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ABSTRACT

An important class of formation theories for hot Jupiters involves the excitation of extreme orbital eccentricity
(e = 0.99 or even larger) followed by tidal dissipation at periastron passage that eventually circularizes the
planetary orbit at a period less than 10 days. In a steady state, this mechanism requires the existence of a significant
population of super-eccentric (e > 0.9) migrating Jupiters with long orbital periods and periastron distances of only
a few stellar radii. For these super-eccentric planets, the periastron is fixed due to conservation of orbital angular
momentum and the energy dissipated per orbit is constant, implying that the rate of change in semi-major axis a is
ȧ ∝ a1/2 and consequently the number distribution satisfies dN /d log a ∝ a1/2. If this formation process produces
most hot Jupiters, Kepler should detect several super-eccentric migrating progenitors of hot Jupiters, allowing for
a test of high-eccentricity migration scenarios.
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1. INTRODUCTION

The origin of gas-giant planets with orbital periods of only a
few days—the hot Jupiters—is not understood. One hypothesis
involves the following sequence of events: (1) the planets form at
a few AU from their host stars, in approximately circular orbits;
(2) some mechanism excites their orbits to extreme eccentrici-
ties (1 − e � 0.01); and (3) tidal dissipation during successive
periastron passages removes enough orbital energy so that the
planet migrates a factor of ∼100 in semi-major axis, finally
settling into a circular orbit close to the host star. Possible exci-
tation mechanisms include Kozai–Lidov (KL) oscillations (Wu
& Murray 2003; Fabrycky & Tremaine 2007), planet–planet
scattering (Rasio & Ford 1996; Nagasawa et al. 2008), reso-
nant capture during migration in multi-planet systems (Yu &
Tremaine 2001), and weak resonant orbital interactions (called
“secular chaos” by Wu & Lithwick 2011). We shall refer to
these as high-eccentricity migration (HEM) scenarios; they are
of particular interest because they naturally predict frequent mis-
alignment of the stellar spin and planetary orbit, consistent with
recent observations of the Rossiter–McLaughlin effect (Winn
et al. 2010).

Most hot Jupiters have relatively small eccentricities: 60%
of the known planets with orbital period P < 10 days and
M sin i > 0.25MJ (Jupiter masses) have eccentricities consis-
tent with zero, and 90% have eccentricity e < 0.1. If the hot
Jupiters are formed through the HEM process, this result im-
plies that the timescale for the decay of the eccentricity from
near unity to near zero is short compared to the age of the
Galaxy. Since the star formation rate is approximately constant
over the age of the Galaxy, the distribution of migrating Jupiters
with moderate or high eccentricity should therefore be in an
approximate steady state. Moreover, for these eccentricities the
energy dissipation per orbit is independent of eccentricity, since
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the dissipation occurs only near periastron and in this region
all moderate and high-eccentricity orbits look like parabolae.
Therefore, we can predict the eccentricity and semi-major axis
distribution in HEM independent of the details of the dissi-
pation process. We do this in Section 2 and find that HEM
requires the presence of a large population of Jupiters with ec-
centricity e � 0.9, which we call “super-eccentric” Jupiters.
Quantitative predictions and a strategy for detection using
Kepler targets are given in Section 3. A brief summary is given in
Section 4.

2. STEADY-STATE DISTRIBUTION
OF MIGRATING JUPITERS

2.1. Basic Assumptions

Migration from large to small semi-major axis requires that
energy is removed from the orbit. In HEM, tidal friction is
responsible for converting orbital energy into heat which is then
radiated away from the system. In most cases, tidal friction in
the planet removes energy much faster than tidal friction in the
star. Since the planet’s spin angular momentum is negligible
compared to its orbital angular momentum, the orbital angular
momentum per unit mass J is conserved during HEM (however,
see discussion in Section 2.4), i.e.,

J 2 = G(M� + Mp)a(1 − e2) = cst. (1)

where a, Mp, M�, and G are the semi-major axis, planet mass,
host star mass, and gravitational constant, respectively. Thus,

a (1 − e2) = q (1 + e) ≡ aF = cst. (2)

where q is the periastron distance and aF is the final semi-major
axis that the planet reaches when the eccentricity has decayed
to zero.

Let X = e or a, and let NJ (X) dJ be the number of migrating
planets with eccentricity or semi-major axis less than X and
angular momentum in the interval (J, J + dJ ). We assume that
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Figure 1. Cumulative distribution of migrating planets NJ (e) with eccentricity
e > eref = 0.1, from Equation (11). The planets migrate along a track of
constant orbital angular momentum J. The vertical axis also represents the
time required for the eccentricity to decay to eref . The magenta dot represents
the current position of HD 80606b (e = 0.94, a = 0.45 AU) and the orange
dot represents a hypothetical planet with semi-major axis a = 5 AU flowing
along the same angular-momentum track as HD 80606b. The number of objects
in the range e = 0.94–0.995 is comparable to the number of objects in the
range e = 0.2–0.94. The plot is shown in normalized units so the curves are
independent of J.

(A color version of this figure is available in the online journal.)

all planets with eccentricity greater than some reference value
eref are still migrating, and set NJ (eref) = 0. We have argued
that the distribution of migrating planets is in steady state and
that orbital angular momentum is conserved during migration.
Then, the continuity equation requires

Ẋ
dNJ

dX
= SJ , (3)

where SJ dJ is the current of migrating planets with angular mo-
mentum in the interval (J, J + dJ ). This current is determined
by the properties of the source of highly eccentric long-period
gas giants, which are assumed to be far (a � 1 AU) from the
region of phase space under consideration.

2.2. Orbital Evolution: Approximate
Treatment at High Eccentricity

We now describe an approximate analytic treatment of the or-
bital evolution and steady-state distribution at high eccentricity.
For high eccentricity, the shape of the orbit near periastron and
the energy loss per periastron passage ΔE are both independent
of e. Thus, the orbit-averaged energy loss rate is

Ė = ΔE

P
∝ 1

P
∝ a−3/2, (4)

where P is the orbital period. Since E ∝ 1/a,

∣∣∣da

dt

∣∣∣ ∝ a1/2. (5)

In the region of (e, a) space that contains a steady-state
distribution of migrating planets on high-eccentricity orbits
(q = a(1 − e) � 10 R� for Sun-like host stars) the number
of migrating Jupiters per unit semi-major axis is found with the
help of Equation (3),

dNJ

da
= cst.

ȧ
∝ a−1/2 or

dNJ

d log a
∝ a1/2. (6)

2.3. Orbital Evolution: Exact Treatment

In order to study orbital evolution at small or moderate ec-
centricity, some understanding of tidal dissipation is required.
Unfortunately, there is no robust theory of tidal dissipation in
gas-giant planets, due both to the sparseness of observational
calibration (only Jupiter and Saturn) and to theoretical difficul-
ties in studying such weak dissipation (e.g., tidal Q ∼ 105 for
the Jupiter–Io system).

For illustration, we shall use the phenomenological approach
of Hut (1981), which follows Darwin in assuming that the tides
lag their equilibrium value by a constant time τ . By assuming
pseudo-synchronous rotation (Hut’s Equation (45)) we find that
the orbital evolution for a single planet is described by

de

dt̃
= −1

2
e(1 − e2)3/2g(e) (7)

which is equivalent to

dã

dt̃
= − ã1/2 e2g (e) , (8)

where ã ≡ a/aF = (1 − e2)−1 and t̃ ≡ t/tD . Here
tD = Mp a8

F
/(9 k GM2

� R5
p τ ) is a dissipation time,4 k � 0.5

is the planet’s Love number, and Rp is its radius. This result
assumes Mp 	 M�. The function g(e) is given by

g(e) = 7 + 45
2 e2 + 56e4 + 685

32 e6 + 255
64 e8 + 25

256e10

3
(
1 + 3e2 + 3

8e4
)

� 2.33 + 6.12e3, (9)

where the approximation in the final equation is accurate to
better than 0.5% for all eccentricities between 0 and 1.

Equation (3) then implies that the number of planets per unit
interval in angular momentum is given by

dNJ (e)

de
= SJ

|de/dt | (10)

and

NJ (e) =
∫ e

eref

dNJ (e) = SJ [t(e) − t(eref)] , (11)

where t(e) is the time required to migrate from some initial
eccentricity near unity to e. The cumulative distribution NJ (e)
for a single track in J, as determined from Equations (7) and (11),
is shown in Figure 1.

Figure 2 displays the expected number of migrating Jupiters
per unit log a, as obtained from Equation (8), as well as the high-
eccentricity approximation (6). For a fixed interval in orbital
angular momentum, the number of migrating Jupiters is an
increasing function of log a above e � 0.9.

2.4. The Approximation of Constant
Orbital Angular Momentum

In HEM scenarios, gas giants are assumed to be born on
nearly circular orbits and then acquire a large eccentricity after

4 For planets of a fixed density and a range of radii, the dissipation time
scales as τ ∝ 1/(kR2

p). Thus, smaller planets have larger dissipation times.
Nevertheless, we expect the dissipation to occur mostly in the planet rather
than the star because the Love number k is much smaller in stars than planets.
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Figure 2. Blue curve shows the distribution dNJ /d log a of migrating Jupiters
per unit interval in angular momentum J from Equation (10) and the dashed
red curve shows the high-eccentricity approximation dN /d log a ∝ a1/2

(Equation (6)). The high-eccentricity approximation is accurate to ∼20% for
a/aF � 10 or e � 0.95. The magenta and orange points have the same
meaning as in Figure 1. The plot is shown in normalized units so the curves are
independent of J.

(A color version of this figure is available in the online journal.)

exchanging their angular momentum with other planets or dis-
tant stellar companions, through close encounters in the former
case or KL oscillations in the latter. Therefore, orbital angular
momentum is not a constant during the process of eccentric-
ity excitation. Our analysis assumes that eccentricity excitation
takes place at large semi-major axes (say, a � 5–10 AU) and
focuses on the region of (a, e) space where substantial orbital
decay has already occurred but the eccentricity is still mod-
erate to large (say a � 1 AU and e > 0.2). It is not clear
whether or not the approximation that migration takes place
at constant angular momentum is accurate for all semi-major
axes a � 1 AU. In what follows, we assess the validity of
the constant J approximation of Sections 2.2 and 2.3 in the
presence of KL oscillations, which are the most likely cause
of changes in the orbital angular momentum of the migrating
planet.

We performed many numerical integrations of the orbit-
averaged restricted three-body problem, including the effects
of general relativity, tidal dissipation, and tidal precession. Each
simulation was initialized with a Jupiter-mass planet orbiting
about a solar-mass star, placed in a nearly circular orbit with
semi-major axis a � 3–5 AU. The system also contained a
solar-mass companion star, placed at distances of 30–1000 AU
with inclination of 85◦ � i � 90◦ relative to the planetary
orbit. Only the quadrupole term of the companion’s potential
was considered.

Typically, KL oscillations commenced at the start of the
integration, with large-amplitude variations in orbital angular
momentum J. Due to the strong dependence of tidal dissipation
on periastron distance q, dissipation takes place almost entirely
in the vicinity of Jmin, the minimum orbital angular momentum
during a KL oscillation. As a result, the value of Jmin remains
roughly fixed during migration. Precession due to general
relativity acts to decrease the amplitude of the oscillation in
J (e.g., Blaes et al. 2002; Wu & Murray 2003; Fabrycky
& Tremaine 2007). Once the oscillation amplitude in J is
sufficiently small (<10% in J), such that the dissipation rate

does not change considerably during each cycle, the mean value
of J remains constant and equal to the final orbital angular
momentum JF. Therefore, the distribution of planets from then
on can be computed by assuming a constant J = JF. At this stage
of migration, KL oscillations are considered to be “quenched.”
Quantitatively, KL oscillations are quenched at a semi-major
axis aQ given by

aQ ≈ 1.8 AU
( aF

0.05 AU

)−1/7
(

sin2 imin

0.4

)−2/7 (
M�

M�

)4/7

×
(

Mper

M�

)−2/7 ( aper

1000 AU

)6/7
(

1 − e2
per

1 − 0.52

)3/7

,(12)

where aper and eper are the semi-major axis and eccentricity of
the perturber and imin is the mutual inclination at the phase of
the KL oscillation when J = Jmin, while Mper is the perturber
mass. For larger perturber mass or smaller semi-major axis, KL
oscillations are quenched closer to the host star. In particular,
nearby giant planets quench the oscillations at smaller radii than
distant companion stars; for example, a Jupiter-mass perturber
at 10 AU has aQ ≈ 0.2 AU. The major difference between our
various integrations of KL oscillations with tidal dissipation was
the value of aQ, due primarily to variations in the distance of the
perturber.

During each integration, we tracked the time that the planet
spent in a bin of width ΔJ centered on the final angular momen-
tum JF. We used this information to construct the eccentricity
and semi-major axis distributions that would be present in this
angular-momentum bin in a steady-state population of planets
following this migration path. We found that even in the pres-
ence of KL oscillations the constant J approximation described
in Sections 2.2 and 2.3 reproduced the distribution of planets
to within a factor of two or better, so long as ΔJ was not more
than about 20% of JF. That is, we found that the steady-state
formulae derived in Section 2.3 by assuming constant J were
still approximately valid, even though the orbital angular mo-
mentum experiences large-amplitude oscillations (see example
of HD 80606b in Section 2.5).

This surprising agreement results from the fact that tidal
dissipation, and thus migration, occurs mostly when J � Jmin,
the minimum value of the angular momentum during a KL
cycle. As long as Jmin is close to JF, the final value of orbital
angular momentum after quenching, then all of the migration
takes place within the bin of width ΔJ . The time that the planets
spend on KL cycles outside the bin is irrelevant, since they do
not migrate there.

2.5. An Example

Consider the migration of the gas-giant planet HD 80606b,
which currently has a = 0.45 AU and e = 0.93, corresponding
to aF = a(1 − e2) = 0.06 AU. The migration track has been
modeled by Wu & Murray (2003) and Fabrycky & Tremaine
(2007), who start with an initially nearly circular orbit with
a = 5 AU, similar to Jupiter. KL oscillations are excited by
a distant companion star HD 80607. For the first Gyr of the
evolution, the eccentricity oscillates between emax = 0.993 and
emin = 0.04–0.25. The amplitude of the KL oscillations then
gradually decays; the oscillations are quenched by 2.8 Gyr, when
the eccentricity is 0.97 and the semi-major axis is 2 AU—in
agreement with Equation (12)—and thereafter the eccentricity
and semi-major axis decay at constant angular momentum,
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Figure 3. Comparison of the analytic theory (red) of Section 2.3 with the
migration of HD 80606b, as depicted in Figure 1 of Fabrycky & Tremaine
(2007). The blue lines show the density in eccentricity and log semi-major
axis of a steady-state ensemble of planets that all follow the same trajectory
as HD 80606b. The planets only contribute to the density when their angular
momentum is small, in particular when a (1 − e2) � 0.14, 0.11 and 0.08 AU.
The normalization is chosen so that all the curves match at a/aF = 5. Despite
the presence of KL oscillations for a/aF � 30, the density is approximated by
the analytic expressions derived in Section 2.3 to within a factor of two for all
values of (e, a).

(A color version of this figure is available in the online journal.)

reaching zero eccentricity after 4 Gyr at a semi-major axis
aF = 0.071 AU.5

In Figures 1 and 2, the magenta and orange points represent
the current position of HD 80606b and its hypothetical Jupiter-
like “progenitor,” respectively.

Figure 3 shows in blue the density of planets in eccentricity
and semi-major axis that would result from a steady-state
ensemble of migrating planets with the same trajectory as HD
80606b. Three plots are shown, for angular-momentum cutoffs
J 2

c = G(M� + Mp)ac with ac = 0.14, 0.11, and 0.08 AU (top
to bottom). For comparison, the red lines show the analytical
predictions of Section 2.3. In the latter stages of migration, after
the KL oscillations have been damped, the density matches the
analytical estimate extremely well—this is not surprising since
the assumption of evolution at constant angular momentum is
satisfied to high accuracy. At larger eccentricities and semi-
major axes, when KL oscillations are present, the blue curves
are displaced from extrapolation of these theoretical predictions
by up to a factor of two or so, but their shapes remain similar as
expected from the arguments of the preceding subsection.

Figures 1–3 show that in a steady state, an unbiased sample
of exoplanets containing one HD 80606b should contain more
than one migrating planet with a similar periastron distance and
even larger semi-major axis and eccentricity.

5 If HD 80606b migrates on Gyr timescales, then in the Hut (1981)
prescription, the energy dissipation rate peaks at ∼1028 erg s−1, at eccentricity
e ∼ 0.7–0.8. This rapid energy dissipation could inflate the planet’s radius
significantly if the energy is dissipated at great depth. HD 80606b has final
semi-major axis aF = 0.06 AU, and the maximum dissipation rate increases
dramatically for smaller values of aF. This suggests that some planets may be
destroyed in the process of migration, particularly ones whose mass and aF are
relatively small (see, e.g., Gu et al. 2003). Consequently, there may be more
super-eccentric planets than predicted by our theory, which assumes that no
planets are lost during migration.
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Figure 4. In solid blue are lines of constant angular momentum J that correspond
to PF = P (1− e2)3/2 = 1.25, 2.5, 5.0, 10.0, and 20.0 days. Horizontal dotted
lines are fixed values of 1/1−e, separated by factors of two. The corresponding
values of e (0.2, 0.6, etc.) are on the right-hand side of the figure. The relative
number of planets expected in each interval along a track in constant J is given
by the numbers on the left (2.9, 1.0, etc.). Tidal dissipation drives the planets
to flow from the upper right corner to the lower left corner, along the lines of
constant J. Black dots are current RV observations with M sin i > 0.25 taken
from exoplanet.org with the exception of HD 20782b (green dot) for which the
updated e = 0.97 (O’Toole et al. 2009) is used. The magenta dot highlights
the current position of HD 80606b and the orange dot represents a hypothetical
planet at 5 AU flowing along the same track in J as HD 80606b.

(A color version of this figure is available in the online journal.)

3. OBSERVATIONS, PREDICTIONS, AND DISCUSSION

3.1. Current Observations

We compile a list of all known exoplanets with M sin i >
0.25MJ , of which the radial-velocity (RV) planets are dis-
played in Figure 4. The planetary parameters are taken from
exoplanets.org with the exception of HD 20782b, the green dot,
whose eccentricity was recently revised to e = 0.97 (O’Toole
et al. 2009). For each planet we compute PF = P (1− e2)3/2, the
final orbital period that a planet would reach if its eccentricity
decayed to zero at constant angular momentum. For reference,
a planet with Jupiter’s orbital period and PF = 10 days would
have e = 0.991.

The blue lines in Figure 4 are lines of constant orbital angular
momentum, along which planets flow from long to short orbital
periods. The relative number of planets expected in each interval
along a track in constant J is given by the numbers on the left
(2.9, 1.0, etc.,). If, for example, one gas-giant planet is found
migrating in the PF = 5–10 days bin within an eccentricity range
0.9 < e < 0.95 (such as HD 80606b), then there should be �1
planet migrating in this 5–10 day bin within an eccentricity
range 0.95 < e < 0.975 as well.

Among the known gas-giant exoplanets there is a significant
excess population having eccentricity consistent with zero and
P = PF < 10 days, corresponding to a < 0.09 AU for a solar-
mass host star. In the HEM scenario, these are planets that were
formed at several AU, excited to high eccentricity, migrated due
to tidal friction, and have now completed the migration process.
There is no such excess for larger periods; in HEM models this
implies that tidal dissipation is unimportant for planets with
PF > 10 days and we discard these from our sample.

From the remaining sample we calculate the number of
“moderately eccentric” planets, which we define to be those
with 0.2 < e < 0.6, and the number of “super-eccentric” planets
(e > 0.9). The first two lines of Table 1 summarize the number
of gas-giant planets with moderate eccentricity, as detected by
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Table 1
Expected Number of Super-eccentric Planetsa

PF = P (1 − e2)3/2 3–5 days 5–10 days

RV (moderate/total) 0/13 4/9
Transit+RV (moderate/total) 3/46 3/8
RV (super-eccentric, theory/observed) 0 vs. 0 2–3 vs. 2
Kepler (super-eccentric, theory) 2 3– 5

Notes.
a “Moderate” denotes the eccentricity range 0.2 < e < 0.6, “super-eccentric”
denotes e > 0.9, and “total” is 0 � e < 0.6. Numbers in boldface are
predictions obtained from the number of moderate-eccentricity planets in the
RV and Transit+RV categories by assuming that all giant planets at small
periods are formed by high-eccentricity migration (HEM) and applying the
model of Section 2.3. The period intervals (e.g., 3–5 days) refer to the final
period PF = P (1 − e2)3/2, which is the period after HEM is complete and the
orbit is circularized, assuming constant orbital angular momentum. Only planets
with M sin i > 0.25 MJ are included in the statistics. The predictions are for
super-eccentric planets with orbital period P < 2 yr only. The results are based
on queries to the exoplanets.org database in 2011 September. The predictions
do not account for eccentricity-dependent selection effects.

RV surveys and transit photometry with spectroscopic follow-up
(“Transit+RV”).6 Both the RV and Transit+RV categories yield
a fraction of moderate-eccentricity planets that is roughly 1/2
in the 5–10 day bin and much smaller, �1/15, in the 3–5 day
bin. The sharp decline for smaller values of PF is consistent
with the expectation that tidal dissipation is stronger for orbits
with smaller periastron, so that in a steady state the fraction of
planets in the migration pipeline is smaller.

In HEM models both the moderately eccentric and super-
eccentric planets are in steady-state migration and therefore
the population ratio in these groups can be calculated using the
models of Section 2.3. Thus we can predict the number of super-
eccentric planets that should have been found in RV surveys; this
prediction is shown in boldface in the third line along with the
number of super-eccentric planets actually found so far in these
surveys. Furthermore, the fractions of moderately eccentric RV
and Transit+RV planets can be used with our models to predict
the number of super-eccentric planets in the Kepler sample
(Borucki et al. 2011); this prediction is shown in boldface in
the last line of the table.

Before discussing these predictions we address selection
effects. RV surveys may be biased against the detection of super-
eccentric planets for at least two distinct reasons. First, sparse
observations of high-eccentricity orbits are likely to miss the
strong reflex velocity signal near periastron, leading to non-
detection of planets that would be detected at the same semi-
major axis and smaller eccentricity, or to an underestimate
of the eccentricity if the planet is detected (Cumming 2004;
O’Toole et al. 2009). This bias only sets in for e � 0.6 so the
fraction of moderately eccentric planets detected in RV surveys
is much more reliable than the fraction of super-eccentric

6 The planets in the “Transit+RV” line in Table 1 are obtained by using the
following search string in exoplanets.org (Wright et al. 2011):

MSINI [mjupiter] > 0.25 and PER [day] ∗ (1 − ECC2)3/2 > 3

and PER [day] ∗ (1 − ECC2)3/2 < 10 and DISCMETH == “TRANSIT.”

They mostly consist of planets discovered in ground-based transit surveys
(over 70%) as well as a handful of objects discovered by the COROT and
Kepler space-based telescopes and by RV surveys. All objects in this category
have eccentricities that have been determined by spectroscopy. The vast
majority of Kepler planets have no spectroscopic follow-up and hence are not
included in this line.

planets. Second, we are mostly concerned with avoiding biases
against detecting highly eccentric planets at a given angular
momentum (i.e., along a given migration track), rather than
at a given semi-major axis. Here there is an additional bias,
since high-eccentricity orbits have longer periods and hence a
periodic signal is harder to detect and characterize in a given
time baseline.

Despite these poorly understood selection effects, the pre-
dicted and observed numbers of super-eccentric planets in RV
surveys as shown in Table 1 are consistent. However, the num-
bers are too small to test the validity of HEM scenarios.

For transit surveys the selection effects can be divided into
geometric effects, which depend on the orientation of the
observer relative to the star (i.e., whether or not a planet transits
the star), and survey effects, which depend on properties of
the survey (time baseline, photometric accuracy, etc.). With
adequate baseline and signal-to-noise ratio, the most important
selection effect is geometrical: the probability that the planet
will transit is given by

P = 〈R�/r〉φ = R�

a (1 − e2)
= R�

aF

∝ R�

J 2
, (13)

where R� and r are the stellar radius and heliocentric distance of
the planet during transit and 〈〉φ is an average over the azimuth of
the sightline, which is equal to an average over the true anomaly.
Therefore, on a migration track of constant angular momentum,
the geometric selection effects are independent of eccentricity.
That is, a hot Jupiter progenitor with say, a = 1 AU and
e = 0.975 has the same detection probability as a circularized
hot Jupiter with a = 0.05 and e = 0. Survey selection effects,
in contrast, are biased against high-eccentricity orbits because
the period is longer so there are fewer transits in a given period
and because the transits are shorter so the signal-to-noise ratio is
smaller. However, these selection effects can be calculated and
corrected for using the methods outlined in Borucki et al. (2011)
and should be relatively small since our sample is restricted to
giant planets, which are relatively easy to detect.

3.2. Predictions for Kepler

Kepler observations yield the planetary radius R and orbital
period P. To compare these results to our models we assume that
our mass limit, 0.25MJ , corresponds to R = 8 R⊕ and that the
planet population within a range of period is roughly the same
as the population within the same range of PF = P (1 − e2)3/2

since most planets have small eccentricities. The most recent
Kepler catalog (Borucki et al. 2011) contains 30 planets with
R � 8 R⊕ and 3 days � P � 5 days, and 16 in the same radius
range with 5 days � P � 10 days.7

These can be combined with the results from ground-based
surveys (line 2 of Table 1) to predict the number of moderate-
eccentricity planets in each period range, and these numbers
are combined with the steady-state HEM models in Section 2.3
to predict the numbers of super-eccentric planets in the Kepler
catalog (line 4 of Table 1). These predictions should be under-
estimates since Kepler will detect planets with longer periods as
the mission progresses (the automated pipeline in Borucki et al.
2011 only finds objects with P < 93 days).

7 Note that the ratio of planets in these two period bins, 16/30 = 0.5, is
larger than the corresponding ratio for ground-based surveys, 8/46 = 0.2 (the
numbers are the same whether we use P or PF). This result suggests that
Kepler has less selection bias against long-period gas giants than ground-based
surveys, which favors the detection of super-eccentric migrating planets.
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These results imply that Kepler should detect several super-
eccentric (e > 0.9) giant planets (R > 8 R⊕) with orbital period
<2 yr. If an extended Kepler mission permits detections of
planets with longer periods the predicted number is higher. A
significant fraction of these could have e > 0.94 i.e., more
eccentric than HD 80606b, the current confirmed record-holder.

A typical member of this population, with aF = 0.1 AU and
M > 0.25MJ , produces a stellar reflex velocity > 50 m s−1 near
periastron. For objects on highly eccentric orbits with random
orientations, most transits occur near periastron, where the
reflex velocity is close to the periastron value—quantitatively,
over half of all transits occur when the reflex velocity is
within 10% of the periastron velocity. Thus, relatively few
low-exposure RV measurements near the transit epoch should
be sufficient to detect and measure a large eccentricity. We
suggest that all of the Kepler gas-giant planetary candidates
with periods above �20 days (Borucki et al. 2011 list 34
objects with R > 8 R⊕ and periods between 20 days and
93 days) be followed spectroscopically near transit (with one
or two additional measurements at other phases to determine
the systemic velocity).

4. SUMMARY AND DISCUSSION

The main result of this paper is that if hot Jupiters are formed
by HEM, then there must be a steady-state current or flow of gas-
giant planets migrating from large to small orbital periods. Since
tidal dissipation is required for HEM and is only effective out to
distances of a few stellar radii in typical exoplanet systems, the
current must consist of planets that either have periastrons of a
few stellar radii or undergo KL oscillations or other dynamical
processes that regularly bring their periastrons to these small
values. Moreover, because energy loss from tidal dissipation
only occurs near periastron, the rate of energy loss on high-
eccentricity orbits varies inversely with the orbital period; thus,
for every migrating planet on a moderate-eccentricity orbit
there should be many super-eccentric planets (e > 0.9). We
have computed the expected eccentricity and semi-major axis
distribution of the steady-state current of migrating planets using
Hut’s (1981) model of tidal dissipation and assuming pseudo-
synchronous planetary spin. Our results indicate that several
super-eccentric gas-giant planets should be present in the Kepler
exoplanet catalog. These can be discovered, if present, by a
program of RV measurements on the Kepler planets with the
largest diameters and the longest periods.

The absence of a significant number of super-eccentric
migrating Jupiters in this sample would imply either that HEM is
not an ingredient of the formation process for most hot Jupiters
or that our migration model is oversimplified. In particular,

(1) our assumption that migration occurs at constant orbital
angular momentum is not valid in the presence of KL oscillations
induced by outer planets or a companion star; however, we have
argued in Section 2.4 that our results should be approximately
correct even in the presence of such oscillations; and (2) the
equilibrium tide approximation may not be valid for all values
of orbital angular momentum and planet mass (see, e.g., Ivanov
& Papaloizou 2004; Guillochon et al. 2011). Note that one of
the main uncertainties is a possible frequency dependence in the
lag time of the tidal response τ . However, the characteristic tidal
frequency is not a strong function of eccentricity for a planet
that migrates with constant orbital angular momentum.

The simple HEM model described here, whose central com-
ponents are the steady-state approximation and the assumption
that migration occurs at constant angular momentum, provides
a preliminary framework for the exploration of the dynamics of
HEM. A thorough exploration of this dynamics should establish
whether our simplified model is accurate and enable a definitive
observational test of whether hot Jupiters form through HEM.
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