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ABSTRACT

Waves and oscillations can provide vital information about the internal structure of waveguides in which they
propagate. Here, we analytically investigate the effects of density and magnetic stratification on linear longitudinal
magnetohydrodynamic (MHD) waves. The focus of this paper is to study the eigenmodes of these oscillations. It
is our specific aim to understand what happens to these MHD waves generated in flux tubes with non-constant
(e.g., expanding or magnetic bottle) cross-sectional area and density variations. The governing equation of the
longitudinal mode is derived and solved analytically and numerically. In particular, the limit of the thin flux tube
approximation is examined. The general solution describing the slow longitudinal MHD waves in an expanding
magnetic flux tube with constant density is found. Longitudinal MHD waves in density stratified loops with constant
magnetic field are also analyzed. From analytical solutions, the frequency ratio of the first overtone and fundamental
mode is investigated in stratified waveguides. For small expansion, a linear dependence between the frequency ratio
and the expansion factor is found. From numerical calculations it was found that the frequency ratio strongly
depends on the density profile chosen and, in general, the numerical results are in agreement with the analytical
results. The relevance of these results for solar magneto-seismology is discussed.
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1. INTRODUCTION

High-resolution imaging and spectroscopic data from the
Transitional Region and Coronal Explorer (TRACE), Solar and
Heliospheric Observatory (SOHO), Solar Terrestrial Relations
Observatories (STEREO), and Hinode have revealed a variety
of wave modes in solar magnetic structures in the solar at-
mosphere (see, e.g., Banerjee et al. 2007; Aschwanden 2009;
Taroyan & Erdélyi 2009; De Moortel 2009; Jess et al. 2009;
Mathioudakis et al. 2011). Observations of standing slow mag-
netohydrodynamic (MHD) waves have been reported by differ-
ent authors, using SOHO/SUMER (Kliem et al. 2002; Wang
et al. 2002, 2003, 2005), Yohkoh (Mariska 2005, 2006), and
recently, Hinode/EIS (Erdélyi & Taroyan 2008). For an ex-
tensive review of the observation and modeling of standing
slow magnetoacoustic waves see, e.g., Wang (2011). Coronal
seismology, originally suggested by Uchida (1970), Zaitsev &
Stepanov (1983), and Roberts et al. (1984), allows us to obtain
various physical parameters (e.g., magnetic field and density
scale height) through matching the MHD theory and wave ob-
servations in the corona. The concept was proposed to be used
in any magnetic structure of the Sun by Erdélyi (2006) and la-
beled as solar magneto-seismology. The topic was extensively
reviewed with plenty of references by Andries et al. (2009) and
Ruderman & Erdélyi (2009).

The theory of MHD wave propagation in magnetic structures
in the solar corona has been developed by modeling the
magnetic structures as homogenous cylindrical magnetic tubes
embedded within a magnetic environment (Rae & Roberts
1982; Edwin & Roberts 1983; Roberts et al. 1984). Erdélyi
& Fedun (2010) generalized these analytic efforts for fully
compressible twisted magnetic flux tubes. Perhaps the simplest
model to study the oscillatory properties is a cylindrical flux
tube in pressure balance, without the complexities of gravity,
curvature, radiation, bulk motion, or heating. In this case, such

modeling leads to a profile with constant pressure, density, and
temperature along the tube.

However, more advanced equilibrium models have also been
proposed with, e.g., dissipative effects and gravity (Mendoza-
Briceño et al. 2004), and it has been found that the decay
times of the standing slow modes are reduced by 10%–20%
due to gravity when compared to the non-stratified loop models.
Mendoza-Briceño & Luna-Cardozo (2006) included radiative
cooling and heating on the study of longitudinal oscillations in
hot, isothermal coronal loops with constant coronal heating;
it was found that the lack of balance between cooling and
heating does not affect the shape and decay time of the
oscillations.

Sigalotti et al. (2007, 2008) studied standing slow waves in
hot coronal loops and found that in order to achieve the same rate
of damping time as detected in the observations, compressive
viscosity has to be considered along with thermal conduction.
Non-isothermal profiles of longitudinal waves in hot coronal
loops were examined numerically, arriving at longer periods
and shorter damping times when the loop becomes more non-
isothermal (Erdélyi et al. 2008; Luna-Cardozo et al. 2008).

However, the theory used in these previous studies assumed a
constant magnetic field along the loops. Verth & Erdélyi (2008)
investigated the combined effects of magnetic and density
stratification on transversal coronal loop oscillations. It was
found that even a relatively small coronal loop expansion can
have a significant and pronounced effect on the accuracy of
the plasma density scale height measurements derived from
observations of loop oscillations (see, e.g., Verth et al. 2008
for observational case study). Soon after, Ruderman et al.
(2008) applied the theory and found that the estimated coronal
scale height is a monotonically decreasing function of the tube
expansion, while studying transverse oscillations in a coronal
loop with variable circular cross-sectional area and plasma
density in the longitudinal direction.
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On average, the magnetic field strength is expected to de-
crease with height above the photosphere, although it has been
very difficult to measure directly its variation in the corona.
However, Lin et al. (2004) had made some progress using spec-
tropolarimetry, and the results seem to confirm the decreasing
with height of the magnetic field strength. It is expected that most
loops should expand with height above the photosphere, since
the flux tube cross-sectional area and magnetic field strength are
inversely proportional. This expansion is defined here by

Γ = ra

rf
, (1)

where ra is the radius at the apex and rf is the radius at
the footpoint (Klimchuk 2000). The loop expansion has been
estimated for a number of loops; for example, Watko &
Klimchuk (2000) reported mean values of 1.16 and 1.20
for nonflare and postflare EUV loops, respectively, analyzing
TRACE data. Klimchuk (2000) measured a median value of
Γ ≈ 1.30 for soft X-ray loops using Yohkoh data. However,
potential and magnetic field extrapolation had given larger loop
expansions than the observed ones. DeForest (2007) suggested a
possible explanation for this based on the fact that resolutions of
images have not been sufficient to actually detect coronal loop
expansion. Regarding the chromosphere, it has been suggested
theoretically that flux tubes must undergo significant expansion
with height, the so-called magnetic canopy model, e.g., Gabriel
(1976). However, to date there is little observational evidence
to support this (Zhang & Zhang 2000). More recently, using
the Solar Optical Telescope (SOT) on board Hinode, for the
first time Tsuneta et al. (2008) estimated an upper bound for
chromospheric area expansion in the Sun’s south polar region
to be a factor of 345, giving a maximum expansion factor of
approximately 19 for chromospheric flux tubes.

In this paper, the governing equation of the longitudinal
MHD mode is derived and solved for two representative cases
modeling solar atmospheric flux tubes: an expanding magnetic
flux tube with arbitrary longitudinal plasma density, and a
density stratified flux tube with constant magnetic field. We
examine the governing wave equation within the limit of the thin
flux tube approximation. The slow mode is decoupled from the
other MHD modes in a similar way as applied by Dı́az & Roberts
(2006), where the slow mode was studied in density-structured
coronal loops with constant magnetic field. The purpose of this
paper is to quantify the separate effects of the expansion factor
Γ and density stratification. The shooting method is applied to
find numerical solutions of the general wave governing equation
to compare them with analytical approximations.

2. MAGNETIC FIELD EQUILIBRIUM CONFIGURATION

The magnetic field equilibrium, which decreases in strength
with height above the photosphere, is modeled by an expanding
flux tube with rotational symmetry about the z-axis in cylindrical
coordinates (r, θ, z). Neglecting curvature along the tube axis
we model an expanding tube with a straight central axis,
i.e., a magnetic bottle. The tube ends are frozen in a dense
photospheric plasma at z = ±L, and the flux tube has an
arbitrary density depending on z. This expanding magnetic field
in equilibrium has two components

B = Br (r, z)er + Bz(r, z)ez. (2)

Following the derivation of Verth & Erdélyi (2008) for a
potential field configuration, if small expansion is assumed it is

possible to obtain an explicit expression for the perpendicular
distance from the tube axis to a magnetic surface with footpoint
distance from the axis defined by rf , i.e.,

r0(z) ≈ rf

{
1 +

(1 − Γ2)

Γ2

[cosh (z/L) − cosh(1)]

1 − cosh(1)

}−1/2

. (3)

Note that in the thin tube approximation Equation (3) is only a
function of z. Similarly, the magnetic field components Br and
Bz at near the tube axis can also be described explicitly as a
function of z,

Br (z) ≈ −Bz,f

[
(1 − Γ2)

2Γ2

sinh (z/L)

1 − cosh(1)

r0(z)

L

]
(4)

and

Bz(z) ≈ Bz,f

{
1 +

(1 − Γ2)

Γ2

[cosh (z/L) − cosh(1)]

1 − cosh(1)

}
. (5)

Therefore, Br and Bz are related by

Br (z) ≈ −1

2
r0(z)

dBz

dz
. (6)

3. GOVERNING EQUATIONS

The ideal MHD equations are linearized by assuming small
magnetic perturbations b = (br, 0, bz) and velocity perturba-
tions υ = (υr, 0, υz) about a plasma in static equilibrium. In
the derivation we neglect gravity and assume constant kinetic
plasma pressure. Note this means along our model of solar flux
tubes that the plasma is not isothermal and the assumption of
constant plasma pressure has greater validity in the corona than
in the chromosphere.

Following, e.g., Roberts & Webb (1978), Roberts (2006),
and Dı́az & Roberts (2006), we also neglect the effect of the
external environment on the perturbations, i.e., we assume the
tube is in a quiescent environment. This means we do not
consider any external forces acting on the tube. Inclusion of such
effects is essential in the studies of, e.g., p-mode absorption of
photospheric flux tubes (see Bogdan et al. 1996). The resulting
MHD conservation laws are

ρ0
∂υr

∂t
= − ∂PT

∂r
+

1

μ

(
Br

∂br

∂r
+ Bz

∂br

∂z

)

+
1

μ

(
br

∂Br

∂r
+ bz

∂Br

∂z

)
, (7)

ρ0
∂υz

∂t
= − ∂PT

∂z
+

1

μ

(
Br

∂bz

∂r
+ Bz

∂bz

∂z

)

+
1

μ

(
br

∂Bz

∂r
+ bz

∂Bz

∂z

)
, (8)

∂br

∂t
= ∂

∂z
(Bzυr − Brυz) , (9)

∂bz

∂t
= −1

r

∂

∂r
[r(Bzυr − Brυz)] , (10)

∂p

∂t
= −γp0

1

r

∂(rυr )

∂r
− γp0

∂υz

∂z
, (11)
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PT = p +
brBr

μ
+

bzBz

μ
, (12)

and

1

r

∂

∂r
(rbr ) +

∂bz

∂z
= 0, (13)

where t is time, r and z are the radial and longitudinal coordinates
in the tube, ρ0 is the plasma mass density in equilibrium, PT
is the total perturbation to pressure, p is the kinetic pressure
perturbation, p0 is the kinetic plasma pressure in equilibrium,
Br and Bz are the background components of the magnetic
field, γ is the ratio of specific heats, and μ is the magnetic
permeability.

3.1. Magnetic Flux Tube Equilibrium

The potential magnetic field configuration chosen in Section 2
and our choice of constant plasma pressure put restrictions on
the possible types of flux tube equilibria we can model. It is
always assumed that the external magnetic field is balanced
by the internal one, therefore the flux tube models are not in
a magnetic field free environment. Then, our assumption of
constant plasma pressure demands that a flux tube with greater
internal plasma density than external one must also be cooler
than its environment. On the other hand, if the tube is less dense
than its environment, the internal temperature must be hotter
than the external.

3.2. Velocity Wave Equation

Implementing the thin tube approximation we introduce the
spatial and temporal scalings r = εR, z = Z, and t = τ ,
where ε � 1. We show the details of our derivation for the
governing thin tube vz velocity equation in Appendix A. Let
us introduce the following Fourier decomposition υz(Z, τ ) =
υz(Z) exp(−iωτ ), where ω is the angular frequency of the os-
cillations. Then, the second-order ordinary differential equation
for the longitudinal velocity wave is

d2υz

dZ2
+ f1(Z)

dυz

dZ
+

[
ω2

c2
T

+ f2(Z)

]
υz = 0, (14)

where

f1(Z) =
(

c2
s − c2

A

c2
f

)
1

Bz

∂Bz

∂Z
,

and

f2(Z) = − 1

Bz

∂2Bz

∂Z2
−

(
c2

s − c2
A

c2
f

)
1

B2
z

(
∂Bz

∂Z

)2

.

For constant magnetic field, Equation (14) reduces to

d2υz

dZ2
+

(
ω2

c2
T

)
υz = 0, (15)

for
ω2

c2
T

= ω2ρ0

[
μ

Bz
2 +

1

γp0

]
, (16)

where the density may depend on Z. This equation (15) agrees
with the equation obtained by Dı́az & Roberts (2006), where
Bz was considered constant. The solutions to Equation (15) will
depend on the functional form chosen for ρ0 in Equation (16).

−L 0   L

Z

ρ 0 (
Z

)

ρ
a

0

ρ
f

Figure 1. Density profile of the loop. The solid line shows the smooth density
profile (19) while the dashed line shows the exponential density profile of a
coronal loop (44), and the dotted line shows the exponential density profile of a
chromospheric flux tube (46).

3.2.1. Slow Modes in a Homogeneous Tube

To check the derivations, we may recover the findings for a
homogeneous tube (e.g., Edwin & Roberts 1983). In a straight
magnetic flux tube with constant density, the solutions to
Equation (15) are simply trigonometric functions. Applying the
line-tying boundary at the ends of the tube, υz(±L) = 0, we
find the frequencies of the even modes given by

ωe
n = cT

L

(2n − 1)π

2
, n = 1, 2, ... (17)

whereas the odd modes have frequencies given by

ωo
n = cT

L
nπ, n = 1, 2, ... (18)

The ratio of frequencies of the first overtone and fundamental
mode is equal to 2, as expected.

4. ANALYTICAL SOLUTION FOR A SMOOTH
DENSITY PROFILE

Since we are using cylindrical coordinates we model a solar
coronal loop by a straight axisymmetric magnetic flux tube.
Therefore we neglect the effect of flux tube curvature and are
simply modeling the effect of gravitationally stratified plasma in
a coronal loop which would produce a density profile symmetric
about the loop apex. The tube length is 2L and its radius is
r0. The plasma is permeated by a uniform magnetic field B
directed along the tube axis, B = Bzẑ. The plasma density,
ρ0(Z), is greater at the loop footpoints than at the apex so this
is approximated by the function

ρ0(Z) = ρa

[1 − (1 − κ1)(Z/L)2]2
, (19)

where ρa = ρ0(0) and ρf = ρ0(±L) are the apex and footpoint
densities, respectively, and κ1 = (ρa/ρf)1/2 the stratification
parameter. The solid line in Figure 1 shows this smooth density
profile as a function of z. In Section 7, we choose a more
applicable and realistic exponential density profile and solve
Equation (15) numerically. However, the choice of density given
by Equation (19) allows us to have a straightforward analytical
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insight into the effect of density stratification on longitudinal
oscillations.

With the equilibrium density profile given by Equation (19),
Equation (15) takes the form

d2υz

dZ2
+

ω2

c2
T,a

1

[1 − (1 − κ1)(Z/L)2]2
υz = 0, (20)

for cT,a = cT(0), the tube speed at the apex. The general solution
of this equation is (see Polyanin & Zaitsev 2003)

υz =
√

1 − (1 − κ1)(Z/L)2 (C1 cos(u) + C2 sin(u)) , (21)

where C1 and C2 are arbitrary constants, and

u = 1

2

√
ω2L2

c2
T,a(1 − κ1)

− 1

(
ln

L +
√

1 − κ1Z

L − √
1 − κ1Z

)
. (22)

To study a standing wave the boundary conditions υz(±L) =
0 are applied and are satisfied when either C2 = 0 and
cos[u(L)] = 0, or C1 = 0 and sin[u(L)] = 0. The first condition
corresponds to even modes and the second to odd modes. The
frequencies of the even modes are given by

(
ωe

n

)2 = (1 − κ1)c2
T,a

L2

×
[

(2n − 1)2π2

(
ln

1 +
√

1 − κ1

1 − √
1 − κ1

)−2

+ 1

]
, (23)

for n = 1, 2, ..., while the odd modes have frequencies given by

(
ωo

n

)2 = (1 − κ1)c2
T,a

L2

×
[

(2nπ )2

(
ln

1 +
√

1 − κ1

1 − √
1 − κ1

)−2

+ 1

]
, (24)

for n = 1, 2, ...
The frequencies of the fundamental mode and the first

overtone are given by Equations (23) and (24) with n = 1,
respectively. Theoretically it is predicted that the frequencies of
higher harmonics have a much stronger dependence on density
stratification (e.g., Andries et al. 2005). The ratio of frequencies
of the first overtone and fundamental mode is given by

ω2

ω1
= ωo

1

ωe
1

=

⎡
⎢⎣4π2 +

(
ln 1 +

√
1−κ1

1 − √
1−κ1

)2

π2 +
(

ln 1 +
√

1−κ1

1 − √
1−κ1

)2

⎤
⎥⎦

1/2

, (25)

which is the same result obtained for the frequency ratio of the
transversal mode by Dymova & Ruderman (2006). This is a
remarkable property of MHD oscillations in structured waveg-
uides. This is also rather reassuring, as we arrived at these
results using a completely different approach and modeling.
The dependence of this ratio of frequencies on κ1 is shown
in Figure 2 by the solid line (semi-circular coronal loop). If
we consider the limit of a non-stratified loop, i.e., κ1 → 1,
we find the frequency ratio tending to 2, and it can be
approximated by

ω2

ω1
= 2 − 3

π2
(1 − κ1). (26)

Equation (26) shows that the frequency ratio ω2/ω1 < 2 for a
stratified loop with constant magnetic field.

0.0 0.2 0.4 0.6 0.8 1.0
κ1

1.5

1.6

1.7

1.8

1.9

2.0

ω
2/ω

1

Semi-circular coronal loop

Vertical chromospheric flux tube

Figure 2. Dependence of the frequency ratio of the first overtone and fundamen-
tal mode on κ1, for a semi-circular coronal loop, solid line (25), and for a vertical
chromospheric flux tube, dashed line (40). The “ + ” and “×” symbols represent
the numerical solutions of Equation (20) for Z ∈ [−L,L] and Z ∈ [−L, 0],
respectively.

5. FLUX TUBE EXPANSION WITH CONSTANT DENSITY

Let us now study the effect of magnetic stratification with
a constant density on the longitudinal oscillations. For this
configuration it is more convenient to use the governing pressure
perturbation equation. See Appendix B for insight into the
relationship between υz(Z) and p(Z) when there is longitudinal
stratification. The pressure wave equation (B1) with constant
density is

d2p

dZ2
− 1

Bz

dBz

dZ

dp

dZ
+

ω2

c2
T

p = 0. (27)

We can transform Equation (27) to its canonical form using
the change of variable p = P

√
Bz. Then, Equation (27)

becomes

d2P

dZ2
+

[
ω2

c2
T

+
1

2

1

Bz

d2Bz

dZ2
− 3

4

1

B2
z

(
dBz

dZ

)2
]

P = 0. (28)

For weak magnetic stratification the ω2/c2
T term has a domi-

nant effect on the eigenvalues. To analytically investigate the
behavior of the eigenvalues in this regime, we approximate
Equation (28) with

d2P

dZ2
+

ω2

c2
T

P = 0. (29)

We suggest using a rational function for the tube speed cT
defined by

c2
T(Z) = c2

T,a

[
1 +

(
cT,f

cT,a
− 1

) (
Z

L

)2
]2

, (30)

for cT,a = cT(0) and cT,f = cT(±L) being the apex and footpoint
tube speeds, respectively. In Section 7, we solve the governing
velocity equation (14) with our potential field definition of Bz(z)
from Equation (5) numerically. However, the choice of tube
speed given by Equation (30) allows us to have a straightforward
analytical insight into the effect of magnetic stratification on
longitudinal oscillations.

An exact solution to Equation (29) with cT defined by
Equation (30) is given by (see Polyanin & Zaitsev 2003)

P =
√

α2Z2 + 1 (C3 cos(ν) + C4 sin(ν)) , (31)
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where C3 and C4 are arbitrary constants, with

ν =
√

ω2

α2c2
T,a

+ 1 arctan(αZ) (32)

and

α = 1

L

√
cT,f

cT,a
− 1. (33)

In this case, to find the standing mode solution the same
boundary conditions υz(±L) = P ′(±L) = 0 are applied. The
frequencies of the even modes are given by

(
ωe

n

)
L

cT,a
= nπ +

(
nπ

3
+

1

2nπ

)
(αL)2 + O(αL)4, (34)

for n = 1, 2, ..., while the frequencies of the odd modes are

(
ωo

n

)
L

cT,a
=

(
n − 1

2

)
π +

((
n − 1

2

)
π

3
+

1

2
(
n − 1

2

)
π

)
(αL)2

+ O(αL)4, (35)

for n = 1, 2, .... The ratio of frequencies of the first overtone
and fundamental mode is

ω2

ω1
= ωe

1

ωo
1

= 2 − 3

π2
(αL)2 + O(αL)4. (36)

We now want to see how the effect of Γ is related to plasma β.
Since we have not defined Γ explicitly in Equation (30), we
combine this definition of tube speed with our potential magnetic
field of Bz(z) given by Equation (5), which results in the ratio
of tube speeds,

cT,f

cT,a
=

[
2 + γβfΓ4

2 + γβf

]1/2

, (37)

where βf = 2μp0/B
2
z,f is the beta plasma at the footpoints.

Therefore, Equation (36) shows that change in frequency ratio
is dependent only on the loop expansion factor Γ for any finite
beta plasma.

If we consider the limit of a non-expanding loop, i.e., Γ ∼ 1,
we recover a constant tube speed along the loop. The ratio of
frequencies can be Taylor expanded for Γ ∼ 1 and γ = 5/3,
giving

ω2

ω1
= 2 − 30βf

(6 + 5βf )π2
(Γ − 1). (38)

Equation (38) clearly shows that ω2/ω1 < 2 for oscillations in
an expanding magnetic flux tube with constant density, and it
shows a clearly linear dependence with the expansion factor.
This relationship between ω2/ω1 and Γ is shown in Figure 3(a).
It is clear that increasing the magnetic stratification takes to
a lower frequency ratio, and this effect is more significant for
plasmas with higher βf .

6. APPLICATION TO SOLAR PHYSICS

Our results are relevant to magneto-seismology, e.g., estimat-
ing the coronal density scale height by using the observed ratio

1.0 1.1 1.2 1.3 1.4 1.5
Γ

1.6

1.7

1.8

1.9

2.0

ω
2/ω

1

βf = 0.1
0.5

1

2

5

βf = 10

 (a) Semi-circular coronal loop

1.0 1.1 1.2 1.3 1.4 1.5
Γ

1.90

1.92

1.94

1.96

1.98

2.00

ω
2/ω

1

βf = 1

2

5

βf = 10

 (b) Vertical chromospheric flux tube

Figure 3. Dependence of the ratio of frequencies of the first overtone and
fundamental mode (Equations (38) and (43)) on the expansion parameter Γ for
different values of βf . Solid, dashed, dotted, dot-dashed, triple-dot-dashed, and
long-dashed lines correspond to βf = 0.1, 0.5, 1, 2, 5, and 10, respectively.

of the fundamental frequency and first overtone of longitudinal
loop oscillations.

6.1. Application to the Corona

In the solar corona the thermal pressure is generally smaller
than the magnetic pressure, giving a plasma β parameter � 1.
Stratified coronal loops (0 < κ1 < 1) with constant magnetic
field give a frequency ratio lower than 2 (Equation (26)).

For a 1 MK average corona, the expected hydrostatic scale
height H should be about 50 Mm, therefore for any coronal loop
with length of the order of H or less could be approximated
by the configuration in Section 5, where the density is constant
inside the loop and the tube speed (i.e., geometry of the magnetic
field) is given by Equation (30).

For a very small beta plasma (i.e., 0.01 < β < 0.1) the
expansion has a weak effect on the frequency ratio, as it can be
seen in Figure 3(a) for the solid line. The frequency ratio can be
Taylor expanded for a very small plasma βf parameter (βf � 1),
giving

ω2

ω1
= 2 − 5

4

(
Γ4 − 1

π2

)
βf . (39)

Equation (39) shows that ω2/ω1 < 2 for an expanding magnetic
flux tube (Γ > 1) in the corona with constant density.

6.2. Lower Solar Atmosphere

We now calculate the frequencies of standing modes in an ex-
panding chromospheric (β > 1) flux tube with fixed boundaries
at the photosphere and transition region, since, e.g., Fujimura &

5
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Tsuneta (2009) have recently obtained observational evidence
of such waves. Note that it could be possible that flux tubes
undergo large expansions in the chromosphere (e.g., Tsuneta
et al. 2008), so our assumption of weak magnetic stratification
may have limitations in application to chromospheric wave ob-
servations. However, the size of corrections to eigenfrequencies
if larger flux tube expansions are considered are as yet still un-
quantified and must be the focus of a future study. Regarding
our current model, to calculate the eigenfrequencies of a vertical
chromospheric weakly expanding flux tube, we need to solve
the eigenvalue problem in only half of our magnetic bottle, and
therefore, the boundary conditions υz(−L) = 0 and υz(0) = 0
are applied.

For the loop with density stratification and constant magnetic
field, it is found that C1 = 0 and sin[u(−L)] = 0 for any
arbitrary constant C2. The frequencies for all odd and even
modes (ωn) are given by Equation (24). The frequencies of
the fundamental mode and the first overtone are given by
Equation (24) with n = 1 and 2, respectively. The ratio of
frequencies of the first overtone and fundamental mode is

ω2

ω1
=

⎡
⎢⎣16π2 +

(
ln 1 −√

1−κ1

1 +
√

1−κ1

)2

4π2 +
(

ln 1 − √
1−κ1

1 +
√

1−κ1

)2

⎤
⎥⎦

1/2

. (40)

It is important to note that the value of ω2/ω1 strongly depends
on which functional form is chosen for the equilibrium density.
Figure 2 shows a comparison of the dependence of the frequency
ratios on the parameter κ1, in the lower atmosphere (dashed
line) and in the corona (solid line). When we consider the limit
of a non-stratified loop, i.e., κ1 = 1, we recover the ratio of
frequencies equal to 2. Equation (40) can be approximated to

ω2

ω1
= 2 − 3

4π2
(1 − κ1), (41)

for κ1 ∼ 1. Equation (41) shows that the frequency ratio
ω2/ω1 < 2 for a stratified loop (κ1 < 1) in the lower solar at-
mosphere. Note that for our coronal loop model the densities
at both tube ends are equal with the density profile symmetric
about the apex. In our vertical chromospheric flux tube model
the densities at both ends are not equal, and the density is mono-
tonically decreasing as a function of height. It is found that the
effect of the density stratification on the frequency ratio is larger
in the corona than in the lower atmosphere, due to the asymmet-
ric nature of the density profile in the chromosphere.

In the second case, a loop with magnetic stratification and
constant density, the same boundary conditions are applied.
The frequencies for all odd and even modes (ωn) are given
by Equation (34).

The ratio of frequencies of the first overtone and fundamental
mode is

ω2

ω1
= 2 − 3

4π2
(αL)2 + O(αL)4. (42)

The Taylor expansion of Equation (42) for Γ ∼ 1 is

ω2

ω1
= 2 − 15

2

βf

(6 + 5βf )π2
(Γ − 1), (43)

showing again that ω2/ω1 < 2 and it has a linear dependence
on Γ for standing waves in the lower atmosphere with constant
density and weak magnetic expansion. This frequency ratio as a

0.0 0.2 0.4 0.6 0.8 1.0
κ1

1.2

1.4

1.6

1.8

2.0

2.2

ω
2/ω

1

Semi-circular coronal loop

Vertical chromospheric flux tube

Figure 4. Dependence of the ratio of frequencies of the first overtone and
fundamental mode on κ1, for a semi-circular coronal loop in solid line (44) and
for a vertical chromospheric flux tube in dashed line (46), obtained from the
numerical calculations.

function of Γ is shown in Figure 3(b). The effect of the magnetic
stratification on the frequency ratio is smaller in the lower solar
atmosphere than in the corona.

7. NUMERICAL SOLUTIONS

In this section, we compare the analytical approximate
solutions with the numerical solution of Equation (14), using
the shooting method based on the Runge–Kutta technique.

7.1. Stratified Loop with Constant Magnetic Field

Equation (14) becomes Equation (15) when Bz is constant.
Equation (15) can be solved numerically for both a semi-circular
coronal loop and a vertical chromospheric flux tube, depending
on the equilibrium chosen.

In the first case, for a semi-circular coronal loop perpendicular
to the plane of the photosphere with z ∈ [−L,L], the density is
defined by (see the dashed line of Figure 1)

ρ0(z) = ρf exp

[
− 2L

πH
cos

(πz

2L

)]
, (44)

where H is the density scale height and ρf the footpoint density.
Hence, in this case the parameter κ1 of Section 4 is a function
of H and is given by

κ2
1 = exp

(
− 2L

πH

)
. (45)

The frequency ratio obtained with the density profile (44) as a
function of κ1 is shown in Figure 4 by the solid line. It is clearly
lower than 2, similar to the results obtained in the analytical
case.

For a vertical chromospheric flux tube with z ∈ [−L, 0], the
density profile shown by the dotted line in Figure 1 is

ρ0(z) = ρf exp

[
− (z + L)

H

]
, (46)

where the parameter κ1 is now given by

κ2
1 = exp

(
− L

H

)
. (47)
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 (a) Semi-circular coronal loop

1.0 1.1 1.2 1.3 1.4 1.5
Γ

1.90

1.92

1.94

1.96

1.98

2.00

ω
2/ω

1

βf = 1

βf = 10

 (b) Vertical chromospheric flux tube

Figure 5. Dependence of the frequency ratio of the first overtone and fundamen-
tal mode on the expansion parameter Γ for different values of βf obtained from
the numerical calculations. Solid, dashed, dotted, dot-dashed, triple-dot-dashed
and long-dashed lines correspond to βf = 0.1, 0.5, 1, 2, 5, and 10, respectively.

Equation (15) with density profile given by Equation (46) has
the well-known solution

υz(Z) = C5J0

(
2Hω

cT (Z)

)
+ C6Y0

(
2Hω

cT (Z)

)
, (48)

where C5 and C6 are arbitrary constants. To find the eigenvalues
using solution (48), we must solve a transcendental equation by
either analytical or numerical techniques. Here, we choose to
solve it numerically. See, e.g., McEwan et al. (2008) and Verth
et al. (2010) for analytical solutions of equivalent equations
in their studies of other MHD waves in limiting cases of
weak stratification for both coronal loop and vertical flux tube
geometries.

The dependence of the ratio of frequencies on κ1 for the
density profile (46) is shown in Figure 4 by the dashed line.
In this case, the frequency ratio is greater than 2, confirming
that this parameter strongly depends on the choice of the
functional form of density. This means that caution must be
used when interpreting the frequency ratio of chromospheric
standing modes. For example, the choice of a density profile
that gives a tube speed increasing linearly with height results in
ω2/ω1 < 2, while the choice of a density profile giving a tube
speed exponentially increasing with height gives ω2/ω1 > 2.

7.2. Expanding Loop with Constant Density

Using Equation (5) for Bz(z) with z ∈ [−L,L] we can now
compute the numerical solution of Equation (14) for longitudinal
oscillations in a coronal loop. Figure 5(a) shows the frequency
ratio of the first overtone and fundamental mode as a function

of the expansion parameter Γ for different values of βf . It is
found that increasing the magnetic stratification leads to a lower
frequency ratio, and this effect is more significant for solar
waveguides with higher βf . These results are very similar to the
results obtained in the analytical analysis.

To study the eigenmodes of a vertical chromospheric flux
tube, we use Equation (5) for Bz(z) with z ∈ [−L, 0] obtaining
the numerical solution of Equation (14). The dependence of the
frequency ratio of the first overtone and fundamental mode on
the expansion parameter is shown in Figure 5(b). The effects
of the expansion Γ is somewhat smaller in the chromosphere
than in the corona, being consistent with the analytical results.
Also, the values of the frequency ratio for Γ < 1.5 (weak
expansion) obtained from numeric and analytical calculations
are very similar.

8. IMPLICATIONS FOR SOLAR
MAGNETO-SEISMOLOGY

The governing equation (14) is valid for both density and
magnetic stratification. We investigated the two effects, density
and magnetic variations, on the value of ω2/ω1 separately for
clarity in Sections 4–7. Now we discuss the combined effects in
realistic solar waveguides where it is likely that the two types
of stratification are present simultaneously.

8.1. Semi-circular Coronal Loops: Effect of both
Density and Magnetic Stratification

In the case of a coronal loop, it was shown in Sections 4
and 5 analytically and Section 7 numerically that if there is
density stratification (magnetic field constant) then ω2/ω1 < 2
and if there is magnetic stratification (constant density) then
also ω2/ω1 < 2. Hence, regarding the value of ω2/ω1 the two
effects are not competing against each other, in contrast to the
kink mode (see, e.g., Verth & Erdélyi 2008; Ruderman et al.
2008). This result is robust, in particular, in the functional forms
chosen for ρ0(Z) and Bz(Z) as long as there is symmetry about
the loop apex.

Observational claims of estimating slow mode values of
ω2/ω1 from intensity perturbations in coronal loops have been
made using both EUV (Srivastava & Dwivedi 2010) and X-ray
(Kumar et al. 2011) data from Hinode. Srivastava & Dwivedi
(2010) claim to detect two separate cases in EUV coronal
loops of ω2/ω1 < 2. However, in these observed coronal loops
the value of plasma β may be very low, and in this limit
cT (z) ≈ cs(Z). In this situation it is the variation of cs(Z) in the
wave equation (14) that would have the dominating effect on
the value of ω2/ω1 and magnetic stratification, even if present,
would not play a significant part. Assuming the observed loops
are isobaric and density is decreasing as a function of height,
then even in the zero-β limit, our model gives ω2/ω1 < 2,
consistent with these particular EUV observations. Physically,
this would be due to cs(Z) increasing with height in a coronal
loop, i.e., temperature hotter at the apex than at the footpoints.

Regarding the study by Kumar et al. (2011) of slow mode
values of ω2/ω1 in X-ray small-scale loops, Table 1 of that
paper shows six separate estimates of ω2/ω1 and one particular
case of ω3/ω1. Three estimates have ω2/ω1 < 2, similar to the
measurements of Srivastava & Dwivedi (2010), but in contrast
three also have ω2/ω1 > 2. In the low-β limit, the observations
of ω2/ω1 > 2 could be explained by cs(Z) decreasing as a
function of height in these loops, i.e., the temperature being
hotter at footpoints than at the apex. However, to explain this

7
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our isobaric model would require density increasing with height
to have cs(Z) decreasing with height and this is unphysical. To
model such a coronal loop more realistically, one would also
need to model p(Z) and choose ρ(Z) such that temperature is
hotter at footpoints than at apex. This would be an important
future extension to this current work.

8.2. Vertical Flux Tubes: Effect of both
Density and Magnetic Stratification

Our study of magnetic stratification (constant density) in
vertical flux tubes resulted in ω2/ω1 < 2 for both the hyperbolic
profile for Bz(Z) given by Equation (5) and the tube speed given
by the rational function in Equation (30). However, it was shown
that for the case of density stratification (constant magnetic
field) in a vertical flux tube, ω2/ω1 could either be greater
or less than 2 depending on the functional form chosen. E.g.,
ω2/ω1 < 2 for the smooth rational function of density given
by Equation (19) and ω2/ω1 > 2 for the exponential profile
of ρ0(Z) given by Equation (46). In our investigation we have
shown that, depending on the functional forms chosen, density
stratification and magnetic stratification could both cause the
value of ω2/ω1 to be less than 2, or the effects could oppose
each other. This means that magneto-seismology for vertical
flux tubes in the chromosphere may be more subtle than in the
case of coronal loops when it comes to interpreting the observed
values of ω2/ω1.

9. SUMMARY AND CONCLUSIONS

In this paper, the effects of density and magnetic stratifica-
tion on longitudinal oscillations in isobaric coronal and chro-
mospheric conditions have been studied. Solar waveguides were
modeled as axisymmetric cylindrical magnetic tubes. The gov-
erning equation were derived and solved by analytical approxi-
mation, and examined in the thin flux tube limit. We studied the
effects of magnetic stratification while the density is constant
and density stratification for a constant magnetic field.

From the analytic solutions, both density stratified and ex-
panding coronal loops have ω2/ω1 < 2. For small expansion, a
linear dependence between the frequency ratio and the expan-
sion factor is found. It was also found that the effect of magnetic
field strength decreasing with height has the same effect on the
frequency ratios to that of gravitational density stratification, in
contrast with the results for kink modes (Verth & Erdélyi 2008;
Andries et al. 2005).

It was found that the introduction of waveguide structuring
results in a modification to the oscillatory frequency of the mode.
The expression for the frequency ratio obtained in Section 5
(Equation (38)) depends on the expansion parameter Γ and an
additional dependence on βf was found, due to the inclusion of
kinetic pressure in our model.

Next, numerical solutions were performed. The numerical
results were consistent with the analytic solutions for the coronal
loop model. Also, for the vertical chromospheric flux tube model
it was found that the frequency ratio strongly depends on the
functional form of the density, suggesting that caution must be
used when interpreting the frequency ratios of chromospheric
standing modes.

The effect of gravity was neglected in the present study. It
is known for propagating longitudinal waves that the cutoff
frequency is increased by the inclusion of gravity (see, e.g.,
Roberts & Webb 1978), which introduces a Brunt–Väisälä
(buoyancy) term into the governing equations. This term has

been shown to be relevant for the leakage of p-mode driven
longitudinal waves into the upper atmosphere (De Pontieu et al.
2004, 2005), since the influence of the Brunt–Väisälä term in the
cutoff frequency can be reduced by the amount of magnetic field
inclination, i.e., the more tilted the field from the vertical, the
lower the effective cutoff frequency. In a future study, it would
therefore be of great interest to investigate the effect of gravity
and field inclination on the longitudinal standing modes, e.g., to
quantify the importance of the Brunt–Väisälä (buoyancy) term
on the eigenfunctions and eigenvalues.

It is important to progress the field of magneto-seismology
that any proposed model can be tested against the observed
oscillatory properties of solar waveguides. The theory presented
in this paper should be helpful in this regard, modeling both
magnetic and density stratification along solar waveguides
which can be used to interpret observations of standing slow
oscillations such as those by Srivastava & Dwivedi (2010) and
Kumar et al. (2011). In the future, it will also be beneficial to find
the solutions of the governing equation when stronger magnetic
stratification is considered.
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APPENDIX A

DERIVATION OF VELOCITY WAVE EQUATION

In this Appendix we derive the velocity wave equation (14).
Equations (7)–(13) may be combined to yield the general
equations for υz, υr , and PT ,

∂

∂z

(
∂PT

∂t

)
+

[
ρ0

∂2υz

∂t2
− B2

r

μ

∂2υz

∂r2
− BrBz

μ

∂2υz

∂r∂z

]

+

[
− Br

μ

∂Br

∂r
− Bz

μ

∂Br

∂z

]
∂υz

∂r
+

[
Bz

μ

∂Bz

∂z
+

Br

μ

∂Bz

∂r

]
∂υz

∂z

+

[
Br

μ

∂2Bz

∂r∂z
+

1

μ

∂Bz

∂r

∂Br

∂z
+

Bz

μ

∂2Bz

∂z2
+

1

μ

(
∂Bz

∂z

)2
]
υz

+

[
BrBz

μ

∂2υr

∂r2
+

B2
z

μ

∂2υr

∂r∂z

]
+

B2
z

μr

∂υr

∂z

+

[
2Br

μ

∂Bz

∂r
+

BrBz

μr
+

2Bz

μ

∂Bz

∂z

]
∂υr

∂r
+

[
Br

μr

∂Bz

∂r

+
Br

μ

∂2Bz

∂r2
+

Bz

μ

∂2Bz

∂r∂z
− BrBz

μr2
+

2Bz

μr

∂Bz

∂z

]
υr = 0, (A1)

∂

∂r

(
∂PT

∂t

)
+

[
ρ0

∂2υr

∂t2
− B2

z

μ

∂2υr

∂z2
− BrBz

μ

∂2υr

∂r∂z

]

+

[
Bz

μ

∂Br

∂z
− Br

μ

∂Bz

∂z

]
∂υr

∂r
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−
[

Br

μ

∂Bz

∂r
+

2Bz

μ

∂Bz

∂z
+

Bz

μ

∂Br

∂r

]
∂υr

∂z

+

[
1

μ

∂Bz

∂r

∂Br

∂z
− Br

μ

∂2Bz

∂r∂z
− Bz

μ

∂2Bz

∂z2

+
Bz

μr

∂Br

∂z
− 1

μ

∂Br

∂r

∂Bz

∂z

]
υr +

[
B2

r

μ

∂2υz

∂r∂z
+

BrBz

μ

∂2υz

∂z2

]

+

[
2Br

μ

∂Br

∂r
+

2Bz

μ

∂Br

∂z

]
∂υz

∂z

+

[
Br

μ

∂2Br

∂r∂z
+

Bz

μ

∂2Br

∂z2
− Br

μr

∂Br

∂z

]
υz = 0, (A2)

∂PT

∂t
= − B2

z

μ

(
∂υr

∂r
+

υr

r

)
− γp0 (∇ · υ)

+

(
BrBz

μ

∂υz

∂r
− B2

r

μ

∂υz

∂z

)

−
(

Br

μ

∂Br

∂z
+

Bz

μ

∂Bz

∂z

)
υz +

BrBz

μ

∂υr

∂z

+

(
Br

μ

∂Bz

∂z
− Bz

μ

∂Bz

∂r

)
υr . (A3)

If we compare Equations (A1)–(A3) with Equations (1)–(3)
from Dı́az & Roberts (2006, who studied density stratification
with a constant magnetic field), the added complexity to the
governing wave equations if we have an equilibrium with an
expanding magnetic field can readily be appreciated.

Here we are interested in the behavior of slow magnetoa-
coustic modes, we introduce the following spatial and temporal
scalings:

r = εR, z = Z, υr = ευR, υz = υz,

Br = εBR, Bz = Bz, and t = τ. (A4)

It is interesting to note that such scaling have been used in the
analysis of slow modes within resonant layers in a magnetically
structured plasma (e.g., Ballai et al. 1998) and to study slow
MHD waves in a stratified medium (e.g., Roberts 2006, except
that in his study the stretching was only on the position and time
since the magnetic field was considered constant).

Considering the thin tube approximation, ε � 1, i.e.,
the r-coordinate has a small range in comparison with the
z-coordinate. Since we are interested in the longitudinal com-
ponent of the wave, we focus on the equation of υz, and after
the scaling it becomes

ρ0

[
∂2υz

∂τ 2
− c2

T
∂2υz

∂Z2

]
− c2

s

c2
f

B2
R

μ

∂2υz

∂R2
− c2

s

c2
f

2BRBz

μ

∂2υz

∂R∂Z

+

[(
c2

T

c2
f

− c4
s

c4
f

)
Bz

μ

∂Bz

∂Z

]
∂υz

∂Z

+

[
c2

T

c2
f

2BR

μ

∂Bz

∂Z
− c2

s

c2
f

(
BR

μ

∂BR

∂R
+

Bz

μ

∂BR

∂Z

) ]
∂υz

∂R

+

[
c2

s

c2
f

Bz

μ

∂2Bz

∂Z2
+

(
c4

s

c4
f

− c2
T

c2
f

)
1

μ

(
∂Bz

∂Z

)2
]
υz = 0, (A5)

where cA = (B2
z /μρ0)

1/2
and cs = (γp0/ρ0)1/2 are the Alfvén

and sound speeds, respectively. The square of the fast phase
speed is defined by c2

f = c2
s + c2

A and the tube speed is given by
c−2

T = c−2
s + c−2

A .
The R-derivatives of perturbed quantities are very small

compared with the z-derivatives since we consider the thin tube
approximation, i.e., ∂υz/∂R � 1.

APPENDIX B

PRESSURE WAVE EQUATION

In this Appendix, we present the governing pressure equation
and the relationship between velocity and pressure amplitude
for longitudinal stratification. Equations (7)–(13) may also be
combined to give an equation for the (perturbation) pressure
amplitude p(z), defined by p(z, t) = p(z) exp(iωt). If one
follows this route, one will arrive at

d2p

dZ2
−

(
1

ρ0

dρ0

dZ
+

1

Bz

dBz

dZ

)
dp

dZ
+

ω2

c2
T

p = 0, (B1)

after applying the same scaling as defined by (A4).
Equation (B1) is consistent with the results obtained by Roberts
& Webb (1978). From Equation (8), the following relation is
obtained:

∂p

∂Z
= −ρ0(Z)

∂υz

∂τ
. (B2)

We can find the velocity amplitude equation from the pressure
equation by using (B2):

d2υz

dZ2
+

(
1

c2
T

∂c2
T

∂Z
+

1

ρ0

∂ρ0

∂Z
− 1

Bz

∂Bz

∂Z

)
dυz

dZ

+

[
ω2

c2
T

− 1

Bz

∂2Bz

∂Z2
+

1

B2
z

(
∂Bz

∂Z

)2
]
υz

+

[
− 1

ρ0

∂ρ0

∂Z

1

Bz

∂Bz

∂Z
− 1

c2
T

∂c2
T

∂Z

1

Bz

∂Bz

∂Z

]
υz = 0, (B3)

which is indeed equivalent to Equation (14) and that can be
checked easily.
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Verth, G., Erdélyi, R., & Jess, D. 2008, ApJ, 687, L45
Wang, T. J. 2011, Space Sci. Rev., 158, 397
Wang, T. J., Solanki, S. K., Curdt, W., Innes, D. E., & Dammasch, I. E. 2002, ApJ,

574, L101
Wang, T. J., Solanki, S. K., Innes, D. E., & Curdt, W. 2005, A&A, 435, 753
Wang, T. J., Solanki, S. K., Innes, D. E., Curdt, W., & Marsch, E. 2003, A&A,

402, L17
Watko, J. A., & Klimchuk, J. A. 2000, Sol. Phys., 193, 77
Zaitsev, V. V., & Stepanov, A. V. 1983, Sol. Phys., 88, 297
Zhang, H., & Zhang, M. 2000, Sol. Phys., 196, 269

10

http://dx.doi.org/10.1126/science.1168680
http://adsabs.harvard.edu/abs/2009Sci...323.1582J
http://adsabs.harvard.edu/abs/2009Sci...323.1582J
http://dx.doi.org/10.1086/340136
http://adsabs.harvard.edu/abs/2002ApJ...568L..61K
http://adsabs.harvard.edu/abs/2002ApJ...568L..61K
http://dx.doi.org/10.1023/A:1005210127703
http://adsabs.harvard.edu/abs/2000SoPh..193...53K
http://adsabs.harvard.edu/abs/2000SoPh..193...53K
http://dx.doi.org/10.1111/j.1365-2966.2011.18792.x
http://adsabs.harvard.edu/abs/2011MNRAS.415.1419K
http://adsabs.harvard.edu/abs/2011MNRAS.415.1419K
http://dx.doi.org/10.1086/425217
http://adsabs.harvard.edu/abs/2004ApJ...613L.177L
http://adsabs.harvard.edu/abs/2004ApJ...613L.177L
http://adsabs.harvard.edu/abs/2008IAUS..247..316L
http://dx.doi.org/10.1086/428611
http://adsabs.harvard.edu/abs/2005ApJ...620L..67M
http://adsabs.harvard.edu/abs/2005ApJ...620L..67M
http://dx.doi.org/10.1086/499296
http://adsabs.harvard.edu/abs/2006ApJ...639..484M
http://adsabs.harvard.edu/abs/2006ApJ...639..484M
http://dx.doi.org/10.1051/0004-6361:20078016
http://adsabs.harvard.edu/abs/2008A&A...481..819M
http://adsabs.harvard.edu/abs/2008A&A...481..819M
http://dx.doi.org/10.1086/382182
http://adsabs.harvard.edu/abs/2004ApJ...605..493M
http://adsabs.harvard.edu/abs/2004ApJ...605..493M
http://adsabs.harvard.edu/abs/2006IAUS..233..179M
http://dx.doi.org/10.1086/159948
http://adsabs.harvard.edu/abs/1982ApJ...256..761R
http://adsabs.harvard.edu/abs/1982ApJ...256..761R
http://dx.doi.org/10.1098/rsta.2005.1709
http://adsabs.harvard.edu/abs/2006RSPTA.364..447R
http://adsabs.harvard.edu/abs/2006RSPTA.364..447R
http://dx.doi.org/10.1086/161956
http://adsabs.harvard.edu/abs/1984ApJ...279..857R
http://adsabs.harvard.edu/abs/1984ApJ...279..857R
http://dx.doi.org/10.1007/BF00152630
http://adsabs.harvard.edu/abs/1978SoPh...56....5R
http://adsabs.harvard.edu/abs/1978SoPh...56....5R
http://dx.doi.org/10.1007/s11214-009-9535-4
http://adsabs.harvard.edu/abs/2009SSRv..149..199R
http://adsabs.harvard.edu/abs/2009SSRv..149..199R
http://dx.doi.org/10.1086/591444
http://adsabs.harvard.edu/abs/2008ApJ...686..694R
http://adsabs.harvard.edu/abs/2008ApJ...686..694R
http://dx.doi.org/10.1007/s11207-007-9077-4
http://dx.doi.org/10.1007/s11207-007-9077-4
http://adsabs.harvard.edu/abs/2007SoPh..246..187S
http://adsabs.harvard.edu/abs/2007SoPh..246..187S
http://adsabs.harvard.edu/abs/2008IAUS..247..303S
http://dx.doi.org/10.1016/j.newast.2009.05.006
http://adsabs.harvard.edu/abs/2010NewA...15....8S
http://adsabs.harvard.edu/abs/2010NewA...15....8S
http://dx.doi.org/10.1007/s11214-009-9506-9
http://adsabs.harvard.edu/abs/2009SSRv..149..229T
http://adsabs.harvard.edu/abs/2009SSRv..149..229T
http://dx.doi.org/10.1086/592226
http://adsabs.harvard.edu/abs/2008ApJ...688.1374T
http://adsabs.harvard.edu/abs/2008ApJ...688.1374T
http://adsabs.harvard.edu/abs/1970PASJ...22..341U
http://adsabs.harvard.edu/abs/1970PASJ...22..341U
http://dx.doi.org/10.1051/0004-6361:200809626
http://adsabs.harvard.edu/abs/2008A&A...486.1015V
http://adsabs.harvard.edu/abs/2008A&A...486.1015V
http://dx.doi.org/10.1088/0004-637X/714/2/1637
http://adsabs.harvard.edu/abs/2010ApJ...714.1637V
http://adsabs.harvard.edu/abs/2010ApJ...714.1637V
http://dx.doi.org/10.1086/593184
http://adsabs.harvard.edu/abs/2008ApJ...687L..45V
http://adsabs.harvard.edu/abs/2008ApJ...687L..45V
http://dx.doi.org/10.1007/s11214-010-9716-1
http://adsabs.harvard.edu/abs/2011SSRv..158..397W
http://adsabs.harvard.edu/abs/2011SSRv..158..397W
http://dx.doi.org/10.1086/342189
http://adsabs.harvard.edu/abs/2002ApJ...574L.101W
http://adsabs.harvard.edu/abs/2002ApJ...574L.101W
http://dx.doi.org/10.1051/0004-6361:20052680
http://adsabs.harvard.edu/abs/2005A&A...435..753W
http://adsabs.harvard.edu/abs/2005A&A...435..753W
http://dx.doi.org/10.1051/0004-6361:20030448
http://adsabs.harvard.edu/abs/2003A&A...402L..17W
http://adsabs.harvard.edu/abs/2003A&A...402L..17W
http://dx.doi.org/10.1023/A:1005209528612
http://adsabs.harvard.edu/abs/2000SoPh..193...77W
http://adsabs.harvard.edu/abs/2000SoPh..193...77W
http://dx.doi.org/10.1007/BF00196194
http://adsabs.harvard.edu/abs/1983SoPh...88..297Z
http://adsabs.harvard.edu/abs/1983SoPh...88..297Z
http://dx.doi.org/10.1023/A:1005255110220
http://adsabs.harvard.edu/abs/2000SoPh..196..269Z
http://adsabs.harvard.edu/abs/2000SoPh..196..269Z

	1. INTRODUCTION
	2. MAGNETIC FIELD EQUILIBRIUM CONFIGURATION
	3. GOVERNING EQUATIONS
	3.1. Magnetic Flux Tube Equilibrium
	3.2. Velocity Wave Equation

	4. ANALYTICAL SOLUTION FOR A SMOOTH DENSITY PROFILE
	5. FLUX TUBE EXPANSION WITH CONSTANT DENSITY
	6. APPLICATION TO SOLAR PHYSICS
	6.1. Application to the Corona
	6.2. Lower Solar Atmosphere

	7. NUMERICAL SOLUTIONS
	7.1. Stratified Loop with Constant Magnetic Field
	7.2. Expanding Loop with Constant Density

	8. IMPLICATIONS FOR SOLAR MAGNETO-SEISMOLOGY
	8.1. Semi-circular Coronal Loops: Effect of both Density and Magnetic Stratification
	8.2. Vertical Flux Tubes: Effect of both Density and Magnetic Stratification

	9. SUMMARY AND CONCLUSIONS
	APPENDIX A. DERIVATION OF VELOCITY WAVE EQUATION
	APPENDIX B. PRESSURE WAVE EQUATION
	REFERENCES

