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ABSTRACT

Molecular clouds often exhibit filamentary or sheet-like shapes. We compute the free-fall time (τff) for finite,
uniform, self-gravitating circular sheets and filamentary clouds of small but finite thickness, so that their volume
density ρ can still be defined. We find that, for thin sheets, the free-fall time is larger than that of a uniform sphere
with the same volume density by a factor proportional to

√
A, where the aspect ratio A is given by A = R/h, R

being the sheet’s radius and h is its thickness. For filamentary clouds, the aspect ratio is defined as A = L/R,
where L is the filament’s half-length and R is its (small) radius, and the modification factor is more complicated,
although in the limit of large A it again reduces to nearly

√
A. We propose that our result for filamentary shapes

naturally explains the ubiquitous configuration of clumps fed by filaments observed in the densest structures of
molecular clouds. Also, the longer free-fall times for non-spherical geometries in general may contribute toward
partially alleviating the “star formation conundrum,” namely, the star formation rate in the Galaxy appears to be
proceeding in a timescale much larger than the total molecular mass in the Galaxy divided by its typical free-fall
time. If molecular clouds are in general formed by thin sheets and long filaments, then their relevant free-fall time
may have been systematically underestimated, possibly by factors of up to one order of magnitude.
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1. INTRODUCTION

The so-called free-fall time is one of the most important
quantities in astrophysics. For a spherical object of mass M and
radius R, this timescale is given by (see, e.g., Binney & Tremaine
1987)

τff ≡
√

π2R3

8GM
=

√
3π

32Gρ
, (1)

where in the second equality we have introduced the volume
density defined by

ρ(M,R) = 3M

4πR3
. (2)

The timescale τff has the interesting property that it depends
on the object’s size and mass only through a combination that is
proportional to its volume density, ρ. That is, once ρ is specified,
τff is independent of the object’s mass (or size), implying that, in
a collapsing uniform-density sphere, all spherical shells reach
the center at the same time. This is equivalent to the well-
known property that, for spherically symmetric perturbations of
a uniform medium, the growth rate increases with increasing
wavelength, and thus the fastest mode of collapse is an overall
contraction of the medium (Tohline 1980; Larson 1985).

However, this independence of τff from the actual physical
dimensions of an object of fixed volume density is only valid
when the object’s extension R is comparable in all three
spatial dimensions (a “3D object”) because only in this case
is the volume density of the object given by Equation (2).
Instead, for nearly sheet-like (“2D”) or filamentary (“1D”)
shapes, the volume density ρ is not proportional to M/L3,
where L generically denotes the object’s largest dimension. For
these morphologies, ρ ∝ M/(�L2) or ρM/(L�2), respectively,
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where � denotes the fixed, small dimension(s) of the object.
This is relevant for interstellar structures, since they are often
observed to have sheet-like or filamentary, rather than spherical,
morphologies (e.g., Bally et al. 1989; de Geus et al. 1990; Heiles
& Troland 2003; Myers 2009; Molinari et al. 2010; André et al.
2010). This suggests that the free-fall timescale may actually
depend on the size of a non-spherical object in addition to
depending on its volume density.

The gravitational stability of non-spherical structures has
been considered in earlier works (e.g., Ledoux 1951; Larson
1985; Curry 2000), but mostly considering infinite media
and without discussing collapse timescales. Finite-size non-
spherical structures and their corresponding collapse times have
only recently begun to be considered. In particular, Burkert
& Hartmann (2004) computed an approximation to the free-fall
time τff,2D for finite-sized, infinitely thin circular sheets of radius
R, given by

τff,2D ≈ τff,BH ≡
√

R

πGΣ
, (3)

where Σ is the surface density (with units of mass per unit area)
of the sheet. It is noteworthy that, in this case, the free-fall
time exhibits a dependence on its size in addition to depending
on the (column) density. Indeed, numerical simulations of
the collapse of large sheet-like clouds containing many Jeans
masses by Vázquez-Semadeni et al. (2007) exhibited collapse
timescales significantly larger than their corresponding three-
dimensional free-fall time, as given by Equation (1). Motivated
by these realizations, in this paper we compute in detail the
free-fall time for sheet-like and filamentary structures. Note
that Pon et al. (2011) have recently investigated the free-fall
timescales for sheet-like and filamentary geometries, although
they have focused on whether small-scale perturbations within
such structures have sufficient time to collapse before the whole
structure does so. Here we concentrate on a different question:
whether the collapse timescale for these geometries is longer,
and by what amount, compared to their spherical counterparts.
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Thus, our study and that by Pon et al. (2011) can be considered
as being complementary to each other.

2. THE SPHERICAL CASE

The standard calculation of the free-fall time for a uniform-
density sphere proceeds as follows (e.g., Binney & Tremaine
1987). Consider a uniform sphere of radius R, mass M, and
volume density ρ = ρ3D(M,R) ≡ 3M/4πR3, which at time
t = 0 starts to contract under the action of its self-gravity
exclusively. The subindex “3D” denotes the function that is
used to calculate a quantity for a spherical (or “3D”) geometry,
which we distinguish from the physical value of the quantity
itself, denoted without subscript. At a certain later time t > 0,
when the sphere has radius r < R, the velocity of a point at its
periphery is

dr

dt
= −

√
2GM

(
1

r
− 1

R

)
. (4)

Introducing the non-dimensional variable x ≡ r/R, this is
equivalent to

dx

dt
= −

√
2GM

R3

(
1 − x

x

)
. (5)

It is then clear that, because for a spherically symmetric uniform
object the mass M increases as R3, expression (5) depends on
the mass and size of the sphere only through the volume density
they imply, ρ = ρ3D. Equation (5) can then be integrated to
yield

τff = τff,3D(M,R) =
(

R3

2GM

)1/2 ∫ 1

0

(
x

1 − x

)1/2

dx =
√

3π

32Gρ
, (6)

evidencing the independence of τff on the cloud’s size or mass
for a given volume density.

3. CIRCULAR SHEET-LIKE CLOUD

Let us now consider the case of an infinitely thin circular
sheet of mass M, initial radius R, and uniform surface density
Σ = M/πR2. Here we follow closely the analysis by Burkert
& Hartmann (2004, hereafter BH04). They calculated the radial
acceleration experienced by the periphery of the sheet when
it has shrunk to radius r < R, under the assumption that the
surface density Σ remains constant. This assumption was made
because they found that the maximum acceleration occurs at
the periphery of the sheet, and thus a dense contracting ring
forms in the periphery, while the inner surface density remains
essentially unchanged. This behavior has been observed in
numerical simulations by BH04 themselves and by Vázquez-
Semadeni et al. (2007). With this assumption, BH04 found

ar = 4GΣ
R

r

[
K

( r

R

)
− E

( r

R

)]
, (7)

where K and E are, respectively, the first and second elliptic
integrals. Upon a series expansion, Equation (7) becomes

ar = πGΣ
[

r

R
+

3

8

( r

R

)3
+

45

192

( r

R

)5
+ · · ·

]
. (8)

Note that the acceleration diverges at r = R, but BH04 noted
that this problem is eliminated when a finite sheet thickness is
considered.

BH04 retained only the linear term in Equation (8) and
computed the free-fall time by noting that ar = dv/dt =
1/2dv2/vdt = 1/2dv2/dr , where v is the instantaneous radial
velocity. They thus found the instantaneous velocity as a
function of the instantaneous radius of the sheet, given by

v2(r) = −2πGΣ
R

∫ r

R

r ′dr ′ = πGΣ
R

(R2 − r2), (9)

implying that the radial velocity at the end of the collapse is

v(r = 0) =
√

πGΣR. (10)

Taking this as a representative velocity for the entire collapse,
BH04 then found a lower limit to the time for the sheet to shrink
from r = R to r = 0, which we label τff,BH, given by

τff,BH = R

v(r = 0)
=

√
R

πGΣ
, (11)

as anticipated in Equation (3).
At this point we can extend the calculations by BH04 in two

ways. First, we consider clouds with small but finite thickness,
so that it is possible to define a volume density within them.
We refer to this as a “quasi-2D” geometry. Specifically, we
rewrite the surface density assuming a small but finite thickness
h such that Σ = ρh, where ρ is the volume density. However,
in this case the volume density is not given by Equation (2),
but rather by ρ = ρ2D(M,R) = M/πR2h. Here, the subindex
“2D” now denotes the relevant function to compute the quantity
for a quasi-2D structure.

Second, instead of taking the final velocity as representative
of the entire collapse, we can obtain a more accurate expression
by integrating Equation (8) from R to r to write an expression
for v(r), obtaining

v1(r) =
√

πGρ

A
(R2 − r2), (12)

where A ≡ R/h is the aspect ratio. After a second integration
we obtain

r1(t) = R sin

(
π

2
−

√
πGρ

A
t

)
, (13)

where the subindex “1” denotes the assumption that the density
of the sheet internal to its periphery remains constant. Setting
r1 = 0, we obtain the corresponding free-fall time as

τff,1 =
√

Aπ

4Gρ
=

√
8A

3
τff,3D, (14)

where the second equality compares with the free-fall time that
would be obtained for a spherical structure with the same volume
density, explicitly exhibiting the extra factor ∝ √

A.
Let us now assume that, instead of remaining constant, the

sheet’s density increases during the contraction so as to maintain
the sheet’s mass constant; that is, Σ (r(t)) = M/πr(t)2 =
ρ (r(t)) h, with M = const. Note that, in reality, the sheet’s mass
does remain constant during the collapse, but it is not distributed
uniformly on the sheet. Instead, the mass external to r is piled
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Figure 1. Top: evolution of the radial velocity of a sheet’s periphery (shown as a function of its instantaneous radius, normalized to its initial value R) as it collapses,
compared to the corresponding velocity for a spherical cloud (thick line). Note that the radius decreases to the right. Bottom: normalized position of the sheet’s radius
as a function of time, in units of the spherical free-fall time. Left: case 1. Right: case 2. The different lines show different values of A.

up at the periphery. So, a point at the periphery sees this mass at
the farthest possible distance within the sheet, rather than seeing
it uniformly distributed over the sheet. Thus, the constant-mass
assumption overestimates the gravitational pull of the sheet on
this point. On the other hand, the constant-density assumption
neglects the mass at the periphery altogether. Thus, the two
assumptions should bracket the real situation (still within the
linear approximation).

Under this assumption we can integrate Equation (8) from R
to r to obtain a velocity function as

v2(r) =
√

2πGρhR ln

(
R

r

)
=

√
2πGρR2

A
ln

(
R

r

)
, (15)

where the subindex “2” denotes the case of a constant-mass
assumption. Upon a second integration, we obtain

r2(t) = R

exp

[
erf−1

(√
2Gρ

A
t

)]2 , (16)

where erf−1 is the inverse error function. This gives a free-fall
time of

τff,2 =
√

A

2Gρ
=

√
16A

3π
τff,3D, (17)

which is ∼25% shorter than τff,1 because the gravitational
acceleration is always larger, as the surface density increases
monotonically as the sheet contracts. The estimates for the free-
fall time in the two cases differ by factors of order unity at most.
More importantly, both of them have the same dependence on
the aspect ratio as ∼√

A. This dependence is fundamentally
different from that of the spherical (“3D”) case, given by
Equation (6), as discussed in Section 1. This is illustrated
in Figure 1 (top panels), which shows the infall velocities
as a function of the instantaneous radius, corresponding to
Equations (12) and (15), taking R = ρ = G = 1, for a range of
values of A. Also shown is the infall velocity for the spherical
case. We see that the latter is always larger than either A values
in both cases. This result is clearly a consequence of the much
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smaller mass contained in a flat, essentially “2D,” configuration
than in a spherical (3D) one of the same volume density.

The bottom panels of Figure 1 show the sheet’s radius as
a function of time for the two density cases. As expected,
case 1, in which the cloud’s mass is not conserved, but rather
decreases in time, undergoes a slightly slower collapse than
case 2. Nevertheless, we see that the difference in the collapse
time between the two cases is around ∼25%, and so both are
qualitatively similar.

4. FILAMENTARY CLOUD

We now consider the case of a uniform, cylindrical cloud
of total length 2L, radius R 	 L, and volume density ρ =
ρ1D(M,L) = M/πR2L, where now the subindex “1D” denotes
the function appropriate for calculating a physical quantity in
the quasi-1D case. Note that here the filament’s radius R is the
small, fixed dimension, and the size variable is L.

Again, we start with the case in which the filament’s density
remains constant. In this case, the acceleration toward the
filament’s center at a distance l from the center is given by
(BH04)

a(l) = 1

2

dv2

dl
= −2πGρ[2l + R −

√
R2 + 4l2]. (18)

Integrating this equation from L to l, we obtain the radial velocity
after the filament has contracted from L to l:

v(l) =
√

4πGρ

[
(L − l)(L + l + R) − L

2

√
R2 + 4L2

+
l

2

√
R2 + 4l2 − R2

4
ln

∣∣∣∣∣
√
R2 + 4L2 + 2L√
R2 + 4l2 + 2l

∣∣∣∣∣
]1/2

.

(19)

If we now define the non-dimensional parameters A = L/R
and x = l/L, we can rewrite Equation (19) as

dx

dt
= π

2τff,3D

√
3

2

[
(1 − x)

(
1 + x +

1

A

)
− 1

2

√
1

A2
+ 4

+
x

2

√
1

A2
+ 4x2 − 1

4A2
ln

∣∣∣∣∣∣
√

1
A2 + 4 + 2√

1
A2 + 4x2 + 2x

∣∣∣∣∣∣
⎤
⎦

1/2

.

(20)

This equation again shows that the velocity depends on the
“aspect ratio” A = L/R, besides the standard dependence on
density given by τff,3D.

Let us now drop the constant-density assumption and assume
instead that the volume density increases as the filament con-
tracts as ρ(l) = ρ1D(M, l) = M/πR2l. In this case, we can
perform the same calculation for the velocity evolution, to ob-
tain

dx

dt
= π

2τff,3D

√
3

2

[
2(1 − x) −

√
1

A2
+ 4 +

√
1

A2
+ 4x2

− 1

A
ln

∣∣∣∣∣∣
√

1
A2 + 4x2 + 1

A√
1
A2 + 4 + 1

A

∣∣∣∣∣∣
⎤
⎦

1/2

. (21)

In Figure 2 (top panels) we show the contraction velocity as
a function of l for a range of values of A, for both the constant-
density and constant-mass cases. In both, the final velocity
reaches smaller values as larger values of A are considered.
The lower panels in Figure 2 show the position of the filament’s
edge as a function of time, obtained from numerical integration
of Equations (20) and (21). The results are normalized to the
spherical free-fall time.

Expressions (20) and (21) are quite complicated, and thus it
is worthwhile to consider the limiting case of large A, for which
an analytical solution can be found. We obtain

τff,1 = 2

π

√
8A

3
τff,3D (22)

and

τff,2 =
√

8A

3π
τff,3D, (23)

from which we see that, at large A, the free-fall time for filaments
also exhibits an additional factor ∝ √

A (Figure 3), similarly to
the case for sheets.

5. DISCUSSION AND APPLICATIONS

5.1. Implications for Filamentary Structure
in Molecular Clouds

Our results have a number of implications for various aspects
of interstellar structure and star formation (SF). First, the fact
that both the sheet-like and filamentary geometries have free-
fall timescales larger than those of their three-dimensional
(spherical) counterpart with the same volume density implies
that any sheet or filament containing many Jeans masses will
collapse later than any approximately 3D clump within it
containing one Jeans mass. That is, the 3D clump will collapse
on roughly one spherical free-fall time, while the sheet or
filament around it will terminate its own collapse after a
time that is longer by a factor

√
A. This naturally explains

the commonly observed morphology of clumps immersed
within, and accreting from, filaments (e.g., Myers 2009; Purcell
et al. 2009; Schneider et al. 2010; Pillai et al. 2011), because
the clumps evolve on a shorter timescale than their parent
filaments.

Specifically, our results can be applied to the filaments
observed in the Aquila Rift and Polaris Flare regions by André
et al. (2010). These authors report a typical filament width
of 2R ∼ 104 AU, or ∼0.05 pc. In turn, filaments extending
for over 3 pc can be readily seen in their Figure 1, implying
aspect ratios of up to ∼60. From our Figure 3, we see that
this in turn implies filament collapse times up to ∼10 times
larger than the corresponding spherical one. Moreover, André
et al. (2010) report a typical column density of the filaments of
N ∼ 1022 cm−2. We can thus estimate the mean volume density
in the filaments as n ≈ N/2R ≈ 6.5 × 104 cm−3, for which,
assuming a mean molecular mass μ = 2.36, the spherical
free-fall time is τff,3D ≈ 1.3 × 105 yr, and the Jeans length
is LJ ≈ 0.08 pc. According to our results, a filament of length
2L = 3 pc would thus take a time ∼1.3 Myr to collapse. But if it
contracts toward its center of mass, then quickly the central parts
of the filament will reach a volume density large enough that
a segment of the filament of length equal to its thickness will
become Jeans unstable. Indeed, the required volume density
for the Jeans length to become LJ = 2R = 0.05 pc is
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Figure 2. Top: evolution of the edge velocity for a filamentary cloud, compared to the corresponding velocity for a spherical cloud (thick line). Bottom: normalized
position of the filament’s edge as a function of time, normalized to the spherical free-fall time estimate. Left: case 1, with ρ = const. Right: case 2, taking
ρ(l) = M/πR2l. The different lines show different values of A.

nJ ∼ 1.8 × 105 cm−3, or only ∼2.8 times the mean volume
density of the filament. At this point, the central clump becomes
locally Jeans unstable, and proceeds to collapse on a timescale
up to one order of magnitude shorter than the filament, naturally
producing a star-forming core with a filamentary “appendix”
that accretes onto it. Moreover, this will cause the core to sustain
SF for times significantly longer than its own (spherical) free-
fall time, since its gas supply is continuously replenished by the
accretion flow from the filament.

In turn, filaments may form from the collapse of sheets. As
mentioned in Section 3, during the collapse of a thin sheet,
the acceleration is maximal at the edge, and thus the collapse
occurs from the outside in, forming a dense ring in the periphery,
which is topologically equivalent to a filament. Such hierarchical
fragmentation from sheets to filaments has been suggested by
several authors (Schneider & Elmegreen 1979; Gaida et al.
1984; Hanawa et al. 1993; Kofman & Pogosyan 1995), and has
also been readily observed in numerical simulations (Turner

et al. 1995; Burkert & Hartmann 2004; Hartmann & Burkert
2007; Vázquez-Semadeni et al. 2007; Heitsch et al. 2008, 2009;
Rosas-Guevara et al. 2010; Prieto et al. 2011). Thus, the collapse
of giant molecular clouds may proceed in a way that is anything
but a monolithic, three-dimensional collapse.

5.2. Implications for the Free-fall Estimate of the SFR

A second implication of our results is that they may con-
tribute, at least partially, toward alleviating the well-known “SF
conundrum.” The latter consists in that the observed star forma-
tion rate (SFR), of a few M
 yr−1 (e.g., Smith et al. 1978; Diehl
et al. 2006; Robitaille & Whitney 2010), is roughly two orders
of magnitude lower than the simple estimate obtained by divid-
ing the total molecular mass in the Galactic interstellar medium
(ISM) by the three-dimensional free-fall time corresponding
to the mean density and temperature of the molecular gas
(Zuckerman & Palmer 1974). This argument caused the dis-
miss of the original proposal by Goldreich & Kwan (1974) that
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Figure 3. Dependence of the free-fall time for a filamentary cloud on the
parameter A. The asymptotic behavior ∝ √

A is seen to be reached quickly as
A is increased.

molecular clouds should be in gravitational collapse, and was
replaced by the notion that the observed linewidths correspond
to supersonic microturbulence (Zuckerman & Evans 1974). The
latter was thought to provide support against the clouds’ self-
gravity, a notion that persists until the present. Later on, support
by magnetic fields was considered as well, and led to the notion
that molecular clouds are in near-virial equilibrium, with SF pro-
ceeding at a much slower rate than free fall, only as allowed by
mediation of ambipolar diffusion (see, e.g., the reviews by Shu
et al. 1987; Mouschovias 1991) and of local turbulent compres-
sion (e.g., Vázquez-Semadeni et al. 2000; Mac Low & Klessen
2004).

However, if molecular clouds and their substructure are
indeed in near free-fall, as suggested by various recent studies
(e.g., Burkert & Hartmann 2004; Vázquez-Semadeni et al. 2007,
2010; Hartmann & Burkert 2007; Peretto et al. 2007; Galván-
Madrid et al. 2009; Schneider et al. 2010; Csengeri et al. 2011a,
2011b), then the SF conundrum reappears as a challenge to
theoretical models of free-falling clouds (e.g., Zamora-Avilés
& Vázquez-Semadeni 2011). Our results may imply that, if
the cold (molecular and atomic) gas is distributed in sheets
and filaments rather than in three-dimensional structures, as
suggested by various observational studies (e.g., Bally et al.
1989; de Geus et al. 1990; Heiles & Troland 2003; Molinari
et al. 2010; André et al. 2010), then the 3D value of the free-fall
time is an underestimate to the real value, implying that the 3D
free-fall SFR value overestimates its actual value, and that the
severity of the SF conundrum may be reduced by up to one order
of magnitude.

Of course, the correction provided by our results is not ex-
pected to provide a full solution to the SFR conundrum, since
it is unlikely that sheets and filaments have the required aspect
ratio values of A ∼ a few × 103 to completely account for a
two-order-of-magnitude discrepancy between the observed and
the free-fall estimate values of the SFR (see Figures 1 and 2).
Besides, the presence of even weak magnetic fields (implying
supercritical mass-to-magnetic flux molecular clouds) and stel-
lar feedback are expected to reduce the SFR beyond whatever is
achieved by the possible low dimensionality of the clouds. Nev-
ertheless, our result may provide a reduction of the discrepancy
factor between the observed SFR and its free-fall estimate by
factors ranging from a few to almost one order of magnitude,
since observed aspect ratios of sheets and filaments in the ISM

can reach values of up to 102 (Heiles & Troland 2003; Molinari
et al. 2010).

6. SUMMARY AND CONCLUSIONS

We have computed the free-fall time for two geometries that
depart from spherical symmetry, namely, thin circular sheets
and long filaments. In both cases, we considered two different
behaviors for the volume density, one assuming that it remains
constant through the collapse and the other assuming that it is
the mass that remains constant, and the density increasing as
the object collapses. These two cases should bracket the actual
collapse timescale.

We have parameterized the problem by the aspect ratio A of
the object, defined either as the ratio of the cloud’s radius to its
(small) thickness (A = R/h) in the case of sheets, or as the
ratio of the cloud’s half-length to its (small) radius (A = L/R),
in the case of filaments. Our calculations assume that the clouds
contract only along their largest dimension (radially for sheets,
and longitudinally for filaments), and thus our results are more
accurate as larger values of A are considered. The value A = 1
is a frontier value between the two symmetries, although it is
also the value for which our calculations are in largest error,
since three-dimensional contraction should ensue in that case,
with the free-fall time being given by τff,3D. Nevertheless, even
in this extreme case, our calculations only deviate from the 3D
value by factors of order unity.

For both cases, we found that the collapse time increases
as A1/2. In particular, this implies that the collapse time of
a thin sheet is of the order of that of a sphere with much
lower volume density, so that it is its column density that is
the same as that of the sheet. This result has two important
implications for the structure of molecular clouds and SF.
First, it naturally explains the common morphology observed
in molecular clouds, where star-forming or pre-stellar clumps
are embedded within filaments that appear to be accreting onto
them. According to our results, this is a natural consequence
of the longer free-fall time for a filament than for any clump-
like structure within it that contains enough mass to be itself
collapsing. Because the filament has a longer collapse time, it
will continue to accrete onto the locally collapsing 3D clump
after the latter has managed to increase its density by a large
enough amount as to become distinguishable from the filament.

Second, it may imply that, if molecular gas in the Galaxy
is distributed in primarily low-dimensional structures such as
sheets and filaments, then the so-called SFR conundrum may
not be as strong as it is normally stated, because the relevant
free-fall time for the cold gas in the Galaxy may be longer
than has been considered. However, we expect that this effect is
likely to only account for a fraction of the discrepancy between
the observed and the free-fall prediction for the SFR, since
the required aspect ratios to fully account for the conundrum
would be too large (A ∼ a few × 103), and besides other effects
are known to contribute to reduce the SFR, such as magnetic
fields and stellar feedback. In any case, our results suggest that
determining the topology of molecular clouds is important for
estimating their true expected collapse timescales.
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eree, which helped improving the clarity and scope of the
paper. This work has received financial support from grants
CONACYT 102488 to E.V.-S., UNAM-DGAPA grant PAPIIT
IN106511 to G.C.G., and a fellowship from CONACYT-SNI to
J.A.T.
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Vázquez-Semadeni, E., Gómez, G. C., Jappsen, A. K., et al. 2007, ApJ, 657,

870
Vázquez-Semadeni, E., Ostriker, E. C., Passot, T., Gammie, C. F., & Stone, J.

M. 2000, in Protostars and Planets IV, ed. V. Mannings, A. P. Boss, & S. S.
Russell (Tucson, AZ: Univ. Arizona Press), 3

Zamora-Avilés, M. A., & Vázquez-Semadeni, E. 2011, ApJ, submitted (arXiv:
1105.4777)

Zuckerman, B., & Evans, N. J. 1974, ApJ, 192, L149
Zuckerman, B., & Palmer, P. 1974, ARA&A, 12, 279

7

http://dx.doi.org/10.1051/0004-6361/201014666
http://adsabs.harvard.edu/abs/2010A&A...518L.102A
http://adsabs.harvard.edu/abs/2010A&A...518L.102A
http://dx.doi.org/10.1007/BFb0119439
http://dx.doi.org/10.1007/BFb0119439
http://dx.doi.org/10.1007/BFb0119439
http://adsabs.harvard.edu/abs/1989LNP...331...81B
http://dx.doi.org/10.1086/424895
http://adsabs.harvard.edu/abs/2004ApJ...616..288B
http://adsabs.harvard.edu/abs/2004ApJ...616..288B
http://dx.doi.org/10.1051/0004-6361/201014984
http://adsabs.harvard.edu/abs/2011A&A...527A.135C
http://adsabs.harvard.edu/abs/2011A&A...527A.135C
http://dx.doi.org/10.1088/2041-8205/740/1/L5
http://adsabs.harvard.edu/abs/2011ApJ...740L...5C
http://adsabs.harvard.edu/abs/2011ApJ...740L...5C
http://dx.doi.org/10.1086/309465
http://adsabs.harvard.edu/abs/2000ApJ...541..831C
http://adsabs.harvard.edu/abs/2000ApJ...541..831C
http://adsabs.harvard.edu/abs/1990A&A...231..137D
http://adsabs.harvard.edu/abs/1990A&A...231..137D
http://dx.doi.org/10.1038/nature04364
http://adsabs.harvard.edu/abs/2006Natur.439...45D
http://adsabs.harvard.edu/abs/2006Natur.439...45D
http://adsabs.harvard.edu/abs/1984A&A...137...17G
http://adsabs.harvard.edu/abs/1984A&A...137...17G
http://dx.doi.org/10.1088/0004-637X/706/2/1036
http://adsabs.harvard.edu/abs/2009ApJ...706.1036G
http://adsabs.harvard.edu/abs/2009ApJ...706.1036G
http://dx.doi.org/10.1086/152821
http://adsabs.harvard.edu/abs/1974ApJ...189..441G
http://adsabs.harvard.edu/abs/1974ApJ...189..441G
http://dx.doi.org/10.1086/186749
http://adsabs.harvard.edu/abs/1993ApJ...404L..83H
http://adsabs.harvard.edu/abs/1993ApJ...404L..83H
http://dx.doi.org/10.1086/424895
http://adsabs.harvard.edu/abs/2004ApJ...616..288B
http://adsabs.harvard.edu/abs/2004ApJ...616..288B
http://dx.doi.org/10.1086/367828
http://adsabs.harvard.edu/abs/2003ApJ...586.1067H
http://adsabs.harvard.edu/abs/2003ApJ...586.1067H
http://dx.doi.org/10.1088/0004-637X/704/2/1735
http://adsabs.harvard.edu/abs/2009ApJ...704.1735H
http://adsabs.harvard.edu/abs/2009ApJ...704.1735H
http://dx.doi.org/10.1086/523697
http://adsabs.harvard.edu/abs/2008ApJ...674..316H
http://adsabs.harvard.edu/abs/2008ApJ...674..316H
http://dx.doi.org/10.1086/175419
http://adsabs.harvard.edu/abs/1995ApJ...442...30K
http://adsabs.harvard.edu/abs/1995ApJ...442...30K
http://adsabs.harvard.edu/abs/1985MNRAS.214..379L
http://adsabs.harvard.edu/abs/1985MNRAS.214..379L
http://adsabs.harvard.edu/abs/1951AnAp...14..438L
http://adsabs.harvard.edu/abs/1951AnAp...14..438L
http://dx.doi.org/10.1103/RevModPhys.76.125
http://adsabs.harvard.edu/abs/2004RvMP...76..125M
http://adsabs.harvard.edu/abs/2004RvMP...76..125M
http://dx.doi.org/10.1051/0004-6361/201014659
http://adsabs.harvard.edu/abs/2010A&A...518L.100M
http://adsabs.harvard.edu/abs/2010A&A...518L.100M
http://dx.doi.org/10.1088/0004-637X/700/2/1609
http://adsabs.harvard.edu/abs/2009ApJ...700.1609M
http://adsabs.harvard.edu/abs/2009ApJ...700.1609M
http://dx.doi.org/10.1051/0004-6361:20065653
http://adsabs.harvard.edu/abs/2007A&A...464..983P
http://adsabs.harvard.edu/abs/2007A&A...464..983P
http://dx.doi.org/10.1051/0004-6361/201015899
http://adsabs.harvard.edu/abs/2011A&A...530A.118P
http://adsabs.harvard.edu/abs/2011A&A...530A.118P
http://dx.doi.org/10.1088/0004-637X/740/2/88
http://dx.doi.org/10.1088/2041-8205/731/2/L38
http://adsabs.harvard.edu/abs/2011ApJ...731L..38P
http://adsabs.harvard.edu/abs/2011ApJ...731L..38P
http://dx.doi.org/10.1051/0004-6361/200811358
http://adsabs.harvard.edu/abs/2009A&A...504..139P
http://adsabs.harvard.edu/abs/2009A&A...504..139P
http://dx.doi.org/10.1088/2041-8205/710/1/L11
http://adsabs.harvard.edu/abs/2010ApJ...710L..11R
http://adsabs.harvard.edu/abs/2010ApJ...710L..11R
http://adsabs.harvard.edu/abs/2010MNRAS.406.1875R
http://adsabs.harvard.edu/abs/2010MNRAS.406.1875R
http://dx.doi.org/10.1051/0004-6361/201014481
http://adsabs.harvard.edu/abs/2010A&A...520A..49S
http://adsabs.harvard.edu/abs/2010A&A...520A..49S
http://dx.doi.org/10.1086/190609
http://adsabs.harvard.edu/abs/1979ApJS...41...87S
http://adsabs.harvard.edu/abs/1979ApJS...41...87S
http://dx.doi.org/10.1146/annurev.aa.25.090187.000323
http://adsabs.harvard.edu/abs/1987ARA&A..25...23S
http://adsabs.harvard.edu/abs/1987ARA&A..25...23S
http://adsabs.harvard.edu/abs/1978A&A....66...65S
http://adsabs.harvard.edu/abs/1978A&A....66...65S
http://dx.doi.org/10.1086/158125
http://adsabs.harvard.edu/abs/1980ApJ...239..417T
http://adsabs.harvard.edu/abs/1980ApJ...239..417T
http://adsabs.harvard.edu/abs/1995MNRAS.277..705T
http://adsabs.harvard.edu/abs/1995MNRAS.277..705T
http://dx.doi.org/10.1088/0004-637X/715/2/1302
http://adsabs.harvard.edu/abs/2010ApJ...715.1302V
http://adsabs.harvard.edu/abs/2010ApJ...715.1302V
http://dx.doi.org/10.1086/510771
http://adsabs.harvard.edu/abs/2007ApJ...657..870V
http://adsabs.harvard.edu/abs/2007ApJ...657..870V
http://adsabs.harvard.edu/abs/2000prpl.conf....3V
http://www.arxiv.org/abs/1105.4777
http://dx.doi.org/10.1086/181613
http://adsabs.harvard.edu/abs/1974ApJ...192L.149Z
http://adsabs.harvard.edu/abs/1974ApJ...192L.149Z
http://dx.doi.org/10.1146/annurev.aa.12.090174.001431
http://adsabs.harvard.edu/abs/1974ARA&A..12..279Z
http://adsabs.harvard.edu/abs/1974ARA&A..12..279Z

	1. INTRODUCTION
	2. THE SPHERICAL CASE
	3. CIRCULAR SHEET-LIKE CLOUD
	4. FILAMENTARY CLOUD
	5. DISCUSSION AND APPLICATIONS
	5.1. Implications for Filamentary Structure in Molecular Clouds
	5.2. Implications for the Free-fall Estimate of the SFR

	6. SUMMARY AND CONCLUSIONS
	REFERENCES

