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ABSTRACT

Diffusive shock acceleration (DSA) at relativistic shocks is expected to be an important acceleration mechanism in
a variety of astrophysical objects including extragalactic jets in active galactic nuclei and gamma-ray bursts. These
sources remain good candidate sites for the generation of ultrahigh energy cosmic rays. In this paper, key predictions
of DSA at relativistic shocks that are germane to the production of relativistic electrons and ions are outlined. The
technique employed to identify these characteristics is a Monte Carlo simulation of such diffusive acceleration in
test-particle, relativistic, oblique, magnetohydrodynamic (MHD) shocks. Using a compact prescription for diffusion
of charges in MHD turbulence, this approach generates particle angular and momentum distributions at any position
upstream or downstream of the shock. Simulation output is presented for both small angle and large angle scattering
scenarios, and a variety of shock obliquities including superluminal regimes when the de Hoffmann–Teller frame
does not exist. The distribution function power-law indices compare favorably with results from other techniques.
They are found to depend sensitively on the mean magnetic field orientation in the shock, and the nature of
MHD turbulence that propagates along fields in shock environs. An interesting regime of flat-spectrum generation
is addressed; we provide evidence for it being due to shock drift acceleration, a phenomenon well known in
heliospheric shock studies. The impact of these theoretical results on blazar science is outlined. Specifically, Fermi
Large Area Telescope gamma-ray observations of these relativistic jet sources are providing significant constraints
on important environmental quantities for relativistic shocks, namely, the field obliquity, the frequency of scattering,
and the level of field turbulence.
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1. INTRODUCTION

Collisionless magnetohydrodynamic (MHD) shocks are
found in diverse environments ranging from the inner helio-
sphere to the central regions of distant galaxies and other as-
trophysical objects. Particle acceleration at these collisionless
shocks is believed to be a common phenomenon in space plas-
mas. In the heliosphere, direct measurements of accelerated non-
thermal ions and electrons in various energy ranges at Earth’s
bow shock (e.g., Scholer et al. 1980; Möbius et al. 1987; Gosling
et al. 1989) and interplanetary shocks (e.g., Sarris & Van Allen
1974; Decker et al. 1981; Tan et al. 1988; Baring et al. 1997)
indicate energization processes that are intimately connected
to shock environs. Outside the heliosphere, non-thermal parti-
cle distributions are inferred from observed photon spectra of
supernova remnants, pulsar wind nebulae, blazars, and gamma-
ray bursts (GRBs; e.g., Blandford & Eichler 1987 and references
therein), all of which possess supersonic outflows that are read-
ily shocked. Commonly, these non-thermal distributions take the
form of power-law tails that can extend to thousands or millions
of times the ambient thermal energies of the particles.

First-order Fermi acceleration, often called diffusive shock
acceleration (DSA), is believed to be the primary accelera-
tion mechanism in most collisionless MHD shocks. This phe-
nomenon arises when charged particles interact quasi-elastically
with turbulent fields in the shock layer and are diffusively trans-
ported back and forth across the shock, each time achieving a
net gain in energy on average. Monte Carlo simulations of this
process (see Jones & Ellison 1991 and references therein) have

had great success in modeling shocks inside the heliosphere and
comparing them directly with in situ measurements from var-
ious spacecraft (e.g., Ellison et al. 1990b; Baring et al. 1997;
Summerlin & Baring 2006). It is quite likely that this same
process is responsible for the power-law tails inferred in as-
trophysical shocks, including relativistic MHD discontinuities
such as those believed to be associated with blazars (e.g., see,
Stecker et al. 2007) and GRBs (e.g., see reviews by Piran 1999;
Mészáros 2001).

Early work on relativistic shocks was mostly analytic in
the test-particle approximation (e.g., Peacock 1981; Kirk &
Schneider 1987; Heavens & Drury 1988; Kirk & Heavens
1989), where the accelerated particles do not contribute sig-
nificantly to the global MHD structure of the shock. Since
such systems are inherently anisotropic, due to rapid convec-
tion of particles through and away downstream of the shock,
the diffusion approximation cannot be applied. This renders an-
alytic approaches, such as solution of the diffusion-convection
Fokker–Planck equation, more difficult for ultrarelativistic up-
stream flows, though advances can be made in special cases,
such as the limit of extremely small angle scattering (SAS; e.g.,
Kirk & Schneider 1987; Kirk et al. 2000). Accordingly, com-
plementary Monte Carlo techniques, first developed for non-
relativistic shock applications by Ellison et al. (1981), have
been employed for relativistic shocks by a number of authors,
including test-particle analyses for steady state shocks of parallel
and oblique magnetic fields by Ellison et al. (1990a), Ostrowski
(1991), Bednarz & Ostrowski (1998), Baring (1999), Niemiec &
Ostrowski (2004), Ellison & Double (2004), and Stecker et al.
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(2007). It is such a simulational approach that is highlighted
here; its accessibility to broad dynamic ranges in momenta is
extremely desirable, providing a niche for Monte Carlo tech-
niques in connecting with observations of astronomical objects
such as GRBs and blazars.

It should be noted that the most comprehensive way to study
dissipation, acceleration, and wave generation in collisionless
shocks is with particle-in-cell (PIC) simulations, where par-
ticle motion and field fluctuations are obtained as solutions
of the Newton–Lorentz and Maxwell’s equations. Relativis-
tic PIC codes have blossomed to model shocks in applica-
tions such as GRBs and pulsar wind termination shocks, fo-
cusing largely, but not exclusively, on perpendicular shocks
(e.g., Gallant et al. 1992; Smolsky & Usov 1996; Silva et al.
2003; Hededal et al. 2004; Liang & Nishimura 2004; Medvedev
et al. 2005; Nishikawa et al. 2005; Spitkovsky 2008). These
works have explored pair shocks, ion-doped shocks, Poynting
flux-dominated outflows, and low-field systems with dissipation
driven by the Weibel instability. PIC simulations are dynamic
in nature, and rarely achieve a time-asymptotic state. None of
these works has demonstrated the establishment of an extended
power law that is required in modeling emission from GRBs and
active galactic nuclei (AGNs), though note the isolated recent
suggestion (Spitkovsky 2008; Sironi & Spitkovsky 2011) of a
non-thermal tail generated by diffusive transport. The general
difficulty with explicitly seeing acceleration in PIC codes be-
yond true thermalization is perhaps due to the severely restricted
spatial and temporal scales of the simulations, imposed by their
intensive CPU and memory requirements. With the anticipated
advances in computational capability over the next decade, PIC
simulations will become a much more powerful tool for prob-
ing DSA. For a discussion of relativistic shock acceleration, see
Baring (2004).

To date, much simulational work on DSA at relativistic
shocks has focused on parallel systems (where the magnetic
field direction is parallel to the shock normal) in which particles
experience frequent SASs, as opposed to infrequent large angle
scatterings (LASs). In the limit of ultrarelativistic shock speeds,
for differential particle distributions dn/dp = p−σ , a power-law
index of σ ≈ 2.23 is realized, as can be found analytically (e.g.,
Kirk et al. 2000) and numerically (e.g., Bednarz & Ostrowski
1998; Baring 1999; Ellison & Double 2004). However, it is
not necessary to assume that SAS is the dominant scattering
mechanism, nor is it warranted in some situations: the phase
space for the character of SAS to be realized shrinks with
increasing shock Lorentz factor. Moreover, many astrophysical
shocks, such as those in blazar jets, are either not parallel or
not ultrarelativistic. Clearly, a more robust examination of the
parameter space is desirable if one is to characterize the emission
coming from these objects, and use it to probe their shocked
plasma environments.

To achieve such a goal, here we have extended our Monte
Carlo DSA code (Summerlin & Baring 2006) to include
shocks of arbitrary speed and obliquity, including the trans-
relativistic regime. Additionally, we generally presume an
electron–positron plasma shock, following current thinking
on the nature of GRB outflows (e.g., Piran 1999; Mészáros
2001) and blazar jets, though the results apply equally well
to ion-dominated relativistic shocks. The global structure of
the shocks is defined via the Rankine–Hugoniot relations,
solved along the lines of previous expositions (e.g., Dou-
ble et al. 2004). Principal output includes complete momen-
tum and angular distributions, at different distances upstream

and downstream of the shock. To demonstrate the validity
of the simulation, and to distinguish its particular charac-
ter, comparisons are made with both theoretical and simu-
lation results of other papers (principally Kirk & Heavens
1989; Kirk et al. 2000; Ellison & Double 2004; Niemiec &
Ostrowski 2004). More importantly, we expand on these previ-
ous works by exploring the parameter space for oblique relativis-
tic shocks comprehensively, focusing on the shock obliquity, tur-
bulence levels, and parameters encapsulating the microphysics
of the turbulent interactions as key variables determining the
high-energy power-law index of the particle distribution.

We find that, in relativistic shocks, unlike in non-relativistic
shocks, the microphysics of the turbulence becomes an impor-
tant factor in determining both the value of the power-law index
and how many decades in energy particles are accelerated be-
fore a power law is achieved. Particles undergoing infrequent
LASs consistently produce harder power laws than their SAS
counterparts and take many more decades in energy to realize a
smooth power law. It is also apparent that the power-law index
is critically dependent upon the subluminality, versus superlu-
minality, of the shock, as discussed in Section 4. We find that, as
do Ellison & Double (2004) and Baring (2004), in superluminal
shocks, the power law rapidly becomes softer with decreasing
levels of turbulence and increasing obliquity, due to the difficulty
particles have returning to the shock once they have crossed to
the downstream side.

In distinct contrast, in the case of subluminal shocks, a de-
creased amount of turbulence and increased obliquity can ac-
tually render the acceleration process far more efficient as par-
ticles undergo the coherent process of shock drift acceleration
(SDA), where some particles persistently gyrate in the shock
layer, preferentially gaining energy due to the kinking of the
magnetic field. In the limit of no cross-field diffusion and a de
Hoffmann–Teller frame velocity of nearly c, explored theoret-
ically by Kirk & Heavens (1989) using semianalytic solutions
to the diffusion-convection equation, an extremely low value of
the power-law index around σ = 1 becomes possible. However,
with our simulation, we are able to more readily isolate how
such flat distributions arise. In marginally subluminal shocks
with SAS operating, a small fraction of high-energy particles
are reflected off the shock by the kink in the magnetic field. For
those that are reflected, the angular distribution for subsequent
shock encounters is such that the transmission region is almost
entirely depleted, resulting in virtually 100% reflection at each
shock encounter. These particles essentially become trapped
and are accelerated to very high energies very quickly, before
they are eventually lost downstream. The extremely low levels
of turbulence necessary to permit SDA to act unabated almost
certainly do not occur in Nature, but the effects of SDA can be
seen to a lesser degree in shocks with more realistic parameters.
In general, it can be concluded that the power-law indices in
relativistic shocks can sample a broad range, depending on the
three basic system parameters explored here. After outlining our
simulation technique in Section 2 and summarizing our method
for determining the shock jump conditions in Section 3, our
results are presented in Section 4, and then interpreted in the
context of blazars in Section 5.

2. THE MONTE CARLO SIMULATION TECHNIQUE

The Monte Carlo Simulation technique employed in this
paper closely follows the pioneering work on this method
by Ellison et al. (1981) and Ellison & Eichler (1984); see
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Jones & Ellison (1991) for a review. It is a test-particle
simulation that models convection and diffusion of charges in a
turbulent, shocked flow, complementing the analytic approach
of Bell (1978) that was extended to the relativistic regime by
Peacock (1981). It has been successfully applied in a variety of
environments including Earth’s bow shock (Ellison et al. 1990b),
interplanetary shocks (e.g., Baring et al. 1997; Summerlin &
Baring 2006), the solar wind termination shock (see Ellison
et al. 1999), supernova remnants (see Baring et al. 1999; Baring
& Summerlin 2007), and in the regime of highly relativistic
shocks that is generally encountered in extragalactic contexts
(e.g., Ellison et al. 1990a; Ellison & Double 2004; Stecker
et al. 2007). The code models particle gyration about bulk
magnetic fields in convecting fluid flows, while having their
trajectories perturbed by embedded hydromagnetic turbulence.
The perturbations mediate spatial diffusion that permits some
small fraction of particles to transit the shock front multiple
times, kinematically sampling the difference in flow speeds
on either side of the shock, and thereby being accelerated
via first-order Fermi (or diffusive) shock acceleration (see Bell
1978; Jones & Ellison 1991). The code is fully relativistic and
transitions seamlessly from non-relativistic to relativistic flow
regimes; it also treats arbitrary orientations of the mean magnetic
field.

The simulation space is divided into a distinct number of grid
zones distributed along the x-axis, which is here defined to be
the direction normal to the planar shock surface. The boundaries
of these grid zones are locations where the bulk properties of
the fluid (flow speeds, magnetic fields, etc.) can change. The
values of these fluid properties are specified a priori, and for
the test-particle implementation of the simulation in this paper,
have fixed values throughout the simulation runs. In the simula-
tions presented in this paper a simple step function shock is used
with only two grid zones: one upstream and one downstream.
The field and fluid quantities in these two zones are related
by the fully relativistic, Rankine–Hugoniot jump conditions, as
discussed in Section 3 below. This construction facilitates the
generalization to nonlinear acceleration regimes (e.g., Ellison
& Eichler 1984; Ellison et al. 1996; see also Ellison & Double
2002 for the first treatment of nonlinear modification of rela-
tivistic shocks), where the energetic particles contribute to the
grid-by-grid specification of MHD quantities constrained by
energy/momentum flux conservation.

Particles are injected isotropically into the system anywhere
along the x-axis, though usually an upstream injection is
adopted. The energy distribution of injected particles can be
either mono-energetic, a thermal Maxwell–Boltzmann form at
any temperature (relativistic or non-relativistic), or a power-law
distribution in momentum of arbitrary index. For non-relativistic
shocks with thermal particle injection, the code automatically
calculates the Rankine–Hugoniot shock jump conditions to
ascertain the downstream fluid and field vector values. For
relativistic shocks, the jump condition solution technique is
necessarily more complicated, as described in Section 3. This
solution is accomplished outside the simulation program, and
the jump conditions are then input manually as initial conditions
for the simulation runs. The code can also include multiple
species of charged particles (e.g., treating hydrogenic and pair
plasmas, and even contributions from helium) besides the test
particles in the determination of the jump conditions. After
particles are injected into the upstream fluid, they are allowed to
gyrate in the local bulk magnetic field, convecting with the fluid,
until it is determined that a phenomenological scattering occurs.

The effects of magnetic turbulence are simulated by speci-
fying a local fluid frame mean free path for particle diffusion,
given by

λ = λ0

(
rg

rg1

)α

∝ pα, λ0 = ηrg1, (1)

where rg = pc/(qB) is the gyroradius of an ion or electron of
momentum p = mv, mass m, and charge q in a magnetic field
B = |B|. Also rg1 = mu1xc/(qB) is the gyroradius of an ion
with a speed v equal to the velocity component, u1x , of the far
upstream flow normal to the shock plane; here x denotes the di-
rection normal to the shock. Without loss of generality, the mean
free path scale λ0 is set proportional to rg1 with constant of pro-
portionality η defined via Equation (1). This phenomenological
prescription for scattering was adopted in numerous papers out-
lining results from the Monte Carlo technique, including Ellison
et al. (1981, 1990a, 1995, 1996) and Stecker et al. (2007). Fol-
lowing this and other previous Monte Carlo work, for simplicity,
we set α = 1, a specialization that is appropriate for traveling
interplanetary shocks; see Ellison et al. (1990a, 1990b), Mason
et al. (1983), and Giacalone et al. (1992) for discussions about
the micro-physical expectations for α. The simulation can easily
accommodate other values of α; however, the spectral results
are somewhat insensitive to the choice of this parameter—its
dominant effect is to modify the relative scale lengths for dif-
fusion at different particle momenta. Since λ � rg is required
for physically meaningful diffusion resulting from gyroresonant
wave–particle interactions, the α = 1 case is also motivated on
fundamental grounds. The mean free path represents the spatial
scale in the local fluid frame on which the momentum vector
is deflected by π/2, on average. Note that for diffusion that is
driven by non-gyroresonant interactions with field turbulence,
perhaps grown via filamentation or Weibel instabilities, it is
quite possible to sample η < 1 regimes, especially when the
ambient magnetic field is quite low. Diffusion in this domain re-
sembles the Bohm limit of η = 1 for gyroresonant diffusion, and
accordingly the distributions for shock-accelerated charges are
only mildly dependent on η when it is less than unity. For high
Alfvénic Mach number shocks, the scattering is approximately
elastic in the fluid frame, i.e., |p| is conserved in this frame for
interactions with field turbulence that perturb a particle’s pitch
angle θ , gyrophase, and orbital gyrocenter.

When the Alfvénic Mach number MA is low, the Alfvén
waves move with appreciable speed in the fluid frame, so that
partial inelasticity in scatterings arises. This yields second-
order, stochastic diffusion contributions. While these can be
routinely modeled in the simulation, inspection of Equations (8)
and (10) of Pryadko & Petrosian’s (1997) quasi-linear stochastic
acceleration formalism clearly indicates that the stochastic
contribution to the spatial diffusion coefficients is smaller than
the first-order Fermi one by the order of 1/M2

A. For the
efficient generation of the high-energy power-law tails that are
the primary focus of this paper, the astrophysical shocks of
interest generally have large enough Alfvénic Mach numbers to
neglect the effects of second-order acceleration. However, note
that for near-luminal shocks at slightly suprathermal energies,
particles are generally unable to convect upstream against the
downstream flow and are inexorably swept downstream. In this
energy regime, other mechanisms acting in the shock environs
such as second-order Fermi acceleration or electrostatic cross-
shock potentials may noticeably broaden/heat the downstream
distribution function. This can then enhance injection into
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the first-order acceleration process, and thereby affect the
normalization of the power-law tail that results, particularly
in cases of strongly inhibited injection. Treatment of stochastic
acceleration effects will be deferred to future work.

The simplest invocation of scattering is to isotropize the fluid
frame momentum over the surface of the sphere in momentum
space (Ellison et al. 1990a). This is LAS, and physically
corresponds to large magnetic disturbances that completely
disrupt trajectories of particles. To model moderate or even
smaller disturbances, each scattering event can be restricted
to a much smaller solid angle, i.e., can be isotropic on a
conical sector of a momentum sphere. The angular extent of
this spherical sector δθmax becomes an additional parameter for
the diffusion. Then multiple scattering events are required to
realize a full mean free path. This is the scattering construct that
is employed in this paper. The relationship between δθmax and
λ was originally developed in Ellison et al. (1990a), but is more
succinctly presented in Ellison & Double (2004) via

δθmax =
√

12πrg

λN
, (2)

where rg is the gyroradius and N is the number of times per gy-
roradius the particle is scattered. The limit of SAS corresponds
to N � 1, for which the increment δp in momentum in a scat-
tering satisfies |δp|/|p| ∼ δθmax. In practice, as will become
evident below, for relativistic shocks the SAS domain is real-
ized when the scattering angle satisfies δθmax � 1/Γ1, where

Γ1 = 1/

√
1 − u2

1x/c
2 is the bulk Lorentz factor of the upstream

fluid in the shock rest frame.
Cross-field diffusion emerges naturally from this scattering

mechanism since, at every scattering, the particle’s momentum
vector is shifted in the local fluid frame, with the resulting
effect that the gyrocenter of the particle is shifted randomly
by a distance of order rg sin θ in the plane orthogonal to the
local field. Transport perpendicular to the field is then governed
by a kinetic theory description, so that the ratio of the spatial
diffusion coefficients parallel (κ|| = λv/3) and perpendicular
(κ⊥) to the magnetic field is given by κ⊥/κ|| = 1/(1 + η2) (see
Forman et al. 1974; Ellison et al. 1995 for detailed expositions).
Hence, η couples directly to the amount of cross-field diffusion
and is a measure of the level of turbulence in the system, i.e.,
is an indicator of 〈δB/B〉. The quasi-isotropic diffusion case
of η = 1 constitutes the Bohm diffusion limit, presumably
corresponding to 〈δB/B〉 ≈ 1.

As will become clear in Sections 4.2 and 4.3, in oblique
relativistic shocks, the resulting energy spectrum is critically
dependent upon both η, due to the necessity of cross-field
diffusion, and the scattering angle δθmax, due to beaming effects,
producing a broad range of power-law indices. For SAS regimes,
δθmax < 1/Γ1, there is little variation in the power-law tails
when other parameters are held constant, since the scatter angle
is now less than the relativistic beaming angle, and the diffusion
process becomes insensitive to the scattering kernel. Except for
Section 4.4, SAS is deployed throughout this paper. Examples
of the differences between SAS and LAS in relativistic shocks
can be seen in Figure 2 of Stecker et al. (2007) and also in
Figure 12.

In between each of the N scatterings per mean free path,
the code calculates shock frame gyro-orbit trajectories using a
semianalytic solver rather than the more popular Bulirsch–Stoer
method (Stoer & Bulirsch 1980). Using the properties of the
magnetized fluid, the shock frame position as a function of time

is easily derived analytically. The particle is then moved along
this analytic trajectory until one of two conditions is met: (a) the
particle scatters or (b) the particle reaches the edge of a grid zone.
The solution for the time it takes a particle to reach the edge of a
grid zone must be performed numerically, since it involves roots
of a transcendental equation of motion in the shock frame—the
simulation employs a standard bisection technique for this
purpose. When a particle crosses a grid zone boundary, the local
fluid properties change, and the trajectory is recalculated and
the propagation continues. When distances between scatterings
are many gyro-radii, the semianalytic method can go from one
scattering to the next in one step, covering many gyro-orbits
in a single computational step. The Bulirsch–Stoer method
will always require at least several steps per gyro-orbit due
to the curvature of the trajectory. However, if particles scatter
many times in one gyroradius, the increased overhead of the
semianalytic method makes it slower than the Bulirsch–Stoer
method, but not unreasonably so.

Particles that do not immediately return to the shock may
isotropize in the downstream reference frame once they have
traveled, on average, one mean free path. At this juncture, an
analytical formula developed originally by Bell (1978) and later
shown to be applicable to relativistic shocks by Peacock (1981;
see also Jones & Ellison 1991) can be used to calculate the
probability Pr that a particle heading downstream through a
y–z plane at a particular distance x downstream will return
upstream of this plane:

Pr =
(

vf − u
vf + u

)2

. (3)

In the above equation, u is the local downstream flow speed
and vf is the speed of the particle in this fluid frame. Particles
that are deemed to fail to return are removed from the system.
For those ascertained to be returning, their vector velocity
components are also determined probabilistically. The particles
are isotropic in the local fluid frame and have constant energy
in the downstream frame of reference thanks to the elastic
scattering off magnetic turbulence. So, the probability of a
particle of a given fluid frame momentum returning with a
particular angle cosine with respect to the shock normal, μs ,
can be found for arbitrary values of the particle speed and
downstream flow speed. The details of this calculation and final
result can be found in the Appendix, specifically Equation (A7).
Employing this result, a simple accept–reject method (Garcia
2000, chap. 11) can be used to select a value for μs for
particles determined to have returned. This statistical decision
algorithm circumvents excessive computations of extensive
downstream diffusion that are irrelevant to the acceleration
process; accordingly, it speeds up the simulation dramatically.
Using the correct angular distribution of returning particles,
i.e., Equation (A7), is essential, guaranteeing that the complete
distribution function of particles anywhere upstream of the
probability of return plane is independent of the choice of x,
provided x > λ, and isotropy in the fluid frame is satisfied at x.

For simulation output, accounting of particles in distinct
momentum bins is documented. As a result of statistical losses
in the downstream region, when less than half of the particles
originally recorded in a given momentum bin are retained, the
remaining particles are “split” into two particles each with half
the “counting” value of the original. This technique of particle
splitting allows the simulation to maintain good statistics over
a large energy range. This extensive energy range is one of
the primary advantages that the Monte Carlo technique has
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over other types of simulations. Compared to hybrid plasma
simulations and PIC simulations, Monte Carlo simulations are
computationally inexpensive, allowing the simulation to be run
long enough for particles to be accelerated to very high energies,
well above that of the incoming upstream ballistic flow, in a
reasonable amount of time.

In the test-particle implementation employed here, the char-
acteristics of the shock and the functional form of the turbu-
lence are specified a priori. The test-particle approximation is
entirely appropriate unless there is a significant fraction of the
total energy present in the accelerated particles. Since the dis-
tribution of these particles is only known after the simulation
accelerates them, the shape of the shock cannot be adjusted to
account for their existence until after the simulation is run. For
non-relativistic shocks, Ellison & Eichler (1984) developed a
feedback loop technique where subsequent runs calculate the
modified hydrodynamic shock structure, based upon the accel-
erated particle distributions of the previous iterations; this non-
linear acceleration method is not employed here. Also, since
the choice of the scattering mechanism can affect both injection
and acceleration of particles, it can strongly impact nonlinear
modifications for relativistic shocks. The influence of different
scattering scenarios in such nonlinear acceleration systems will
be the subject of future work.

This implementation also does not retain accounting of the
amount of time the particle would have spent downstream of this
“return” plane. In the event that acceleration time information is
needed, a retrodictive approach described first in Jones (1978)
and later applied directly to a Monte Carlo simulation in Ellison
et al. (1990a) can be used. One important finding is that the
interplay between energy boosting and time dilation effects
leads only to modest changes (Baring 2002) in the acceleration
time at plane-parallel relativistic shocks compared with standard
non-relativistic shock formalism (Forman et al. 1974). The
consideration of particle acceleration times is beyond the scope
of the present work and will be deferred to a future investigation.

3. MAGNETOHYDRODYNAMIC JUMP CONDITIONS
FOR OBLIQUE RELATIVISTIC SHOCKS

In the case of relativistic shocks, the shock jump conditions
are considerably more difficult to solve than the non-relativistic
solutions presented in Decker (1988) due to the impact of length
contraction and time dilation effects on the structure of the
six conservation equations. There are different approaches to
solving the Rankine–Hugoniot jump conditions in relativistic
MHD discontinuities, surveyed in Double et al. (2004; see also
Gerbig & Schlickeiser 2011 for a recent exposition). Our ap-
proach here builds upon previous work by Ballard & Heavens
(1991) that formulates the Rankine–Hugoniot conditions in the
de Hoffmann–Teller frame (de Hoffmann & Teller 1950, here-
after HT) in a manageable form. The HT frame is a shock rest
frame in which there are no u × B drift electric fields. This
can be obtained from the local fluid frame by boosting along B,
but can also be obtained as a combination of two boosts along
the axes of the coordinate system to avoid a rotation of the co-
ordinate system. The system of equations is then transformed
from the HT frame into the normal incidence frame (NIF, in
which the upstream plasma flow is parallel to the shock nor-
mal or the x̂-direction), arriving at a system of three com-
paratively simple simultaneous equations in which the terms
that become imaginary in superluminal shocks are no longer
present. These three equations are solved numerically after
the Jüttner–Synge (J-S) equation of state (EOS) is invoked to

connect key thermodynamic quantities, such as pressure and
enthalpy, to the temperatures of the upstream and downstream
relativistic Maxwell–Boltzmann distributions. This method en-
compasses a broad range of shock conditions, specifically ranges
of sonic and Alfvénic Mach numbers, and transitions seamlessly
from subluminal to superluminal regimes. Our results are com-
pared directly with that of the work by Double et al. (2004),
highlighting similarities, and also differences that result from
a specific approximation to the downstream EOS employed in
that work.

Before embarking upon the construction and reduction of the
jump conditions, a brief summary of the subscript conventions
adopted here for the different frames of reference is given.
The “f” subscript will denote a quantity defined in the rest
frame of the upstream (subscript 1) or downstream (subscript 2)
plasma. HT frame variables will be subscripted with an “HT.”
To distinguish NIF frame quantities from those measured in the
fluid or HT frames, they will be denoted by an “S” subscript
for the shock frame. Additionally, ΘB will always refer to an
angle the magnetic field �B makes with the shock normal, and
θu will refer to the angle a plasma flow makes with the shock
normal. When the HT frame is found via a single boost along
the direction of the magnetic field, the field components are
identical in the local fluid and HT frames, often the “f” and
“HT” subscripts will be explicitly omitted for compactness of
notation, i.e., B1 ≡ B1f ≡ B1HT, etc.

The character of the solutions to this system of equations
is controlled by two key parameters, basically the relative
scaling of the upstream thermal energy or pressure P1, and
the fluid frame magnetic field energy density B2

1f/(8π ) to the

upstream ram pressure ρ1u
2
1x . Here, u1x = β1xSc is the velocity

component of the upstream fluid normal to the shock, in the NIF.
Accordingly, we define these via the sonic (MS) and Alfvénic
(MA) Mach numbers:

M2
S = ρ1u

2
1x

γg1P1
, M2

A = 4πρ1u
2
1x

B2
1

. (4)

These are conventional definitions for non-relativistic shocks,
and their extension to oblique discontinuities and relativistic
systems does not lead to unique choices. For example, subjec-
tivity is involved in deciding between u1x and u1, and similarly
for B1xf versus B1f. Hence, we adopt the above definitions (as
did Double et al. 2004), for which γg1 is the upstream adiabatic
gas index, discussed further in Section 3.3, so that γg1P1/ρ1 is
the square of the upstream sound speed.

3.1. The de Hoffmann–Teller Frame Solution

For subluminal flows, where β1x/ cos ΘBf1 < 1, the HT frame
is an obvious choice in which the shock jump conditions can be
written, since therein the jump conditions reduce to a simple
form because the fluid flows along the magnetic field lines
and there is no �u × �B electric field. For the time being, we
will restrict considerations to these types of shocks and later
trivially generalize the results to include superluminal shocks.
Four of the shock jump equations are defined by the conservation
of the mass, momentum (two components), and energy fluxes
across the shock interface are conserved. The remaining two
derive from the electromagnetic field constraints ∇· �B = 0 and
∇ × �E = �0, the latter of which is trivial in the HT frame, because
�E = �0 identically everywhere.

The form of these jump conditions in the HT frame has
been derived previously by Ballard & Heavens (1991). Those

5
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equations are reproduced below with the notable exception that
the subscript “y” used in their paper has been replaced with
the subscript “z” to avoid confusion when comparing to other
works. Here, the x-direction defines the normal to the shock
plane in the HT frame, the magnetic field everywhere lies in the
x–z plane, and the y-axis defines the direction of �u × �B drift
velocities. All quantities save Γ, �β, and �B are defined in the
frame where the plasma is stationary hereafter referred to as the
“local fluid frame” or “upstream/downstream rest frame.” For
the present, those three quantities are defined in the HT frame.
Setting c = 1, as is done throughout this paper, conservation of
mass or particle number flux along the shock normal gives

Γ1β1x ρ1 = Γ2β2x ρ2, (5)

where ρi denotes mass density, and subscripts 1 and 2 denote
upstream and downstream quantities (labeled by i in general).
Throughout this subsection, HT subscripts will be omitted, but
implied. Also, β is the flow speed written as a fraction of the
speed of light, and Γ = 1/

√
1 − β2

x − β2
z is the Lorentz factor

associated with the flow speed β. Conservation of the x- and
z-components of momentum flux gives, respectively,

Γ2
1β

2
1x w1 + P1 +

B2
1z

8π
= Γ2

2β
2
2x w2 + P2 +

B2
2z

8π
(6)

Γ2
1β1xβ1z w1 − B1xB1z

4π
= Γ2

2β2xβ2z w2 − B2xB2z

4π
.

This corrects an obvious typographical error in Equation (26) of
Ballard & Heavens (1991) in their terms involving the enthalpies
wi = ei + Pi . The internal energy ei , which includes the rest
mass energy density, can be related to Pi and ρi through an
EOS, as is addressed in Section 3.3 below. In the HT frame,
conservation of energy flux is simply

Γ2
1β1x w1 = Γ2

2β2x w2. (7)

Here, the magnetic field contributions to the stress-energy tensor
(see, for example, Equation (21) of Double et al. 2004) cancel
to zero precisely because of the pair of equations

β1z

β1x
= B1z

B1x
≡ tan ΘBHT1,

β2z

β2x
= B2z

B2x
≡ tan ΘBHT2,

(8)
that defines the specific choice of the HT frame. The absence
of such magnetic terms in the energy flux, combined with the
compact nature of the momentum flux conditions, underlines
the attractive simplicity of adopting the HT frame (compare, for
example, with the electromagnetic stress tensor contributions to
the momentum fluxes in Equations (25) and (26) of Double et al.
2004). The trivial ∇× �E = �0 can be eliminated, effectively being
replaced by the HT frame definitions in Equation (8). Finally, the
Maxwell equation ∇· �B = �0 defining the absence of magnetic
monopoles gives

B1x = B2x, (9)

unaltered by relativistic generalization because it is intrinsically
relativistic.

Following Ballard and Heavens, Equations (8) and (9) can
be used to eliminate the z-components B1z and B2z, and the
downstream x-component B2x . Their solutions were defined
in terms of two upstream parameters A = Γ1w1/ρ1 and
C = B2

1x/[4πρ1γg1β1x]. Here, as an alternative listing, we

observe that the ratio C/A appears repeatedly in the resulting
subset of processed equations, so we define this ratio via

ψ = B2
1x

4πΓ2
1β1xw1

≡ cos2 ΘBHT1

M2
A

β1xρ1

Γ2
1w1

, (10)

which, as a relativistically modified ratio of magnetic to thermal
(plus rest mass) energy density, is essentially an adaptation of the
inverse of the upstream plasma beta parameter βP = 8πP1/B

2
1

to oblique, relativistic MHD flows. The second prescription for
ψ uses the Alfvénic Mach number definition in Equation (4),
together with identity of total magnetic fields in the fluid and
HT frames, i.e., B1HT = B1f . The energy flux equation is
most easily manipulated, dividing Equation (7) by the mass
conservation in Equation (5):

Γ1w1
ρ1

= Γ2w2
ρ2

≡ w2

ρ2

√
1 − β2

2x − β2
2z

. (11)

This is just the constant A employed by Ballard & Heavens
(1991). Next, dividing the z-component of momentum conser-
vation in Equation (6) by Equation (7) solves for β2z:

β2z = β2x
β1z

β1x

(
β1x − ψ
β2x − ψ

)
. (12)

This can be inserted into Equation (11), eliminating β2z. Observe
that viable jump conditions are only realizable when ψ < β2x .
This is equivalent to requiring that the total Mach number
be greater than unity. Finally, the x-component of momentum
conservation in Equation (6) can be divided by Equation (7),
producing

β1x + P1

Γ2
1β1xw1

+ ψ
2

(
β1z

β1x

)2

= β2x + P2

Γ2
1β1xw1

+ ψ
2

(
β1z

β1x

)2 (
β1x − ψ
β2x − ψ

)2
. (13)

Here, expressing the ratio β1z/β1x = tan ΘBHT1 in terms of the
de Hoffmann–Teller field angle ΘBHT1, a constant for the shock
structure, yields an alternative algebraic form. Observe also that
the second term on the right-hand side is proportional to P2/w2
multiplied by w2/w1; the second factor can be expressed using
Equation (11), and the first is a function of the downstream
temperature T2 through the EOS, to be defined in Section 3.3.

Equation (11), with Equation (12) inserted, and Equation (13)
constitute a system of two simultaneous equations with un-
knowns P2, w2, and β2x . However, w2 will be related in
Section 3.3 to P2 via an EOS, rendering the system numeri-
cally solvable. This set of equations is simple and elegant, being
virtually as compact as the system for jump conditions at rela-
tivistic, plane-parallel, hydrodynamic shocks (e.g., Blandford &
McKee 1976). However, their validity is technically restricted to
subluminal regimes where the HT frame formally exists. There-
fore, to realize broader applicability, it is necessary to transform
them to the normal incidence shock rest frame, and thereafter
explore their numerical solution.

3.2. Transforming to the Normal Incidence Shock Frame

In subluminal cases where the HT frame exists, one can define
a boost velocity βt in the ẑ-direction that transforms from the
NIF into the HT frame. The two key input quantities in this
regard are β1xS, the shock speed in the upstream fluid frame, and
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Figure 1. Geometry in the normal incidence (NIF; left panel) and de Hoffmann–Teller (HT; right panel) shock rest frames. Upstream flow speeds in the two reference
frames are related by u1HT ≡ β1HTc = u1/ cos ΘBf1. Upstream and downstream quantities are denoted by subscripts 1 and 2, respectively. In general, the NIF field
angle ΘBs1 differs from the fluid frame/HT frame value ΘBf1 ≡ ΘBHT1, and likewise for the downstream angles. Also, in cases where the HT frame is obtained by
boosting along the field fluid frame direction, the shock plane in the HT frame is rotated from that in the NIF due to relativistic aberration effects. For the two-step
fluid-to-HT frame transformation protocol adopted here, the shock planes in the NIF and HT frames are coincident, i.e., no rotation is involved.

(A color version of this figure is available in the online journal.)

ΘBf1, the angle between the shock velocity and the magnetic
field vector in the upstream fluid frame. A third parameter
that is a derivative of these two is the HT frame field angle
ΘBHT1. As discussed by Kirk & Heavens (1989), there is a
lack of uniqueness in defining field and flow angles in the de
Hoffmann–Teller frame, up to rotations. Here, we will adopt the
following sequence of boosts to effect Lorentz transformation to
the HT frame from the local fluid frame: this will be performed
by first boosting by βxSx̂ along the shock normal to the NIF,
and then boosting by βt ẑ in the shock plane to arrive at the
HT frame. The planes of the shock in both the NIF and
HT frames are thereby coincident. This yields a convenient
definition of ΘBHT1 (and ΘBHT2) and is the preferred protocol
for our simulation due to the enhanced simplicity it permits for
modeling particle convection and gyration in the shock layer.
However, it should be emphasized that a single boost along the
field vector �B from the fluid-to-HT frames yields an aberration
of the shock plane: it is rotated relative to the NIF shock plane,
as described in Ballard & Heavens (1991), and is illustrated in
Figure 1. Such a rotation leads to a need to account for it when
defining field and flow angles with respect to the shock plane,
an unnecessary complication. The two-step fluid-to-HT frame
transformation approach adopted here was also the preference
of Kirk & Heavens (1989).

The flow velocities in the NIF and HT frames of reference
are related via standard Lorentz transformations

βxHT = βxS

Γt (1 + βtβzS)
,

βzHT = βzS + βt

(1 + βtβzS)
. (14)

These relations can be applied to both the upstream and
downstream sides of the shock; their subscripts 1, 2 have
been suppressed here for the sake of compactness. In the
upstream region, where the definition of the NIF requires that
βzS = 0, these equations distill down to βxHT = βxS/Γt and

βzHT = βt , respectively. Subsequently, taking the ratio of these
two upstream equations, one can express the boost speed βt and
Lorentz factor Γt = (1 − β2

t )−1/2 in terms of β1xS and ΘBHT1:

Γtβt = β1xS tan ΘBHT1,
(15)

βt = β1xS tan ΘBHT1√
1 + β2

1xS tan2 ΘBHT1

.

Since, for flux conserving jump conditions in MHD discon-
tinuities, the HT frame is identical for both upstream and
downstream locations, it can be inferred that the identities in
Equation (15) can also be written in terms of downstream
quantities, merely via the substitutions β1xS → β2xS and
ΘBHT1 → ΘBHT2.

The relationship between the magnetic field components in
the two frames of reference is similarly routinely derived via
standard transformation equations for electromagnetic fields:

BxHT = BxS
Γt

, BzHT = BzS, (16)

noting that the equation for BxHT is only one part of the full
transformation equations, which also transform the NIF drift
electric field in the ŷ-direction exactly to zero in the HT frame.
The ratios of the equations in Equation (16) then simply yield

tan ΘBHT1 = Γt tan ΘBs1, tan ΘBHT2 = Γt tan ΘBs2 (17)

for the upstream and downstream HT frame field angles to the
shock normal. These are recognizable as aberration formulae
for the electromagnetic/photon field, with the NIF frame field
obliquity always being less than that in the de Hoffmann–Teller
frame. Combining this result with Equation (15) yields the
relationship

βt = β1xS tan ΘBs1, (18)

removing a reference to the HT frame from Equation (14). The
subluminal condition for the existence of the HT frame, written
in terms of NIF quantities, is then β1xS tan ΘBs1 < 1.

7



The Astrophysical Journal, 745:63 (23pp), 2012 January 20 Summerlin & Baring

To close this sequence of boost algebra, one needs the relation
between field angles in the fluid frames and the NIF. These are
derived in the same manner as Equation (17), yielding

tan ΘBs1 = Γ1S tan ΘBf1, tan ΘBs2 = Γ2S tan ΘBf2,
(19)

where Γ1S = 1/
√

1 − β2
1xS and Γ2S = 1/

√
1 − β2

2xS − β2
2zS .

As a result, Equation (18) can be rewritten using tan ΘBHT1 =
Γ1SΓt tan ΘBf1 to yield a boost speed expressed entirely in terms
of input quantities:

βt = Γ1Sβ1xS tan ΘBf1. (20)

This then routinely rearranges so that the subluminal βt < 1
condition becomes the familiar β1xS/ cos ΘBf1 < 1.

By replacing the HT frame quantities in Equations (11), (12),
and (13) with their shock frame equivalents via Equations (14),
(17), and (18), the Rankine–Hugoniot relations then become a
system of three equations with unknowns P2, w2, β2xS, and β2zS
that possesses a non-singular mathematical character in the NIF
frame at the luminal interface β1xS/ cos ΘBf1 = 1. The system
now retains only information about upstream and downstream
fluid frame field angles and thermodynamic quantities, and the
transformation velocities required to get to the NIF frame from
the fluid frames. It must be emphasized that an attractive char-
acteristic of this methodology is that significant cancellations
remove any terms that become imaginary or unphysical in a
superluminal shock, revealing a smooth mathematical transi-
tion of solutions from subluminal to superluminal regimes. The
specification of an EOS that relates P2 to w2 closes this system,
rendering it amenable to numerical solution.

3.3. The Equation of State

Assuming there are no shear stresses and axial symmetry
about the magnetic field, the pressure tensor is diagonal. One
can then form an isotropic pressure P = (P‖+2P⊥)/3, where P‖
and P⊥ denote the pressure components, respectively, parallel
to and perpendicular to the mean magnetic field. Then the
“adiabatic” gas index γg , the approximate ratio of specific heats,
can parameterize the EOS via the adiabatic expansion law for
an ideal gas:

PV γg = constant. (21)

Here, γg ranges between 5/3 for a non-relativistic, compressible
gas, and 4/3 for an ultrarelativistic gas. With the specification
of this index, the internal (thermal) energy density P/(γg −1) is
related to the pressure, so that the total internal energy density
plus the rest mass energy density can be written as

e = P
γg − 1 + ρ, (22)

where, again, c = 1 has been assumed, as will be done
throughout the rest of this work. Reintroducing the subscripts
i = 1, 2 to label upstream and downstream fluid frames, this
leads to the forms for the enthalpies that are deployed in the
Rankine–Hugoniot relations:

wi = ei + Pi = γgiPi

γgi − 1 + ρi. (23)

The particular values of γgi can be expressed as a moment
of the fluid frame particle momentum distributions upstream
and downstream, and so can apply to both thermal and non-
thermal populations. While they are simply prescribed in the

non-relativistic and ultrarelativistic asymptotic cases, a more
precise formulation is required to treat the mildly relativistic
domain.

Here, it is assumed that the background plasma possesses
a relativistic thermal Maxwell–Boltzmann distribution that de-
fines the J-S EOS (e.g., Synge 1957). Then, the temperature T
can be the sole thermodynamic parameter, and all other ther-
modynamic quantities can be prescribed in terms of it. The
EOS depends on the number of species, their masses, and the
state of thermal equilibrium between the various species, i.e.,
the temperature equilibration or otherwise. For simplicity, a
single component plasma is adopted here, appropriate for an
electron–positron pair plasma as might be encountered in rel-
ativistic jets in extragalactic sources such as GRBs or blazars.
Equations of states for electron–ion and other mixed species
gases are addressed in Ballard & Heavens (1991). For a pair
plasma, the enthalpy can be written in terms of modified Bessel
functions:

wi

ρi

= R(τi) + τi, R(τ ) = 3τ +
K1(1/τ )

K2(1/τ )
, (24)

where the Ki are modified Bessel functions of the second kind
(e.g., see, pp. 708–715 of Arfken & Weber 2001) and

τi = kTi

me
= Pi

ρi
, i = 1, 2, (25)

is the dimensionless pair temperature (in units of c = 1).
This EOS can treat arbitrary sonic Mach numbers, in distinct
contrast to the approximation employed by Double et al. (2004),
discussed below, that uses kinematics in high MS shocks to
specify the downstream pressure.

A modest disadvantage of the J-S EOS lies in the complexity
of the Bessel function; it is not conducive to either analytical
or numerical solutions of Equations (11)–(13). However, noting
the asymptotic behavior of Equation (24), namely, R(τ ) → 3τ
as τ → ∞, and R(τ ) → 1 + 3τ/2 as τ → 0, a remarkably
good approximation for the function R(τ ) is given by a Padé
approximation of third order:

R(τ ) ≈ 2 + 7τ + 12τ 2 + 6τ 3

2 + 4τ + 2τ 2 . (26)

This approximation is accurate to 0.25% over the entire domain
and is slightly less algebraically complicated than the approx-
imation in Equation (38) of Double et al. (2004). By inverting
Equation (23) to obtain γgi , and using Equations (24) and (26),
one can find γgi as a function of τi :

γgi = 1 + τi

R(τi) − 1 ≈ 5 + 14τi + 8τ 2
i

3 + 10τi + 6τ 2
i

. (27)

Inserting the approximation from Equation (26) in Equation (24)
provides wi/ρi as a function of only τi , eliminating the fourth
unknown quantity in Equations (11)–(13); this is the protocol
adopted for the numerical solution of the Rankine–Hugoniot
relations.

3.4. Numerical Solutions for the Jump Conditions

The resulting three equations were solved numerically us-
ing Mathematica. For the case of a plane-parallel shock, we
compared directly with solutions displayed in Figure 1(b) of
Heavens & Drury (1988) where downstream flow speeds are

8
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Figure 2. Rankine–Hugoniot relations for r, the compression ratio, ΘBf2, the angle the downstream fluid frame magnetic field makes with the shock normal, and θu2,
the angle the downstream flow makes with the shock normal, as functions of the upstream NIF rapidity of the shock, Γ1β1 ≡ Γ1Sβ1xS. Solutions are displayed for
various values of the Alfvénic (MA) and sonic (MS) Mach numbers, with the angle the upstream magnetic field makes with the shock normal, ΘBf1, set to 5◦. Solid
lines are new results from this work using the Jüttner–Synge (J-S) equation of state and Padé approximation described by Equation (26). Dotted curves represent
results from the previous work of Double et al. (2004).

(A color version of this figure is available in the online journal.)

found as a function of upstream flow speeds for parallel
(ΘBf1 = 0◦) electron–positron shocks at various temperatures
using the J-S EOS just as we do. We find no observable differ-
ences between our results and theirs for plane-parallel shocks.
For the case of oblique shocks, representative solutions, as
functions of the upstream fluid rapidity Γ1β1 ≡ Γ1Sβ1xS, are
displayed in Figure 2 (quasi-parallel case) and Figure 3 (quasi-
perpendicular shock). The plots exhibit the velocity compres-
sion ratio r = β1xS/β2xS, and the downstream fluid frame field
and fluid NIF velocity angles to the shock normal. Observe
that hereafter, the subscript “S” will be omitted when refer-
ring to NIF values for βi and Γi . For the sake of comparison,
these figures also display equivalent plots for the same sonic
and Alfvénic Mach numbers (as defined in Equation (4)) and
shock obliquities, taken from Double et al. (2004). It is evident

that the solutions here closely match those of Double et al. in
both the non-relativistic and ultrarelativistic regimes. The jump
conditions reveal several characteristics, such as the declining
compression ratio with declining Mach numbers of either vari-
ety, and small fluid deflections at the shock in the ultrarelativistic
regime. There are noticeable differences between our solutions
and those of Double et al. (2004) in the trans-relativistic domain,
but mainly for just the compression ratio.

These differences in the two works, especially apparent
for low sonic Mach numbers, are the result of two different
assumptions regarding the EOS both upstream and downstream
of the shock. In this work, the effective γg1 for a given flow
speed and Mach number can be determined using Equations (27)
and (4). For MS = 100, 60, and 6, the upstream values of
γg1 stay within 1% of the nominal non-relativistic value of

9
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Figure 3. Solutions to the Rankine–Hugoniot relations for r, ΘBf2, and θu2, as in Figure 2. However, here, the upstream field obliquity is ΘBf1 = 85◦, constituting
quasi-perpendicular shocks. Values of the Alfvénic (MA) and sonic (MS) Mach numbers are as labeled. Again, solid lines are new results from this work using the
Jüttner-Synge equation of state, while the dotted curves represent the solutions of Double et al. (2004).

(A color version of this figure is available in the online journal.)

5/3. However, in the MS = 2.6 case, we find γg1 ≈ 1.6
for large values of Γ1β1. In their work, Double et al. (2004)
make an approximation assuming a cold upstream flow (i.e., a
large sonic Mach number with upstream γg1 = 5/3), resulting
in the following equation relating the downstream γg2 to the
downstream flow speed rather than to the downstream pressure:

γg2 = Γrelβ
2
rel

3(Γrel − 1) + 1 ≡ 1 + 4Γrel
3Γrel

, (28)

where

βrel = β1 − β2
1 − β1β2

, Γrel � (
1 − β2

rel

)−1/2
. (29)

Note that the slight angle between the upstream and downstream
NIF flow velocity vectors spawns the approximation for Γrel; the
details and justification of this approximation can be found in

Section 3.1 of their paper. Assuming that γg1 = 5/3 then results
in a small ∼4% discrepancy in γg2 relative to results from our
J-S EOS, in the lowest Mach number cases. From the plots,
clearly the numerical evaluations of the compression ratio are
sensitive to the choice of the form of the downstream EOS,
i.e., γg2.

In the limit that Γ1β1 approaches infinity, the details of the
EOS become irrelevant, and a simple analytic solution can be
found to approximate the results of both approaches. Defining

q = M2
A

sin2 ΘBf1

w1
ρ1

=
(M2

S(γg1 − 1) + 1

M2
S(γg1 − 1)

)
M2

A

sin2 ΘBf1
,

(30)
one can write the asymptotic limit for the compression ratio as

r ≈
√

4 + 4q + q2

4 − 1 − q
2 , Γ1 � 1, (31)
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which corresponds to Equation (47) of Double et al. (2004). The
downstream fluid deflection and magnetic fields angles possess
corresponding asymptotic forms for Γ1 � 1 of

tan ΘBf2 ≈ Γ1 tan ΘBf1

√
r2 − 1,

(32)
tan θu2S ≈ 3 − r

2Γ1 tan ΘBf1
.

When combined with Equation (9), the asymptotic equation
for tan ΘBf2 becomes Equation (40) of Double et al. (2004).
Clearly, fluid deflection is very small for ultrarelativistic flows,
the hallmark of the extreme inertia of the upstream fluid. One
can see that, for the range of sonic Mach numbers explored here,
the critical parameter q is a comparatively weak function of the
sonic Mach number inducing less than a 50% change in q as
the sonic Mach number varies from 2.6 to 60. In these cases,
the Alfvénic Mach number and the upstream magnetic field
angle ΘBf1 are more important for determining the asymptotic
behavior of the jump conditions. It is also evident that since
r ≈ 3 when Γ1 � 1 and q � 1, the downstream fluid deflection
angle θu2S in the shock frame is extremely small.

4. RESULTS

The simulation we have developed is capable of handling
both subluminal and superluminal shocks of arbitrary obliquity.
It can also simulate the effects of SAS or LAS with varying
levels of cross-field diffusion controlled through the η parameter.
These broad capabilities encapsulate a range of properties that
are relevant to astrophysical shock environs such as those in
extragalactic jets in GRBs and blazars. Moreover, they allow us
to examine and expand upon a variety of previous investigations,
including the semianalytic studies of Kirk et al. (2000) and Kirk
& Heavens (1989) as well as other simulations, such as Ellison &
Double (2004) and Niemiec & Ostrowski (2004). The following
subsections highlight our key results in distinct parameter
regimes: parallel shocks, oblique subluminal shocks, oblique
superluminal shocks, and finally, LAS scenarios. Each of these
sections provide physical scenarios where the power-law index
is substantially different from the “canonical” σ = −2.23
(where dn/dp = p−σ ) result, which we demonstrate only holds
at the shock location in parallel, ultrarelativistic (Γ1 � 1) shocks
with an SAS scenario, concurring with previous work. Altering
this specific scenario yields power-law indices that depend on
the microphysics (LAS versus SAS), shock obliquity (ΘBf1),
and turbulence parameter (η) as well as the location relative to
the shock front. A brief interpretation of these results in the
context of blazars is offered in Section 5.

4.1. Parallel Shocks

Parallel shocks possess the important simplification that
cross-field diffusion is immaterial. Accordingly, the model
parameter η does not impact the spectra at the shock and serves
only to define the diffusive scale along the shock normal. For the
case of relativistic parallel shocks, the canonical result σ = 2.23
power-law spectrum was highlighted in the semianalytic study
of Kirk et al. (2000), but had been found previously by Monte
Carlo simulations (Bednarz & Ostrowski 1998; Baring 1999)
and confirmed also by Ellison & Double (2004). However,
exhibited results from these studies were spatially restricted to
the immediate vicinity of the shock. The simulation presented
here provides the opportunity to expand upon these studies and
explore the spatial evolution of the particle distribution as well.

The semianalytical work of Kirk et al. (2000) provides the best
basis for benchmarking simulated distributions at the shock
discontinuity. Accordingly, in this study, shock parameters are
chosen in order to facilitate this comparison. The eigenfunction
method of Kirk et al. (2000) built upon the earlier seminal
work of Kirk & Schneider (1987) as an approach to solving
the diffusion-convection equation in the neighborhood of a
relativistic shock. Kirk et al. used this technique to generate
power-law indexes and angular distributions for accelerated
particles at a strong, weakly magnetized plane-parallel shock
in the SAS limit. In this case, accelerated particles are defined
as particles whose Lorentz factor far exceeds that of the shock,
so that distribution characteristics in the injection domain are
not traced. However, the injection process is modeled in Monte
Carlo simulation approaches, and we show results probing this
domain in later sections.

Figure 4 displays shock compression ratios and our Monte
Carlo results for spectral indices and angular distributions at
the shock in the NIF, for parallel shocks spanning a range of
rapidities Γ1β1. Moreover, it exhibits corresponding results from
Kirk et al. (2000) and clearly illustrates that we find excellent
agreement between Monte Carlo simulation results and Figure 3
of their work. To facilitate comparison, we adopted the J-S EOS
here, though we note that details of the shock parameters for
Figure 3 of Kirk et al. (2000) were not explicitly stated in their
paper. This is, effectively, a case approximating that of the red
curve in Figure 2 here, save that ΘBf1 = 0◦. This minor change
actually simplifies the Rankine–Hugoniot solution and is shown
as the solid black curve in the left panel of Figure 4. The spectral
index σ is a monotonically increasing function of Γ1β1, as in
Kirk et al. (2000) and Baring (2004), reflecting the increased
energization per shock crossing cycle that competes against
the influence of a declining compression ratio. The angular
distributions in the right panel of the figure closely match those
from Figure 3 of Kirk et al. (2000), all measured at the shock
discontinuity. In this panel, 0 < μs < 1 cases are for particles
heading downstream, and −1 < μs < 0 are charges moving
upstream. The distributions exhibit an increase in convective
beaming downstream as the upstream flow speed increases.
Such distributions were obtained as angle-dependent fluxes, and
then divided through by the flux weighting factor βμs before
normalization. This introduces the apparent statistical noise in
the neighborhood of μs = 0.

To delve deeper into the anisotropies incurred in relativis-
tic shocks, in Figure 5 we examine the Γ1β1 = 10 case in
more detail, extending the angular distribution illustrations to
locations upstream (left panel) and downstream (right panel)
of the shock front. Again the distributions correspond to high-
energy particles with rapidity, γβ � Γ1β1. In each panel, the
black histogram is the distribution function at the shock, ex-
hibited in Figure 4. The origin of the shape of the angular dis-
tributions can be understood qualitatively. In non-relativistic
shock scenarios, high-energy particles of speeds far in excess
of that of the shock realize isotropy in all relevant frames of
reference. However, in relativistic shocks, even particles trav-
eling very close to the speed of light can no longer be con-
sidered isotropic in all relevant frames and at all positions.
Consider a relativistic particle returning to the upstream side
of the shock from the downstream side. The upstream fluid
frame velocity vector of this particle is initially pointed up-
stream. As the trajectory is perturbed via SAS seeded by field
turbulence, the velocity vector in the upstream fluid frame per-
forms a random walk. Because of relativistic beaming effects,
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Figure 4. Left panel: the Rankine–Hugoniot MHD compression ratio r and spectral indices σ for non-thermal particle distributions, as functions of the shock rapidity
Γ1β1, for plane-parallel, ΘBf1 = 0◦, shocks. The compression ratio is computed according to the protocols of Section 3. The points for r and σ correspond to select
shock speeds with simulation data; most of these possess angular distributions illustrated in the right panel. The simulation runs were restricted to the SAS regime,
for which the dashed curve corresponds to the low-magnetization semianalytic determinations of σ in Figure 4 of Kirk et al. (2000, labeled KGGA00). Right panel:
NIF frame angular distribution functions, normalized to unity, for parallel (ΘBf1 = 0◦), relativistic shocks with bulk rapidities Γ1β1 as labeled, and compression ratios
r = 3.995, 3.905, 3.714, 3.414, and 3.04, from lowest to highest speed (see points in left panel). Distributions were measured at the shock (x = 0) and sampled only
high-energy particles with rapidity γβ � Γ1β1 in each case. The simulation results are the histograms, acquired for the small angle scattering (SAS) case, and the
smooth curves are the semianalytic solutions that Kirk et al. (2000) obtained (see their Figure 3) to the diffusion-convection equation in the SAS limit.

(A color version of this figure is available in the online journal.)

Figure 5. Normalized NIF frame angular distribution functions for high-energy particles with rapidity, γβ � Γ1β1, upstream (left panel) and downstream (right
panel) of the shock at various distances. The simulation run was for a parallel (ΘBf1 = 0◦), ultrarelativistic shock with Γ1β1 = 10 and compression ratio r = 3.04,
and diffusion in the SAS limit. Left panel: the black histogram is the distribution function at the shock and can be compared directly to the dotted line, which is an
analytic result from Equation (23) of Kirk et al. (2000). The other four distribution functions are taken at increasingly large distances upstream of the shock. In units
of Γ1β1mp/qB, the cyan curve is at x = −20, the blue curve at x = −80, the green curve at x = −320, and the red curve at x = −1280. Distribution functions
determined at larger distances upstream suffer from poor statistics, since few particles are able to diffuse so far upstream against the relativistic flow. Right panel:
as in the left panel, the black histogram is the distribution function at the shock, with the other histograms now corresponding to x = 400 (cyan), x = 1600 (blue),
x = 6400 (green), and x = 25600 (red). The dashed line represents an isotropic distribution in the downstream fluid frame, as viewed by an observer in the NIF frame
where the shock is stationary.

(A color version of this figure is available in the online journal.)

once the particle’s path is perturbed by the small angle θ > 1/Γ1
in the upstream fluid frame, the shock frame x-component of
the velocity (or angle cosine μs) becomes positive, sweeping the
particle back to the shock before it has the chance to isotropize
in the upstream fluid frame. Accordingly, the parameter space
around μs = 1 is underpopulated (actually exponentially sup-
pressed) because the upstreaming particles have not had enough
time to diffuse from μs < 0 to μs � 0.9 before they are
convected through the shock and downstream. This feature is
critical to the hyper-efficient reflection in oblique relativistic

shocks discussed in Section 4.2. Note that at various non-zero
obliquities, similar NIF frame angular distributions are elicited
in the simulation at the shock, but are not shown.

It is interesting to note that, as the particle detection plane
is moved upstream, the domain of population suppression near
μs = 1 expands to lower μs . This is because particles that have
angle cosines closer to μs ∼ −1 are more likely to penetrate fur-
ther upstream, so that when diffusing outside the Lorentz cone,
they are less likely to populate near μs ∼ 1. This skews the dis-
tribution progressively toward more negative μs . Additionally,
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the probability of particles reaching a position x upstream expo-
nentially declines with |x| on diffusive length scales (e.g., see,
Lee 1983; Summerlin & Baring 2006 for illustrations of this
in non-relativistic, heliospheric shock contexts). Accordingly,
distribution functions taken at larger distances upstream suffer
from poor statistics. Thus, the upstream distribution functions
exhibited in the left panel of Figure 5 are normalized to have the
same area for display purposes.

The evolution of the distribution function downstream of the
shock is shown in the right-hand panel of Figure 5, ranging
from the distribution found at the shock (black histogram) to
an isotropic distribution in the downstream plasma frame (red
histogram). As the particles move downstream, the relativistic
beaming that biases the distribution to higher average values
of μs is progressively enhanced, and they eventually isotropize
in the downstream fluid frame (the red histogram in the right
panel). The dashed line in that panel is the angular (density)
distribution function in the shock frame, dNs/dμs , for particles
that are isotropic in the fluid frame with a power-law distribution
dNf /dpf ≡ 4πp2

f f (�r, pf ) ∝ p−σ
f . Here, f (�r, pf ) is the

fluid frame phase space distribution function, which is Lorentz
invariant. Hence, in the shock rest frame, the angular distribution
satisfies dNs/dμs ∝ p2

s p
−(σ+2)
f for a fixed choice of ps , which

is imposed on this example by truncating the NIF distribution
at a lower limit of ps = p0. For ultrarelativistic particles,
the relationship between ps and pf is given simply by the
photon aberration formula pf = psΓ(1 − βμs). Accordingly,
the angular distribution in the NIF for isotropy in the fluid frame
scales as dNs/dμs ∝ (1−βμs)−(σ+2). This is what is illustrated
in Figure 5, which for the Γ1 � 1 case reduces to that for values
β ≈ 1/3 downstream and σ = 2.21.

This evolution of the anisotropy has consequences for the
observed power-law index downstream of the shock. Because
the average value of μs for the returning particles is lower than
it would be for particles that are isotropized in the downstream
fluid frame, the average bulk flow speed of the accelerated
particles is lower than u2x . As the angular distribution function
diffusively evolves toward isotropy in the downstream fluid
frame at larger x, the average velocity of the particles also
increases, asymptotically approaching the higher bulk velocity
of the downstream thermal particles. This necessarily reduces
the density of the high-energy particles by conservation of
particle number flux. The scale length for the evolution of the
distribution function is approximately the particle mean free
path. Thus, higher energy particles with typically longer mean
free paths isotropize farther downstream than do particles of
lower energy. Accordingly, the spectral shape of the distribution
downstream of the shock evolves, illustrated in Figure 6, in a
manner that correlates with the spatial changes in the angular
distribution.

The black curve in Figure 6 displays the distribution function
at the shock. However, just downstream (cyan curve), the low-
energy particles have isotropized, thereby increasing their bulk
flow speed and lowering their density, to conserve particle
number flux. Higher energy particles in this curve have not
yet fully isotropized and possess slightly slower bulk speeds
and thus, higher densities. So, if one is measuring distributions
somewhat downstream of a relativistic shock, the observed
power law will be harder than the canonical σ = −2.23 result
realized exactly at x = 0. At large distances downstream of
the shock, accelerated particles of all rapidities far in excess of
Γ2β2x acquire the same beamed, isotropic distribution shown in
the right panel of Figure 5, so that their cumulative density

Figure 6. Accelerated particle distribution functions at positions upstream and
downstream of the shock. The positions and color coding corresponding to
Figure 5, with the histograms that fall sharply with decreasing momentum
corresponding to the upstream positions, and the histograms that make only
a small adjustment from the distribution function at the shock corresponding
to downstream positions. To clearly illustrate the differences between these
distribution functions, the differential density distribution dN/dp has been
multiplied by p2.21 so as to generate zero power-law slope at the shock. The
paucity of low-energy particles at the upstream positions is due to their limited
contraflow mobility, and is seen in non-relativistic shocks as the “convective
peel-off” effect described in Summerlin & Baring (2006), see the text for a
discussion. The spectral variations downstream of the shock are a result of
energy-dependent density compression and are addressed in the text.

(A color version of this figure is available in the online journal.)

adjustments during downstream diffusion are identical, and
the power-law index returns to that realized at the shock.
This variation of the power-law index with the position of a
downstream observer relative to the relativistic shock represents
a fundamental shift from non-relativistic shocks, where the
distribution function is isotropic in all relevant reference frames,
and the spectral index is virtually independent of position when
downstream of the shock. To our knowledge, this is the first
time this effect in relativistic shocks has been highlighted in the
literature.

4.2. Oblique, Subluminal Shocks

While small shifts in the power-law index can occur based
on observation location and energy range in parallel shocks, the
introduction of non-zero magnetic field obliquity creates more
substantial ranges of power-law indices for the non-thermal
particle component. In non-relativistic shocks, the power-law
index is independent of magnetic field obliquity, and depends
only on the compression ratio: σ = (r + 2)/(r − 1) (Bell 1978;
Drury 1983; Jones & Ellison 1991). In relativistic shocks, the
spectral index varies dramatically with obliquity, as will be
exemplified in due course. In particular, the character of the
spectral index with respect to field obliquity hinges critically
on whether the shock is subluminal or superluminal. Thus, our
study of oblique relativistic shocks is divided into two sections
to treat these parameter regimes separately.

Consider first subluminal, oblique shocks in the SAS limit.
The first emphasis will be on the power-law behavior of the
accelerated portion of the population; later on the injection
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Figure 7. Power-law indices for simulation runs in the limit of small angle scattering (SAS), for an almost non-relativistic shock of upstream flow speed
β1x ≡ u1x/c = 0.1 (left panel), and a mildly relativistic case with β1x ≡ u1x/c = 0.5 (right panel), for an MHD velocity compression ratio r = u1x/u2x = 4. The
indices are displayed as functions of the effective de Hoffmann–Teller frame upstream flow speed β1HT = β1x/ cos ΘBf1, with selected values of the fluid frame field
obliquity ΘBf1 marked at the top of the panel. Obliquities for which β1HT > 1 constitute superluminal shocks. The displayed simulation index results were obtained
for different diffusive mean free paths λ parallel to the mean field direction (see the text), namely, λ/rg = 1 (blue squares), λ/rg = 10 (black triangles), λ/rg = 102

(green pentagons), λ/rg = 103 (red triangles), and λ/rg = 104 (magenta hexagons), as labeled. The lightweight black curve at the bottom labeled KH89 defines the
semianalytic result from Kirk & Heavens’ (1989) solution to the diffusion-convection equation, corresponding to λ/rg → ∞.

(A color version of this figure is available in the online journal.)

Figure 8. Power-law indices for simulation runs in the SAS limit, as in Figure 7, but now for shock parameters more appropriate to the internal shocks associated with the
relativistic jets that are believed to be the source of GRBs. Here, β1x ≡ u1x/c = 0.71, and the compression ratio and sonic Mach number are now r = u1x/u2x = 3.02
and MS = 2.6 (left panel), and r = u1x/u2x = 3.71 and MS = 60 (right panel), calculated via the Rankine–Hugoniot relations derived in Section 3. The indices are
again plotted vs. the effective de Hoffmann–Teller frame upstream flow speed β1HT = β1x/ cos ΘBf1, and selected fluid frame field obliquities ΘBf1 are as marked at
the top. The different diffusive mean free path cases were again λ/rg = 1 (blue squares), λ/rg = 10 (black triangles), λ/rg = 102 (green pentagons), λ/rg = 103

(red triangles), and λ/rg = 104 (magenta hexagons), as labeled. Also depicted are marker indices for three Fermi blazars, Mrk 421, 3C 66A, and PKS 2155-304; they
apply for arbitrary β1HT, and are truncated in the horizontal direction to aid clarity of the figure. These mark the approximate expectation for σ , uncertain to roughly
±0.2, for an interpretation of the Fermi-LAT gamma-ray spectral indices as uncooled inverse Compton scattering (left panel) and strongly cooled upscattering (right
panel); see Section 5 for a discussion.

(A color version of this figure is available in the online journal.)

efficiency will be addressed. In the simulation, for each run,
the power-law regime is determined on an individual basis by
inspection and can begin anywhere from 5 to 100 times the mean
injection (i.e., approximately downstream thermal) energy. A
least-squares fit in log–log space is used to determine the slope
σ . Results are depicted in Figure 7 for β1x ≡ u1x/c = 0.1, 0.5,
and in Figure 8 for β1x = 0.71, for different values of the
turbulence or cross-field diffusion parameter η = λ/rg . The
power-law index σ is plotted as a function of the HT frame
dimensionless speed β1HT = β1x/ cos ΘBf1. It is clear that there

is a considerable range of indices σ for non-thermal particles
accelerated in mildly relativistic, oblique shocks. The essence
of this array of indices and the global trends with ΘBf1 and η
were outlined briefly in Baring & Summerlin (2009) and Baring
(2011), though a fuller interpretation ensues below.

A feature of this plot is that the dependence of σ on field
obliquity is non-monotonic. When λ/rg � 1, the value of
σ at first declines as ΘBf1 increases above zero, leading to
very flat spectra. As β1HT approaches and eventually exceeds
unity, this trend reverses, and σ then rapidly increases with
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increasing shock obliquity as the shocks become superluminal.
This dramatic steepening is a consequence of the inexorable
convection of particles away downstream of the shock. The
only way to ameliorate this rapid increase in index is to
reduce η = λ/rg to values below around 10. Physically, this
corresponds to increasing the hydromagnetic turbulence to high
levels that force the particle diffusion to approach isotropy:
κ⊥/κ‖ = 1/(1 +η2) in a kinetic theory description (e.g., Forman
et al. 1974). This renders the field direction immaterial, and
the shock behaves much like a parallel, subluminal shock in
terms of its diffusive character. Note that this general character
is also evinced in the very recent diffusion-convection equation
analysis of Bell et al. (2011) at shocks of lower speeds. Figure 1
in their paper clearly illustrates that the distribution hardens
with increasing obliquity when the shock is well within the
subluminal regime and softens when the luminal boundary
cos ΘBf1 = β1x is approached or crossed in quasi-perpendicular
(and sometimes non-relativistic) shocks, unless the frequency
of scattering is raised to the Bohm limit, for which the index
then depends only weakly on the field obliquity.

In studying this case, we again choose to use previous
semianalytic analyses as a benchmark for comparison: the
work of Kirk & Heavens (1989, KH89 hereafter) is ideally
suited for this purpose. KH89 calculated the spectral index
of non-thermal particles at oblique, trans-relativistic shocks
using the eigenfunction technique of Kirk & Schneider (1987)
to solve the diffusion-convection equation. Their analysis was
restricted to situations where particles do not diffuse across field
lines, i.e., their collision operator contains only a pitch angle
scattering term. They also assumed that particles conserve their
magnetic moment on crossing the shock, a standard analytic
simplification. Results from Figure 2 of their work are exhibited
in Figure 7. Note that their exploration was done exclusively in
the HT frame and was thus limited to subluminal shocks. An
interesting product of their work was the appearance of power
laws harder than both the non-relativistic and ultrarelativistic
parallel shock results in Bednarz & Ostrowski (1998) and Kirk
et al. (2000), achieved as u1HT approaches the speed of light,
but u1x remains mildly relativistic. This is an idealized result,
because the limit of zero cross-field diffusion does not occur in
nature, since field turbulence abounds in astrophysical shocks,
and is needed to drive acceleration. The Monte Carlo technique
is ideally suited to examining how close to zero cross-field
diffusion one must get to approach the particular analytical
case explored by KH89. Figure 7 clearly indicates that when
λ/rg � 103 the KH89 zero cross-field diffusion indices are
closely reproduced for β1x = 0.1 and well approximated for
β1x = 0.5. The physical origin for these extremely hard power
laws will be discussed in Section 4.2.1.

To allow a direct comparison with the results of KH89,
we adopted the same compression ratio of r = 4, and the
same formulation for the relationship between the upstream
and downstream magnetic fields. This formulation is found in
Equations (2)–(4) of their work and is summarized below. It
assumes a weak magnetic field that does not influence the plasma
motion (i.e., MA � 1); all the simulation runs used to generate
Figure 7 satisfied this high Alfvénic Mach number criterion:

r = β1x

β2x

B1HT

B2HT
=

√
r2 − Γ2

1(r2 − 1) β2
1x

[
1

β2
1HT

− 1

]
. (33)

Given the upstream quantities above, and the compression
ratio, r, we can solve for B2HT and use our knowledge that
Bx is constant across the shock along with an appropriate
Lorentz transformation (see Section 3.2) to find the appropriate
downstream value for Bz in any reference frame.

In Figure 7, while impressive agreement with the solutions of
KH89 arises for β1x = 0.1 when η � 103, for β1x = 0.5, we find
that our simulation indices match the results of KH89 at β1HT �
0.5 and just below β1HT = 1, but are noticeably softer (higher σ )
in the central part of the curve. Increasing η as high as 106 creates
no appreciable change in the resulting power-law index from
that of η = 104: we believe that we have reached the asymptotic
limit of our simulation. Monte Carlo results for β1x = 0.3 are
not depicted, but are similar to those for the β1x = 0.5 case, and
also exhibit a modest difference from the KH89 determinations
of σ at intermediate values of β1HT, while matching at the
β1HT endpoints. We contend that the reason for the modest
discrepancy between the two approaches probably lies in the
assumption of conservation of magnetic moment employed by
KH89. This assumption facilitates an analytic result but does not
precisely describe orbiting particle reflection and transmission
properties at an oblique shock discontinuity (see Terasawa 1979;
Drury 1983; Pesses & Decker 1986 for non-relativistic shock
expositions). For parallel or quasi-perpendicular (in this case
nearly luminal) shocks, the magnetic moment is conserved,
and the two approaches converge. For obliquities in between,
there is slight non-conservation of magnetic moment, and the
precise tracing of gyro-orbits in the shock layer, as is enacted in
the Monte Carlo technique, introduces modest but appreciable
increases in σ .

It is imperative to go beyond the artificial r = 4 exploration,
since relativistic shocks are somewhat weaker in their compres-
sion. To this end we produced similar index plots for parameters
more appropriate to internal shocks in GRBs and blazars using
the Rankine–Hugoniot relations derived earlier. Specifically,
Figure 8 displays Monte Carlo results for compression ratios
that satisfy the J-S EOS, Ms = 2.6 (r = 3.02) and Ms = 60
(r = 3.71), with the Alfvénic Mach number assumed to be
large. The results mirror those in Figure 7 in terms of overall
character, with a large range of indices, σ ∼ 1 in near-luminal
cases when λ/rg � 103, and a rapid steepening of the non-
thermal distribution in superluminal cases unless λ/rg � 10. A
particular index inferred from the radiation spectrum of a single
astronomical source can be accommodated by a range of choices
for shock speed, Mach numbers, field obliquity, and turbulence
parameter η. This interpretative aspect is the subject of
Section 5, with a focus on blazars.

Finally, note that Figures 7 and 8 were prepared specifically
with diffusion seeded by gyroresonant interactions between
charges and MHD turbulence in mind. In such cases, scattering
descriptions are only physical if η � 1 in Equation (1), i.e.,
above the Bohm limit. Yet, η < 1 regimes for diffusion can be
realized for non-gyroresonant interactions with field turbulence
that is perhaps grown via filamentation or Weibel instabilities.
Trial simulation runs were performed in this η < 1 domain,
and it was found that the distribution was not very sensitive
to the choice of η; for example, reducing η to 0.1 flattened
the spectrum for the β1x = 0.71, β1HT = 0.96, r = 3.71
case by an index of around 0.1 relative to that displayed in
Figure 8. This behavior is a consequence of diffusion in this
“sub-Bohm” domain resembling that for the Bohm limit of
η = 1 for gyroresonant diffusion. A more complete exploration
of this domain is deferred to future work.
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Figure 9. Left panel: a sample particle trajectory depicting strong SDA in an oblique mildly relativistic shock with de Hoffmann–Teller frame speed, β1HT = 0.96,
NIF shock speed, β1x = 0.71, and compression ratio, r = β1x/β2x = 3.71 in a low-turbulence environment with λ/rg = 104. The projection is onto the x–y plane,
where the u × B drifts lie in the y-direction. This portion illustrates two key features of SDA: coherent trapping in the shock layer (colored red), interspersed with
upstream excursions (black) after reflection via approximate conservation of magnetic moment. This particular particle gained orders of magnitude in energy before
finding a pitch angle small enough to allow transmission and subsequent escape downstream. Right panel: the particle’s position in the drift coordinate (y) direction,
as a function of the magnitude of the momentum in the fluid frame, pf , and the shock frame, ps . This illustrates a core property of shock drift acceleration: that over
large times both pf and ps display approximately linear trends with the drift y. Prolonged energy gains occur only during shock layer gyrations, when the fluid frame
momentum exhibits a “rectangular hysteresis” (red). The shock frame momentum possesses perturbed oscillatory temporal behavior (yellow) during the intervening
upstream excursions.

(A color version of this figure is available in the online journal.)

4.2.1. The Action of Shock Drift Acceleration

The bottom line of the preceding exposition is that the
power-law index achieved in subluminal oblique shocks can
be considerably less than even the σ = (r + 2)/(r − 1)
result for non-relativistic shocks. For moderate obliquities and
η = λ/rg � 103 it can become as hard as σ = 1. A power
law this hard can only be achieved in the case where particle
escape from the acceleration region is miniscule. We illustrate
here that the high η cases that have low σ are subject to
strong SDA, offering a close examination of the trajectories
of energized particles that reveals prolonged retention in the
acceleration process. A small fraction of particles incident from
upstream can be reflected at the shock because they have suitable
pitch angles, and these seed the retention in the acceleration
process. A sample trajectory and associated momenta for a
select particle undergoing such acceleration is displayed in
Figure 9. The particle was injected at superthermal energies to
circumvent improbable injection from the thermal population, a
property that is discussed later in this subsection. The trajectory
highlights two hallmarks of SDA: coherent trapping in the shock
layer, interspersed with upstream excursions after reflection
at the shock (see Decker & Vlahos 1986 for illustrations in
non-relativistic shock contexts). The reflection condition can be
estimated by assuming conservation of magnetic moment in the
HT frame, i.e., requiring that (1−μ2

p1)/B1HT = (1−μ2
p2)/B2HT,

where μpi is the particle’s pitch angle cosine in the upstream
(i = 1) or downstream (i = 2) HT frame. This assumption is
technically valid only when particles gyrate a large number of
times in the shock layer (e.g., see Drury 1983), which arises
when the gyroperiod is far inferior to the time it takes to
convect one gyroradius downstream, i.e., when ps � Γ1β1HT.
For magnetic moment conservation, given B2HT > B1HT, it
is clear that there are some values of μp1 for which μp1 �
0 cannot be satisfied. In these cases, particles are reflected
rather than transmitted, and the shock is acting as a magnetic
bottleneck.

As particles gyrate in the shock layer, the work done dW on
a charge can be computed using the Lorentz force, resulting in
the equation

(mc)2 γ
dγ
dt

≡ p.
dp
dt

= q p.
{

E + v
c

× B
}

≡ q p.E, (34)

where E is the u×B drift field. In the uniform B fields either
upstream or downstream, the energy gains and losses acquired
during a gyroperiod exactly cancel, so that no net work is
done, dW = mc2dγ = 0. In contrast, when a charge’s
gyromotion straddles the shock discontinuity, it samples the
different electromagnetic field on either side of the shock for
different times, with the net acceleration on the upstream side of
the shock being greater than the deceleration on the downstream
side of the shock. Such an asymmetry in energy increments is
explicitly evident in Equation (6) of Jokipii’s (1982) exposition
on SDA in non-relativistic shocks (see also Webb et al. 1983
for relativistic cases). This energization can be seen in the
counterclockwise rotations of the pf curve in Figure 9. In this
curve, vertical motion indicates travel upstream or downstream
of the shock where pf is constant. The horizontal lines are
shock crossings where the local pf changes in transits of the
shock discontinuity. By relating elapsed time during SDA to
increments in the drift coordinate y, it is simply shown (Jokipii
1982) that

dW ≡ mc2dγ = qEy dy (35)

or d(p/mc) ∝ (eB1/mc2) dy in the relativistic limit of γ � 1.
This energy gain scales linearly with displacement along y, with
the proportionality constant depending on the shock obliquity.
Such a linear scaling (in ps) is the punch line of the right panel of
Figure 9, where y effectively represents a time coordinate during
shock drift episodes. This energization proportionality is clearly
evident during shock interactions for the selected particle, and
is an established hallmark of SDA. But notably, on larger scales,
for both pf and ps , it is also an approximate description of the
cumulative energization spanning multiple shock encounters.
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This follows as a consequence of the constancy of pf and only
moderate changes to y during upstream excursions, i.e., material
energy changes arise only during shock interactions. The ps

curve’s behavior shows smooth and rapid energization during
gyrations in the shock layer followed by a quasi-oscillatory
epoch for ps coupled with random spatial diffusion during
the upstream excursions. The gradual increase of ps during
the upstream excursions results from the angular diffusion
of the particle’s fluid frame momentum vector in the upstream
region. This increases ps as the fluid frame velocity vector
becomes more aligned with the flow vector. The widening of
the gyrations in y is also due to angular diffusion gradually
increasing the pitch angle upstream of the shock.

In typical SDA, a reflected particle gains energy and is
sent back upstream to encounter the shock again. However,
this alone cannot create such an unusually hard power law. In
the case of non-relativistic shocks, this process happens com-
monly in oblique shocks when low levels of turbulence are
assumed, with no impact on the power-law index: it still retains
its σ = (r + 2)/(r − 1) value (see Jokipii 1982; Lee 1984; Arm-
strong et al. 1985; Decker & Vlahos 1986; Webb et al. 1983;
Pesses et al. 1982; Decker 1988; Vandas 2001). This is because
the energy gained through SDA is exactly canceled by decreases
in the efficiency of DSA in oblique shocks, since the angular
distribution is effectively isotropic in the NIF and fluid frames.
Furthermore, this isotropy guarantees that select particles are
not trapped in the shock layer for long durations because they
have the same probability of being reflected at each shock en-
counter. However, in the case of oblique subluminal shocks with
HT frame speed approaching the speed of light, we find different
circumstances.

As discussed in Section 4.1, in relativistic, parallel shocks in
an SAS scenario, the field-aligned component of the distribution
function is depleted at the shock. While the first shock encounter
is that of an isotropic plasma boosted by the upstream flow
speed with a strongly field-aligned population of particles,
the distribution of particles returning after being reflected the
first time is missing these field-aligned particles because the
population has, in general, had insufficient time for any of them
to become field aligned in the downstream direction before
re-encountering the shock. This is a result of the fact that
relativistic shocks preclude particle speeds from far exceeding
the relevant flow speeds and becoming effectively isotropic in all
reference frames. Subluminal, oblique relativistic shocks exhibit
this same behavior. Upstreaming particles must initially have
pitch angle μHT ≈ −1 in order to travel upstream faster than the
field line they are on is being convected downstream. Once they
diffuse in pitch angle, they are quickly swept back into the shock
before they achieve isotropy in the HT frame. Thus, as in the
case of parallel shocks, the field-aligned, μHT ≈ 1 component
of the angular distribution function is depleted at the shock. Yet
only such field-aligned particles are capable of penetrating the
magnetic bottleneck at the shock. The net result of this dearth of
field-aligned particles is a significant reduction in the fraction of
particles transmitted through the shock at each encounter. This
enhances the probability of reflection hardening the power law.
As the HT frame speed approaches c, the transmission region can
become completely depopulated leading to near 100% reflection
and the observed σ = 1 power law.

The value of this index value is dictated by energy arguments.
For long-lived trapping of select particles in the shock layer,
energy in the particle population is transmitted from one Lorentz
factor bin [γ, γ +dγ ] to the next one above, with miniscule loss.

The energy content of this bin is γN , and when deposited in the
next bin above, it is increased by SDA by an amount ∝dy ∝ dγ
according to Equation (35), which is independent of the value
of γ , but just on the electromagnetic structure of the shock
layer. It then follows that the energy increment in going from
adjacent bins is γ dN ∝ dγ , so that dN/dγ ∝ 1/γ , i.e., σ = 1.
Introducing significant losses reduces this energy increment,
and thereby steepens the spectrum. Along with the offering in
Baring & Summerlin (2009), this is the first identification of
the important role that SDA can play in determining the spectral
index in relativistic shocks. In non-relativistic shocks, SDA does
not influence the spectral index.

Note that the highly enhanced action of SDA is restricted to
high η and SAS regimes. Invoking an LAS scenario completely
eliminates the enhanced probability of reflection as particles
are isotropic after their first upstream scattering and encounter
the shock as such: all subsequent shock encounters have the
same probability of reflection as the first shock encounter. For
SAS scattering, increasing the amount of turbulence present
(reducing η) allows particles to scatter into the transmission
cone and subsequently softens the power law as shown in
Figures 7 and 8. Trajectories for such η � 102 cases (not
shown) exhibit a more “wonky” gyration and reveal prompt
convection downstream, shutting down the opportunity for
repeated episodes of coherent acceleration.

A few comments are necessary on the feasibility of encoun-
tering parameters that drive hyper-efficient SDA. The extremely
large values of η required correspond to very low levels of tur-
bulence that are not anticipated near shocks: it would require
a truly unusual set of physical parameters to produce power
laws significantly harder than σ = 1.3 using this mechanism. It
should also be noted that the bulk thermal particles that create
these strong shocks must be cold compared to the flow speed
in order for the shock to form. Thus, despite the fact that they
receive substantial kinetic heating during their first shock cross-
ing, they will not meet the p � Γ1u1HT criterion and will have
a reduced chance for reflection. Particles may have only a cou-
ple gyro-orbits that pass through the shock during an encounter
and the range of phases that permit them to reflect is reduced
dramatically. For v < u1HT, it is physically impossible for par-
ticles to diffuse upstream along field lines, and some amount of
cross-field diffusion is necessary for particles to return to the
shock at all. This creates an injection problem; see Ellison et al.
(1995) for a discussion of this in non-relativistic, oblique shock
contexts.

One naturally asks how these energetic particles that so
efficiently participate in SDA get accelerated to high energies
in the first place. Figure 10 illustrates the injection problem
for r = 3.71 shocks with very warm particles (MS = 4).
The distributions in these plots were used to determine the
spectral slopes displayed in Figure 8 for each value of β1HT.
High-turbulence environments are clearly able to inject the
particles efficiently, but the power law is steeper, namely, σ is
higher. Low-turbulence environments have almost no injection
until particles achieve v > u1HT, at which point a strong,
low σ power law develops as particles become trapped in the
shock drift mechanism. This becomes particularly pronounced
in the β1HT = 0.96 case, an almost luminal shock situation,
where convection of thermal upstream particles through and
downstream of the shock is extremely rapid. The rapid decline of
injection efficiency with η is an important factor in interpreting
the action of shock acceleration in astronomical sources, an
issue discussed in Section 5.
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Figure 10. Full particle distributions for simulation runs in the small angle scattering (SAS) limit, for the strong mildly relativistic shocks of upstream flow speed
β1x ≡ u1x/c = 0.71 whose indices are displayed in Figure 8. Here, the de Hoffmann–Teller frame upstream flow speed was set at β1HT = 0.75 (ΘBf1 ≈ 48.◦2), and
the five values of the diffusive mean fee path λ/rg = 1, 10, 102, 103, 104 correspond to those in Figure 8—the color coding of the distributions and the spectral index
results in the respective figure coincides. The velocity compression ratio was fixed at r = u1x/u2x = 3.71, and the upstream temperature corresponded to a sonic
Mach number of MS = 4.04 (T = 5.45 × 107 K for an e− to e+ shock).

(A color version of this figure is available in the online journal.)

4.3. Oblique, Superluminal Shocks

In superluminal shocks, it is physically impossible even for
particles moving at the speed of light to diffuse upstream
along the field lines. Without any cross-field diffusion, the
particles are inexorably swept downstream after passing through
the shock without reflection, regardless of their energy; see
Begelman & Kirk (1990) for illustration of such trajectories.
Thus, the particles in the low-turbulence environment that
relied on reflection for retention in the system are lost and not
accelerated. Consequently, the power law becomes very soft.
Particles in high-turbulence environments are not truly affected
by the change in the obliquity of the magnetic field because they
can travel across field lines as easily as they can along them.
It is generally found that for β1HT < 1 decreased turbulence
enhances acceleration in the power-law tail, and for β1HT > 1,
the opposite holds. This result adds new perspective to the paper
by Ellison & Double (2004), which presented results showing
that the power-law tail indices in ultrarelativistic (Γ1 � 1)
shocks are extremely sensitive to both η and the obliquity of the
magnetic field, with the power-law index increasing sharply as
these parameters increase. These dependences are also seen in
the mildly relativistic shocks discussed here, but with somewhat
less sensitivity to η and ΘBf1.

While it is clear that an increase in η will soften the power
law in oblique, superluminal shocks, the exact values of the
power-law index are simulation dependent. Therefore, it is
prudent to compare our results with those of Ellison & Double
(2004, hereafter ED04). The code used in ED04 is a Monte
Carlo simulation that is algorithmically very similar to the
simulation presented in this paper. However, the simulations
were developed independently and can each serve as an objective
test of the other. For non-relativistic shocks, both simulations
find the standard results of σ = (r + 2)/(r − 1), where r is
the compression ratio of the shock and σ is defined such that
dn/dp = p−σ . In the case of ultrarelativistic, parallel shocks,
both simulations also find the theoretical results σ = −2.23.
In the regime of oblique, relativistic shocks, ED04 focused
predominantly on superluminal cases of high Mach numbers,
with high levels of turbulence near the Bohm diffusion limit.

Figure 11. Direct comparison between distribution results from our simulation,
the histograms, and those Ellison & Double (2004), the solid lines, for a
relativistic shock with upstream Lorentz factor Γ1 = 10 and compression ratio,
r = 3.02, for different values of the upstream magnetic field obliquity, ΘBf1,
and η = λ/rg , the turbulence parameter. Specifically, the results from the top
panel of their Figure 7 are compared here with the y-axis multiplied by p4.23 to
match the presentation in that figure. Both simulations identify the same trends
with only minor differences in the value of the power-law slope.

(A color version of this figure is available in the online journal.)

In Figure 11, we compare results from our simulation (his-
tograms) to the results from the top panel of Figure 7 in ED04
(solid lines) for a relativistic shock with upstream Γ1 = 10 and
compression ratio, r = 3.02, for different values of the upstream
magnetic field obliquity, ΘBf1, and η = λ/rg . Both sets of re-
sults are in the SAS limit, with the Rankine–Hugoniot solutions
for the MHD shock obtained using the prescription of Double
et al. (2004), as outlined in ED04, as opposed to the J-S EOS
scenario; see Section 3.3 for details. For ΘBf1 = 0◦, both simu-
lations produce a result very close to the canonical σ = −2.23
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power law (note that the y-axis is multiplied by p2.23 such that a
horizontal line is the canonical result). However, at ΘBf1 = 60◦,
u1x/ cos ΘBf1 ≈ 2, making the shock decidedly superluminal.
Thus, cross-field diffusion is essential in order for particles to
be able to return to the shock and increasing η increases the
power-law index considerably. This trend is identified by both
simulations in this η � 6 domain; in our simulation it continues
to somewhat higher η before statistical degradation inhibits de-
termination of the spectrum. In general character, results from
the two simulations are clearly similar, and numerically they
are close. Yet there is a real difference, with the index deter-
mination differing between the two sets of results within the
range of 1%–2%. The numerical precision of σ in our simula-
tion is of the order of 1%. Comparisons were made with other
superluminal shock results published in ED04, finding similar
levels of agreement. The origin of the small spectral differences
evinced in Figure 11 is not yet clear; we believe that the thor-
ough comparison of our indices and angular distributions with
the semianalytic approaches of Kirk & Heavens (1989) and Kirk
et al. (2000), among other simulation checks, advocates for the
robustness of our results.

The simulation developed by Niemiec & Ostrowski (2004,
hereafter NO04; see also Niemiec & Ostrowski 2006) provides
another opportunity for comparison. NO04 use a fundamentally
different mechanism for particle scattering from our Monte
Carlo simulation. Instead of phenomenologically scattering
particles and specifying a momentum dependence for the mean
free path, their simulation injects a prescribed spectrum of
turbulent magnetic field structure that is superposed on the bulk
magnetic field. Variations in the magnetic field perturb the gyro-
orbits of the particles and are intended to mimic turbulence
that a particle might encounter. Because NO04 use a turbulent
magnetic field, particle trajectories must be integrated over much
shorter time steps than is possible in the Monte Carlo code
presented in this paper. This necessarily results in longer run
times and poorer statistics. These poor statistics are particularly
evident in the angular distributions produced in Figures 4, 8,
and 11 of their work. We find qualitatively similar general
behavior for results from the two techniques.

Consider Figure 2 of NO04, where distribution functions for
accelerated particles in subluminal, mildly relativistic oblique
shocks with compression ratio, r = 5.11 are exhibited. This
value of r exceeds the non-relativistic, strong shock limit of r =
4, and is appropriate for the mildly relativistic electron–proton
shocks studied in Heavens & Drury (1988), from whom they
acquired their compression ratios. Though there is not a simple
relationship between the two turbulence parameters (δB/B in
their work and η in our simulation), they are correlated with low
values of δB/B corresponding to high values of η. In subluminal
shocks for small δB/B, the power-law index for the distribution
function, f (p), which they call α, is approximately 3. This
is related to the power-law index for the differential density
distribution by σ = α − 2 or σ ≈ 1 in their low-turbulence
limit. This agrees with both our results and those of KH89.
Additionally large amounts of turbulence soften the power law
as we observed in our simulations runs. Finally, it is interesting
to note that at high energies, where particles are resonant with
wavelengths larger than the stirring scale of their simulation,
turbulence disappears for particles at these energies (η → ∞)
and the power law becomes σ = 1, in good agreement with
our results. In superluminal oblique shocks such as those shown
in Figure 5 of their paper, although the statistics are somewhat
poor, it is clear that low turbulence is no longer an asset to the

Figure 12. Particle distribution functions dN/dp from parallel shocks that are
either mildly relativistic (Γ1β1 = 3, i.e., β1 = u1/c ≈ 0.949) or ultrarelativistic
(Γ1β1 = 10, i.e., β1 = u1/c ≈ 0.995; multiplied by 105 to effect clarity
of depiction), of velocity compression ratios r = u1/u2 ≈ 3.24 and r ≈ 3,
respectively. For these simulation runs, scattering off hydromagnetic turbulence
was modeled by randomly deflecting particle momenta by an angle within a
cone of half-angle θscatt, whose axis coincides with the particle momentum
prior to scattering. Values of θscatt span the range from large angle scattering
(LAS: θscatt � π � 1/Γ1) to small angle scattering or pitch angle diffusion,
when θscatt � 1/Γ1 and the distributions become independent of the choice of
θscatt. All distributions asymptotically approach power laws dN/dp ∝ p−σ at
high energies. For two LAS cases, these power laws are indicated by lightweight
lines, with indices of σ = 1.61 (Γ1β1 = 3) and σ = 1.62 (Γ1β1 = 10).

(A color version of this figure is available in the online journal.)

acceleration process. In the shocks shown there, the power law
is consistently softer in the low-turbulence cases, and in some
cases no acceleration occurs without significant turbulence. In
the high-turbulence case, power laws are still produced, but then
the definition of the shock obliquity and the details of particle
diffusion become more important in determining the resulting
power-law index, rendering comparison with our results less
insightful.

4.4. Large Angle Scattering Domains

One aspect of the simulation parameter space that has been
neglected until now is the impact of varying the microphysics
of the turbulent interactions; all previous results have focused
on the SAS limit. In this section, we explore such using our
Monte Carlo simulation to model relativistic parallel shocks, by
varying θscatt, the angular width of the conical sector into which
the particle’s momentum vector is scattered at each encounter
with magnetic turbulence. A value of θscatt = π corresponds to
LAS, where the particles scatter ∼1 time per mean free path;
this is the domain first highlighted by Ellison et al. (1990a).
A small value corresponds to SAS, where the particles scatter
N times per mean free path, where N is given by Equation (2).

Figure 12 depicts accelerated particle distributions for two
different shock speeds, illustrating the multitude of power-
law indices available while varying only the scattering angle,
θscatt, and fixing the obliquity at ΘBf1 = 0◦. Observe that for
such parallel shocks, the distributions are independent of the
diffusion parameter η since they are measured just downstream
of the shock. This depiction complements results published in
Figure 2 of Stecker et al. (2007) and illustrates two primary
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results. The first is that LAS scattering produces a step-like
structure in the accelerated distribution, a characteristic first
identified by Ellison et al. (1990a). Each step corresponding
to particles with increasing numbers of shock transits. In other
words, the first step consists almost entirely of particles that have
crossed the shock three times. Particles in the second step have
almost all crossed the shock five times, etc.; see Baring (2004)
for an illustration of this correlation. The precise correlation
between shock transit number and particle energy weakens as
the structure damps into a power law. The prevalence of the step
structure, and how high in energy it extends before relaxing into
a power law, increases with the Lorentz factor Γ1 of the shock.

The second major result is that decreasing the scattering angle
removes this structure but at the same time, softens the resulting
power law. A complete investigation of why the power law is
harder in the LAS scenario is deferred to future work, yet the
origin of this trend in θscatt centers on the distribution function at
the shock. While LAS produces a beamed isotropic distribution
similar to the red histogram of the right panel of Figure 5 at the
shock, SAS generates a distribution like that shown in the black
histogram of the same panel. Both the probability of return
to the shock from the downstream side, and the energization
per shock crossing, are functions of this angular distribution
function (Bell 1978; Peacock 1981; Blasi & Vietri 2005). For
non-relativistic shocks, the distribution function is necessarily
isotropic to leading order, which restricts the power-law index to
be only a function of the compression ratio. Relativistic beaming
is the probable cause for breaking this degeneracy in θscatt space.
Evolution of the angular distribution with θscatt can be inferred
from Figure 6 of Blasi & Vietri (2005). Note that introducing
magnetic field obliquity can alter the nature of this trend, as is
indicated in Morlino et al. (2007). Future work will explore the
variation of asymptotic values of the index σ as functions of θscatt
and ΘBf1, and also compare the Monte Carlo simulation values
with those obtained from the semianalytic, transport equation
approach of Blasi & Vietri (2005) and Morlino et al. (2007).

5. OBSERVATIONAL CONNECTION: THE IMPACT ON
BLAZAR GAMMA-RAY INTERPRETATION

To briefly outline how these simulation results are relevant to
astrophysical contexts, we discuss blazars, the subset of AGNs
possessing relativistic jets of material emanating from the su-
permassive black holes at their centers; these jets are oriented
virtually toward the observer. Blazars were discovered as a class
of gamma-ray sources by the EGRET experiment on the Comp-
ton Gamma-Ray Observatory (Hartman et al. 1992), and subse-
quently detected by ground-based Çerenkov telescopes at TeV
energies (Punch et al. 1992). The EGRET blazar measurements
have been built upon in the last three years by Fermi Large
Area Telescope (LAT) detections of dozens of blazars, offering
improved spectroscopy. The TeV-band signals typically exhibit
steep photon spectra (e.g., see, Krennrich et al. 2002; Aharonian
et al. 2003 for observations of Mrk 421) that include the ab-
sorption due to pair producing interactions γ γ → e+e− with
infrared and optical light generated by the intergalactic medium
along the line of sight to the observer. Extremely flat particle
distributions are inferred in some blazars after correcting for this
attenuation (see, for example, Stecker et al. 2007), with indices
as low as σ � 1.5 in high-redshift sources. Coupled with the
TeV-band capability, the Fermi-LAT detections of blazars en-
able refined diagnostics by extending the observational window
over a much larger energy range, and most crucially, including

below the γ γ → e+e− attenuation window. Accordingly, Fermi
observations can probe more directly the underlying radiating
particle population. The implications of this we explore here.
The reader can consult Baring (2011) and references therein
for the interpretation of relativistic shock acceleration in GRB
contexts.

Pertinent blazar data from the Fermi-LAT and TeV telescopes
can be found in the GeV–TeV blazar “compendium” in Abdo
et al. (2009). There is also the more extensive AGN catalog of
Fermi in Abdo et al. (2010). For the purposes of discerning
indices σ of particle populations generating the gamma-ray
emission, it is important to consider photon spectra below any
turnovers that may appear in the LAT band. This biases the
data selection to below 1 GeV, and a nice tabulation of this
for Fermi-LAT blazars is given in Tables 5 and 6 of Abdo
et al. (2009). Therein, and in the various spectral plots given
in that paper, it is clear that there is a modest spectral steepening
above around 1 GeV in around 50% of Fermi-LAT blazars; this
becomes much more pronounced above 100 GeV. From this
data compilation, we use photon indices of αγ = 1.72 for PKS
2155-304, αγ = 1.78 for Mrk 421, and αγ = 1.97 for 3C 66A,
as a sample blazar selection. The uncertainties on these indices
are of the order of ±0.1, which propagate into inferred particle
indices σ . Note that a sizable fraction of LAT-band AGN indices
in the catalog of Abdo et al. (2010) fall below αγ ∼ 2, so that our
choice here is reasonable. Note also that 3C 279 is considerably
steeper in the LAT window, which could be a signature of a
low-energy onset of the spectral turnover, or the operation of
the Klein–Nishina regime of inverse Compton scattering.

Consider first a standard leptonic model interpretation of
blazar emission as emanating from inverse Compton scattering
by shock-accelerated electrons upscattering low-energy pho-
tons. The relationship between the particle index σ and the
photon one is then σ = 2αγ − 1 (e.g., see chapter 7 of Rybicki
& Lightman 1979), if there is insignificant radiational cooling.
This applies to synchrotron self-Compton scenarios, where a
single population of electrons emits the synchrotron radiation
that it then upscatters to the gamma-ray band, or to an external
supply of seed photons. For our select blazars, these indices fall
in the range 2.44 < σ < 2.94 and are marked on the left panel
of Figure 8. They have an uncertainty Δσ ∼ ±0.2. From this it is
clear that for shock layer diffusive scattering in the SAS regime,
acceleration at mildly superluminal oblique shocks provides a
good description for all three of the blazars. This requires strong
scattering, λ/rg � 10. If λ/rg � 2, i.e., near the Bohm diffusion
limit, then Mrk 421 and PKS 2155-304 could be modeled with
subluminal shocks.

In contrast to this, consider an alternative picture of “strong
cooling” by inverse Compton scattering (or synchrotron radi-
ation). This corresponds to rapid acceleration of the leptons
at shocks, followed by convection and diffusion away down-
stream into a larger radiative zone where the gamma-ray signal
is generated over longer timescales. Then, as is well known,
the time-averaged effective electron distribution that radiates
is a power law of index σ + 1 (e.g., see, Blumenthal 1971 for
an analysis). The steepening reflects a pileup at lower Lorentz
factors γe induced by the fact that the energy loss rate for both
synchrotron and inverse Compton cooling of electrons scales
as γ 2

e . The consequence is that now the relationship between
the particle index σ and the photon one is σ = 2αγ − 2.
These indices are marked on the right panel of Figure 8, and
exhibit a shift of unity down from those in the uncooled case.
Again, they have an uncertainty Δσ ∼ ±0.2. Now, subluminal
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regimes are clearly suggested, and in the cases of Mrk 421 and
PKS 2155-304 move the inferences into η = λ/rg > 10 ter-
ritory. This opens up the question of whether such weak tur-
bulence can persist in a blazar jet shock. However, there is
considerable uncertainty in the spectral data, and increasing the
scattering angle θscatt somewhat above the SAS limit will reduce
the value of η required to generate a particular value of σ .

These inferences should be viewed only as general guidelines,
modulo the uncertainties in σ spawned by the precision of
Fermi-LAT spectral index determination. We have selected one
particular shock speed β1x and restricted the discussion to
SAS regimes. Clearly, there is a range of shock speeds, field
obliquities, scattering angles θscatt, and turbulence parameters
η that can satisfy a measured gamma-ray index. In addition,
this discussion has focused on leptonic models; in hadronic
ones mediated by pion decay, αγ generally approximately
traces the particle index σ , mimicking the situation in the
right panel of Figure 8. Significant Klein–Nishina modifications
to the spectrum in the LAT window can further complicate
the interpretation. While more extensive study can hone the
parameter space, broader gamma-ray coverage below 100 MeV
and multiwavelength modeling are necessary to make significant
strides. The multiwavelength aspect is more immediate in terms
of its possibilities. For example, if the acceleration at the shock
is limited by synchrotron cooling in controlling the maximum
electron Lorentz factor, then the turnover in the synchrotron
component is at an energy of ∼mec

2/(αfη) (for αf = e2/h̄c as
the fine structure constant), a well-known result that is discussed
in Garson et al. (2010) with reference to Mrk 421. Evidently,
this energy must match that seen in hard X-ray/soft gamma-ray
observations, providing additional constraints on η that often
may not be near the Bohm limit of η = 1. This illustration
serves to motivate future multiwavelength models of blazar
spectra using complete distribution functions from acceleration
simulations like those presented in this paper.

6. CONCLUSIONS

This paper has presented new results from a robust Monte
Carlo simulation that complement and extend previous semi-
analytic and computational results. It employs the simulation
technique devised by Ellison et al. (1981) that was extended
to relativistic shocks by Ellison et al. (1990a). The simulation
produces steady state distribution functions for planar shocks of
infinite extent for large ranges of shock speeds, energies, and
positions, simulating both the injection and acceleration of par-
ticles via first-order DSA. By using the unique advantages that
a simulation has over semianalytic, diffusion-convection equa-
tion solution techniques, we are able to expand upon the work
of previous authors by examining various turbulence regimes
and probing individual particle trajectories. This affords spe-
cific insights that cannot be gleaned from idealized cases that
are analytically tractable. Our body of results leads to several
key conclusions.

1. The power-law index in relativistic shocks samples a con-
siderable range of values, and depends critically on the
nature and magnitude of turbulence, the shock speed, and
the shock field obliquity. This range extends from extremely
hard power laws with σ ≈ 1 to extremely steep distributions
where simulation statistics preclude discernment of acceler-
ation beyond the thermal injection domain. Notably, ultra-
relativistic shocks do not necessarily possess the “canon-
ical” σ ≈ 2.23 power-law distribution, a result evident in

the previous works of Kirk & Heavens (1989), Ellison &
Double (2004), and Stecker et al. (2007).

2. When SAS is invoked, the value of u1x/ cos ΘBf1 defines a
critical division point in the parameter space. When it is less
than c, oblique shocks in low levels of turbulence accelerate
high-energy particles extremely efficiently via SDA, but
when this quantity is greater than c, turbulence becomes
vital to injection and acceleration in oblique, superluminal
shocks. In both cases, weak levels of turbulence strongly
inhibit injection from the thermal population.

3. Invoking LAS produces significant structure in the high-
energy particle distributions in relativistic shocks, a phe-
nomenon first identified by Ellison et al. (1990a), but also
generates slightly harder distributions than a similar shock
in the SAS scenario, where there is only a power law with
little discernible structure.

These results represent important advances for determining
the nature of turbulent shock environs in blazar and GRB jets,
and in other astrophysical objects. Such interpretations are,
admittedly, complicated by the particular spatial environment
and radiation emission mechanism chosen for generating the
observed photon spectra from these sources. However, global
insights such as deciding between subluminal or superluminal
shock environments are now possible.

To develop our model to aid future interpretations of astro-
physical shocks, additional details of shock physics will be in-
corporated into the simulation. In shocks such as those discussed
above with σ < 2, a majority of the energy in the system will be
found in the accelerated particles. The Rankine–Hugoniot jump
conditions for the shock must then be modified, since a step func-
tion shock profile is no longer a valid approximation. This yields
a nonlinear acceleration phenomenon that is already seen clearly
in Earth’s bow shock, models of supernova remnant shocks, and
the heliospheric termination shock (e.g., Ellison et al. 1999). Ad-
ditionally, while this paper worked primarily with large Alfvénic
Mach number shocks, in principle, low Alfvénic Mach numbers
are possible in jet systems as well. While the Rankine–Hugoniot
solutions presented above are fully capable of determining the
appropriate jump conditions, low Alfvénic Mach number shocks
may produce significant second-order Fermi acceleration due
to the motion of the scattering centers (Alfvén waves) in the
upstream and downstream rest frames. The code currently as-
sumes scattering centers that are stationary in their respective
fluid frames but can easily be adapted to include non-stationary
scattering centers for the case of low Alfvénic Mach number
shocks. In addition, preliminary work has also been done laying
the ground work for future inclusion of cross-shock potentials
in the simulation (Baring & Summerlin 2007). The simulation
is currently a single fluid model, treating electrons/pairs or ions.
For electron–proton shocks, the disparate diffusion scales of the
two species will cause their distribution functions to react to the
presence of the shock on different length scales. This charge
separation at the shock discontinuity induces an electric field
that acts to restore quasi-neutrality, and can lead to significant
energy exchange between ions and electrons. The inclusion of
these effects and the determination of their impact on injection
and acceleration of protons and electrons will be the focus of
future work.
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APPENDIX

THE ANGULAR DISTRIBUTION OF PARTICLES
AT THE RETURN PLANE

Downstream of the shock, once the particle distribution has
realized isotropy in the local fluid frame at some position x, it
maintains isotropy as an asymptotic state at all positions fur-
ther downstream. Tracking diffusion downstream of x to assess
the momentum components of particles that return to position
x is CPU intensive. A much faster method is to compute the
probability of return to x and these momentum components
statistically, subject to the condition of isotropy in the local
fluid frame, and constancy of the returning particle’s fluid frame
momentum pf . This was the expedient approach of Ellison
et al. (1990a). In this appendix, we develop the formalism for
angular distributions of returning particles for arbitrary pf ,
not just ultrarelativistic particles, as has been the restriction of
previous expositions. At x, the flow speed will be βc, i.e., of
Lorentz factor Γ (subscripted 2 in the main text). The particle
will have a dimensionless momentum pf = γf βf (ps = γsβs)
and angle cosine with respect to the shock normal of μf (μs)
in the fluid (NIF) frame. The non-covariant momentum distri-
bution function downstream of the probability of return plane
located at x (and all positions further downstream) assumes
the form

f (�pf ) = Nδ(pf − p0)
4πp2

f

,

N =
∫

f (�pf )d3 �pf ≡
∫

fs(�ps)d
3 �ps . (A1)

in the local fluid frame. Observe that N, the total number of
particles, is a Lorentz invariant under boosts along the shock
normal, and f is to be distinguished from the phase space
density f (�r, �p). Equation (10.2) of Landau & Lifshitz (1975)
then gives the transformation of the distribution functions as
γsfs(�ps) = γf ff (�pf ); in covariant formulations, the particle
Lorentz factor is absorbed into the definition of f. This is
employed in the second integral in Equation (A1), along with
the fluid frame distribution function. To integrate over the delta
function, it is necessary to change variables dps → dpf ,
so that

N = 2π

∫
p2

s dps

γs
γf ff (�pf ) dμs ≡ N

2

∫
γsβ

2
s

γf β2
f

∣∣∣∣ ∂ps

∂pf

∣∣∣∣ dμs.

(A2)
Hereafter, the identity pf = p0 will be assumed. The partial
Jacobian |∂ps/∂pf | can be determined by first writing the
Lorentz boost relations for the particle momentum:

psμs = Γ(γf β + pf μf )
(A3)

ps

√
1 − μ2

s = pf

√
1 − μ2

f .

After moderate algebraic manipulation, one can eliminate μf

and solve for ps/pf as a function of pf and μs :

ps

pf
= γf

Γ2
S + χμs

1 − β2μ2
s

for S = Γ
γf

√
1 − χ2(1 − μ2

s ),

χ = Γβ
γf βf

. (A4)

Additionally, holding the integration variable, μs , constant, one
can derive ∣∣∣∣ ∂ps

∂pf

∣∣∣∣ = Γγs

Sγ 2
f

. (A5)

These allow us to rewrite Equation (A2) in the form

N =
∫ 1

−1

dN
dμs

dμs,

dN
dμs

= Nγf

2Γ3
(S + χμs)

2

S
(
1 − β2μ2

s

)2

= Nγf

2Γ3
dΣ
dμs

for Σ = μs(S + χμs)
1 − β2μ2

s

. (A6)

The angular distribution dN/dμs describes the beaming ap-
pearing in the NIF shock frame of an isotropic distribution in
the fluid frame of fixed, specified momentum pf . It is appli-
cable to arbitrary γf , not just ultrarelativistic cases γf � 1,
the usual restricted consideration (e.g., see Peacock 1981). The
identity for dN/dμs , casting it in terms of a perfect derivative
dΣ/dμs , can be established using a moderate amount of alge-
bra; it nicely facilitates the derivation of the integral identity for
N in Equation (A6).

To formulate probabilities of transmission and return at
position x, the angular distribution dN/dμs must be weighted
by the flux of particles incident upon the plane at x that is
parallel to the shock plane. In the NIF, this weighting factor is
proportional to the density of particles, which is proportional
to γs , and also to the velocity component vs |μs | along the x-
direction. In this way, we form flux angular distributions using
Equation (A4) as follows:

dF
dμs

= C |μs | (S + μsχ )3

S
(
1 − β2μ2

s

)3 ≡ C |Σ| dΣ
dμs

, (A7)

for C being a constant of normalization. This formula gen-
eralizes that employed in Peacock (1981), which is restricted
to γf � 1 cases. It is easily seen that the integrands in
Equation (26) of Peacock’s paper are proportional to the
γf → ∞ limit of Equation (A7), and can essentially be derived
using light aberration considerations. The total probability Pr

of return to x of particles of fixed pf incident from the upstream
side is then the ratio of two integrals over the flux distribution:

Pr = Fd→u

Fu→d
=

(
βf − β
βf + β

)2

,

Fd→u =
∫ 0

−1

dF
dμs

dμs, Fu→d =
∫ 1

0

dF
dμs

dμs. (A8)

This simple expression for Pr is valid for any flow speed
β and any particle speed βf � β; it was first derived for
non-relativistic shocks (i.e., β � 1) by Bell (1978) and
for relativistic shocks with high-speed (βf ≈ 1) particles by
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Peacock (1981). Again, recognizing the appearance of a perfect
derivative d(Σ2)/dμs in the flux distributions expedites the
integrations in Equation (A8). The direction of the magnetic
field and the level of cross-field diffusion are irrelevant to the
derivation of the flux angular distribution and probability of
return. Technically these formulae, as derived, must be applied
in a downstream NIF; in practice, for many Rankine–Hugoniot
solutions, such as for high Alfvénic Mach numbers (e.g., see,
Figures 2 and 3), the flow deflection at the shock is small, and the
downstream and upstream NIF frames are almost coincident.

The simulation computes the statistical probability of return
to the plane at x according to Pr . Those particles that are deemed
to escape are eliminated from the simulation. For those that
return, their returning value of μs � 0 is selected randomly
from the distribution in Equation (A7) when it is normalized to
unity on −1 � μs � 0. Then, the constant of proportionality is
C = 2γ 2

f β2
f /Γ6/(βf − β)2. Upon return, the particle is placed

at x with the same (y, z) coordinates it originally crossed with;
the system is uniform in the dimensions transverse to the shock
normal, so this step introduces no bias. After μs is determined,
the phase of the momentum vector about the shock normal is
selected randomly from a uniform distribution on [0, 2π ]. The
returning particle momentum vector is then totally specified,
and is routinely cast in rotated coordinates to identify variables
connected to gyration about oblique magnetic fields.
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