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ABSTRACT

We present an analysis of two thermodynamic techniques for determining equilibria of self-gravitating systems.
One is the Lynden-Bell (LB) entropy maximization analysis that introduced violent relaxation. Since we do not
use the Stirling approximation, which is invalid at small occupation numbers, our systems have finite mass, unlike
LB’s isothermal spheres. (Instead of Stirling, we utilize a very accurate smooth approximation for ln x!.) The
second analysis extends entropy production extremization to self-gravitating systems, also without the use of
the Stirling approximation. In addition to the LB statistical family characterized by the exclusion principle in phase
space, and designed to treat collisionless systems, we also apply the two approaches to the Maxwell–Boltzmann
(MB) families, which have no exclusion principle and hence represent collisional systems. We implicitly assume
that all of the phase space is equally accessible. We derive entropy production expressions for both families and
give the extremum conditions for entropy production. Surprisingly, our analysis indicates that extremizing entropy
production rate results in systems that have maximum entropy, in both LB and MB statistics. In other words, both
thermodynamic approaches lead to the same equilibrium structures.
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1. INTRODUCTION

1.1. Motivation

Understanding how collisionless systems attain a specific
mechanical equilibrium state is fundamentally important to
astrophysics. For example, the cold dark matter structures
that exist around galaxies are expected to fall into this class
of system. Individual dark matter constituents (whatever they
may be) should evolve according to a mean-field gravitational
potential, free of the influence of individual encounters.

The range of mechanical equilibria available to a collisionless
system is defined by the Jeans equation, which represents the
condition that no portion of the system experiences a net force.
Unfortunately, the Jeans equation admits an infinity of solutions.
Even if the mass distribution is specified, there is an infinite set
of acceptable mechanical equilibria, each involving a different
velocity distribution. For spherical systems, these velocity
distributions differ in their anisotropy profile that quantifies
radial versus tangential motion. However, the question remains,
how and/or why does any one collisionless system evolve to its
particular mechanical equilibrium end state, and what are the
properties of such a state?

1.2. Thermodynamic Approaches to the Problem

The statistical mechanics description of thermodynamics
provides one path to obtaining the description of the final
relaxed state. A fully relaxed system is the most statistically
likely state of that system or the one with an entropy maximum.
In calculating the most likely state, it is implicitly assumed that
all states of the system are equally accessible.

Such an approach was taken by Lynden-Bell (1967) and
applied to self-gravitating collisionless systems, with the hope
of explaining the observed light distribution of elliptical galax-
ies. A collisionless system can be thought of as a fluid in
the six-dimensional phase space of position and velocity. The

“particles” in Lynden-Bell’s (LB’s) analysis are parcels of phase
space, i.e., parcels of this fluid, and so the distribution function
(DF) representing the phase-space density is defined in terms
of energy per unit mass, not energy per particle. The analy-
sis resulted in a DF similar to the Fermi–Dirac (FD) case, but
with a different normalization. Lynden-Bell (1967) argued that
a non-degenerate limit is appropriate for stellar systems, and
thus arrived at a DF similar to that of the Maxwell–Boltzmann
(MB) case (an exponential), which resulted in the isothermal
sphere representing thermal equilibrium. Since the isothermal
sphere has an infinite extent and mass, its emergence from the
entropy maximization procedure, which demanded a finite mass
system, presented a contradiction. This apparent failure of en-
tropy maximization was puzzling, and it was often argued that
such systems do not have states of maximum entropy. Some
effort was made to investigate maximizing entropy with addi-
tional constraints beyond mass, energy, and angular momentum
(Stiavelli & Bertin 1987; White & Narayan 1987). Other routes
involving minimum energy states of self-gravitating systems
were also developed (e.g., Aly 1994).

Recently, Madsen (1996) (based on earlier work by Simons
1994) has pointed out that the reason for the system’s infinite
mass was the use of the Stirling approximation, ln n! ≈ n ln n−
n. In contrast to systems usually treated in standard statistical
mechanics, self-gravitating systems can apparently have small
phase-space occupation numbers n, making Stirling a poor
approximation. Specifically, these systems have regions of phase
space or energy space that are nearly or completely unoccupied,
such that n will be small. Spatially, these regions can correspond
to the center of the potential as well as its outer edge. Using MB
statistics and the exact ln n!, Madsen (1996) has found a DF
from entropy maximization that is very similar to King (1966)
models. Hjorth & Williams (2010) have shown that the energy-
space occupation function N (E) derived using a very accurate
smooth approximation to ln n! closely resembles the results of
collisionless N-body simulations (Williams et al. 2010).
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1.3. Brief Review of Statistical Representations

From a statistical point of view, entropy is simply a measure-
ment of the number of states accessible to a particular system.
This relationship is most commonly expressed quantitatively as

S = kB ln Ω, (1)

where Ω is the number of accessible states and kB is the
Boltzmann constant, which serves to give entropy the correct
thermodynamic units. As a result, counting procedures are
key to determining specific realizations of entropy. Lynden-
Bell (1967) discusses how there are four counting types that
lead to physically relevant situations. Bose-Einstein statistics
follow from counting states for indistinguishable particles that
can co-habitate in the same state. When indistinguishable
particles are not allowed to share states, FD statistics emerge.
Classical MB statistics result from counting states available to
distinguishable particles that can share states. Completing the
symmetry, systems where distinguishable “particles”—actually,
parcels of phase space—cannot co-occupy states obey what
has become known as LB statistics (statistics “IV” in LB’s
original notation). Each type of statistics will produce different
representations of entropy, but we will focus on the two that deal
with classical, or distinguishable particles, namely, LB and MB.

We briefly recap the notation used in Lynden-Bell (1967)
before proceeding with our discussion. The six-dimensional
position–velocity phase space (x,v) is the usual setting for
determining the statistics. Imagine phase space to be divided
into a very large number of nearly infinitesimal parcels, called
micro-cells, each having volume � . Each micro-cell can either
be occupied or unoccupied by one of the N phase-space elements
of the system. These elements can be thought of as representing
the fine-grained DF, which has a constant density value η.
Because collisionless processes imply incompressibility of the
fine-grained DF, the phase elements cannot co-habitate. If phase
space is also partitioned on a coarser level so that some number
ν of micro-cells occupy a macro-cell, then we can discuss a
coarse-grained DF. The volume of a macro-cell is then ν� and
the ith macro-cell contains ni phase elements. We assume that
while the volume of a macro-cell is much larger than that of a
micro-cell, it is still very small compared with the full extent
of phase space occupied by the system. The number of ways
of organizing the ni elements into the ν micro-cells without
co-habitation is

ν!

(ν − ni)!
. (2)

If the elements were allowed to multiply occupy micro-cells, as
in MB statistics, this number would be given by νni .

To get the total number of accessible states, the possible ways
to distribute the N phase elements into ni chunks must also be
included. Lynden-Bell (1967) derives

ΩLB = N !∏
i ni!

×
∏

i

ν!

(ν − ni)!
. (3)

In the MB case, the only change is that the factorial ratio in the
final product term is replaced by νni .

The LB case disallows two phase-space elements from
inhabiting the same phase-space location, so it explicitly takes
into account the incompressibility of a collisionless fluid. Since
we are primarily interested in dark matter halos, LB is the natural
case to consider. For completeness, and for the sake of having a
comparison, we also treat the MB case, in the Appendix.

We argue that the lack of an exclusion principle in the MB
case is equivalent to allowing collisions between particles. In a
collisional system, particles from distant phase-space locations
can be scattered into any other phase-space location, thereby
increasing the phase-space density at the latter location. In
principle, there is no limit to how high the density can get
through such scatterings. In practice, the phase-space density
probably cannot become very high at most locations, but it
can be higher than the original fine-grained DF. We note that
it is common to use MB to represent collisional systems. For
example, Madsen (1996) argues that it is the correct statistics to
use for globular clusters where the relatively small number of
stars allows the cluster to relax through two-body interactions. It
then makes sense that the energy distribution that the cluster will
arrive at will be the same as that in a cloud of gas, which relaxes
through collisions between molecules. In the non-degenerate
limit, when the micro-cells are very sparsely populated and the
density of the coarse-grained DF is very dilute compared with
that of the fine-grained function, both LB and MB DFs, and
hence density profiles, will look the same.

1.4. This Work

In this paper, we explore two possible approaches to deriving
the final equilibrium state of self-gravitating systems, for each
of the two types of statistics, LB and MB. In both, we
use a very accurate, smooth approximation for ln x! valid
for arbitrary occupation numbers x. However, the price we
pay for this improved approximation is the loss of analytic
solutions.

The first approach assumes that the final state is the maximum
entropy state, an assumption that was first used in the context
of self-gravitating systems in 1950’s (Ogorodnikov 1957).
The second approach, again in the context of self-gravitating
systems, was first taken by Barnes & Williams (2011); it posits
that the final state corresponds to the extremum of entropy
production rate.

We explore extremizing entropy production because it has
not been established beyond a doubt that real or computer sim-
ulated systems do fully relax to maximum entropy states. It is
possible that their steady-state configurations do not correspond
to maximum entropy. Prior work on thermal non-equilibrium
systems, but not in astrophysical contexts, suggests that sta-
tionary states—like mechanical equilibrium—occur when en-
tropy production is extremized (e.g., Prigogine 1961; Jaynes
1980; de Groot & Mazur 1984; Grandy 2008). We investi-
gate their applicability to self-gravitating systems in mechanical
equilibrium.

The new aspect in the present paper is that we use a very
accurate approximation for ln x!, unlike our previous paper
that assumed the Stirling approximation. As Madsen (1996)
has shown, replacing Stirling with an accurate approximation
(1) results in systems with finite total mass and energy, and
(2) significantly changes the structure of the systems.

In all, we present four derivations; entropy maximizations
for the LB and MB statistics are covered in Section 3.1
and Appendix A.1. Extremizations of entropy production for
LB and MB statistics are carried out in Section 3.2 and
Appendix A.2, respectively. We develop expressions for the
relaxation functions (see Section 2), and use these to better
understand the evolution of coarse-grained DF. We compare our
results with analogous versions of entropy production derived
using the standard Stirling approximation in Barnes & Williams
(2011).
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Figure 1. Schematic summary of the various statistical mechanical approaches to self-gravitating systems. See Section 1.4 for explanation.

Figure 1 puts the present paper (BWII in the figure) in context.
It is a schematic summary of the various statistical mechanical
approaches to self-gravitating systems. The possible ways to
frame the problem appear at the top of the figure; one can
formulate the problem in either the regular phase space or the
energy space. Below the thick horizontal line we show the two
different routes for attaining the final steady state: maximizing
entropy and extremizing entropy production. Once these choices
are made one has to decide whether small occupation number
regime will be important or not, and hence whether to use the
Stirling approximation for ln x! or not. In the latter case, one
must then decide whether to use the discrete (“discr.”) step-
like, i.e., exact version of ln x!, or to approximate it with some
smooth function (“cont.”) that remains very accurate down to
small x. Note that HW10 and the present paper use different
but similar approximations. There is no physical reason to
introduce the exclusion principle in the energy state space,
hence the corresponding regions are marked as “not relevant.”
The bottom entries of some columns in the table contain names
of papers where the corresponding options were considered.
K66 in parentheses below BWII means that King (1966) results
are nearly identical to ours. M = ∞ under LB67 means that
Lynden-Bell (1967) final result, the isothermal sphere, had
infinite mass.

Much of the background material for this work may be found
in Barnes & Williams (2011), and we briefly summarize these
previously obtained results in Section 2.

2. SUMMARY OF RESULTS FOR LARGE
OCCUPATION NUMBERS

Barnes & Williams (2011) have investigated entropy produc-
tion in self-gravitating systems described by MB and LB and
have developed expressions for the entropy production, σ for
both the MB,

σMB = − kB

�η

∫
Γ

[
ln

(
f

η

)
+ 1 − ln N

]
dv, (4)

and LB cases,

σLB = − kB

�η

∫
Γ

[
ln

(
f

η − f

)
− C

]
dv, (5)

where constant C in Equation (5) is (ln N −1)+(1/N)
∑

i ν ln ν.
In these expressions, f is the coarse-grained DF and Γ is
the relaxation function and forms the right-hand side of the
Boltzmann equation,

∂f

∂t
+ v · ∇f + a · ∇vf = Γ(f ). (6)

If one were to assume, for a moment, that in the above equation
f is a fine-grained DF, then the right-hand side would be zero
for collisionless systems. In other words Γ = 0, which means
that on fine-grained scales there is no change in, or production
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Figure 2. Comparing the Stirling, Hjorth & Williams (2010), and Equation (9) approximations to ln x! as functions of x. The function ψ(x + 1) ≡ d ln x!/dx is
plotted. Note the divergent behavior of the Stirling approximation as x → 0. (a) The raw ψ functions for the three approximations are shown. The Hjorth & Williams
(2010) line is very nearly covered by Equation (9) line. (b) Differences between the various approximations and Equation (9). The differences between the Hjorth
& Williams (2010) and Equation (9) approximations are much smaller than those between either approximation and the Stirling approximation. Also, the Hjorth &
Williams (2010) and Equation (9) values coincide for x = 0.

(A color version of this figure is available in the online journal.)

of entropy; in collisionless systems, entropy is fixed throughout
evolution. Let us be clear, we are not advocating for a specific
process as a source for Γ, like collisions in a gas. The relaxation
function simply describes the Lagrangian time rate of change
of the DF. Returning to our case where f represents the coarse-
grained DF, Equation (6) states that entropy is produced (and
as we argue in Barnes & Williams 2011, it happens even in
systems that have attained macroscopic steady state) because
on microscopic scales the fine-grained DF continues to wind
and twist, which, when combined with coarse-graining, gives
rise to non-zero entropy change. From a different starting point,
Chavanis (1998) develops an expression for the right-hand side
of Equation (6) in terms of a “diffusion current” that relates to
correlations between fluctuations in the fine-grained DF. While
that work details the makeup of this diffusion current, we simply
focus on the broad behavior of the relaxation function.

We find extremum entropy production conditions by setting
the variation of entropy production, δσ equal to zero. This
operation gives expressions for the relaxation function. For the
MB case,

ΓMB(f ) = (1 − ln N )ΓMB(f = η)

ln (f/η) + 1 − ln N
. (7)

The LB relaxation function is slightly more complex,

ΓLB(f ) = −CΓLB(f = η/2)

ln [f/(η − f )] − C
. (8)

Like Lynden-Bell (1967), the Barnes & Williams (2011) work
assumes that the large n Stirling approximation is valid for the
systems being investigated. Here, we will be deriving relations

analogous to Equations (4), (5), (7), and (8), but using a very
accurate approximation, after discussing the results of entropy
maximization below.

3. RESULTS FOR ARBITRARY OCCUPATION NUMBERS

The approximation that we utilize in this work is

ln x! =
(

x +
1

2

)
ln (x + 1) − x +

ln 2π

2
+ λ0, x, (9)

where

λ0,x = −

(
x2 + 2x +

287

288

)
(

x2 +
25

12
x +

13

12

) . (10)

In the large x limit, this reduces to the usual Stirling approxima-
tion ln x! = x ln x − x. Our approximation is slightly different
from the one in Hjorth & Williams (2010). Comparisons be-
tween the Stirling approximation, the Hjorth & Williams (2010)
approximation, and Equation (9) are shown in Figure 2. The
plots illustrate the function ψ(x + 1) ≡ d ln x!/dx for the three
cases. The HW10 and Equation (9) approximations are nearly
identical. Most importantly, these two approximations are well
behaved at x = 0, unlike the Stirling approximation.

3.1. Entropy Maximization

In this section, we follow the overall path taken in Lynden-
Bell (1967) to determine the description of entropy for the
LB statistics family. Briefly, counting arguments for phase-
space macro-cell occupation are combined with the statistical
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definition of entropy to give specific representations. Variations
in entropy assuming constant mass and energy are then set to
zero in order to determine the necessary DFs.

If one demands that multiple phase-space elements cannot
simultaneously occupy micro-cells, the multiplicity of states
(Equation (3)) combined with the definition of entropy results
in,

SLB = kB

[
ln N ! −

∑
i

ln ni! +
∑

i

ln ν! −
∑

i

ln (ν − ni)!

]
,

(11)

where again the summations run over the number of macro-
cells. We will assume that both N and ν are much larger than 1,
so that Stirling’s approximation is valid for use in the first and
third terms. However, for the ni and ν − ni terms we will use
our improved approximation,

ln ni! = (ni + 1/2) ln (ni + 1) − ni +
ln 2π

2
+ λ0, ni

. (12)

Note that this usage does not require either ni or ν − ni to
actually be a small value, rather this keeps the accounting
accurate in the event that they do become small. If these values
are always large, there will be no difference from the Stirling
approximation. The entropy expression now reads,

SLB = SLB, 0 − kB

∑
i

[(ni + 1/2) ln (ni + 1) + (ν − ni + 1/2)

× ln (ν − ni + 1) + λ0, ni
+ λ0, (ν−ni )], (13)

where SLB,0 = kB[N ln N − N + M(ν ln ν − ln 2π )] and M is
the total number of macro-cells.

Transforming from the discrete macro-cell occupation num-
ber ni to the continuous coarse-grained distribution function f,
the entropy becomes

SLB = SLB, 0 − kB

ν�

∫ ∫ [ (
νf

η
+

1

2

)
ln

(
νf

η
+ 1

)

+

(
ν − νf

η
+

1

2

)
ln

(
ν − νf

η
+ 1

)

+ λ0,νf/η + λ0, ν−νf/η

]
dx dv. (14)

Taking the variation of this entropy expression to be zero, with
constant mass and energy constraints, leads to the following
condition:

ln (F + 1) +
(F + 1/2)

(F + 1)
− ln (ν − F + 1) − (ν − F + 1/2)

(ν − F + 1)

+
dλ0, F

dF
+

dλ0, ν−F

dF
+ μ + βε = 0, (15)

where F = νf/η is a scaled coarse-grained DF and μ and β
are undetermined multipliers associated with mass and energy
conservation, respectively. The ε term is the specific energy
of a phase element located at position x with velocity v,
ε = v2/2 + Φ. The derivative of the λ function is

dλ0, F

dF
= −(F + 1)

(F + 600/576)
. (16)

After substituting for these λ derivatives and combining terms
we have

ln

[
F + 1

ν − F + 1

]
+

(F − ν/2)

(F + 1)(ν − F + 1)

− 2F 2 − 2Fν − (1 + 600/576)ν − 600/288

F 2 − Fν − (600/576)ν + (600/576)2

+ μ + βε = 0. (17)
The inelegant ratio terms in this expression are both symmetric
about F = ν/2. The second term on the left-hand side of
Equation (17) has values of −1/2 when F = 0, 0 when
F = ν/2, and 1/2 when F = ν (the maximum value of F for the
LB case). The third term on the left-hand side of Equation (17)
is a nearly constant function with a value very close to −2 for
0 � F � ν.

We have not attempted to find an analytic solution for F.
Graphical solutions of Equation (17) for a series of ε values
produce the picture of f/η seen in Figure 3. The overall
character of the DF is the same in the non-Stirling and Stirling
versions, and both functions are very similar to FD distribution,

fFD = exp −(μ + βε)

1 + exp −(μ + βε)
. (18)

This DF of Equation (17) can be transformed into a density
distribution using the Poisson equation and the fact that

ρ(r) =
∫

f (r, v)dv = 4π

∫
f (ε)

√
2[ε − Φ(r)]dε. (19)

Note that this procedure imposes an isotropic velocity
distribution for the system.

The density and logarithmic density slope corresponding to
the non-Stirling function are presented in Figures 4 and 5, and
will be discussed further in Section 4.1.

3.2. Entropy Production Extremization

Just because it is possible to describe thermal equilibrium
states for collisionless self-gravitating systems, it does not
follow that real systems (either physical or simulated) must
achieve them in a Hubble time. It is possible that real systems
incompletely relax, leaving them in a thermal non-equilibrium,
but long-lived stationary state. Madsen (1996) also points out
that in very slowly evolving systems, the maximization of
entropy is only temporary. This leads us to infer that the
production of entropy may be a useful quantity for discussing
quasi-equilibria of collisionless systems. With that in mind,
we now proceed to develop the conditions required for a
thermal non-equilibrium state to be stationary. Specifically, we
find an expression for entropy production in the LB statistical
family and then extremize it. (As for the preceding section,
an analogous derivation for the MB statistics may be found in
Appendix A.2.) As discussed in Section 1.4, existing work on
thermal non-equilibrium in non-astrophysical settings suggests
that stationary states occur when entropy production is either
maximum or minimum (de Groot & Mazur 1984; Grandy 2008,
and references therein).

From Equation (14) the entropy density in the LB case can
be written as

ρsLB = − kB

ν�

∫ [
(F + 1/2) ln (F + 1) − (ν − F + 1/2)

× ln (ν − F + 1) + λ0, F + λ0, ν−F − F
SLB, 0

NkB

]
dv, (20)

where, as before, F ≡ νf/η.
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Figure 3. Lynden-Bell distribution function resulting from the non-Stirling approximation. The Lynden-Bell function derived using the Stirling approximation is also
shown.

(A color version of this figure is available in the online journal.)

Figure 4. (a) Logarithmic density and (b) the corresponding α = −d log ρ/d log r vs. logarithmic-scaled radius for the Lynden-Bell case. The thick solid black lines
correspond to models with ν = 100 while the thick dashed black lines represent models with ν = 1000. The vertical lines mark where the logarithmic slope of the
ν = 100 model is isothermal (α = 2). The α profiles for NFW, Navarro et al. (2004), and Plummer models are also shown. The profiles for the ν = 1000 model have
been horizontally shifted so that the location where α = 2 coincides with the other models. The central cusp of the NFW and Navarro et al. (2004) models (α → 1 as
r → 0) differs markedly from the core present in the Lynden-Bell case (α → 0 as r → 0). The presence of the core in the Lynden-Bell case is independent of ν.

(A color version of this figure is available in the online journal.)
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Figure 5. Comparisons between Lynden-Bell (solid) and King (dashed) density profiles for different ν values; (a) ν = 100 and (b) ν = 1000. The King scale factors
correspond to those used in Figure 8 for the same ν values. The shapes of the curves cannot be brought into agreement for any scale factor values.

(A color version of this figure is available in the online journal.)

Taking a partial time derivative of Equation (20) results in

∂

∂t
(ρsLB) = − kB

ν�

∫
∂F

∂t

[
ln (F + 1) +

F + 1/2

F + 1

− ln (ν − F + 1) +
ν − F + 1/2

ν − F + 1

+
∂λ0, F

∂F
+

∂λ0, ν−F

∂F
− C

]
dv, (21)

where C = SLB,0/NkB is a constant.
Upon substituting ∂F/∂t from the Boltzmann equation into

Equation (21), we get a lengthy expression,

∂

∂t
(ρsLB) = − kB

ν�

∫
(−v · ∇F )

[
ln (F + 1) +

(F + 1/2)

(F + 1)

− ln (ν − F + 1) +
ν − F + 1/2

ν − F + 1
+

∂λ0, F

∂F
+

∂λ0, ν−F

∂F
− C

]
dv

− kB

ν�

∫
(−a · ∇vF )

[
ln (F + 1) +

(F + 1/2)

(F + 1)

−ln(ν − F + 1) +
ν − F + 1/2

ν − F + 1
+

∂λ0, F

∂F
+

∂λ0, ν−F

∂F
− C

]
dv

− kB

ν�

∫
γ

[
ln (F + 1) +

(F + 1/2)

(F + 1)
− ln (ν − F + 1)

+
ν − F + 1/2

ν − F + 1
+

∂λ0, F

∂F
+

∂λ0, ν−F

∂F
− C

]
dv, (22)

where γ = νΓ/η.
The first term on the right-hand side of Equation (22) can

be transformed into −∇ · ρsLBv. The acceleration-dependent

terms in Equation (22) all disappear under the assumptions that
the DF is even in v and disappears when v = vmax. The final
representation of the time rate of change of the entropy density is

∂

∂t
(ρsLB) = − kB

ν�
∇ ·

∫
[(F + 1/2) ln (F + 1)

− (ν − F + 1/2) ln (ν − F + 1) + λ0, F + λ0, ν−F − FC]v dv

− kB

ν�

∫
γ (F )

[
ln (F + 1) +

F + 1/2

F + 1
− ln (ν − F + 1)

+
ν − F + 1/2

ν − F + 1
+

dλ0, F

dF
+

dλ0, ν−F

dF
− C

]
dv. (23)

Again assuming the velocity field to be composed of mean and
peculiar components v = v0 + v p, we draw a correspondence
between the terms in

∂

∂t
(ρsLB) = −∇ · ρsLBv0 − kB

ν�
∇ ·

∫
[(F + 1/2) ln (F + 1)

− (ν − F + 1/2) ln (ν − F +1) + λ0, F + λ0, ν−F − FC]v p dv

− kB

ν�

∫
γ

[
ln (F + 1) +

F + 1/2

F + 1
− ln (ν − F + 1)

+
ν − F + 1/2

ν − F + 1
+

dλ0, F

dF
+

dλ0, ν−F

dF
− C

]
dv (24)

and those in the continuous version of the entropy density
evolution equation (Equation 6 in Barnes & Williams 2011),

∂

∂t
(ρs) = −∇ · (� + ρsv0) + σ. (25)
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The entropy flux due to random motions � is given by
the integral in the second term on the right-hand side of
Equation (24). The remaining term then makes up the entropy
production for the system,

σLB = − kB

ν�

∫
γ

[
ln (F + 1) +

F + 1/2

F + 1
− ln (ν − F + 1)

+
ν − F + 1/2

ν − F + 1
+

dλ0, F

dF
+

dλ0, ν−F

dF
− C

]
dv. (26)

As expected, the relaxation function determines the entropy
production rate for the system.

We find that the condition for the entropy production term in
Equation (26) to be extremized is

ΓLB(f ) = Q/

[
ln

(
F + 1

ν − F + 1

)
+

F + 1/2

F + 1
+

ν − F + 1/2

ν − F + 1

+
dλ0, F

dF
+

dλ0, ν−F

dF
− C

]
, (27)

where the integration constant is defined by

Q = γLB(F = ν/2)

[
ν + 1

ν/2 + 1
− 2(ν + 2)

ν + 600/288
− C

]
, (28)

and the λ derivatives are the same as those used in going from
Equations (15) to (17). This relaxation function is shown in
Figure 6 and is very similar to the corresponding function from
Barnes & Williams (2011), their Figure 2.

4. SUMMARY AND DISCUSSION

In an attempt to better understand the evolution of self-
gravitating collisionless systems, we have re-investigated a
standard statistical mechanics approach to finding equilibria
(entropy maximization) and continued to develop a new ap-
proach (extremization of entropy production), first applied to
self-gravitating systems by Barnes & Williams (2011). Entropy
production in non-equilibrium steady-state systems has been
previously investigated and found to be useful in several non-
astrophysical systems, and so it is interesting to ask if the
principle is relevant in gravitational systems.

Both of our approaches use a very accurate approximation for
ln n!, and not the standard Stirling formula valid only for large
occupation numbers. It has been recently shown that using an
approximation that reflects correct behavior for small n, and the
principle of entropy maximization, leads to density distributions
that resemble globular clusters (King profiles; Madsen 1996),
and simulated pure dark matter halos (Williams & Hjorth
2010; Williams et al. 2010). Both types of systems have finite
mass and energy, in compliance with the entropy maximization
constraints.

4.1. Results of Entropy Maximization

Entropy maximization using the LB and MB statistics pro-
duces the density profiles and logarithmic profiles slopes,
α = −d log ρ/d log r , depicted in Figures 4 and 7, respectively.

We argue that the LB case accurately represents collisionless
systems because co-habitation of the phase-space elements
is prohibited. However, the density profiles for any value
of ν are very different from the two cosmological models,

Navarro-Frenk-White (NFW; Navarro et al. 1996) and N04
(Navarro et al. 2004), which are fits to the results of cosmological
N-body simulations. In contrast to the latter, the LB density
profiles have a flat central density slope, while at larger radii
α has a steeper rise than even that of the Plummer profile
(Plummer 1911; Binney & Tremaine 1987), which is an example
of a polytropic system. In Figure 5, we compare the profiles to
those derived in Appendix A.1, which are nearly identical to
King models; LB profiles are poor matches to King models.
(The vertical lines in each panel mark the radial position where
α = 2.) Both the MB and LB density profiles are also different
from those found in Hjorth & Williams (2010), as those models
can have central density cusps.

We conclude that applying entropy maximization to the LB
case coupled with a very accurate approximation for ln n!
produces (isotropic) density profiles that are distinct from any
other first-principles function, or fits to the results of N-body
simulations. We will return to this point in Section 4.3.

The MB case is intended to represent collisional systems
because the co-habitation of the phase-space elements is al-
lowed. The density profiles with ν = 100 and 1000 are given in
Figure 7(a). The rmax scaling distance corresponds to the ra-
dius where a non-moving particle has an energy for which the
DF disappears. The second panel of that Figure 7(b) shows the
slope of the logarithmic density profile α along with curves
corresponding to three other well known analytical density
profiles. These MB solutions are basically identical to King
models (see Figure 8). This result comes as no surprise in the
light of Madsen (1996), who did not use any approximation
for ln x!, and obtained density profiles very similar to King’s.
Abandoning the Stirling approximation (and treating the low oc-
cupation number limit with the respect it apparently deserves)
demonstrates that the King DF is the result of maximizing en-
tropy in MB statistics, under the conditions of fixed mass and
energy.

The consequence of using a very good smooth approximation
to ln x!, as done here, instead of the exact expression that gives
discrete step-like values, as was done in Madsen (1996), is
that the former results in spot-on matches to the King profiles,
while the latter display modest differences from the King profile
shape, especially for low Ψ(0)/σ values; see Figure 1 of Madsen
(1996).

The value of ν appears to play a role analogous to the King
scaling factor Ψ(0)/σ 2, where Ψ(0) is a relative potential en-
ergy at the center, and σ is an energy scaling constant (Binney
& Tremaine 1987). Increasing ν—or Ψ(0)/σ 2—increases the
concentration of the system. Recall that the higher the con-
centration, the closer the King model is to an isothermal
sphere.

We find that the concentrations of the King models that most
closely resemble the MB density profiles increase as the value
of ν increases. Recall that ν is the number of fine-grained micro-
cells that occupy a coarse-grained macro-cell, so as ν increases
the DF becomes “grainier.” At the same time, increasing the
concentration of a King model makes it more closely resemble
an isothermal sphere. Putting these two observations together
implies that increasing the coarseness of the DF (by increasing
the number of fine-grained cells contained in a coarse-grained
cell) should result in densities that have more isothermal
aspects.

Finally, we note that both of the families of profiles obtained
here have flat density cores, while cosmologically simulated
halos have density cusps.

8
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Figure 6. Behavior of the relaxation function ΓLB as a function of the coarse-grained distribution function f in a system that obeys Lynden-Bell statistics. Panel (a)
includes various lines representing functions defined with different C values, where C = ln N − 1 + M/N (ν ln ν − ln 2π ). N is the number of phase-space elements in
a system, and increasing N results in increasing C. As N increases, the relaxation function becomes more constant. All curves correspond to cases where ν = 100. As
ν increases, these curves develop singularities near f = η, as shown in panel (b).

(A color version of this figure is available in the online journal.)

4.2. Results of Entropy Production Extremization

Some aspect of simulations may delay, or even disallow, the
maximizing of entropy necessary to achieve thermal equilib-
rium. In such a frustrated case, it is possible that a collisionless
system finds a stationary state by extremizing its entropy pro-
duction. As a more concrete example of this situation, imagine
a metal bar with one end exposed to a blowtorch and the other
end in an ice bath. When the bar reaches a stationary state with

a time-independent, but spatially varying, temperature distribu-
tion, entropy production in the bar is an extremum (de Groot &
Mazur 1984, Chapter 5, Section 3). We have begun to explore
the possibility that the mechanical equilibria of simulated colli-
sionless systems can be explained as states of extreme entropy
production.

To this end, we have derived expressions for entropy pro-
duction in collisionless systems using the LB statistics, and in
collisional systems, using MB statistics. Further, we have found

9
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Figure 7. (a) Logarithmic density and (b) the corresponding α = −d log ρ/d log r vs. logarithmic-scaled radius for the Maxwell–Boltzmann case. The thick solid
black lines represent models with ν = 100 while the thick dashed black lines correspond to models with ν = 1000. The vertical lines mark where the logarithmic
slope of the ν = 100 model is isothermal (α = 2). The α profiles for NFW, Navarro et al. (2004), and Plummer models are also shown. As in Figure 4, the ν = 1000
curve has been shifted horizontally to align the locations where α = 2. The central cusp of the NFW and Navarro et al. (2004) models (α → 1 as r → 0) differs
markedly from the core present in the Maxwell–Boltzmann case (α → 0 as r → 0). The presence of the core in the Maxwell–Boltzmann case is independent of ν.

(A color version of this figure is available in the online journal.)

Figure 8. Comparisons between Maxwell–Boltzmann (solid) and King (dashed) density profiles for different ν values; (a) ν = 100, (b) ν = 1000, (c) ν = 5000.
The King profile scale factor Ψ(0)/σ 2 is given in each panel. The dashed lines represent King density profiles while the solid lines show the Maxwell–Boltzmann
distributions. The comparison between these two profile types reveals more similarity than when the Madsen (1996) and King models are compared.

(A color version of this figure is available in the online journal.)
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Figure 9. Behavior of the relaxation function ΓMB as a function of the coarse-grained distribution function f in a system that obeys Maxwell–Boltzmann statistics.
The various lines represent functions defined with different N values, where N is the number of phase-space elements in a system. As with the LB case, as N increases,
the relaxation function becomes more constant. Note that the horizontal axis scale differs from that in Figure 7(a) since there is no restriction on the value of the
coarse-grained distribution function in the MB case. All curves correspond to cases where ν = 100.

(A color version of this figure is available in the online journal.)

the form of the relaxation function required to guarantee an
entropy production extreme. Recall that the relaxation function
is the right-hand side of the Boltzmann equation, Equation (6),
that describes the coarse-grained DF evolution.

As in our previous work which was valid only for large
phase-space occupation numbers, the MB relaxation function
(pictured in Figure 9) is positive for all values of F (as long as
N > 1) and becomes more constant as the number of particles N
increases. It is clear that the basic form of the relaxation function
is not dependent on the specifics of the DF. A visual comparison
between Figure 6 and Figure 1 in Barnes & Williams (2011)
reinforces this point.

The general form of the LB relaxation function shown in
Figure 6 has similarities and differences with its large occupation
number version derived in Barnes & Williams (2011). The
similarities are that both the functions increase with f/η upto
just short of f/η = 1, then spike toward large positive values
of ΓLB, go through a singularity at f/η � 1, then become
negative, and eventually asymptote to ΓLB = 0 as f/η → 1
(see the bottom panel of Figure 6). The difference is that the
large occupation number ΓLB is independent of ν, while its
arbitrary occupation number analogue is not. In the latter case
the values of C and ν that produce the singularity are linked
through the relationship,

log
νmin

100
= 0.4348(C − 4.1518), (29)

where νmin is the minimum value of ν that will cause a singularity
for a given C. This expression is valid as long as νmin � 10. The
importance of the singularity in both cases is that it signals that
the relaxation function will reach zero when the coarse-grained
distribution function f reaches the fine-grained value η, bringing
the evolution of the DF to a halt.

To sum up, extremizing entropy production in the LB case
leads to a relaxation function ΓLB versus f/η shape that drives
ΓLB, and hence the entropy production rate, σLb, to zero, which
in turn means that the endpoint of evolution has a maximum
(more correctly, an extremum) entropy. In other words, the
entropy production extremization procedure that we followed
in Section 3.2 tell us that the final state of a self-gravitating
collisionless system is a state of maximum entropy. Since in
Section 3.1 we derived such a state, using entropy maximization,
it must be the same state.

The important point in both the LB and the MB case is that
extremizing entropy production leads to relaxation functions
that drive a coarse-grained DF to behave like a fine-grained DF.
This has a bearing on the “incompleteness of relaxation,” some-
times alluded to when describing stationary-state collisionless
systems. Our results suggest that if incomplete relaxation does
happen, it is not due to a system reaching an entropy produc-
tion extreme. Rather, it appears that coarse-grained evolution
will proceed until entropy production ceases, when Γ = 0,
and so full relaxation will be achieved in self-gravitating sys-
tems. As an immediate consequence, we conclude that entropy
maximization is the correct—and more direct—procedure to
take to arrive at the description of steady-state self-gravitating
systems.

To test the hypothesis that for self-gravitating systems
the state of entropy production extreme coincides with the
state of maximum entropy, we are undertaking a compar-
ison between these analytical descriptions of entropy be-
havior in collisionless systems and results of N-body and
semi-analytical simulations (e.g., the extended secondary in-
fall model, ESIM; Williams et al. 2004; Austin et al.
2005). This further work will help settle exactly what
role entropy production plays in determining collisionless
equilibria.
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4.3. Outstanding Questions

Aside from the future work described above, to quantify
entropy production rate in simulated numerical systems, there
are also a few questions that remain unanswered.

4.3.1. Maximizing Entropy in Phase Space versus Energy Space

Hjorth & Williams (2010) and the present paper maximized
entropy, but in different state spaces, energy and (x, v) phase
space, respectively. The results of the two studies, for example
in terms of the density profiles, are very different from each
other. It is not surprising that they are different, but it is
not immediately obvious which one of the two approaches
would produce a better description of the results of collisionless
N-body simulations. After looking at all the density profiles it
is seen that Hjorth & Williams (2010) profiles are similar to
those of simulated systems (Williams & Hjorth 2010; Williams
et al. 2010), while those from the LB case in the present work
(Section 3.1, Figures 4 and 5) are not.

We note that our LB entropy maximization results are what
Lynden-Bell (1967) would have obtained had he not used the
Stirling approximation. The procedure does not rely on any
approximations and is well motivated from first principles,
assuming that all states are equally accessible and efficient
mixing in phase space can be achieved. This begs the question,
do such systems exist? More work with simulations is needed
to address this question.

4.3.2. The Necessity of the Low Occupation Number Regime

Our MB entropy maximization results of Appendix A.1 (and
the very similar results of Madsen 1996) describe some globular
clusters well (Elson et al. 1987; Meylan & Heggie 1997; L. L. R.
Williams et al. 2012, in preparation), and the results of Hjorth &
Williams (2010) describe N-body and ESIM halos. These facts
lead us to the following chain of reason. First, globular clusters,
along with N-body and ESIM halos, are self-gravitating systems.
Second, the entropy maximization procedures that produce
successful models of these systems require correct treatment of
low phase-space occupation numbers. Therefore, it appears that
the low occupation number regime is an important distinction
between self-gravitating and non-self-gravitating systems.

Why is this the case? We speculate that self-gravitating
systems are special not only because they are finite in extent
due to the long-range nature of the force, but also because of
correlations between spatial regions and energies of particles.
Specifically, the center of the potential contains phase-space
elements with the most bound energies, while the outskirts
are populated by elements with the least bound or even zero
energies. These requirements are peculiar to self-gravitating
systems and apparently necessitate low occupation numbers
because the numbers of particles in these regions must approach
zero.

However, the above hypothesis does not explain why the
discrete version of ln x! must be smoothed to represent real
systems. This smoothing, though apparently necessary, is still
not well justified.

4.3.3. Should Maximum Entropy Imply Constant Temperature?

The steady state of self-gravitating systems can apparently
be calculated as the maximum entropy state. Though these
systems are in mechanical equilibrium, one could argue that
they are not in conventional thermal equilibrium because their
kinetic temperature is manifestly different across the system.

Can we reconcile maximum entropy defining thermodynamic
equilibrium with the resulting non-constant temperature? (Note
that a realistic self-gravitating system cannot have a constant
kinetic temperature, because there is no finite-mass solution to
the Jeans equation with constant σ .) This contradiction is part
of the reason why it made sense to conclude, based on Lynden-
Bell (1967) work, that there is no maximum entropy state for
self-gravitating systems.

We propose that for gravitationally bound collisionless sys-
tems, one must carefully separate kinetic temperature Tk from
thermodynamic temperature Tt. To be clear, the kinetic tem-
perature we are referring to is related to the rms value of the
peculiar velocity in a system, Tk ∝ 〈v2

p〉. The thermodynamic
temperature is linked to the energy scale β that serves as a La-
grange multiplier through β = 1/(kBTt ). By definition, Tt must
be a constant, and there is no contradiction as in Lynden-Bell
(1967)—systems in the maximum entropy state are character-
ized by a constant thermodynamic temperature, even as they
have a varying kinetic temperature.

We can also address a related question involving the tem-
perature and energy change that appear in the thermodynamic
definition of entropy, dS = δQ/T . This temperature must be
a constant, so we would associate this with the thermodynamic
temperature Tt. δQ (normally called heat) refers to all non-work
exchanges of energy, and so must be replaced by δε because in
collisionless self-gravitating systems what is being transferred
is total energy, potential and kinetic, not just kinetic. Entropy
changes can occur due to changes in mass distribution as well
as kinetic energy transport.

The authors gratefully acknowledge support from NASA
Astrophysics Theory Program grant NNX07AG86G. We also
thank our anonymous referee for several helpful suggestions.

APPENDIX

MAXWELL–BOLTZMANN STATISTICS

A.1. Entropy Maximization

Using the results of Section 1.3, the multiplicity function for
a system obeying MB statistics combined with the definition of
entropy (Equation (1)) produces

SMB = kB

[
ln N ! −

∑
i

ln ni! + N ln ν

]
, (A1)

where the summation involving the macro-cell occupation ni
runs over the number of macro-cells. We will assume that
N 
 1, so that ln N ! = N ln N − N . However, we will not use
the Stirling approximation for the second term on the right-hand
side of Equation (A1). With our approximation, Equation (12),
we can now rewrite the entropy as

SMB = SMB,0 − kB

∑
i

[
(ni + 1/2) ln (ni + 1) + λ0, ni

]
, (A2)

where SMB,0 = NkB[ln (Nν) − M ln 2π/2N ] is a constant and
M is the total number of macro-cells.
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Figure 10. Natural logarithm of the Maxwell–Boltzmann distribution function resulting from the non-Stirling approximation. The Maxwell–Boltzmann function
derived using the Stirling approximation is also shown. The non-Stirling approximation distribution function reaches zero for a finite ε, unlike the exponential function
derived using the Stirling approximation.

(A color version of this figure is available in the online journal.)

We now replace the discrete macro-cell occupation number
ni with the coarse-grained distribution function f to produce

SMB = SMB,0 − kB

ν�

∫ ∫ [ (
νf

η
+ 1/2

)

× ln

(
νf

η
+ 1

)
+ λ0, νf/η

]
dx dv. (A3)

To maximize this entropy function, we set δSMB = 0, subject
to constant mass and energy constraints. The expression that
results is

ln

(
νf

η
+ 1

)
+

(νf/η + 1/2)

(νf/η + 1)
+

η

ν

∂λ0, νf/η

∂f
+ μ + βε = 0,

(A4)
where μ and β are undetermined multipliers associated with
mass and energy conservation, respectively. The ε term is the
specific energy of a phase element located at position x with
velocity v, ε = v2/2 + Φ. Note that if the standard Stirling
approximation had been employed, the second and third terms
would be absent and the logarithmic term would simply read
ln (νf/η). In this case, the usual, physically inconsistent, MB
distribution function would result.

As before, we make a change of variables, F ≡ νf/η, and
the derivative of the λ function is given by Equation (16).
Equation (A4) can then be re-cast as

ln (F + 1)− (264F + 276)

576(F + 1)(F + 600/576)
+μ+βε = 0. (A5)

Again, we have not searched for an analytical solution, but
graphical solutions for F for a range of ε values can be combined
to produce a plot of F (ε). Specifically, Figure 10 illustrates

the behavior of the normalized coarse-grained distribution
function f/η for a particular value of ν. Values of the Lagrange
multipliers μ and β were adjusted so that ε is always positive.
Because MB statistics have no exclusion principle, f/η can have
values above 1.

A.2. Entropy Production Extremization

We begin by writing entropy in terms of entropy density,

S =
∫

ρs dx, (A6)

where ρ is mass density, s is the specific entropy, and the integral
is taken over the spatial extent of the system. From the entropy
form given in Equation (A3), the entropy density can now be
written as

ρsMB = − kB

ν�

∫ [
(F + 1/2) ln (F + 1) + λ0, F − F

SMB,0

NkB

]
dv,

(A7)
where, as earlier, F = νf/η.

Taking a partial time derivative of Equation (A7) results in

∂

∂t
(ρsMB) = − kB

ν�

∫
∂F

∂t

[
ln (F + 1)

+
(F + 1/2)

(F + 1)
+

∂λ0, F

∂F
− B

]
dv, (A8)

where B = SMB,0/NkB is a constant.
Substituting ∂F/∂t from the Boltzmann equation into

Equation (A8) results in a lengthy expression, similar to
Equation (22) in the LB case. We will deal with this expression
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term by term. For reference, the expression after substitution is

∂

∂t
(ρsMB) = − kB

ν�

∫
(−v · ∇F )

[
ln (F + 1) +

(F + 1/2)

(F + 1)

+
∂λ0, F

∂F
− B

]
dv − kB

ν�

∫
(−a · ∇vF )

[
ln (F + 1)

+
(F + 1/2)

(F + 1)
+

∂λ0, F

∂F
− B

]
dv +

kB

ν�

∫
γ

[
ln (F + 1)

+
(F + 1/2)

(F + 1)
+

∂λ0, F

∂F
− B

]
dv, (A9)

where γ = (νΓ)/η.
The process to evaluate these integrals is very similar to

what has been discussed in the LB case. Using the fact that
v · ∇F = ∇ · Fv, the first integral on the right-hand side of
Equation (A9) can be re-written as

−∇ ·
∫ [

(F + 1/2) ln (F + 1) + λ0, F − FB
]
v dv. (A10)

Note that this expression is reminiscent of the form of the
entropy density in Equation (A7).

We next turn our attention to the terms involving acceleration
in Equation (A9). The fact that a is velocity independent implies
that a ·∇vf = ∇v · af , a fact that will be used often in dealing
with these terms. Let us start with the first part of the second
term on the right-hand side of Equation (A9),∫

(−a · ∇vF ) ln (F + 1) dv =−
∫

(∇v · aF ) ln (F + 1) dv.

(A11)
Integrating by parts produces two terms, one with the form,

∇v · [aF ln (F + 1)] dv. (A12)

which equals zero after using the divergence theorem and the
fact that any physical DF must vanish for large velocities. The
other term resulting from the integration by parts is

a ·
∫

(∇vF )
F

F + 1
dv = a ·

∫
∇v [(F + 1) − ln (F + 1)] dv.

(A13)
A single component of this integral will appear as∫ v1, max

v1, min

∂

∂v1
[(F + 1) − ln (F + 1)] dv1

= (F + 1) − ln (F + 1)|v1, max
v1, min

, (A14)

where v1, min = −v1, max representing the maximum speed
possible for the system. Assuming that F is even in v1,max and
that F (v1,max) = 0 so that the DF disappears at the maximum
speed, this integration results in zero. Similar manipulations can
be applied to the rest of the acceleration-dependent parts of the
second term on the right-hand side of Equation (A9), resulting
in the entire second term being equal to zero. Equation (A9)
now has the form,

∂

∂t
(ρsMB) = − kB

ν�

{
−∇ ·

∫
[(F + 1/2) ln (F + 1)

+ λ0, F − FB]v dv +
∫

γ (F )

[
ln (F + 1)

+
F + 1/2

F + 1
+

∂λ0, F

∂F
− B

]}
dv. (A15)

Assuming the velocity field to be composed of mean and
peculiar components v = v0 +v p, we can re-cast Equation (A15)
as

∂

∂t
(ρsMB) = −∇ · ρsMBv0 − kB

ν�

{
−∇ ·

∫
[(F + 1/2)

× ln (F + 1) + λ0, F − FB]v p dv +
∫

γ (F )

×
[

ln (F + 1) +
F + 1/2

F + 1
+

∂λ0, F

∂F
− B

]
dv

}
.

(A16)

We now equate the terms in Equation (A16) to those in the
continuous version of the entropy density evolution equation,
Equation (25),

∂

∂t
(ρs) = −∇ · (� + ρsv0) + σ. (A17)

The entropy flux � is given by the integral in the second term on
the right-hand side of Equation (A16) and represents randomly
fluxed entropy. The remaining term is the entropy production
for the system,

σMB = − kB

ν�

∫
γ (F )

[
ln (F + 1) +

F + 1/2

F + 1

+
∂λ0, F

∂F
− B

]
dv. (A18)

This equation explicitly demonstrates how the non-collisionless
nature of the coarse-grained DF leads to changes in entropy.

As mentioned in Section 1, thermodynamic non-equilibrium
systems can have steady states described by extrema of entropy
production. We then set δσMB = 0. Taking the variation of
Equation (A18), we find

δσMB = − kB

ν�

∫
δF

{
dγ

dF

[
ln (F + 1) +

F + 1/2

F + 1

+
dλ0, F

dF
− B

]
+ γ

[
2

F + 1
− F + 1/2

(F + 1)2
+

d2λ0, F

dF 2

]}
dv.

(A19)

Since δF is arbitrary, the variation disappears only when the
term in curly braces is zero. The condition for an extremum in
entropy production is

d ln γ

dF

[
ln (F + 1) +

F + 1/2

F + 1
+

dλ0, F

dF
− B

]

+

[
2

F + 1
− F + 1/2

(F + 1)2
+

d2λ0, F

dF 2

]
= 0. (A20)

The solution for the MB relaxation function is

γMB(F ) = P
/ [

ln (F + 1) +
F + 1/2

F + 1
+

dλ0, F

dF
− SMB, 0

NkB

]
,

(A21)

where the constant can be expressed as

P = γMB(F = ν)

[
ln (ν + 1) +

ν + 1/2

ν + 1

− ν + 1

ν + 600/576
− (SMB,0/NkB)

]
. (A22)
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The γMB(F = ν) term is the relaxation function value when
the coarse-grained DF is equal to the constant fine-grained DF
value (f = η).
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