures due to gas
drag and self-gravity.

The ram pressure, the gas drag force per unit area, is given
by Pram = CDρg|vd − vg|2/2, where CD is the drag coefficient
and |vd − vg| is the gas–dust relative speed (see Section 5.1).
At Ωts � 1, the gas–dust relative speed is approximately
equal to ηvK . Thus, assuming Newton’s drag law CD ∼ 1 for
Ωts � 1 aggregates (Section 5.1), the ram pressure at Ωts � 1
is estimated as

Pram ∼ ρg(ηvK )2 ∼ 10−5

(
ρg

10−11 g cm−3

)(
ηvK

50 m s−1

)2

Pa

(54)
independently of aggregate properties. Thus, if the static com-
pression strength of our high porous aggregates is lower than
10−5 Pa, compression of the aggregates will occur at Ωts � 1
due to ram pressure.

The static pressure due to self-gravity is estimated from
dimensional analysis as

Pgrav ∼ Gm2

a4
∼ 10−7

(
m

1010 g

)2/3(
ρint

10−5 g cm−3

)4/3

Pa.

(55)
For m ∼ 1010 g and ρint ∼ 10−5 g cm−3, which corre-
spond to the Ωts = 1 aggregates observed in our simulation
(Figure 5), the gravitational pressure is much weaker than the
ram pressure. However, since Pgrav ∝ m2/3, compression due
to self-gravity becomes important for much heavier aggregates.
For example, if ρint ∼ 10−5(m/1010 g)−1/5 g cm−3 as is the case
for the Ωts � 1 aggregates observed in our simulation, Pgrav
exceeds Pram at m ∼ 1017 g, which is comparable to the mass
of comet Halley. Moreover, since Pgrav ∝ ρ

4/3
int , gravitational

compaction will proceed in a runaway manner unless the static
compression strength increases more rapidly than Pgrav. Thus,
static compression due to self-gravity may be a key to fill the
gap between our high porous aggregates and more compact
planetesimal-mass bodies in the solar system.

6. SUMMARY AND OUTLOOK

We have investigated how the porosity evolution of dust
aggregates affects their collisional growth and radial inward
drift. We have applied a porosity model based on N-body
simulations of aggregate collisions (Suyama et al. 2008, 2012).
This porosity model allows us to study the porosity change
upon collision for a wide range of impact energies. As a
first step, we have neglected the mass loss due to collisional
fragmentation and instead focused on dust evolution outside the
snow line, where aggregates are mainly composed of ice and
hence catastrophic fragmentation may be insignificant (Wada
et al. 2009). Our findings are summarized as follows.

1. Icy aggregates can become highly porous even if collisional
compression is taken into account (Section 3.2). Our
model calculation suggests that the internal density of icy
aggregates at 5 AU falls off to 10−5 g cm−3 by the end of the
initial fractal growth stage and is then kept at this level until
the aggregates decouple from the gas motion (Figure 10).
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Stretching of merged aggregates at offset collisions, which
is not taken into account in our porosity model, could further
decrease the internal density (Wada et al. 2007; Paszun &
Dominik 2009).

2. A high porosity triggers significant acceleration in colli-
sional growth. This acceleration is a natural consequence
of particles’ aerodynamical property in the Stokes regime,
i.e., at particle radii larger than the mean free path of the
gas molecules (Section 4). The porosity (or internal density)
of an aggregate determines whether the aggregate reaches
the Stokes regime before the radial drift stalls its growth.
Compact aggregates tend to drift inward before experienc-
ing rapid growth, while highly porous aggregates are able
to experience it over a wide range of the orbital radius
(Figure 11).

3. The growth acceleration enables the aggregates to over-
come the radial drift barrier in inner regions of the disks.
Our model calculation shows that the breakthrough of the
radial drift barrier can occur at orbital radii less than 10 AU
in the MMSN (Figure 5). A higher disk mass allows this
to occur at larger orbital radii or higher internal densities
(Figure 12). The radial drift barrier has been commonly
thought to be one of the most serious obstacles against
planetesimal formation. Our result suggests that, if the
fragmentation of icy aggregates is truly insignificant (see
Section 5.3), formation of icy planetesimals is possible via
direct collisional growth of submicron-sized icy particles,
even without an enhancement of the initial dust-to-gas mass
ratio.

4. Further out in the disk, the growth of porous icy aggregates
is still limited by the radial drift barrier, but their inward
drift results in enhancement of the dust surface density in
the inner region (Figure 6). This enhancement may help
the cores of giant planets to form within a disk lifetime
(Kobayashi et al. 2010, 2011).

We remark that the quick growth in the Stokes regime was
also observed in recent coagulation simulations by Birnstiel
et al. (2010, see their Figure 11) and Zsom et al. (2011, see their
Figure 3). Birnstiel et al. (2010) observed the breakthrough of
the radial drift barrier only at small orbital radii (r � 0.5 AU)
since they assumed compact aggregation. Zsom et al. (2011)
found rapid growth of porous aggregates in the Stokes regime,
but did not consider the loss of the dust surface density through
radial drift. What we have clarified in this study is that porosity
evolution indeed enables the breakthrough of the radial drift
barrier at much larger orbital radii.

The porosity evolution can even influence the evolution
of solid bodies after planetesimal formation. It is commonly
believed that the formation of protoplanets begins with the
runaway growth of a small number of planetesimals due to
gravitational focusing (e.g., Wetherill & Stewart 1989). The
runaway growth requires a sufficiently high gravitational escape
velocity vesc = √

2Gm/a relative to the collision velocity.
Since the escape velocity decreases with decreasing internal
density (vesc ∝ m1/3ρ

1/6
int ), it is possible that high porosity

delays the onset of the runaway growth and thereby affects
its outcome. For example, a recent protoplanet growth model
including collisional fragmentation/erosion (Kobayashi et al.
2010, 2011) suggests that planetesimals need to have grown to
>1021 g before the runaway growth begins in order to enable
the formation of gas giant planets within the framework of the
core accretion scenario (Mizuno 1980; Pollack et al. 1996).
The size of the “initial” planetesimals can even determine the

mass distribution of asteroids in the main belt (Morbidelli et al.
2009; Weidenschilling 2011). As we pointed out in Section 5.4,
compaction of large and massive aggregates may occur through
static compression due to gas drag or self-gravity. To precisely
determine when it occurs is beyond the scope of this work, but it
will thus be important to understand the later stages of planetary
system formation. We will address this in future work.
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