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ABSTRACT

We present results of general relativistic simulations of collapsing supermassive stars with and without rotation
using the two-dimensional general relativistic numerical code Nada, which solves the Einstein equations written
in the BSSN formalism and the general relativistic hydrodynamic equations with high-resolution shock-capturing
schemes. These numerical simulations use an equation of state that includes the effects of gas pressure and, in
a tabulated form, those associated with radiation and the electron–positron pairs. We also take into account the
effect of thermonuclear energy released by hydrogen and helium burning. We find that objects with a mass of
≈5 × 105 M� and an initial metallicity greater than ZCNO ≈ 0.007 do explode if non-rotating, while the threshold
metallicity for an explosion is reduced to ZCNO ≈ 0.001 for objects uniformly rotating. The critical initial metallicity
for a thermonuclear explosion increases for stars with a mass ≈106 M�. For those stars that do not explode, we
follow the evolution beyond the phase of black hole (BH) formation. We compute the neutrino energy loss rates due
to several processes that may be relevant during the gravitational collapse of these objects. The peak luminosities
of neutrinos and antineutrinos of all flavors for models collapsing to a BH are Lν ∼ 1055 erg s−1. The total radiated
energy in neutrinos varies between Eν ∼ 1056 erg for models collapsing to a BH and Eν ∼ 1045–1046 erg for models
exploding.

Key words: black hole physics – equation of state – gravitational waves – neutrinos – stars: evolution

Online-only material: color figures

1. INTRODUCTION

There is large observational evidence of the presence of
supermassive black holes (SMBHs) in the centers of most nearby
galaxies (Rees 1998). The dynamical evidence related to the
orbital motion of stars in the cluster surrounding Sgr A∗ indicates
the presence of an SMBH with mass ≈4×106 M� (Genzel et al.
2000). In addition, the observed correlation between the central
black hole (BH) masses and the stellar velocity dispersion of the
bulge of the host galaxies suggests a direct connection between
the formation and evolution of galaxies and SMBHs (Kormendy
& Gebhardt 2001).

The observation of luminous quasars detected at redshifts
higher than six in the Sloan Digital Sky Survey (SDSS) implies
that SMBHs with masses ∼ 109 M�, which are believed to be
the engines of such powerful quasars, were formed within the
first billion years after the big bang (e.g., Fan 2006 for a recent
review). However, it is still an open question how SMBH seeds
form and grow to reach such high masses in such a short duration
of time (Rees 2001).

A number of different routes based on stellar dynamical
processes, hydrodynamical processes, or a combination of both
have been suggested (e.g., Volonteri 2010 for a recent review).
One of the theoretical scenarios for SMBH seed formation
is the gravitational collapse of the first generation of stars
(Population III stars) with masses M ∼ 100 M� that are expected
to form in halos with virial temperature Tvir < 104 K at z ∼ 20–50
where cooling by molecular hydrogen is effective. As a result
of the gravitational collapse of such Population III stars, very
massive BHs would form and then grow via merger and
accretion (Haiman & Loeb 2001; Yoo & Miralda-Escudé 2004;
Alvarez et al. 2009).

Another possible scenario proposes that if sufficient primor-
dial gas in massive halos, with mass ∼ 108 M�, is unable to

cool below Tvir � 104 K, it may lead to the formation of a super-
massive object (Bromm & Loeb 2003; Begelman et al. 2006),
which would eventually collapse to form an SMBH. This route
assumes that fragmentation, which depends on efficient cool-
ing, is suppressed, possibly by the presence of sufficiently strong
UV radiation that prevents the formation of molecular hydrogen
in an environment with metallicity smaller than a given critical
value (Santoro & Shull 2006; Omukai et al. 2008). Furthermore,
fragmentation may depend on the turbulence present within the
inflow of gas and on the mechanism redistributing its angular
momentum (Begelman & Shlosman 2009). The “bars-within-
bars” mechanism (Shlosman et al. 1989; Begelman et al. 2006)
is a self-regulating route to redistribute angular momentum and
sustain turbulence such that the inflow of gas can proceed
without fragmenting as it collapses even in a metal-enriched
environment.

Depending on the rate and efficiency of the inflowing mass,
there may be different outcomes. A low rate of mass accumula-
tion would favor the formation of isentropic supermassive stars
(SMSs), with mass � 5 × 104 M�, which then would evolve
as equilibrium configurations dominated by radiation pressure
(Iben 1963; Hoyle & Fowler 1963; Fowler 1964). A different
outcome could result if the accumulation of gas is fast enough
so that the outer layers of SMSs are not thermally relaxed dur-
ing much of their lifetime, thus having an entropy stratification
(Begelman 2009).

A more exotic mechanism that could eventually lead to a
SMS collapsing into an SMBH is the formation and evolution
of supermassive dark matter stars (SDMSs; Spolyar et al. 2008).
Such stars would be composed primarily of hydrogen and
helium with only about 0.1% of their mass in the form of
dark matter; however, they would shine due to dark matter
annihilation. It has recently been pointed out that SDMSs could
reach masses ∼ 105 M� (Freese et al. 2010). Once SDMSs run
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out of their dark matter supply, they experience a contraction
phase that increases their baryon density and temperature,
leading to an environment where nuclear burning may become
important for the subsequent stellar evolution.

If isentropic SMSs form, their quasi-stationary evolution of
cooling and contraction will drive the stars to the onset of
a general relativistic gravitational instability leading to their
gravitational collapse (Chandrasekhar 1964; Fowler 1964),
and possibly also to the formation of an SMBH. The first
numerical simulations of Appenzeller & Fricke (1972), within
the post-Newtonian approximation, concluded that for spherical
stars with masses greater than 106 M� thermonuclear reactions
have no major effect on the collapse, while less massive
stars exploded due to hydrogen burning. Later Shapiro &
Teukolsky (1979) performed the first relativistic simulations
of the collapse of an SMS in spherical symmetry. They were
able to follow the evolution until the formation of a BH,
although their investigations did not include any microphysics.
Fuller et al. (1986) revisited the work of Appenzeller & Fricke
(1972) and performed simulations of non-rotating SMSs in
the range of 105–106 M� with post-Newtonian corrections and
detailed microphysics that took into account an equation of state
(EOS) including electron–positron pairs and a reaction network
describing hydrogen burning by the CNO cycle and its breakout
via the rapid proton capture (rp)-process. They found that SMSs
with zero initial metallicity do not explode, while SMSs with
masses larger than 105 M� and with metallicity ZCNO � 0.005
do explode.

More recently, Linke et al. (2001) carried out general rela-
tivistic hydrodynamic simulations of the spherically symmetric
gravitational collapse of SMSs adopting a spacetime foliation
with outgoing null hypersurfaces to solve the system of Einstein
and fluid equations. They performed simulations of spherical
SMSs with masses in the range of 5×105 M�–109 M� using an
EOS that accounts for contributions from baryonic gases and,
in a tabulated form, radiation and electron–positron pairs. They
were able to follow the collapse from the onset of the instability
until the point of BH formation and showed that an apparent
horizon (AH) enclosing about 25% of the stellar material was
formed in all cases when simulations stopped.

Shibata & Shapiro (2002) carried out general relativistic nu-
merical simulations in axisymmetry of the collapse of uniformly
rotating SMSs to BHs. They did not take into account thermonu-
clear burning and adopted a Γ-law EOS, P = (Γ − 1)ρε with
adiabatic index Γ = 4/3, where P is the pressure, ρ is the rest-
mass density, and ε is the specific internal energy. Although their
simulations stopped before the final equilibrium was reached,
the BH growth was followed until about 60% of the mass had
been swallowed by the SMBH. They estimated that about 90%
of the total mass would end up in the final SMBH with a spin
parameter of J/M2 ∼ 0.75.

The gravitational collapse of differentially rotating SMSs in
three dimensions was investigated by Saijo & Hawke (2009),
who focused on the post-BH evolution and also on the grav-
itational wave (GW) signal resulting from the newly formed
SMBH and the surrounding disk. The GW signal is expected to
be emitted in the low-frequency LISA band (10−4–10−1 Hz).

Despite the progress made, the final fate of the rotating
isentropic SMS is still unclear. In particular, it is still an
open question for which initial metallicities hydrogen burning
by the β-limited hot CNO cycle and its breakout via the
15O(α, γ )19Ne reaction (rp-process) can halt the gravitational
collapse of rotating SMSs and generate enough thermal energy

to lead to an explosion. To address this issue, we perform a
series of general relativistic hydrodynamic simulations with a
microphysical EOS accounting for contributions from radiation,
electron–positron pairs, and baryonic matter and taking into
account the net thermonuclear energy released by the nuclear
reactions involved in hydrogen burning through the pp-chain,
cold and hot CNO cycles and their breakout by the rp-process,
and helium burning through the 3-α reaction. The numerical
simulations were carried out with the Nada code (Montero
et al. 2008), which solves the Einstein equations coupled to
the general relativistic hydrodynamic equations.

Greek indices run from 0 to 3, Latin indices from 1 to 3,
and we adopt the standard convention for the summation over
repeated indices. Unless otherwise stated, we use units in which
c = G = 1.

2. BASIC EQUATIONS

Next we briefly describe how the system of Einstein and
hydrodynamic equations is implemented in the Nada code. We
refer to Montero et al. (2008) for a more detailed description of
the main equations and thorough testing of the code (namely,
single BH evolutions, shock tubes, evolutions of both spherical
and rotating relativistic stars, gravitational collapse to a BH of a
marginally stable spherical star, and simulations of a system
formed by a BH surrounded by a self-gravitating torus in
equilibrium).

2.1. Formulation of Einstein Equations

2.1.1. BSSN Formulation

We follow the 3+1 formulation in which the spacetime is
foliated into a set of non-intersecting spacelike hypersurfaces.
In this approach, the line element is written in the form

ds2 = −(α2 − βiβ
i)dt2 + 2βidxidt + γij dxidxj , (1)

where α, βi , and γij are the lapse function, the shift three-vector,
and the three-metric, respectively. The latter is defined by

γμν = gμν + nμnν, (2)

where nμ is a timelike unit-normal vector orthogonal to a
spacelike hypersurface.

We make use of the BSSN formulation (Nakamura et al.
1987; Shibata & Nakamura 1995; Baumgarte & Shapiro 1999c)
to solve the Einstein equations. Initially, a conformal factor φ is
introduced, and the conformally related metric is written as

γ̃ij = e−4φγij (3)

such that the determinant of the conformal metric, γ̃ij , is unity
and φ = ln(γ )/12, where γ = det(γij ). We also define the
conformally related traceless part of the extrinsic curvature Kij,

Ãij = e−4φAij = e−4φ

(
Kij − 1

3
γijK

)
, (4)

where K is the trace of the extrinsic curvature. We evolve
the conformal factor, defined as χ ≡ e−4φ (Campanelli et al.
2006), and the auxiliary variables Γ̃i , known as the conformal
connection functions, defined as

Γ̃i ≡ γ̃ jkΓ̃i
jk = −∂j γ̃

ij , (5)

where Γ̃i
jk are the connection coefficients associated with γ̃ij .
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During the evolution, we also enforce the constraints
Tr(Ãij ) = 0 and det(γ̃ij ) = 1 at every time step.

We use the Cartoon method (Alcubierre et al. 2001) to impose
axisymmetry while using Cartesian coordinates.

2.1.2. Gauge Choices

In addition to the BSSN spacetime variables (γ̃ij , Ãij , K,

χ, Γ̃i), there are two more quantities left undetermined, the
lapse, α, and the shift vector, βi . We used the so-called non-
advective 1+log slicing (Bona et al. 1997) by dropping the
advective term in the “1+log” slicing condition. In this case,
the slicing condition takes the form

∂tα = −2αK. (6)

For the shift vector, we choose the “Gamma-freezing condition”
(Alcubierre et al. 2003), written as

∂tβ
i = 3

4
Bi, (7)

∂tB
i = ∂t Γ̃i − ηBi, (8)

where η is a constant that acts as a damping term, originally
introduced both to prevent long-term drift of the metric functions
and to prevent oscillations of the shift vector.

2.2. Formulation of the Hydrodynamic Equations

The general relativistic hydrodynamic equations, expressed
through the conservation equations for the stress-energy tensor
T μν and the continuity equation, are

∇μT μν = 0 , ∇μ (ρuμ) = 0, (9)

where ρ is the rest-mass density, uμ is the fluid four-velocity, and
∇ is the covariant derivative with respect to the spacetime metric.
Following Shibata (2003), the general relativistic hydrodynamic
equations are written in a conservative form in cylindrical
coordinates. Since the Einstein equations are solved only in the
y = 0 plane with Cartesian coordinates (two-dimensional), the
hydrodynamic equations are rewritten in Cartesian coordinates
for y = 0. The following definitions for the hydrodynamical
variables are used:

ρ∗ ≡ ρWe6φ, (10)

vi ≡ ui

ut
= −βi + αγ ij ûj

hW
, (11)

ûi ≡ hui, (12)

ê ≡ e6φ

ρ∗
Tμνn

μnν = hW − P

ρW
, (13)

W ≡ αut , (14)

where W and h are the Lorentz factor and the specific fluid
enthalpy, respectively, and P is the pressure. The conserved
variables are ρ∗, Ji = ρ∗ûi , and E∗ = ρ∗ê. We refer to Shibata
(2003) for further details.

3. SUPERMASSIVE STARS AND MICROPHYSICS

3.1. Properties of SMSs

Isentropic SMSs are self-gravitating equilibrium configu-
rations of masses in the range of 104–108 M�, which are
mainly supported by radiation pressure, while the pressure of
electron–positron pairs and of the baryon gas is only a minor
contribution to the EOS. Such configurations are well described
by Newtonian polytropes with polytropic index n = 3 (adia-
batic index Γ = 4/3). The ratio of the gas pressure to the total
pressure (β) for spherical SMSs can be written as (Fowler &
Hoyle 1966)

β = Pg

Ptot
≈ 4.3

μ

(
M�
M

)1/2

, (15)

where μ is the mean molecular weight. Thus, β ≈ 10−2 for
M ≈ 106 M�.

Since nuclear burning timescales are too long for
M � 104 M�, evolution of SMSs proceeds on the
Kelvin–Helmholtz timescale and is driven by the loss of energy
and entropy by radiation, as well as loss of angular momentum
via mass shedding in the case of rotating configurations.

Although corrections due to the non-relativistic gas of
baryons and electrons and general relativistic effects are small,
they cannot be neglected for the evolution. First, gas corrections
raise the adiabatic index slightly above 4/3:

Γ ≈ 4

3
+

β

6
+ 0(β2). (16)

Second, general relativistic corrections lead to the existence of
a maximum for the equilibrium mass as a function of the central
density. For spherical SMSs this means that for a given mass the
star evolves to a critical density beyond which it is dynamically
unstable against radial perturbations (Chandrasekhar 1964):

ρcrit = 1.994 × 1018

(
0.5

μ

)3 (
M�
M

)7/2

g cm−3. (17)

The onset of the instability also corresponds to a critical value
of the adiabatic index Γcrit, i.e., configurations become unstable
when the adiabatic index drops below the critical value:

Γcrit = 4

3
+ 1.12

2GM

Rc2
. (18)

This happens when the stabilizing gas contribution to the EOS
does not raise the adiabatic index above 4/3 to compensate for
the destabilizing effect of general relativity expressed by the
second term on the right-hand side of Equation (18).

Rotation can stabilize configurations against the radial insta-
bility. The stability of rotating SMSs with uniform rotation was
analyzed by Baumgarte & Shapiro (1999a, 1999b). They found
that stars at the onset of the instability have an equatorial radius
R ≈ 640GM/c2, a spin parameter q ≡ cJ/GM2 ≈ 0.97, and
a ratio of rotational kinetic energy to the gravitational binding
energy of T/W ≈ 0.009.

3.2. Equation of State

To close the system of hydrodynamic equations
(Equation (9)), we need to define the EOS. We follow a treat-
ment that separately includes the baryon contribution on the one
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Table 1
Main Properties of the Initial Models Studied

Model M ρc Tk/|W | Ω Tc Initial Metallicity Fate ERK Eν

(105 M�) (10−2 g cm−3) (10−5 rad s−1) (107 K) (10−3) (1056 erg) (erg)

S1.a 5 2.4 0 0 5.8 5 BH · · · 3.4 × 1056

S1.b 5 2.4 0 0 5.8 6 BH · · · · · ·
S1.c 5 2.4 0 0 5.8 7 Explosion 5.5 9.4 × 1045

R1.0 5 40 0.0088 2.49 13 0 BH · · · · · ·
R1.a 5 40 0.0088 2.49 13 0.5 BH · · · 5.4 × 1056

R1.b 5 40 0.0088 2.49 13 0.8 BH · · · · · ·
R1.c 5 40 0.0088 2.49 13 1 Explosion 1.0 · · ·
R1.d 5 40 0.0088 2.49 13 2 Explosion 1.9 8.9 × 1045

S2.a 10 0.23 0 0 2.6 30 BH · · · 6.8 × 1056

S2.b 10 0.23 0 0 2.6 50 Explosion 35 8.0 × 1046

R2.a 10 12 0.0087 1.47 9.7 0.5 BH · · · 3.1 × 1056

R2.b 10 12 0.0087 1.47 9.7 0.8 BH · · · · · ·
R2.c 10 12 0.0087 1.47 9.7 1.0 BH · · · · · ·
R2.d 10 12 0.0087 1.47 9.7 1.5 Explosion 1.5 2.1 × 1046

D1 5 6.9 × 104 0.089 540 140 0 BH · · · · · ·
D2 6 1.3 × 105 0.128 700 170 0 Stable/BHa · · · · · ·

Notes. From left to right the columns show model, gravitational mass, initial central rest-mass density, Tk/|W |, angular velocity on the equatorial plane at the surface,
initial central temperature, metallicity, the fate of the star, radial kinetic energy after thermal bounce, and total neutrino energy output.
a If the contribution of e± pairs is not taken into account in the EOS (e.g., in the case Γ-law EOS or an EOS that includes only the radiation and pressure contributions
in an analytic form) the model is stable against gravitational collapse. However, if the effect of e± pairs is considered, the star becomes unstable against gravitational
collapse due to the reduction of the adiabatic index associated with the pair creation.

hand and photons and electron–positron pair contributions, in a
tabulated form, on the other hand. The baryon contribution is
given by the analytic expressions for the pressure and specific
internal energy

Pb = RρT

μb

, (19)

εb = 2

3

RρT

μb

, (20)

where R is the universal gas constant, T is the temperature,
εb is the baryon specific internal energy, and μb is the mean
molecular weight due to ions, which can be expressed as a
function of the mass fractions of hydrogen (X), helium (Y), and
heavier elements (metals; ZCNO) as

1

μb

≈ X +
Y

4
+

ZCNO

〈A〉 , (21)

where 〈A〉 is the average atomic mass of the heavy elements.
We assume that the composition of SMSs (approximately that
of primordial gas) has a mass fraction of hydrogen X =
0.75 − ZCNO and helium Y = 0.25, where the metallicity
ZCNO = 1−X −Y is an initial parameter, typically of the order
of ZCNO ∼ 10−3 (see Table 1 for details). Thus, for the initial
compositions that we consider the mean molecular weight of
baryons is μb ≈ 1.23 (i.e., corresponding to a molecular weight
for both ions and electrons of μ≈ 0.59).

Effects associated with photons and the creation of
electron–positron pairs are taken into account employing a
tabulated EOS. At temperatures above 109 K, not all the en-
ergy is used to increase the temperature and pressure, but part
of the photon energy is used to create the rest mass of the
electron–positron pairs. As a result of pair creation, the adia-
batic index of the star decreases, which means that the stability
of the star is reduced.

Given the specific internal energy, ε, and rest-mass density,
ρ, as evolved by the hydrodynamic equations, it is possible to

compute the temperature T by a Newton–Raphson algorithm
that solves the equation ε∗(ρ, T ) = ε for T,

Tn+1 = Tn − (ε∗(ρ, Tn) − ε)

(
∂ε∗(ρ, T )

∂T

)∣∣∣∣
−1

Tn

, (22)

where n is the iteration counter.

3.3. Nuclear Burning

In order to avoid the small time steps and CPU-time demands
connected with the solution of a nuclear reaction network cou-
pled to the hydrodynamic evolution, we apply an approximate
method to take into account the basic effects of nuclear burn-
ing on the dynamics of the collapsing SMSs. We compute the
nuclear energy release rates by hydrogen burning (through
the pp-chain, cold and hot CNO cycles, and their breakout by
the rp-process) and helium burning (through the 3-α reaction) as
a function of rest-mass density, temperature, and mass fractions
of hydrogen X, helium Y, and CNO metallicity ZCNO. These
nuclear energy generation rates are added as a source term on
the right-hand side of the evolution equation for the conserved
quantity E∗.

The change rates of the energy density due to nuclear
reactions, in the fluid frame, expressed in units of erg cm−3 s−1

are given by

1. pp-chain (Clayton 1983):(
∂e

∂t

)
pp

= ρ
(
2.38 × 106ρg11X

2T −0.6666
6

e−33.80/T 0.3333
6

)
, (23)

where T6 = T/106 K and g11 is given by

g11 = 1 + 0.0123T 0.3333
6 + 0.0109T 0.66666

6

+ 0.0009T6. (24)
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2. 3-α (Wiescher et al. 1999):(
∂e

∂t

)
3α

= ρ
(
5.1 × 108ρ2Y 3T −3

9 e−4.4/T9
)
, (25)

where T9 = T/109 K.
3. Cold-CNO cycle (Shen & Bildsten 2007):

(
∂e

∂t

)
CCNO

= 4.4 × 1025ρ2XZCNO
(
T

−2/3
9 e−15.231/T

1/3
9

+ 8.3 × 10−5T
−3/2

9 e−3.0057/T9
)
. (26)

4. Hot-CNO cycle (Wiescher et al. 1999):

(
∂e

∂t

)
HCNO

= 4.6 × 1015ρZCNO. (27)

5. rp-process (Wiescher et al. 1999):

(
∂e

∂t

)
rp

= ρ
(
1.77 × 1016ρYZCNO

× 29.96T
−3/2

9 e−5.85/T9
)
. (28)

Since we follow a single fluid approach in which we solve
only the hydrodynamic equations (Equation (9), i.e., we do
not solve additional advection equations for the abundances of
hydrogen, helium, and metals), the elemental abundances during
the time evolution are fixed. Nevertheless, this assumption
most possibly does not significantly affect the estimate of
the threshold metallicity needed to produce a thermal bounce
in collapsing SMSs. The average energy release through the
3-α reaction is about 7.275 MeV for each 12C nucleus formed.
Since the total energy due to helium burning for exploding
models is ∼1045 erg (e.g., 9.0 × 1044 erg for model S1.c) and
even considering that this energy is released mostly in a central
region of the SMS containing 104 M� of its rest mass (Fuller
et al. 1986), it is easy to show that the change in the metallicity is
of the order of 10−11. Therefore, the increase of the metallicity in
models experiencing a thermal bounce is much smaller than the
critical metallicities needed to trigger the explosions. Similarly,
the average change in the mass fraction of hydrogen due to the
cold and hot CNO cycles is expected to be ∼10% for exploding
models.

3.4. Recovery of the Primitive Variables

After each time iteration the conserved variables (i.e.,
ρ∗, Jx, Jy, Jz, E∗) are updated and the primitive hydrodynam-
ical variables (i.e., ρ, vx, vy, vz, ε) have to be recovered. The
recovery is done in such a way that it allows for the use of a gen-
eral EOS of the form P = P (ρ, ε). We calculate the function
f (P ∗) = P (ρ∗, ε∗) − P ∗, where ρ∗ and ε∗ depend only on the
conserved quantities and the pressure guess P ∗. The new pres-
sure is then computed iteratively by a Newton–Raphson method
until the desired convergence is achieved.

3.5. Energy Loss by Neutrino Emission

The EOS allows us to compute the neutrino losses due to the
following processes, which become most relevant just before
BH formation.

1. Pair annihilation (e+ + e− → ν̄ + ν): the most important
process above 109 K. Due to the large mean free path of
neutrinos in the stellar medium at the densities of SMSs,
the energy loss by neutrinos can be significant. For a 106 M�
SMS most of the energy release in the form of neutrinos
originates from this process. The rates are computed using
the fitting formula given by Itoh et al. (1996).

2. Photo-neutrino emission (γ + e± → e± + ν̄ + ν): dom-
inates at low temperatures T � 4 × 108 K and densities
ρ � 105 g cm−3 (Itoh et al. 1996).

3. Plasmon decay (γ → ν̄ + ν): this is the least relevant
process for the conditions encountered by the models
we have considered because its importance increases at
higher densities than those present in SMSs. The rates are
computed using the fitting formula given by Haft et al.
(1994).

4. COMPUTATIONAL SETUP

The evolution equations are integrated by the method of lines,
for which we use an optimal strongly stability-preserving (SSP)
Runge–Kutta algorithm of the fourth order with five stages
(Spiteri & Ruuth 2002). We use a second-order slope limiter
reconstruction scheme (MC limiter) to obtain the left and right
states of the primitive variables at each cell interface and an
HLLE approximate Riemann solver (Harten et al. 1983; Einfeldt
1988) to compute the numerical fluxes in the x and z directions.

Derivative terms in the spacetime evolution equations are
represented by a fourth-order centered finite-difference approx-
imation on a uniform Cartesian grid except for the advection
terms (terms formally like βi∂iu), for which an upwind scheme
is used.

The computational domain is defined as 0 � x � L and
0 � z � L, where L refers to the location of the outer boundaries.
We used a cell-centered Cartesian grid to avoid the location of
the BH singularity coinciding with a grid point.

4.1. Regridding

Since it is not possible to follow the gravitational collapse
of an SMS from the early stages to the phase of BH formation
with a uniform Cartesian grid (the necessary fine zoning would
be computationally too demanding), we adopt a regridding
procedure (Shibata & Shapiro 2002). During the initial phase
of the collapse we rezone the computational domain by moving
the outer boundary inward, decreasing the grid spacing while
keeping the initial number of grid points fixed. Initially we use
N ×N = 400×400 grid points and place the outer boundary at
L≈ 1.5re, where re is the equatorial radius of the star. Rezoning
onto the new grid is done using a polynomial interpolation.
We repeat this procedure three to four times until the collapse
timescale in the central region is much shorter than in the outer
parts. At this point, we both decrease the grid spacing and also
increase the number of grid points N in dependence of the
lapse function typically as follows: N × N = 800 × 800 if
0.8 > α > 0.6, N × N = 1200 × 1200 if 0.6 > α > 0.4, and
N × N = 1800 × 1800 if α < 0.4. This procedure ensures the
error in the conservation of the total rest mass to be less than
2% on the finest computational domain.

4.2. Hydro-excision

To deal with the spacetime singularity from the newly formed
BH, we use the method of excising the matter content in a
region within the horizon as proposed by Hawke et al. (2005)
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once an AH is found. This excision is done only for the
hydrodynamical variables, and the coordinate radius of the
excised region is allowed to increase in time. On the other hand,
we use neither excision nor artificial dissipation terms for the
spacetime evolution and solely rely on the gauge conditions.

4.3. Definitions

Here we define some of the quantities listed in Table 1. We
compute the total rest mass M∗ and the gravitational mass M as

M∗ = 4π

∫ L

0
xdx

∫ L

0
ρ∗dz, (29)

M = −2
∫ L

0
xdx

∫ L

0
dz

[
−2πEe5φ +

eφ

8
R̃

− e5φ

8

(
Ãij Ã

ij − 2

3
K2

)]
, (30)

where E = nμnνT
μν (nμ being the unit normal to the hypersur-

face) and R̃ is the scalar curvature associated with the conformal
metric γ̃ij .

The rotational kinetic energy Tk and the gravitational potential
energy W are given by

Tk = 2π

∫ L

0
x2dx

∫ L

0
ρ∗ûyΩdz, (31)

where Ω is the angular velocity, and

W = M − (M∗ + Tk + Eint), (32)

where the internal energy is computed as

Eint = 4π

∫ L

0
xdx

∫ L

0
ρ∗εdz. (33)

In axisymmetry the AH equation becomes a nonlinear ordi-
nary differential equation for the AH shape function, h = h(θ )
(Shibata 1997; Thornburg 2007). We employ an AH finder that
solves this ordinary differential equation by a shooting method
using ∂θh(θ = 0) = 0 and ∂θh(θ = π/2) = 0 as boundary
conditions. We define the mass of the AH as

MAH =
√

A
16π

, (34)

where A is the area of the AH.

5. INITIAL MODELS

The initial SMSs are set up as isentropic objects. All models,
except model D2, are chosen such that they are gravitationally
unstable, and therefore their central rest-mass density is slightly
larger than the critical central density required for the onset
of the collapse of a configuration with a given mass and
entropy. A list of the different SMSs we have considered is
provided in Table 1. Models S1 and S2 represent a spherically
symmetric, non-rotating SMS with gravitational masses of
M = 5 × 105 M� and M = 1 × 106 M�, respectively, while
models R1 and R2 are uniformly rotating initial models again
with masses of M = 5 × 105 M� and M = 1 × 106 M�,
respectively. The rigidly and maximally rotating initial models
R1 and R2 and the differentially rotating models D1 and D2

are constructed with a polytropic EOS with the LORENE code
(http://www.lorene.obspm.fr). We obtain temperatures for our
microphysical models by inverting the corresponding energy
density with our EOS of Section 3.2. We also introduce a
perturbation to trigger the gravitational collapse by reducing
the pressure overall by ≈1.5%.

In order to determine the threshold metallicity required to
halt the collapse and produce an explosion, we carry out several
numerical simulations for each initial model with different
values of the initial metallicity. The initial metallicities along
with the fate of the star are given in Table 1.

6. COMPARISONS WITH PREVIOUS STUDIES

6.1. Comparison with One-dimensional Calculations

Axisymmetric calculations without rotation (i.e., models S1
and S2) retain the spherical symmetry of the initial conditions.
There are no physical phenomena like convective or overturn in-
stabilities1 to produce asphericity, i.e., we can directly compare
our two-dimensional non-rotating models with those computed
in spherical symmetry (one-dimensional calculations) by Fuller
et al. (1986) and Linke et al. (2001).

The main differences with respect to the results obtained by
Fuller et al. (1986) are most likely due to two reasons. First,
we apply a fully general relativistic treatment while they used
a post-Newtonian treatment of gravity, and second, there are
differences in the treatment of nuclear burning (Fuller et al. 1986
solved the relevant nuclear network without the approximations
adopted in our work; see Section 3.3 for further details). Despite
these differences, the results agree fairly well. As discussed in
detail in Section 7.1, the initial metallicities required to produce
an explosion are similar, and a thermal bounce can be produced
only if sufficient energy is liberated during the phase when the
HCNO cycle is active.

The main difference with respect to the work of Linke et al.
(2001) resides in the formulation of Einstein’s field equations,
in particular, in the foliation of the spacetime (foliation into a
set spacelike hypersurfaces versus a foliation with outgoing null
hypersurfaces). In order to compare with the results of Linke
et al. (2001), we computed the redshifted total energy output for
a model with the same rest mass, conducting the time integration
until approximately the same evolutionary stage as in Linke et al.
(2001). We find that the total energies released in neutrinos differ
by less than 10% (for more details see Section 7.3).

6.2. Γ-law versus Microphysical EOS in
Uniformly Rotating SMSs

Previous simulations of SMS collapse to a BH in general
relativity have been performed with a Γ-law EOS with Γ = 4/3
(with the only exception being the work of Linke et al. 2001). In
order to elucidate the influence of the EOS on the dynamics of
collapsing SMSs, we performed three simulations of the same
initial model (model R1.0, a marginally unstable uniformly
rotating SMS with zero initial metallicity) without nuclear
burning effects, and with three EOSs: a Γ-law EOS with Γ = 4/3
(i.e., a similar setup as in Shibata & Shapiro 2002) and the
microphysical EOS with and without including electrons and the
e± pairs, i.e., for the last EOS case we consider Equations (19)

1 In a core-collapse supernova, non-radial instabilities are triggered either by
negative entropy gradients caused by the shock deceleration and neutrino
heating or by a generic instability of the stalled shock (SASI; Blondin et al.
2003). Conditions for both processes are absent in the collapse and explosion
of SMSs.

6
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Figure 1. Time evolution of the central rest-mass density for model R1.0 (a
uniformly rotating star with a mass M = 5 × 105 M� with zero metallicity) for
three different EOSs (Γ-law and the microphysical EOS with and without the
electron–positron pair creation).

(A color version of this figure is available in the online journal.)

and (20) for the baryons plus εγ = aT 4 and Pγ = (1/3)εγ

for the photons (where a is the radiation density constant). We
denote the Γ-EOS as EOS-0, the full microphysical EOS, our
canonical one for the studies of this work as EOS-1, and the
reduced microphysical case as EOS-2.

In Figure 1 we show with a dotted line the time evolution of
the central density of model R1.0 with EOS-0, and with a dashed
(solid) line the time evolution of the central density with EOS-2
(EOS-1). The first thing to note is that the collapse timescale
obtained with the Γ-law EOS is shorter than that obtained with
the microphysical EOS (both EOS-1 and EOS-2) because the ion
pressure contribution to the EOS raises the adiabatic index above
4/3 (see Equation (16)). This increase in the adiabatic index
helps to stabilize the star against the gravitational instability
and therefore delays the collapse.

On the other hand, the effect of pair creation reduces the
adiabatic index below 4/3 at T � 109 K. This explains the
differences between the solid and dashed lines in Figure 1
at central densities ρc � 10 g cm−3, which correspond to
central temperatures Tc � 109 K. Once the collapse enters this
regime, pair creation becomes relevant enough to reduce the
adiabatic index below 4/3, which destabilizes the collapsing
star. Compared to previous works (Shibata & Shapiro 2002),
the use of a microphysical EOS instead of a Γ-law EOS delays
the collapse (mostly due to the baryons while e± destabilize) of
an initially gravitationally unstable configuration.

6.3. Γ-law versus Microphysical EOS in
Differentially Rotating SMSs

We also performed two-dimensional axisymmetric simula-
tions of differentially rotating SMSs. First, we investigated the
influence of the EOS on gravitationally unstable stars using
model D1 as a reference. This model corresponds, within the

Figure 2. Upper panel displays the time evolution of the central rest-mass density
for model D1 (a differentially rotating star with a mass M = 5 × 105 M� and
zero metallicity) with a Γ-law and the microphysical EOS with electron–positron
pair creation. The middle and lower panels display the AH mass and the disk
mass as a function of time for the collapse simulation with a Γ-law EOS.

(A color version of this figure is available in the online journal.)

accuracy to which the initial conditions can be reproduced,
to a differentially rotating unstable SMS discussed by Saijo
& Hawke (2009, i.e., their model I). Results are displayed in
Figure 2. In the upper panel of this figure, we show the time evo-
lution of the central density for model D1 with EOS-0 (dashed
line) and with the microphysical EOS-1 (solid line). Opposite
to the behavior in the case of the uniformly rotating SMS R1.0,
the collapse timescale is longer with the Γ-law than with the
microphysical EOS. The reason for this difference is that the
initial central temperature (Tc ≈ 1.4 × 109 K) of model D1 is
an order of magnitude higher than the initial central tempera-
ture in R1.0. Therefore, electron–positron pair creation already
reduces the stability of the star (by reducing Γ) during the ini-
tial stages of the collapse. This behavior is also expected to be
present in three dimensions, and since the collapse timescale is
reduced when using the microphysical EOS, non-axisymmetric
instabilities would have even less time to grow before the
formation of a BH. It reinforces the conclusions of Saijo &
Hawke (2009), who showed that the three-dimensional collapse
of rotating stars proceeds in an approximately axisymmetric
manner.

The lower two panels of Figure 2 display the growth of the
AH mass and the disk mass (defined as the rest mass outside
the AH of the newly formed BH) as a function of time (in units
of gravitational mass for comparison with Figures 9 and 10 of
Saijo & Hawke 2009), respectively. The values of both quantities
at the end of the simulation agree, within a 5% difference,
with those obtained in three dimensions by Saijo & Hawke
(2009). We note that there is also good agreement (less than 5%
difference) regarding the time at which an AH is first detected.
These observed small differences are likely due to differences
in the initial models and numerical techniques rather than to the
influence of non-axisymmetric effects. This suggests that our
collapse simulation with the same treatment of physics yields
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Figure 3. Time evolution of the central rest-mass density for model D2 for three
EOSs, which shows that D2 becomes unstable and collapses to a BH only when
the microphysical EOS with electron–positron pairs is used.

(A color version of this figure is available in the online journal.)

good agreement with the three-dimensional simulations of Saijo
& Hawke (2009).

We also investigated the influence of electron–positron pair
creation on the evolution of gravitationally stable differentially
rotating SMSs using model D2, which is similar to the stable
differentially rotating model III of Saijo & Hawke (2009). We
performed three simulations of model D2 varying the EOS. In
Figure 3 we show the central rest-mass density as a function
of time for a Γ-law (dashed line), and for the microphysical
EOS-1 (solid line) and EOS-2 (dotted line). In agreement with
the results obtained by Saijo & Hawke (2009), we find that
model D2 represents a stable differentially rotating SMS when
a Γ-law is used. A persistent series of oscillations is triggered
by the initial perturbation in the pressure. This is also the
case with the microphysical EOS-2 without the inclusion of
electrons and the e± pairs. However, the time evolution of D2 is
completely different when e± pairs are taken into account. The
influence of pairs is large enough to destabilize model D2 against
gravitational collapse. We note that unlike all other SMSs
considered in this paper, which are Γ = 4/3 models initially
unstable to gravitational collapse, model D2 is an initially stable
Γ = 4/3 model that becomes gravitationally unstable only by
the creation of electron–positron pairs at high temperatures.
Hence, using a microphysical EOS with electron–positron pairs
is crucial to determine the stability of differentially rotating
SMSs.

We note that the central temperature of the initial models
D1 and D2 is of the order of ≈109 K. At this temperature, the
main source of thermonuclear energy is hydrogen burning via
the rp-process. It is, however, expected that such SMSs would
previously experience a phase of hydrogen burning via the cold
and hot CNO cycles, which would significantly affect the evo-
lution of the models such that configurations with high Tc as in
models D1 and D2 might never be reached. Therefore, models
D1 and D2 are not particularly well suited to investigate the

existence of a thermal bounce during collapse (see Section 7).
Exploring in detail the parameter space for the stability of dif-
ferentially rotating SMSs with the microphysical EOS, as well
as the existence of a thermal bounce during the collapse phase
depending on the initial stellar metallicity, is a major task on its
own, which is beyond the scope of this paper. For these reasons
we do not consider differentially rotating SMSs in this work.

7. RESULTS

7.1. Collapse to BH versus Thermonuclear Explosion

First we consider a gravitationally unstable spherically sym-
metric SMS with a gravitational mass of M = 5 × 105 M�
(S1.a, S1.b, and S1.c), which corresponds to a model exten-
sively discussed in Fuller et al. (1986) and therefore allows for a
comparison with the results presented here. Fuller et al. (1986)
found that unstable spherical SMSs with M = 5 × 105 M� and
an initial metallicity ZCNO = 2 × 10−3 collapse to a BH, while
models with an initial metallicity ZCNO = 5 × 10−3 explode
due to the nuclear energy released by the hot CNO burning.
They also found that the central density and temperature at ther-
mal bounce (where the collapse is reversed to an explosion) are
ρc,b = 3.16 g cm−3 and Tc,b = 2.6 × 108 K, respectively.

The left panels in Figure 4 show the time evolution of the
central rest-mass density (upper panel) and central temperature
(lower panel) for models S1.a, S1.c, R1.a, and R1.d, i.e., non-
rotating and rotating models with a mass of M = 5×105 M�. In
particular, the solid lines represent the time evolution of the cen-
tral density and temperature for models S1.c (ZCNO = 7×10−3)
and R1.d (ZCNO = 5×10−4). As the collapse proceeds, the cen-
tral density and temperature rise rapidly, which increases the
nuclear energy generation rate by hydrogen burning. Since the
metallicity is sufficiently high, enough energy can be liberated
to increase the pressure and to produce a thermal bounce. This
is the case for model S1.c. In Figure 4 we show that a thermal
bounce occurs (at approximately t ∼ 7 × 105 s) entirely due to
the hot CNO cycle, which is the main source of thermonuclear
energy at temperatures in the range 2 × 108 K � T � 5 × 108 K.
The rest-mass density at bounce is ρc,b = 4.8 g cm−3, and the
temperature is Tc,b = 3.05 × 108 K. These values, as well as the
threshold metallicity needed to trigger a thermonuclear explo-
sion (ZCNO = 7 × 10−3), are higher than those found by Fuller
et al. (1986) (who found that a spherical non-rotating model
with the same rest mass would explode if the initial metallicity
was ZCNO = 5 × 10−3).

On the other hand, the dashed lines show the time evolution
of the central density and temperature for model S1.a (ZCNO =
5 × 10−3). In this case, as well as for model S1.b, the collapse
is not halted by the energy release and continues until an AH is
found, indicating the formation of a BH.

We note that the radial velocity profiles change continuously
near the time where the collapse is reversed to an explosion due
to the nuclear energy released by the hot CNO burning, and an
expanding shock forms only near the surface of the star at a
radius R ≈ 1.365 × 1013 cm (i.e., R/M ≈ 180), where the rest-
mass density is ≈3.5 × 10−6 g cm−3. We show in Figure 5 the
profiles of the x-component of the three-velocity vx along the
x-axis (in the equatorial plane) for the non-rotating spherical
stars S1.a (dashed lines) and S1.c (solid lines) at three different
time slices near the time at which model S1.c experiences a
thermal bounce. Velocity profiles of model S1.c are displayed
up to the radius where a shock forms at t ≈ 7.31 × 105 s and
begins to expand into the low-density outer layers of the SMS.
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Figure 4. Upper left panel shows the time evolution of the central rest-mass density for models S1 and R1 (i.e., spherical and rotating stars with mass M = 5×105 M�),
and the lower left panel shows the time evolution of the central temperature. Horizontal dotted lines mark the temperature range in which nuclear energy is primarily
released by the hot CNO cycle. Similarly, the time evolution of the same quantities for models S2 and R2 (i.e., spherical and rotating stars with mass M = 1×106 M�)
is shown in the upper and lower right panels. As the collapse proceeds, the central density and temperature rise rapidly, increasing the nuclear energy generation rate
by hydrogen burning. If the metallicity is sufficiently high, enough energy can be liberated to produce a thermal bounce. This is the case for models S1.c, R1.d, S2.b,
and R2.d shown here.

(A color version of this figure is available in the online journal.)

Figure 5. Profiles of the x-component of the three-velocity vx along the x-axis
(in the equatorial plane) for the non-rotating spherical stars S1.a (dashed lines)
and S1.c (solid lines) at three different time slices near the time at which model
S1.c experiences a thermal bounce. Velocity profiles of model S1.c are displayed
up to the radius where a shock, which expands into the low-density outer layers
of the SMS, forms.

(A color version of this figure is available in the online journal.)

The evolutionary tracks for the central density and temper-
ature of the rotating models R1.a and R1.d are also shown in

Figure 4. A dashed line corresponds to model R1.a, with an
initial metallicity ZCNO = 5×10−4, which collapses to a BH. A
solid line denotes model R1.d with ZCNO = 2×10−3, which ex-
plodes due to the energy released by the hot CNO cycle. We find
that model R1.c, with a lower metallicity of ZCNO = 1 × 10−3,
also explodes when the central temperature is in the range dom-
inated by the hot CNO cycle.

As a result of the kinetic energy stored in the rotation of
models R1.c and R1.d, the critical metallicity needed to trigger
an explosion decreases significantly relative to the non-rotating
case. We observe that rotating models with initial metallicities
up to ZCNO = 8 × 10−4 do not explode even via the rp-process,
which is dominant at temperatures above T ≈ 5 × 108 K and
increases the hydrogen burning rate by 200–300 times relative
to the hot CNO cycle. We also note that the evolution timescales
of the collapse and bounce phases are reduced because rotating
models are more compact and have a higher initial central
density and temperature than the spherical ones at the onset
of the gravitational instability.

The right panels in Figure 4 show the time evolution of
the central rest-mass density (upper panel) and the central
temperature (lower panel) for models S2.a, S2.b, R2.a, and
R2.d, i.e., of models with a mass of M = 106 M�. We find
that the critical metallicity for an explosion in the spherical
case is ZCNO = 5 × 10−2 (model S2.b), while model S2.a
with ZCNO = 3 × 10−2 collapses to a BH. We note that
the critical metallicity leading to a thermonuclear explosion
is higher than the critical value found by Fuller et al. (1986, i.e.,
ZCNO = 1 × 10−2) for a spherical SMS with the same mass.
The initial metallicity leading to an explosion in the rotating
case (model R2.d) is more than an order of magnitude smaller
than in the spherical case. As for the models with a smaller
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Figure 6. Nuclear energy generation rate in erg s−1 for the exploding models
(S1.c, R1.d, R1.c, S2.b, and R2.d) as a function of time near the bounce.
The contribution to the nuclear energy generation is mainly due to hydrogen
burning by the hot CNO cycle. The peak values of the energy generation rate
at bounce lie between ≈1051(erg s−1) for the rotating models (R1.d and R2.d)
and ≈1052–1053(erg s−1) for the spherical models (S1.c and S2.b).

(A color version of this figure is available in the online journal.)

gravitational mass, the thermal bounce takes place when the
physical conditions in the central region of the star allow for
the release of energy by hydrogen burning through the hot
CNO cycle. Overall, the dynamics of the more massive models
indicate that the critical initial metallicity required to produce
an explosion increases with the rest mass of the star.

Figure 6 shows the total nuclear energy generation rate in
erg s−1 for the exploding models as a function of time during the
late stages of the collapse just before and after bounce. The main
contribution to the nuclear energy generation is due to hydrogen
burning by the hot CNO cycle. The peak values of the energy
generation rate at bounce lie between several 1051 erg s−1 for the
rotating models (R1.d and R2.d) and ≈1052–1053 erg s−1 for the
spherical models (S1.c and S2.b). As expected, the maximum
nuclear energy generation rate needed to produce an explosion
is lower in the rotating models. Moreover, as the explosions are
due to the energy release by hydrogen burning via the hot CNO
cycle, the ejecta would mostly be composed of 4He.

As a result of the thermal bounce, the kinetic energy rises
until most of the energy of the explosion is in the form of
kinetic energy. We list in the second to last column of Table 1
the radial kinetic energy after thermal bounce, which ranges
between ERK = 1.0 × 1055 erg for the rotating star R1.c and
ERK = 3.5 × 1057 erg for the spherical star S2.b.

7.2. Photon Luminosity

Due to the lack of resolution at the surface of the star, it
becomes difficult to compute accurately the photosphere and its
effective temperature from the criterion that the optical depth is
τ = 2/3. Therefore, in order to estimate the photon luminosity
produced in association with the thermonuclear explosion, we
make use of the fact that within the diffusion approximation the

radiation flux is given by

Fγ = − c

3κesρ
∇U, (35)

where U is the energy density of the radiation and κes is the
opacity due to electron Thompson scattering, which is the main
source of opacity in SMSs. The photon luminosity in terms of
the temperature gradient and for the spherically symmetric case
can be written as

Lγ = −16πacr2T 3

3κesρ

∂T

∂r
, (36)

where a is the radiation constant and c is the speed of light. As
can be seen in the last panel of Figure 7, the distribution of matter
becomes spherically symmetric during the phase of expansion
after the thermonuclear explosion. In this figure (Figure 7)
we show the isodensity contours for the rotating model R1.d.
The frames have been taken at the initial time (left panel), at
t = 0.83 × 105 s (central panel) just after the thermal bounce
(at t = 0.78 × 105 s), and at t = 2.0 × 105 s when the radius of
the expanding matter is roughly four times the radius of the star
at the onset of the collapse.

The photon luminosity computed using Equation (36) for
model R1.d is displayed in Figure 8, where we also indicate
with a dashed vertical line the time at which the thermal bounce
takes place. The photon luminosity before the thermal bounce
is computed at radii inside the star unaffected by the local
dynamics of the low-density outer layers, which is caused by
the initial pressure perturbation and by the interaction between
the surface of the SMS and the artificial atmosphere. Once the
expanding shock forms near the surface, the photon luminosity
is computed near the surface of the star. The light curve shows
that, during the initial phase, the luminosity is roughly equal to
the Eddington luminosity ≈5 × 1043 erg s−1 until the thermal
bounce. Then, the photon luminosity becomes super-Eddington
when the expanding shock reaches the outer layers of the star
and reaches a value of Lγ ≈ 1 × 1045 erg s−1. This value of
the photon luminosity after the bounce is within a few percent
difference with respect to the photon luminosity Fuller et al.
(1986) found for a non-rotating SMS of the same rest mass. The
photon luminosity remains super-Eddington during the phase of
rapid expansion that follows the thermal bounce. We compute
the photon luminosity until the surface of the star reaches the
outer boundary of the computational domain ≈1.0 × 105 after
the bounce. Beyond that point, the luminosity is expected to
decrease and then rise to a plateau of ∼1045 erg s−1 due to the
recombination of hydrogen (see Fuller et al. 1986 for a non-
rotating star).

7.3. Collapse to BH and Neutrino Emission

The outcome of the evolution of models that do not generate
enough nuclear energy during the contraction phase to halt the
collapse is the formation of a BH. The evolutionary tracks for the
central density and temperature of some of these models are also
shown in Figure 4. The central density typically increases up to
ρc ∼ 107 g cm−3 and the central temperature up to Tc ∼ 1010 K
just before the formation of an AH.

Three isodensity contours for the rotating model R1.a collaps-
ing to a BH are shown in Figure 9, which displays the flattening
of the star as the collapse proceeds. The frames have been taken
at the initial time (left panel), at t = 0.83 × 105 s (central panel)
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Figure 7. Isodensity contours of the logarithm of the rest-mass density (in g cm−3) for the rotating model R1.d. The frames have been taken at the initial time (left
figure), at t = 0.83 × 105 s (central figure) just after a thermal bounce takes place, and at t = 2.0 × 105 s when the radius of the expanding matter is roughly four
times the radius of the star at the onset of the collapse.

(A color version of this figure is available in the online journal.)

Figure 8. Logarithm of the photon luminosity of model R1.d in units of erg s−1

as a function of time. The vertical dashed line indicates the time at which the
thermal bounce takes place.

(A color version of this figure is available in the online journal.)

approximately when model R1.d with higher metallicity expe-
riences a thermal bounce, and at t = 1.127 × 105s, where a BH
has already formed and its AH has a mass of 50% of the total
initial mass.

At the temperatures reached during the late stages of the
gravitational collapse (in fact at T � 5 × 108 K), the most
efficient process for hydrogen burning is the breakout from the
hot CNO cycle via the 15O(α, γ )19Ne reaction. Nevertheless, we
find that models, which do not release enough nuclear energy
by the hot CNO cycle to halt their collapse to a BH, are not
able to produce a thermal explosion due to the energy liberated
by the 15O(α, γ )19Ne reaction. We note that above 109 K, not
all the liberated energy is used to increase the temperature and
pressure, but it is partially used to create the rest mass of the
electron–positron pairs. As a result of pair creation, the adiabatic
index of the star decreases, which means the stability of the star

is reduced. Moreover, due to the presence of e± pairs, neutrino
energy losses grow dramatically.

Figure 10 shows (solid lines) the time evolution of the
redshifted neutrino luminosities of four models collapsing to
a BH (S1.a, R1.a, S2.a, and R2.a) and (dashed lines) of four
models experiencing a thermal bounce (S1.c, R1.d, S2.b, and
R2.d). The change of the slope of the neutrino luminosities
at ∼1043 erg s−1 denotes the transition from photo-neutrino
emission to the pair-annihilation-dominated region. The peak
luminosities in all forms of neutrino for models collapsing to
a BH are Lν ∼ 1055 erg s−1. Neutrino luminosities can be that
important because the densities in the core prior to BH formation
are ρc ∼ 107 g cm−3, and therefore neutrinos can escape. The
peak neutrino luminosities lie between the luminosities found
by Linke et al. (2001) for the collapse of spherical SMSs
and those found by Woosley et al. (1986, who only took into
account the luminosity in the form of electron antineutrino).
The maximum luminosity decreases slightly as the rest mass
of the initial model increases, which was already observed
by Linke et al. (2001). In addition, we find that the peak of
the redshifted neutrino luminosity does not seem to be very
sensitive to the initial rotation rate of the star. We also note that
the luminosity of model R1.a reflects the effects of hydrogen
burning at Lν ∼ 1043 erg s−1.

The total energy output in the form of neutrinos is listed
in the last column of Table 1 for several models. The total
radiated energies vary between Eν ∼ 1056 erg for models col-
lapsing to a BH and Eν ∼ 1045–1046 erg for exploding mod-
els. These results are in reasonable agreement with previous
calculations. For instance, Woosley et al. (1986) obtained that
the total energy output in the form of electron antineutrinos
for a spherical SMS with a mass 5 × 105 M� and zero ini-
tial metallicity was 2.6 × 1056 erg, although their simulations
neglected general relativistic effects that are important to com-
pute accurately the relativistic redshifts. On the other hand,
Linke et al. (2001), by means of relativistic one-dimensional
simulations, found a total radiated energy in the form of neutri-
nos of about 3 × 1056 erg for the same initial model and about
1 × 1056 erg when redshifts were taken into account. In order to
compare with the results of Linke et al. (2001), we computed
the redshifted total energy output for model S1.a, having the
same rest mass, until approximately the same evolution stage
as Linke et al. (2001) did (i.e., when the differential neutrino
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Figure 9. Isodensity contours of the logarithm of the rest-mass density (in g cm−3) for the rotating model R1.a. The frames have been taken at the initial time (left
panel), at t = 0.83 × 105 s (central panel), and at t = 1.127 × 105 s, where a BH has already formed and its apparent horizon encloses a mass of 50% of the total
initial gravitational mass.

(A color version of this figure is available in the online journal.)

Figure 10. Time evolution of the redshifted neutrino luminosities for models
R1.a, S1.a, R2.a, and S2.a all collapsing to a BH and for models R1.d, S1.c,
R2.d, and S2.b experiencing a thermal bounce. The time is measured relative to
the collapse timescale of each model, R1, S1, R2, and S2, with t0 ≈ (1, 7, 0.2, 6)
in units of 105 s.

(A color version of this figure is available in the online journal.)

luminosity dLν/dr ∼ 4 × 1045 erg s−1 cm−1). We find that the
total energy released in neutrinos is 1.1 × 1056 erg.

The neutrino luminosities for models experiencing a ther-
monuclear explosion (dashed lines in Figure 10) peak at much
lower values Lν ∼ 1042–1043 erg s−1 and decrease due to the
expansion and disruption of the star after the bounce.

7.4. Implications for Gravitational Wave Emission

The axisymmetric gravitational collapse of rotating SMSs
with uniform rotation is expected to emit a burst of GWs (Saijo
et al. 2002; Saijo & Hawke 2009) with a frequency within the
LISA low-frequency band (10−4–10−1 Hz). Although through
the simulations presented here we could not investigate the
development of non-axisymmetric features in our axisymmetric

models that could also lead to the emission of GWs, Saijo &
Hawke (2009) have shown that the three-dimensional collapse
of rotating stars proceeds in an approximately axisymmetric
manner.

In an axisymmetric spacetime, the ×-mode vanishes and the
+ -mode of GWs with l = 2 computed using the quadrupole
formula is written as (Shibata & Sekiguchi 2003)

h
quad
+ = Ïxx(tret) − Ïzz(tret)

r
sin2 θ, (37)

where Ïij refers to the second time derivative of the quadrupole
moment. The GW quadrupole amplitude is A2(t) = Ïxx(tret) −
Ïzz(tret). Following Shibata & Sekiguchi (2003), we compute
the second time derivative of the quadrupole moment by finite-
differencing the numerical results for the first time derivative of
Iij obtained by

İij =
∫

ρ∗(vixj + xivj )d3x. (38)

We calculate the characteristic GW strain (Flanagan &
Hughes 1998) as

hchar(f ) =
√

2

π

G

c3

1

D2

dE(f )

df
, (39)

where D is the distance of the source and dE(f )/df is the
spectral energy density of the gravitational radiation given by

dE(f )

df
= c3

G

(2πf )2

16π
|Ã2(f )|2, (40)

with

Ã2(f ) =
∫

A2(t)e2πif tdt. (41)

We have calculated the quadrupole GW emission for the
rotating model R1.a collapsing to a BH. We plot in Figure 11
the characteristic GW strain (Equation (39)) for this model
assuming that the source is located at a distance of 50 Gpc
(i.e., z ≈ 11), together with the design noise spectrum h(f ) =√

f Sh(f ) of the LISA detector (Larson et al. 2000). We find that,
in agreement with Saijo et al. (2002), Saijo & Hawke (2009),
and Fryer & New (2011), the burst of GWs due to the collapse

12



The Astrophysical Journal, 749:37 (14pp), 2012 April 10 Montero, Janka, & Müller

Figure 11. Characteristic gravitational wave strain for model R1.a assuming
that the source is located at a distance of 50 Gpc, together with the design noise
spectrum h(f ) = √

f Sh(f ) for the LISA detector.

(A color version of this figure is available in the online journal.)

of a rotating SMS could be detected at a distance of 50 Gpc and
at a frequency that approximately takes the form (Saijo et al.
2002)

fburst ∼ 3 × 10−3

(
106 M�

M

) (
5M

R

)3/2

[Hz], (42)

where R/M is a characteristic mean radius during BH formation
(typically set to R/M = 5).

Furthermore, Kiuchi et al. (2011) have recently investigated,
by means of three-dimensional general relativistic numerical
simulations of equilibrium tori orbiting BHs, the development
of the non-axisymmetric Papaloizou–Pringle instability (PPI) in
such systems (Papaloizou & Pringle 1984) and have found that
a non-axisymmetric instability associated with the m = 1 mode
grows for a wide range of self-gravitating tori orbiting BHs,
leading to the emission of quasi-periodic GWs. In particular,
Kiuchi et al. (2011) have pointed out that the emission of quasi-
periodic GWs from the torus resulting after the formation of an
SMBH via the collapse of an SMS could be well above the noise
sensitivity curve of LISA for sources located at a distance of
10 Gpc. Such instability appears for tori whose angular velocity
in the equatorial plane expressed as Ω̄(r) ∝ rq has q < qkep,
where qkep corresponds to the Keplerian limit, i.e., q = −1.5 in
Newtonian gravity.

We find that the torus (defined as the rest mass outside the
AH) that forms after the collapse to a BH of the uniformly
rotating model R1.a (when the mass of the AH exceeds 50%
of the gravitational mass) does not fulfill the above condition
for the development of the PPI. However, we find that the torus
that forms when the differentially rotating model D1 collapses
to a BH has a distribution of angular momentum such that
Ω̄(r) ∝ rq with q ≈ − 1.62. This suggests that the torus may be
prone to the development of the non-axisymmetric PPI, which
would lead to the emission of quasi-periodic GWs with peak

amplitude ∼10−18–10−19 and frequency ∼10−3 Hz during an
accretion timescale ∼105 s.

7.5. Conclusions

We have presented results of general relativistic simulations
of collapsing supermassive stars using the two-dimensional gen-
eral relativistic numerical code Nada, which solves the Einstein
equations written in the BSSN formalism and the general rel-
ativistic hydrodynamic equations with high-resolution shock-
capturing schemes. These numerical simulations have used an
EOS that includes the effects of gas pressure and tabulated those
associated with radiation pressure and electron–positron pairs.
We have also taken into account the effects of thermonuclear
energy release by hydrogen and helium burning. In particular,
we have investigated the effects of hydrogen burning by the β-
limited hot CNO cycle and its breakout via the 15O(α, γ )19Ne re-
action (rp-process) on the gravitational collapse of non-rotating
and rotating SMSs with non-zero metallicity.

We have presented a comparison with previous studies and
investigated the influence of the EOS on the collapse. We
emphasize that axisymmetric calculations without rotation (i.e.,
models S1 and S2) retain the spherical symmetry of the initial
configurations as there are no physical phenomena to produce
asphericity and numerical artifacts associated with the use of
Cartesian coordinates are negligibly small. Overall, our collapse
simulations yield good agreement with previous works when
using the same treatment of physics. We have also found that the
collapse timescale depends on the ion contributions to the EOS,
and electron–positron pair creation affects the stability of SMSs.
Interestingly, differentially rotating stars that are gravitationally
stable with a Γ = 4/3 EOS can become unstable against
gravitational collapse when the calculation is performed with
the microphysical EOS including pair creation.

We have found that objects with a mass of ≈5 × 105 M�
and an initial metallicity greater than ZCNO ≈ 0.007 explode if
non-rotating, while the threshold metallicity for an explosion
is reduced to ZCNO ≈ 0.001 for objects that are uniformly
rotating. The critical initial metallicity for a thermal explosion
increases for stars with a mass of ≈106 M�. The most important
contribution to the nuclear energy generation is due to the hot
CNO cycle. The peak values of the nuclear energy generation
rate at bounce range from ∼1051 erg s−1 for rotating models
(R1.d and R2.d) to ∼1052–1053 erg s−1 for spherical models
(S1.c and S2.b). After the thermal bounce, the radial kinetic
energy of the explosion rises until most of the energy is kinetic,
with values ranging from EK ∼ 1056 erg for rotating stars up
to EK ∼ 1057 erg for the spherical star S2.b. The neutrino
luminosities for models experiencing a thermal bounce peak
at Lν ∼ 1042 erg s−1.

The photon luminosity roughly equals the Eddington lumi-
nosity during the initial phase of contraction. Then, after the ther-
mal bounce, the photon luminosity becomes super-Eddington
with a value of about Lγ ≈ 1 × 1045 erg s−1 during the phase of
rapid expansion that follows the thermal bounce. For those stars
that do not explode we have followed the evolution beyond the
phase of BH formation and computed the neutrino energy loss.
The peak neutrino luminosities are Lν ∼ 1055 erg s−1.

SMSs with masses less than ≈106 M� could have formed
in massive halos with Tvir � 104 K. Although the amount of
metals that was present in such environments at the time
when SMSs might have formed is unclear, it seems possible
that the metallicities could have been smaller than the critical
metallicities required to reverse the gravitational collapse of an
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SMS into an explosion. If so, the final fate of the gravitational
collapse of rotating SMSs would be the formation of a SMBH
and a torus. In a follow-up paper, we aim to investigate in detail
the dynamics of such systems (collapsing of an SMS to a BH-
torus system) in three dimensions, focusing on the post-BH
evolution, and the development of non-axisymmetric features
that could emit detectable gravitational radiation.

We thank B. Müller and P. Cerdá-Durán for useful discus-
sions. This work was supported by the Deutsche Forschungsge-
sellschaft (DFG) through its Transregional Centers SFB/TR 7
“Gravitational Wave Astronomy” and SFB/TR 27 “Neutrinos
and Beyond” and the Cluster of Excellence EXC153 “Origin
and Structure of the Universe.”
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