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ABSTRACT

We have conducted a series of numerical experiments with the spherically symmetric, general relativistic, neutrino
radiation hydrodynamics code AGILE-BOLTZTRAN to examine the effects of several approximations used in
multidimensional core-collapse supernova simulations. Our code permits us to examine the effects of these
approximations quantitatively by removing, or substituting for, the pieces of supernova physics of interest. These
approximations include: (1) using Newtonian versus general relativistic gravity, hydrodynamics, and transport; (2)
using a reduced set of weak interactions, including the omission of non-isoenergetic neutrino scattering, versus the
current state-of-the-art; and (3) omitting the velocity-dependent terms, or observer corrections, from the neutrino
Boltzmann kinetic equation. We demonstrate that each of these changes has noticeable effects on the outcomes
of our simulations. Of these, we find that the omission of observer corrections is particularly detrimental to the
potential for neutrino-driven explosions and exhibits a failure to conserve lepton number. Finally, we discuss the
impact of these results on our understanding of current, and the requirements for future, multidimensional models.
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1. INTRODUCTION

Colgate and White (1966) were the first to propose that core-
collapse supernovae may be neutrino-driven and performed the
first numerical simulations of such events, launching more than
four decades of research that continues to this day. A signifi-
cant milestone occurred nearly two decades later with Wilson’s
discovery that delayed neutrino-driven explosions could be ob-
tained. Based on his models, Wilson concluded (Wilson 1985;
Bethe & Wilson 1985) that the stalled supernova shock wave
could be revived via neutrino absorption on a time scale of sev-
eral hundred milliseconds given the intense flux of neutrinos
emerging from the proto-neutron star (proto-NS) liberating the
star’s gravitational binding energy. Observations of the neutri-
nos from SN1987A, the first such observations of supernova
neutrinos (Bionta et al. 1987; Hirata et al. 1987), provided sup-
port for the central role of neutrinos in the explosion mechanism.
State-of-the-art simulations today continue to explore Wilson’s
neutrino-driven explosion mechanism in the context of two-
dimensional (2D) and three-dimensional (3D) models (e.g., see
Burrows et al. 2007; Marek & Janka 2009; Bruenn et al. 2009;
Suwa et al. 2010).

Neutrinos are weakly interacting particles whose cross sec-
tions are energy dependent. Thus, unlike all other components in
a supernova model, they are not well described as a fluid, except
in the deepest layers, and their transition in space to non-fluid-
like behavior depends on their energy. Instead, the evolution of
the neutrino radiation field, particularly in the semi-transparent
regime, is far better characterized by classical kinetics—specif-
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ically, the general relativistic Boltzmann kinetic equation (e.g.,
see Cardall & Mezzacappa 2003),
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Equation (1) describes the evolution of the neutrino distribution
function f (t, x1, x2, x3, μ1, μ2, E), which at time t and spatial
location (x1, x2, x3) supplies the distribution of neutrinos in
direction cosines (μ1, μ2) and energy E—i.e., the angular and
spectral distribution of neutrinos. One such Boltzmann equation
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is solved for each flavor of neutrino—electron, muon, and
tau (νe, νμ, and ντ , respectively)—and for their antineutrino
partners (ν̄e, ν̄μ, and ν̄τ ). The invariant collision term, C[f ],
in Equation (2) is written using emission j, absorption χ , and
scattering and pair kernels R, following the forms often used
for neutrino transport (e.g., see Mezzacappa & Messer 1999),
where f̄ is the distribution function for the partner antineutrino
and μ is the neutrino direction cosine. In Equations (1) and (2), f
is a function of (μ,E), as well as position and time. The (μ′, E′)
dependence of f and f̄ inside the integrals illustrates the physical
coupling of all energies and angles for each neutrino species and
of neutrino and antineutrino partners.

The first term on the left-hand side of Equation (1) describes
the time evolution of the local neutrino distribution owing to
spatial transport through the volume of interest. The second,
far more complex term on the left-hand side (LHS/Term 2)
describes the evolution of the local neutrino distribution in angle
and energy as the result of (A) the coordinate system chosen, (B)
special relativistic effects, and (C) general relativistic effects. In
what follows, we will refer to (B) as “observer corrections.”

Terms describing (A) depend on the choice of coordinate
system. For example, in spherical polar coordinates, the neutrino
direction cosine relative to the outwardly pointing radial vector
changes as the neutrino propagates through a local volume.
This coordinate-system effect is included in LHS/Term 2 and is
present even in the absence of fluid motion or general relativity.
For Cartesian coordinates, the neutrino direction cosines do not
change as a result of the coordinate system choice alone and,
consequently, such a term is absent.

Terms describing (B) depend on the frame of reference chosen
to measure the neutrino direction cosines and energies. The co-
moving frame, with neutrino direction cosines and energies mea-
sured in an inertial frame of reference instantaneously comoving
with the stellar core fluid with which the neutrinos interact, is of-
ten used. Neutrino–matter interactions are naturally expressed in
this frame. Given this choice, the terms in LHS/Term 2 present
a significant numerical challenge. Finding discrete representa-
tions that guarantee conservation of lepton number and energy is
one of the most difficult aspects of modeling neutrino transport
in stellar cores. This has been achieved for general relativistic,
spherically symmetric flows (Liebendörfer et al. 2004), provid-
ing the conceptual and implementation groundwork for achiev-
ing the same in axisymmetric (2D) and non-symmetric (3D)
flows. Further theoretical foundations have been laid (Cardall
& Mezzacappa 2003; Cardall et al. 2005); steps toward the de-
velopment of a 2D Boltzmann solver have been taken (Ott et al.
2008); and the challenge now is to fully implement lepton energy
and number conserving discretizations in 2D and 3D models.

For another choice of reference frame—measuring neutrino
angles and energies relative to the inertial, “lab” frame of a
distant observer—the terms encapsulating the special relativistic
effects in LHS/Term 2 are absent, simplifying the left-hand
side of the Boltzmann equation. In such a frame of reference,
the neutrino direction cosines and energies do not change from
observer to observer in the frame. However, this simplification
comes at a price because the neutrino–matter interactions are
naturally described in the comoving frame. In the lab frame,
a Lorentz transformation is required in order to express the
comoving-frame neutrino–matter interactions in terms of the
lab-frame direction cosines and energies, which introduces non-
trivial velocity dependencies into the lab-frame collision term.

One approach to the complexity of the lab-frame collision
term is the “mixed frame” approach, which uses the lab-frame

four-momenta and an O(v/c) Taylor-series expansion in en-
ergy of the comoving-frame emissivities and opacities (Miha-
las & Klein 1982). Hubeny & Burrows (2007) have proposed
to use the mixed-frame approach for core-collapse simulations
with extensions for non-isotropic and non-isoenergetic scatter-
ing. The mixed-frame approach may be difficult to extend to
arbitrarily relativistic flows, and has not yet been used in the
context of a full-physics core-collapse supernova simulation.

In a general relativistic setting, such as core-collapse super-
novae, we must contend with (B) and/or (C) regardless of the
frame of reference chosen to describe the neutrino direction
cosines and energies. Even for static general relativistic envi-
ronments, angular aberration, gravitational red shift, and other
effects occur, and the resulting terms in (C) are always present.

Regardless of approach, comoving- or lab-frame, it is prob-
lematic to adapt the simplicity of both approaches, simultane-
ously simplifying the left- and right-hand sides of the Boltzmann
equation, as has been done in Burrows et al. (2006, 2007), Ott
et al. (2008), and other models using the Vulcan/2D code, al-
though one can view the implementation in these works as steps
toward a more complete description. They deploy a lab-frame
approach for terms describing angular aberration and energy
shift on the left-hand side (or assume that such terms are unim-
portant in a comoving-frame approach), while simultaneously
deploying a comoving-frame approach for the collision term
describing the neutrino–matter interactions on the right-hand
side. This is not a mixed-frame approach in the sense described
above. It is an approach not based in any reference frame, and it
is physical only for static cases in which there is no distinction
between lab and comoving frames. One of the goals of this study
is to investigate the importance of the terms in LHS/Term 2 in
a comoving-frame approach, and whether they can be ignored
while using a comoving-frame approach for the collision term.

Modeling general relativistic Boltzmann kinetics is also chal-
lenging because of the complexity of the collision term on the
right-hand side of the Boltzmann equation, even in a comoving-
frame formulation. Looking at Equation (2), we see that the
collision term describes the full, direct coupling of all neutrino
angles and energies for each neutrino species, owing to neu-
trino isoenergetic scattering (IS) on nuclei and non-isoenergetic
scattering (NIS) on electrons and nucleons. The pair creation
and annihilation processes (PR) such as electron–positron an-
nihilation and nucleon–nucleon bremsstrahlung also couple the
angles and energies of the neutrino and antineutrino species of
each flavor together. The coupling of all neutrino angles and
energies through the relevant set of weak interactions domi-
nates the computation associated with the solution of the neu-
trino Boltzmann equations. It has been argued (Burrows et al.
2006, 2007; Nordhaus et al. 2010) that these couplings are sub-
dominant and can be ignored, greatly simplifying the neutrino
Boltzmann equations and significantly reducing the computa-
tional cost associated with their solution. A second goal of this
study is to investigate whether or not such approximations to
the collision term are realistic.

The complete general relativistic Boltzmann equation was
solved in spherically symmetric models of core-collapse super-
novae by the Oak Ridge–Basel collaboration (Liebendörfer et al.
2001, 2004) and by Sumiyoshi and collaborators (Sumiyoshi
et al. 2005). Achieving this in 3D models of core-collapse su-
pernovae presents a major challenge, one that will likely require
sustained exascale resources to meet.

The overarching goal of this study is to use general
relativistic, spherically symmetric Boltzmann simulations to
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guide and, more importantly, set minimum requirements
for accurate 2D and 3D simulations. We use the Oak
Ridge–Basel code AGILE-BOLTZTRAN in these studies to
compare general relativistic–full weak interaction physics (GR-
FullOp), Newtonian–full weak interaction physics (N-FullOp),
Newtonian–reduced weak interaction physics (N-ReducOp),
and Newtonian–reduced weak interaction physics–no observer
correction (N-ReducOp-NOC) models. These models will
demonstrate the importance of general relativity, a complete
weak interaction set and treatment, and the terms in LHS/Term
2 to stellar core collapse and the post-core-bounce evolution.
Current multidimensional models suggest that spherical sym-
metry is a reasonable approximation for the first 100–150 ms
after bounce (Marek & Janka 2009; Bruenn et al. 2009; Suwa
et al. 2010). Thus, the simulations presented here are relevant for
discussing the initial conditions present for all multidimensional
phenomena that might ensue; e.g., neutrino-driven convection
and the standing accretion shock instability (SASI).

2. DISABLING OBSERVER CORRECTIONS IN A
LAGRANGIAN FORMULATION

Disabling general relativity in a simulation, instead running
a Newtonian simulation, is straightforward and requires no
special considerations to define or interpret. The same holds
true for limiting the weak interaction channels included in the
collision term on the right-hand side of the Boltzmann equation.
Newtonian or general relativistic simulations can be performed
with more, or less, weak interaction physics. However, disabling
the observer corrections in a model requires some definition and
care.

Using Mezzacappa & Matzner (1989), Equation (VI.11),
we begin by expressing the neutrino Boltzmann equation in
flat spacetime, Eulerian spherical polar spacetime coordinates
with zero shift vector, comoving-frame four-momenta, and in
nonconservative form:
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In Equation (3), μ0 and E0 are the neutrino direction cosine
and energy as measured in a comoving frame of reference,
and e and o are the invariant emissivity and opacity. We use
c = 1 throughout this section, and have written the Eulerian
time coordinate as t̃ . Multiplying by (1 + μ0v) and rearranging
we have
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Using the continuity equation,

1

ρ

Dρ

Dt̃
+

3v

r
= v

r
− ∂v

∂r
,

where D/Dt̃ = ∂/∂t̃ +v∂/∂r , Equation (4), and droppingO(v2)
terms we get

(1 + μ0v)
∂f

∂t̃
+ (μ0 + v)

∂f

∂r
+

1 − μ0
2

r

∂f

∂μ0

+

(
1

ρ

Dρ

Dt̃
+

3v

r

)
μ0

(
1 − μ0

2
) ∂f

∂μ0

+

[
μ0

2

(
1

ρ

Dρ

Dt̃
+

3v

r

)
− v

r

]
E0

∂f

∂E0
= 1

E0
C[f ].

(5)

We can express the observer correction terms in conservative
form using
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Substituting these expressions into Equation (5), we get theO(v)
Boltzmann equation,
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Note that the last term on the left-hand side of Equation (6),
−(f/ρ)Dρ/Dt̃ , is part of the observer corrections.

Our Eulerian starting point with comoving-frame neutrino
four-momenta (Equation (4)) provides the formulation in which
we can most readily discuss what it means to have Boltzmann
neutrino transport without observer corrections. We define the
evolution of the neutrino distributions in this case to be governed
by
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that is, by Equation (4) with the velocity-dependent, neutrino
angle- and energy-shift terms ignored.

From Equations (15)–(22) of Liebendörfer et al. (2004),
AGILE-BOLTZTRAN evolves the following purely Lagrangian
(comoving-frame spacetime coordinates and neutrino four-
momenta) equations in flat spacetime,
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where F = f/ρ is the specific neutrino distribution function.
Note that here the Lagrangian partial derivatives with respect
to t and m are at constant m and t, respectively. We can
express the partial derivatives with respect to the Lagrangian
spacetime coordinates, (t, m), in terms of the Eulerian spacetime
coordinates, (t̃ , r), using
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Substituting these transformations into the first three terms in
Equation (8) gives
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Writing the right-hand side of Equation (9) in terms of f and
expanding, we are left with
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Moving the term containing the Lagrangian time-derivative,
D/Dt̃ , of the density to the LHS and restating it using the
Lagrangian time-derivative, ∂/∂t , we have to O(v),
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Therefore, with Equation (7) as a guide, a “no-observer-
correction” run in our Lagrangian formulation would corre-
spond to a solution of the following equation:

∂F

∂t
+ 4πμ0

∂(r2ρF )

∂m
+

1

r

∂
[(

1 − μ0
2
)
F

]
∂μ0

+
F

ρ

∂ρ

∂t

= 1

E0

1

ρ
C[f ] ≡ 1

E0
C[F ]. (12)

Equation (12) is used in our “no-observer-corrections” model,
N-ReducOp-NOC. Equation (12) is clearly not manifestly

conservative for neutrino number when integrated over mass and
when the density evolves, and therefore its Eulerian equivalent,
Equation (7), is also not number conservative when integrated
over volume. On the other hand, Equation (6) is number
conservative when integrated over volume (after dropping the
μ0v∂f/∂t term). The culprit in Equation (7) is the v∂f/∂r
term. When expressed in volume-conservative form, this term
contains a velocity divergence, or equivalently a logarithmic
time derivative of the density, that would normally be canceled
by the logarithmic time derivative of the density in Equation (6).
But when the observer corrections are dropped, the last term on
the LHS of Equation (6) is dropped, and this cancellation no
longer occurs and we are left with the same term that appears
as the last term on the LHS of Equation (12), which breaks
number conservation. By expressing our observer corrections
in Equation (6) in conservative form, we made explicit this
logarithmic time derivative of density contained within them.

3. NUMERICAL METHODS AND INPUTS

All models in this paper are computed using the paral-
lel version of the general relativistic, spherically symmetric,
neutrino radiation hydrodynamics code AGILE-BOLTZTRAN
(Liebendörfer et al. 2004) with extensions that we describe here.

3.1. AGILE-BOLTZTRAN

AGILE-BOLTZTRAN is a combination of the general
relativistic (GR) hydrodynamics code AGILE (Liebendörfer
et al. 2002) and the neutrino transport code BOLTZTRAN
(Mezzacappa & Bruenn 1993b; Mezzacappa & Messer 1999;
Liebendörfer et al. 2004). AGILE solves the complete GR space-
time and hydrodynamics equations implicitly in spherical sym-
metry on a dynamic, moving grid. The moving grid allows ad-
equate resolution of the shock using only O(100) radial zones.
Recent enhancements include the use of a TVD (total variation
diminishing) hydrodynamics solver (Liebendörfer et al. 2005),
which improves the accuracy of advection, and the use of δm as
the grid coordinate rather than the enclosed mass (Fischer et al.
2010, Section 2.1), which improves numerical accuracy when
mass zones are small and density gradients are large. In New-
tonian mode the gravitational mass is set equal to the baryonic
mass (omitting the non-rest-mass energy contributions) and the
relativistic parameters are set to their non-relativistic values:
α = 1, Γ = 1. BOLTZTRAN (Mezzacappa & Bruenn 1993b;
Mezzacappa & Messer 1999; Liebendörfer et al. 2004) solves
the GR extension of the spectral neutrino Boltzmann equation
(Equation (8)) with a Gauss–Legendre (SN) quadrature. Here
we use an eight-point angular quadrature and 20 logarithmically
spaced energy groups with group centers from 3 to 300 MeV.
Previous studies (Mezzacappa & Bruenn 1993a; Liebendörfer
et al. 2004) with (AGILE-)BOLTZTRAN have shown that 20-
group energy resolution is adequate in removing artifacts seen at
lower (12-group) energy resolution, and their 12- and 20-group
runs exhibited no differences in outcomes. Moreover, 20-group
energy resolution matches, or exceeds, the resolution used for
supernova models computed with the multidimensional codes
we discuss in Section 5. The discretization scheme is designed
to simultaneously conserve lepton number and energy as de-
scribed in Liebendörfer et al. (2004). Since we do not include any
physics to distinguish between muon- and tau-flavored leptons,
we use the combined species νμτ = {νμ, ντ } and ν̄μτ = {ν̄μ, ν̄τ }.

For all models we use the nuclear, electron, and photon
equations of state (EoS) of Lattimer & Swesty (LS EoS;
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Table 1
Neutrino Opacity Summary

Interaction FullOp Opacities ReducOp Opacities

νe− ↔ ν′e− Schinder & Shapiro (1982) None
νe+ ↔ ν′e+

νn ↔ ν′n Reddy et al. (1998) Bruenn (1985)
νp ↔ ν′p
e−p ↔ νen Reddy et al. (1998) Bruenn (1985)
e+n ↔ ν̄ep

νA ↔ νA Bruenn (1985) Bruenn (1985)
να ↔ να Bruenn (1985) Bruenn (1985)
e−(A, Z) ↔ νe(A, Z − 1) Langanke & Martı́nez-Pinedo (2000) Bruenn (1985)

Langanke et al. (2003)
e−e+ ↔ νν̄ Schinder & Shapiro (1982) Schinder & Shapiro (1982)
NN ↔ NNνν̄ Hannestad & Raffelt (1998) Hannestad & Raffelt (1998)

1991) with the bulk incompressibility of nuclear matter κs =
220 MeV.9 This matches the current experimental value of
κs = 240 ± 20 MeV (Shlomo et al. 2006) better than the value
of 180 MeV more commonly used with LS EoS in the past,
though the value of κs in LS EoS has been shown to be of little
consequence during the early phases of core-collapse supernova
evolution shown here (Swesty et al. 1994; Thompson et al. 2003;
Lentz et al. 2010). Matter outside the “iron” core is treated as
an ideal gas of 28Si that “flashes” instantaneously to nuclear
statistical equilibrium when the temperature exceeds 0.47 MeV.

The stellar progenitor used for all models reported here is the
15-M� solar-metallicity progenitor of Woosley & Heger (2007).
We have mapped the inner 1.8 M� of the progenitor onto 108
mass shells of the adaptive radial grid.

3.2. Neutrino Opacities

The base, or full, opacity set (FullOp) includes emission,
absorption, and scattering on free nucleons (Reddy et al.
1998); isoenergetic scattering on α-particles and heavy nu-
clei (Bruenn 1985); scattering of neutrinos on electrons (NES)
and positrons (NPS; Schinder & Shapiro 1982); production
of neutrino pairs from e+e− annihilation (Schinder & Shapiro
1982) and nucleon–nucleon bremsstrahlung (Hannestad & Raf-
felt 1998); and electron capture (EC) on nuclei using the LMSH
EC table of Langanke et al. (2003), which utilizes the EC rates of
Langanke & Martı́nez-Pinedo (2000). The full angle and energy
exchange for scattering between the neutrinos and electrons,
positrons, and nucleons is included, while scattering on nuclei
is isoenergetic. Bremsstrahlung and e−e+ annihilation are the
only sources of νμτ and ν̄μτ .

For our reduced opacity set (ReducOp) we replace the LMSH
EC table for electron capture on nuclei with an independent par-
ticle approximation (IPA; Fuller 1982) using the implementa-
tion described in Bruenn (1985), which cuts off when the mean
neutron number of the heavy nuclei N � 40. We also drop
all scatterings (NIS) that couple neutrino-energy groups. The
primary contribution of electron and positron scattering opac-
ities is through neutrino-energy down-scattering (Mezzacappa
& Bruenn 1993c), not through their contribution to the total
scattering opacity; therefore, we omit them completely from the
ReducOp opacity set. We also replace the NIS nucleon scatter-
ing opacities of Reddy et al. (1998) with the more approximate

9 We use the latest version of the Lattimer & Swesty (1991) EoS, version 2.7,
which is available for download from its authors at
http://www.astro.sunysb.edu/dswesty/lseos.html.

IS equivalents from Bruenn (1985). For consistency, we also re-
place the neutrino emission and absorption opacities of Reddy
et al. (1998) with their Bruenn (1985) equivalents. Ion–ion cor-
relations and weak magnetism are omitted from both opacity
sets. The two opacity sets are summarized in Table 1.

3.3. Observer Corrections

As noted in Section 2, the Lagrangian formulation in AGILE-
BOLTZTRAN and the use of the specific neutrino distribution
function, F = f/ρ, which is needed to properly account for
number and energy conservation (see discussion on the necessity
of using F for Lagrangian models in Cardall & Mezzacappa
2003, Section IV.B), require care in the definition of a no-
observer-corrections model. Moreover, time derivatives at fixed
Lagrangian mass coordinates on a moving grid must be handled
with care (see Liebendörfer et al. 2004, Section 3.2). Therefore,
for model N-ReducOp-NOC, we implement the “compression”
term in the no-observer-corrections transport Equation (12)
by re-expressing the time derivative of density as a spatial
divergence, using the continuity equation,

F

ρ

∂ρ

∂t
= − F

r2

∂(r2v)

∂r
. (13)

4. RESULTS

We present results from four spherically symmetric, core-
collapse supernova models of decreasing physical fidelity. The
most physically complete model (GR-FullOp, black lines in
plots) utilizes the more modern and complete FullOp opacities
and the full general relativistic treatment of gravity, hydrody-
namics, and transport as described in Liebendörfer et al. (2004).
The first approximate model (N-FullOp, red lines) replaces the
full general relativity of the GR-FullOp model with Newto-
nian gravity, O(v/c) hydrodynamics, and O(v/c) transport. The
second approximate model (N-ReducOp, green lines) further re-
places the more complete FullOp neutrino opacity set with the
ReducOp opacities (see Table 1 for a full comparison), while
retaining the Newtonian gravity, O(v/c) hydrodynamics, and
O(v/c) transport. This approximation includes the important
effect of removing neutrino weak interactions that down-scatter
the neutrino energy. The final approximate model (N-ReducOp-
NOC, blue lines) retains the Newtonian gravity and O(v/c)
hydrodynamics of the previous model, but drops the observer
corrections completely, reducing the transport to O(1). (The
O(1) and O(v/c) hydrodynamics equations are identical.) The
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Figure 1. Properties of our models at core bounce, where bounce is defined as the maximum compression of the central density during the launch of the bounce shock.
The models are: general relativistic gravity, hydrodynamics and transport with full opacities (GR-FullOp, plotted in black); Newtonian gravity with full opacities and
O(v/c) hydrodynamics and transport (N-FullOp, plotted in red); Newtonian gravity with reduced opacities and O(v/c) hydrodynamics and transport (N-ReducOp,
plotted in green); and Newtonian gravity with O(v/c) hydrodynamics and reduced opacities, and O(1) transport (N-ReducOp-NOC, plotted in blue). The panels are
radial velocity (upper left), density (upper center), entropy (upper right), temperature (kT , lower left), net electron (or proton) fraction (Ye, lower center, solid lines),
net lepton fraction (YL = Ye + (nνe − nν̄e )/nbaryons, lower center, dashed lines), and pressure (lower right). All quantities are plotted relative to enclosed rest mass
in M�.

(A color version of this figure is available in the online journal.)

Table 2
Model Approximations and Properties

Property GR-FullOp N-FullOp N-ReducOp N-ReducOp-NOC

Gravity and hydrodynamics GR Newtonian Newtonian Newtonian
Neutrino opacities (see Table 1) Full Full Reduced Reduced
Observer corrections GR O(v/c) O(v/c) None
Homologous core, Msh (M�) 0.429 0.492 0.717 0.427
Central-core density at bounce, ρc (× 1014 g cm−3) 4.714 4.264 3.336 3.157
Central-core electron fraction (Ye) at bounce 0.2448 0.2407 0.3046 0.1855
Central-core lepton fraction (YL) at bounce 0.2804 0.2782 0.3696 0.2007
Peak shock radius (km) 162 190 171 142
Peak νe-Luminosity (Bethe s−1) 406 450 448 160

general and core-bounce properties of all models are summa-
rized in Table 2 and plotted in Figure 1.

4.1. GR versus Newtonian Gravity

The effects of general relativity on the core dynamics are
seen in the comparison of the first two models (GR-FullOp and
N-FullOp). The deeper gravitational well of the GR model re-
sults in a more compact homologous core at bounce (0.429 M�
versus 0.492 M�) with a higher central density (4.71 ×
1014 g cm−3 versus 4.26 × 1014 g cm−3) and higher tempera-
tures throughout the unshocked core (Figure 1). The electron
(Ye) and lepton (YL) fractions are essentially unchanged mod-
ulo the shift in shock position, as are the velocity and entropy,
while the pressure differences follow the density differences.
As the shock moves out, the shock radius for both models
(Figure 2) remains close for the first 40 ms after bounce and

then diverges. The GR-FullOp model has maximum shock ex-
tent that is 30 km (20%) smaller than the N-FullOp model,
and by 150 ms after bounce the shock radius is 40 km (30%)
smaller. Several quantities reflect the long-term effect of the
more compact, and therefore hotter, proto-NS in the GR-FullOp
model, including the higher luminosities for all neutrino species
(Figure 3) and the higher rms energies (〈Eν〉rms) of neutrinos
of all flavors after the breakout burst (Figure 4). These differ-
ences are in accord with those already reported by Liebendörfer
et al. (2001), Bruenn et al. (2001), and Buras et al. (2006)
using different progenitors, different opacity sets (similar to
ReducOp, though including NES), different energy and an-
gle resolutions, and for the latter two cases, different codes.
Our GR/Newtonian comparison is included here for com-
pleteness and to facilitate relative comparisons across all four
models.
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Figure 2. Shock trajectories in kilometers, vs. time after bounce, for all models.
The colors have the same meaning as in Figure 1. Shock position is computed
by bisecting the pair of mass shells with the largest negative radial velocity
gradient −∂vr/∂r .

(A color version of this figure is available in the online journal.)
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Figure 3. Comoving-frame neutrino luminosities measured at 400 km for all
models. Colors are as in Figure 1. Electron neutrino, νe , luminosities are repre-
sented by solid lines, ν̄e-luminosities by dotted lines, and νμτ -luminosities by
dashed lines. ν̄μτ -luminosities are indistinguishable from νμτ -luminosities, and
are omitted from this figure. The luminosities are in Bethe s−1, where 1 Bethe =
1051 ergs. The lower panel provides a detailed view of the luminosities below
40 Bethe s−1 during the first 100 ms after bounce.

(A color version of this figure is available in the online journal.)

4.2. Reduced Neutrino Opacities

The changes induced as we go from the FullOp opac-
ities (model N-FullOp) to the ReducOp opacities (model
N-ReducOp) in the Newtonian-gravity,O(v/c)-hydrodynamics,
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Figure 4. Comoving-frame neutrino rms energies, 〈Eν〉rms =
(
∫

dμ dE E4F/
∫

dμ dE E2F )1/2, measured at 400 km for all models.
rms energy is computed over number density, not number flux. Colors are as
in Figure 1. Line styles are as in Figure 3. The lower panel provides a detailed
view of 〈Eν〉rms for values less than 20 MeV over the period ±40 ms.

(A color version of this figure is available in the online journal.)

and O(v/c)-transport limit are more dramatic than those seen
for the transition from models GR-FullOp to N-FullOp in
Section 4.1. The shock position at bounce changes from
0.492 M� for N-FullOp to 0.717 M� for N-ReducOp (Figure 1),
with the entropy peak (upper right) making the same shift. The
increase in the initial shock mass, Msh, is correlated with the
corresponding increase in core lepton fraction, from YL = 0.28
to 0.37 (Msh ∝ Y 2

L). The larger Msh for N-ReducOp, relative to
the other models, results in a correspondingly larger region of
high pressure, temperature, and density at bounce. The vigor-
ous post-bounce shock of model N-ReducOp results in a strong
“ringing” of the shock (Figure 2). Thompson et al. (2003) re-
ported a similar ringing for their “no NES” model.

The νe-luminosity of the N-ReducOp model reaches the same
peak value as in the N-FullOp model, 450 Bethe s−1, but the
breakout burst is much shorter in duration and represents a
smaller total emission of νe. The shock starts out at a larger mass
coordinate and passes through less total mass before becoming
a steady accretion shock. Like Thompson et al. (2003), we see
oscillations of the ν-luminosities and 〈Eν〉rms (Figures 3 and 4)
just after bounce induced by shock oscillations passing through
the neutrinospheres.

The differences between the N-FullOp and N-ReducOp
models can be understood by considering three opacity changes
imposed simultaneously: (1) the inclusion of NES/NPS; (2) the
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use of the LMSH EC table; and (3) the use of the Reddy et al.
(1998) nucleon opacities.

1. The effects of omitting the NES opacity alone during col-
lapse were explored by Mezzacappa & Bruenn (1993c),
who showed that energy down-scattering by NES allowed
the energy down-scattered neutrinos to escape more easily
because of the lower absorption and scattering cross sec-
tions at lower energies, and reduced the core Ye by 15%
and neutrino fraction, Yν , by 30% in their model with NES
relative to one without NES. The higher number of trapped
neutrinos, without NES, is reflected in the higher core Ye,
YL, and Yν for our model N-ReducOp. The “no-NES” model
of Thompson et al. (2003, Section 7.4, Figures 20 and 21)
also shows large differences in 〈Eνμτ

〉rms, with a bounce
“spike” reaching 32 MeV, and a 〈Eνμτ

〉rms increase at 150
ms post-bounce of 4 MeV (20%) relative to a model with
NES. This compares to a 50 MeV “spike” and 7 MeV
(40%) increase at 150 ms after bounce in 〈Eνμτ

〉rms for our
N-ReducOp model relative to our N-FullOp model.

2. We have removed the LMSH EC table from ReducOp
opacities in favor of the simpler IPA prescription, as not
all modern supernova simulations use EC rates like the
LMSH EC table, which reflect the ensemble of nuclei and
their excited states in the collapsing core. Hix et al. (2003)
found that the enhanced EC arising from the removal of
the artificial cutoff in IPA for heavier nuclei that occur at
higher densities during collapse decreased the central-core
Ye and Msh at bounce by 10% and 20%, respectively, relative
to the IPA implementation. Conversely, IPA overestimates
EC where it is active and leads to excess deleptonization
and stronger collapse in the outer regions of the Fe-core
where the N � 40 cutoff criterion is not triggered. One
such region can be seen at bounce outside the homologous
core near 0.9 M� (Figure 1), where lower Ye and higher
density exist in the N-ReducOp model relative to the GR-
FullOp and N-FullOp models.

3. We have also replaced the ν-nucleon emission, absorption,
and scattering opacities (Reddy et al. 1998) in FullOp with
the corresponding opacities of Bruenn (1985) to eliminate
neutrino-energy down-scattering on nucleons. We have
previously found (Lentz et al. 2010) that the inclusion of
the enhanced nucleon opacities results in an enhancement
of the luminosities, but not rms energies, and lifts the post-
bounce shock outward by 10 km by 100 ms post-bounce
through absorption of the excess luminosity. These findings
are consistent with the results of Rampp et al. (2002) on the
enhanced neutrino–nucleon opacities.

4.3. No Observer Corrections

For the final comparison we change the treatment of
the observer corrections in the transport equation. In model
N-ReducOp-NOC we have removed the velocity-dependent
observer corrections from the Boltzmann transport equation
in the appropriate, Lagrangian approach as described by
Section 2, Equation (12), but retain the Newtonian grav-
ity, O(v/c)-hydrodynamics, and reduced opacities of the
N-ReducOp model.

Dropping the observer corrections in model N-ReducOp-
NOC results in a dramatic change in the properties of the core at
bounce, as can be seen in Figure 1 and Table 2. The homologous
core mass drops from 0.717 M� for the N-ReducOp model to
0.427 M� for the N-ReducOp-NOC model; the latter of which

is virtually indistinguishable from the homologous core mass,
Msh, for the most physically complete model (0.429 M� for
GR-FullOp). This coincidental alignment of the bounce shock
positions for the most and least physically complete models
should be contrasted with the lower electron and lepton fractions
(Ye, YL) and density (see Table 2) in the homologous core for
the N-ReducOp-NOC model relative to the GR-FullOp model,
as well as the larger inflow velocities and densities and lower Ye
and YL outside the shock, which imply, among other things, an
increased ram pressure against which the shock must propagate.

The shock (Figure 2) in the N-ReducOp-NOC model starts
more vigorously than in the FullOp models, but does not
show the large overshoot of the other reduced opacity model,
N-ReducOp. All of the shock trajectories cross near 35 ms after
bounce, with the N-ReducOp-NOC model having the deepest
shock throughout the rest of the run. This is in stark contrast
to the other Newtonian models, which have larger shock radii
relative to the GR-FullOp model.

The neutrino luminosities (Figure 3) of the N-ReducOp-NOC
model are also substantially lower than for any other model. The
νe-luminosity from shock-breakout peaks at 160 Bethe s−1 for
the N-ReducOp-NOC model relative to the 400–450 Bethe s−1

for the models with observer corrections. The ν̄e-luminosities
of all models approaches the νe-luminosities at around 80
ms after bounce, and track together thereafter. By 150 ms
after bounce, the νeν̄e-luminosities for the N-ReducOp-NOC
model are approximately 32 Bethe s−1, while the other two
Newtonian models have νeν̄e-luminosities of approximately
55 Bethe s−1 and the GR-FullOp model has νeν̄e-luminosities
of approximately 66 Bethe s−1.

The rms neutrino energies (Figure 4) for νe (solid lines)
and ν̄e (dotted lines) in the N-ReducOp-NOC model follow
those in the N-ReducOp model closely, with 〈Eνe

〉rms slightly
higher before bounce and at later times, except in the imme-
diate post-bounce period when it oscillates in the N-ReducOp
model with the shock. In contrast, the post-bounce 〈Eνμτ

〉rms for
model N-ReducOp-NOC is substantially lower relative to model
N-ReducOp, and the “spike” after bounce is gone. After break-
out both ReducOp models have large 〈Eνμτ

〉rms relative to the
FullOp-models.

As we traverse our four models, it is clear that all of the neu-
trino luminosities are significantly affected. The general trend
is for the luminosities to decrease considerably as we go from
GR-FullOp to N-FullOp to N-ReducOp to N-ReducOp-NOC.
The largest variations among the models are exhibited by the
electron-flavor neutrinos, with luminosity variations as large as
35 Bethe s−1 at 150 ms after bounce. However, the variations
in the 〈Eνe

〉rms and 〈Eν̄e
〉rms are not as dramatic as we traverse

the four models, and not monotonically decreasing as the model
sophistication decreases. Variations in the 〈Eνμτ

〉rms, like their
luminosity counterparts, remain significant, although not mono-
tonically decreasing with model. The post-bounce rms energies,
〈Eνμτ

〉rms, vary by ∼10 MeV up to 150 ms after bounce.
At 100 ms after bounce (Figure 5) the shock encloses 1.45 M�

for all four models. The most significant differences seen in
the dense core are in Ye and YL (lower center), where the N-
ReducOp-NOC model has generally the lowest Ye and YL and
lacks the peak the other models exhibit just outside their bounce
shock positions, Msh. Figure 6 shows the same data, but focuses
on the outer, “hot-mantle” region between the shock and proto-
NS with the most evident differences being those related to the
shock radius (smallest for N-ReducOp-NOC). Though shifted
in radius, the hot-mantle region is similar among all models.
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Figure 5. Same as in Figure 1, but at 100 ms after core bounce.

(A color version of this figure is available in the online journal.)
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Figure 6. Same as in Figure 5, but as a function of radial coordinate, r, in kilometers. Net lepton number has been omitted, as YL ≈ Ye for all but the inner
few kilometers.

(A color version of this figure is available in the online journal.)

The N-ReducOp-NOC model shows (Figure 7) a drop in
total conserved lepton number (NL,cons, the lepton number on
the computational grid plus the time-integrated number flux of
neutrinos at the outer boundary) starting just before bounce

and continuing throughout the rest of the run. This is not seen
in the other models, which maintain lepton conservation. The
root of the non-conservation can be seen in the integration
of Equation (12) for neutrino number over the entire grid.
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Figure 7. Lepton number on the grid plus neutrino flux through the outer
boundary, NL,cons, indicating the quality of numerical lepton conservation
for all models. Model N-ReducOp-NOC loses 34.7% of the original NL,cons
by 200 ms after bounce, while the other three models conserve NL,cons to
within 0.1%.

(A color version of this figure is available in the online journal.)

It results from the (F/ρ)(∂ρ/∂t) “compression” term and is
strongest during the epoch of high Yν and rapid density changes
surrounding core bounce.

We illustrate this loss through Ye (Figure 8, solid lines) and YL
(dashed lines) profiles for the GR-FullOp model (upper panel)
and the N-ReducOp-NOC model (lower panel) as a series of
temporal snapshots near bounce. Until the shock reaches 0.5 M�
in the GR-FullOp model (upper panel), the core is still opaque,
and the neutrinos are trapped. Therefore, total lepton number
is conserved locally, and YL is steady inside 0.5 M� during
shock breakout as depicted in the upper panel of Figure 8.
When the shock reaches 0.5 M�, it begins to break through
the neutrinospheres, and the neutrinos can escape, causing the
local YL and Ye to drop behind the shock. The escaping neutrinos
contribute to YL in front of the shock as a visible pulse, a small
portion of which are absorbed by the cold, infalling matter
ahead of the shock, forming a transient radiative precursor
in Ye. For the N-ReducOp-NOC model (lower panel) there is
no such corresponding epoch of local lepton conservation as
the shock forms in the opaque (neutrino trapped) inner core
before emerging through the neutrinospheres. The net effect
of the compression term in Equation (12) is one of destroying
neutrinos, which then results in a net decrease in Ye via the
interactions e−p ↔ νen and e+n ↔ ν̄ep. The loss of neutrinos
to the compression term reduces the neutrino pulse ahead of
the shock and lowers the νe-luminosity in the breakout burst
(Figure 3).

The fundamentally different behavior of the N-ReducOp-
NOC model stems from two factors: (1) the omission of the
energy derivative term in Equation (8) or the equivalent term in
Equation (6); and (2) the fact that Equation (12) is manifestly
non-conservative for neutrino, and consequently lepton, number
when integrated over mass. In the neutrino opaque regions, the
energy-derivative term is responsible for promoting neutrinos
in energy as they are compressed, as expected for a relativistic
Fermi gas and first noted by Castor (1972) and Arnett (1977).

5. CONTEMPORARY MULTIDIMENSIONAL
SUPERNOVA MODELING

5.1. Multidimensional Supernova Codes

There are five extant codes that can compute the spectral
neutrino radiation hydrodynamics for core-collapse supernova
simulations in 2D or 3D. These codes are (in alphabetical order):
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Figure 8. Sequence of electron (solid lines) and lepton (dashed lines) fraction
profiles for the GR-FullOp (upper panel) and N-ReducOp-NOC (lower panel)
models showing the formation of the shock and the shock progress through
bounce into the breakout phase. The colors represent different epochs, which
are equally spaced in computational time step with time advancing from dark
to light gray (violet to red in the online journal).

(A color version of this figure is available in the online journal.)

the 2D/3D code CHIMERA (S. W. Bruenn et al. 2012, in
preparation), the 2D code V2D (Swesty & Myra 2009, 2005),
the 2D code Vertex (Rampp & Janka 2002; Buras et al. 2006),
the 2D code Vulcan/2D (Livne et al. 2004; Burrows et al. 2007),
and the 2D/3D Zeus+IDSA code (Suwa et al. 2010).

Of the multidimensional codes, CHIMERA and
(Prometheus-)Vertex include a spherically symmetric,
post-Newtonian GR approximation, while the others are strictly
Newtonian in their gravitation, hydrodynamics, and neutrino
transport. Müller et al. (2010) have updated (CoCoNuT-)
Vertex to include general relativity in the transport and
hydrodynamics using the conformally flat approximation.

CHIMERA, V2D, and Vulcan/2D transport neutrinos by the
flux-limited diffusion method (FLD). Vulcan/2D also has a
non-moment, multi-angle (SN) mode. Vertex uses the vari-
able Eddington tensor (VET) method with a closure computed
using a spherically averaged, model Boltzmann equation. The
Zeus+IDSA code uses the Isotropic Diffusion Source Approx-
imation (IDSA; Liebendörfer et al. 2009), which divides the
neutrinos into “trapped’ and “free-streaming” neutrinos, with a
diffusion source to connect them.

Of these codes, only V2D is capable of solving the full space-
neutrino energy–species coupling of the neutrino transport
that the core-collapse supernova problem requires, while all
other codes break at least one aspect of that coupling to
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1

1
2

2

Figure 9. Illustration of the “ray-by-ray” transport approximation. The circle
represents the neutrinosphere and the solid lines represent two independent
“rays” in the RbR approximation. The dashed lines are tangents to the
neutrinosphere and indicate the regions that contribute to the neutrino field
at points 1 and 2. The “blob” on the neutrinosphere below point 1 is a “hot spot”
where the temperature is higher than the rest of the neutrinosphere. For point 1,
the RbR method will compute the neutrino field as if the entire neutrinosphere
has the properties of the hot spot, overestimating the neutrino flux and heating.
For point 2, the RbR misses the contribution of the hot spot by assuming that
the neutrinosphere properties are only those of the cooler region directly below
it, underestimating the neutrino flux and heating.

reduce computational costs and simplify code development.
CHIMERA, Vertex, and Zeus+IDSA break the non-radial
(lateral, or angular) spatial coupling through the “ray-by-ray”
(RbR) approximation, and Vulcan/2D breaks the coupling
between energy groups and neutrino species.

In the RbR approximation, the neutrino transport is computed
as a number of independent, spherically symmetric problems,
referred to as “rays,” which allows for the reuse of existing
1D neutrino transport codes. (See Figure 9 for a schematic
illustration of the RbR approximation.) RbR methods exhibit
good parallel scaling for large numbers of independent radial
rays, which can be evolved without communication while
computing the neutrino transport. Typically, in RbR codes,
the neutrinos in opaque regions are advected laterally with the
fluid motions and contribute to the pressure. The independence
of the rays artificially sharpens the lateral variation in the
neutrino luminosity and heating above the proto-NS, which
results in some regions of the hot mantle being overheated
and others underheated. The transport studies of Ott et al.
(2008) using Vulcan/2D in multi-angle mode showed that full
multidimensional FLD underestimates the lateral variation in
the neutrino radiation field, whereas RbR codes are expected to
overestimate the lateral variation. Buras et al. (2006) concluded
from analysis of their RbR models that the transient lateral
variations in neutrino flux and heating were not very likely
to have dynamical consequences for the evolution of their
models. The impact of the RbR approximation on the simulation
outcomes is not precisely known, and proper testing will have to
wait until one of the RbR codes is upgraded to include full lateral
transport, as no extant code is currently capable of computing in
RbR and non-RbR modes and there are significant differences
between extant RbR and non-RbR codes in other respects.

The authors of Vulcan/2D have chosen to break the en-
ergy and species coupling rather than the lateral spatial cou-
pling. Vulcan/2D implements computational parallelism by
solving for 2D-spatially-coupled neutrino transport for each
energy–species group independently, with communication only

after transport to integrate neutrino heating/cooling from all
energy groups. The consequence of this design choice is that
Vulcan/2D cannot easily include either NIS-driven coupling of
energy groups or the coupling of energy groups through ob-
server corrections, nor can it utilize more parallel processing
elements than it has energy–species groups.

5.2. Opacity Approximations

CHIMERA and Vertex include all of the FullOp opacities
plus additional corrections for weak magnetism and ion–ion
correlations. Vertex also includes the neutrino-pair flavor-
conversion process (Buras et al. 2003). V2D uses the Bruenn
(1985) opacities, which are similar to ReducOp, but do include
the energy down-scattering from NES. Vulcan/2D omits all of
the NIS scatterings in favor of their IS counterparts, as does the
Zeus+IDSA code because energy-coupled scattering has not
yet been developed for the IDSA transport method. Vulcan/2D,
V2D, and Zeus+IDSA use an IPA for EC on nuclei, which cuts
off electron capture by nuclei when the mean neutron number
N � 40, and overestimates it above the cutoff, while CHIMERA
and Vertex use the more accurate LMSH EC table.

Some multidimensional supernova codes (Vertex,
Vulcan/2D) use a single species, νx = {νμτ , ν̄μτ }, to represent
all of the heavy-lepton flavor neutrinos, while the Zeus+IDSA
code omits them completely.

5.3. Observer Corrections

CHIMERA, V2D, and Vertex include the observer correc-
tions in the neutrino transport. In the Zeus+IDSA code, adia-
batic compression is properly handled for the trapped neutrinos,
and O(v/c) observer corrections are included for free-streaming
neutrinos. These codes use neutrino transport based on
Equation (3), its equivalent toO(v/c), or its GR equivalent. Only
Vulcan/2D neglects the observer corrections entirely, by solv-
ing the neutrino transport based on Equation (7). (The transport
equation quoted in Livne et al. (2004) also omits the μ0v ∂f/∂t-
term, which is typically considered of O(v2/c2) and dropped
from most O(v/c) transport solutions.)

6. CONCLUSIONS

We have examined the consequences of removing (1) GR
effects, (2) non-isoenergetic scattering and detailed nuclear
EC opacities, and (3) observer corrections from spherically
symmetric models of core-collapse supernovae. We have found
that all of these changes, individually and especially when
taken together, affect the progress of stellar collapse and the
post-bounce evolution of the shock and core thermodynamic
properties in significant ways, in contrast to the assessments
made by Burrows et al. (2006, 2007) and Nordhaus et al. (2010).
We have computed variations in the shock radius, neutrino
luminosities, and neutrino rms energies as large as 60 km,
35 Bethe s−1, and 10 MeV, respectively, across the four models
considered here.

Omission of GR results in a less compact core and an unreal-
istically more favorable shock progression after bounce. Elim-
inating non-isoenergetic scatterings and simplifying electron
capture on nuclei drastically reduces the core deleptonization
and expands the homologous core at bounce. Omission of the
observer corrections dramatically alters core deleptonization,
the shock position, and neutrino luminosities after bounce, in
part resulting from a complete breakdown of lepton number
conservation.
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The lepton non-conservation and non-promotion of neutrino
energy resulting from omitting observer corrections in our
N-ReducOp-NOC model results in a compact, low-YL core and
a shock trajectory that is the least favorable of our models. The
artificial loss of lepton number, lower neutrino luminosities, and
the consequent lower neutrino heating rate and shallower shock
trajectory may explain the lack of neutrino-driven explosions in
models computed with Vulcan/2D (see Burrows et al. 2007), in
contrast to the results reported by others (Marek & Janka 2009;
Bruenn et al. 2009; Suwa et al. 2010; Takiwaki et al. 2011).

Moreover, the changes in Ye and YL, their gradients, and
the entropy gradients that we see as we traverse the models
shown here will change the location and strength of convectively
unstable regions in the proto-NS and between the proto-NS
and the shock. The lepton and entropy gradients in the proto-
NS drive prompt convection, the entropy gradients between
the proto-NS and the shock drive neutrino-driven convection,
and these in turn seed and are seeded by the SASI. That is,
the changes we have documented in this transport study have
implications for all of the multidimensional phenomena we
know to be important in multidimensional supernova models
once spherical symmetry is broken.

All of the ingredients (1)–(3) above must be included in mul-
tidimensional simulations of core-collapse supernovae to ensure
physical fidelity. Their omission is not the only approximation
used in current multidimensional simulations, some of which
(like the ray-by-ray approximation) are inadequately understood
and need to be better understood or phased out. Certainly, fur-
ther examination of these approximations is required within the
context of multidimensional simulations.
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