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ABSTRACT

The widely separated, near-equal mass binaries hosted by the cold classical Kuiper Belt are delicately bound and
subject to disruption by many perturbing processes. We use analytical arguments and numerical simulations to
determine their collisional lifetimes given various impactor size distributions and include the effects of mass loss
and multiple impacts over the lifetime of each system. These collisional lifetimes constrain the population of small
(R � 1 km) objects currently residing in the Kuiper Belt and confirm that the size distribution slope at small
size cannot be excessively steep—likely q � 3.5. We track mutual semimajor axis, inclination, and eccentricity
evolution through our simulations and show that it is unlikely that the wide binary population represents an evolved
tail of the primordially tight binary population. We find that if the wide binaries are a collisionally eroded population,
their primordial mutual orbit planes must have preferred to lie in the plane of the solar system. Finally, we find that
current limits on the size distribution at small radii remain high enough that the prospect of detecting dust-producing
collisions in real time in the Kuiper Belt with future optical surveys is feasible.
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1. INTRODUCTION

The dynamically cold component of the classical Kuiper
Belt is host to a very high fraction of binary systems, and
some of these systems have very wide separations. These ultra-
wide trans-Neptunian binaries (TNBs) have been shown to
be extremely delicate, sensitive to collisional disruption (Petit
& Mousis 2004; Nesvorný et al. 2011; Parker et al. 2011),
and disruption by close encounters with Neptune (Parker &
Kavelaars 2010).

Given the characterized sample of ultra-wide TNBs presented
in Parker et al. (2011), we seek to accurately determine the col-
lisional lifetimes of these ultra-wide systems and their impli-
cations for the current state of the Kuiper Belt. To do this, we
expand upon the analytical estimates of Petit & Mousis (2004)
in Section 2, then describe numerical simulations we performed
to more accurately account for the effects of mutual eccentricity,
mass loss, and multiple impactors in Section 3. We find a sim-
ple empirical correction to the analytic predictions described in
Section 2, which accurately reproduces the collisional lifetimes
determined by our simulations.

Armed with these new estimates of collisional lifetimes un-
der a variety of assumed impactor populations, in Section 4 we
determine the properties of these impactor populations (repre-
senting the population of R � 1 km objects) that are allowed
given conservative assumptions about the primordial fraction of
ultra-wide TNBs in the classical Kuiper Belt. This impactor pop-
ulation is extremely difficult to constrain observationally; TNOs
with R ∼ 1 km are unlikely to ever be detected in reflected light
(with magnitudes �33), and at present the only limits that exist
on their numbers are based on searches for stellar occultations
(Bianco et al. 2010; Schlichting et al. 2009; Wang et al. 2009;
Bickerton et al. 2008). Determining the behavior of the TNO
size distribution at small sizes is critical for understanding the
accretion and collisional history of the outer solar system.

In Section 5, we discuss the evolution of the properties
of the binary mutual orbits over their lifetimes as they are

subjected to collisions, and discuss the effects of these colli-
sions on the interpretation of the current orbital distributions.
In general we find that it is unlikely for the ultra-wide binaries
to have evolved from initially tighter orbits, that their primor-
dial mutual inclination distribution must have been even colder
than it is currently, and that their current roughly equal num-
bers of prograde and retrograde orientations likely reflects the
primordial distribution.

In the following discussions we will adopt the nomencla-
ture of Parker et al. (2011) for discussing binary populations
and separations, with “tight” TNBs being those with mutual
semimajor axes significantly less than 5% of their Hill radius,
“wide” TNBs with mutual semimajor axes of approximately
5% of their Hill radius, and “ultra-wide” TNBs being those with
mutual semimajor axes significantly exceeding 5% of their Hill
radius.

We conclude with a discussion of the implications of the
existence of a single low-mass, widely separated system like
2000 CF105 and the importance of identifying the prevalence
of systems like it in the current Kuiper Belt, implications of
post-formation collisional evolution for our understanding of the
binary formation mechanism(s), and also discuss the probability
and utility of detecting transient brightening events caused by
catastrophic collisions like those simulated in this work in future
surveys like the Large Synoptic Survey Telescope (LSST).

2. ANALYTICAL ESTIMATES OF COLLISIONAL
LIFETIMES

Following Petit & Mousis (2004), the radius Ri of an impactor
onto the secondary which can unbind (i.e., cause total system
energy to exceed zero) a binary can be approximated by

Ri � Rs

(
0.62

Vi

) 1
3
(

GMsys

am

) 1
6

, (1)

where Rs is the radius of the system’s secondary, Vi is the
velocity of the impactor, Msys is the total mass of both binary
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components, and am is the mutual semimajor axis of the binary.
For the ultra-wide TNBs presented here, collisions at typical
Kuiper Belt relative velocities of Vi ∼ 1 km s−1, Equation (1)
estimates that the required impactor radii range from ∼1.6 km
(for 2000 CF105) to ∼5.7 km (for 2001 QW322).

We can estimate the mean time between single impacts large
enough to unbind the binary,

t̄ � (
Pi R2

s N (R > Ri)
)−1

, (2)

where Pi is the intrinsic collision probability in km−2 yr−1 for
objects in the classical Kuiper Belt, and we nominally adopt
the value of 1.3 × 10−21 (Farinella et al. 2000). This intrinsic
collisional probability is determined by the orbital distribution of
the population, and several estimates exist in the literature which
use different approaches (particle-in-a-box versus analytical
estimates) and assume different intrinsic orbital distributions.
Later we explore the effects of adopting a different value for
Pi. To simplify, we do not include the radius of the impacting
objects in the estimate of the collisional cross section, which
results in an estimate of “head on” collisions instead of grazing
collisions.

Given a power-law size distribution of the form N (>R) =
N0(R/R0)1−q , we find

t̄ �
(

Pi R2
s N0(Ri/R0)1−q

)−1

=
(

PiN0R
q−1
0 R3−q

s

(
0.62

Vi

) 1−q

3

×
(

GMsys

am

) 1−q

6
)−1

. (3)

Noting that collisions onto the primary of a binary system
can also unbind the system, our analytic estimate of the mean
system lifetime is half the harmonic mean of the average time
between unbinding collisions for the primary and secondary
components,

τa �
(
PiN0R

q−1
0

(
R3−q

s + R3−q
p

) (
0.62

Vi

) 1−q

3
(
GMsys

am

) 1−q

6

)−1

.

(4)

For a system with nearly equal mass components, adding this
second decay channel reduces the mean lifetime by up to a factor
of two.

2.1. Lifetime Ratios: Separation and Mass Effects

In order to determine the relative importance of initial binary
separation versus binary mass with respect to survival time,
we consider the lifetime estimate equation (4) in the case
where the binary has equal-massed components with equal bulk
densities—thus, Rp = Rs and Ms = Mp = Msys/2. The ratio
of lifetimes of two binaries immersed in the same collisional
environment is

τ1/τ2 =
(

Rs2

Rs1

)3−q(
am1Msys2

am2Msys1

) 1−q

6

=
(

Msys1

Msys2

) 2
9 (2q−5)

×
(

am1/RH1

am2/RH2

) 1
6 (1−q)

, (5)

where subscripts indicate the properties of the first or second
binary system being compared, and RH is the Hill radius of

a system given by RH = aout(Msys/3 M�)
1
3 where aout is the

Heliocentric semimajor axis of the binary system’s barycenter.
This ratio of lifetimes allows us to compare the importance of
binding (am/RH ) to system mass in a given impactor regime.
The indices on the two terms sum to zero when q = 17/5 = 3.4.
At this slope, if system 1 has half the mass of system 2, then
it must have half the am/RH separation of system 2 in order
to have the same lifetime. At steeper slopes, mass becomes the
weakly dominant term, while for shallower slopes am/RH has
the largest effect on the lifetime.

For q = 2.5, τ1/τ2 is independent of the ratio of system mass,
and for shallower slopes, τ1/τ2 is actually inversely correlated
with the ratio of system mass—an increased system mass leads
to a decreased lifetime. This is a consequence of the impactor
spectrum becoming very flat, resulting in the dominant mass
effect in a system’s lifetime becoming its cross section for
collisions (which increases with system mass).

To illustrate, it is interesting to compare two systems with
roughly similar values of am/RH but significantly different
masses. 2003 UN284 and 2000 CF105 are a good comparison;
both are very widely separated and the ratio of their best-fit
am/RH values is ∼0.86. However, the ratio of their system
masses is relatively high at ∼6.8. Both have comparable
mass ratios (∼3). At a collisional equilibrium slope of q =
3.5 we would expect a ratio of lifetimes of approximately
τUN284/τCF105 ∼ 2.5. For q = 2.5 we would expect them
to have roughly equal lifetimes, while for an even shallower
slope q = 2 (comparable to that currently measured for small
objects, e.g., Fraser & Kavelaars 2009) we would expect 2003
UN284 to actually have a shorter lifetime than the much less
massive and slightly more widely separated 2000 CF105, with
τUN284/τCF105 ∼ 0.68.

3. NUMERICAL SIMULATIONS

The analytical estimates presented in the previous section
do not account for a number of important effects, including
mass loss, orbital evolution through multiple impacts, and the
eccentricity of the orbit. To more accurately determine the
collisional lifetimes of these binary systems, we performed a
series of collisional bath simulations for each system. We subject
each binary to a series of impulses, corresponding to collisions
with impactors drawn from a realistic size distribution, and
monitor the stability of the binary after these encounters.

Our simulated impactor population was sampled from a
size distribution characterized by a power law normalized at
N (R > 1 km). We chose this radius as it was close to the
impactor size required to disrupt these binary systems according
to our analytical estimates. This size distribution has a slope
extending to larger and smaller sizes qsmall, and at R = 31 km
we break to a large-object slope similar to that measured in the
Kuiper Belt, with qlarge = 4.8 (e.g., Fraser & Kavelaars 2009).
We extrapolate the small-object slope down to a minimum
impactor size of Rmin = 200 m.

Given the total number of impactors considered, N (R >
Rmin), we then estimated the average time between collision
events:

t̄ = (Pi σ N (R > Rmin))−1 ,

where Pi is the intrinsic collision probability in km−2 yr−1 for
objects in the classical Kuiper Belt, and we nominally adopt
the value of 1.3 × 10−21 (Farinella et al. 2000), while σ is
the collisional cross section (without any π term). This cross
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section is adjusted to account for the radii of the impacting
population in the following way: we inflate the radii of the
binary components by a fixed buffer size of four times the
primary radius, σ = (5Rp)2 + (Rs + 4Rp)2. At each iteration,
we add t̄ to the total elapsed time, then sample an impactor
radius Ri from the impactor size distribution. We then determine
if a near-collision occurs with the primary or the secondary,
weighting the relative probability by the relative collision cross
section of each component (including the extra buffer radius
of four primary radii), and generate an impact parameter b
drawn uniformly over the area of the component which was
selected. If b � R0 + 0.9Ri (where R0 is the radius of the
binary component potentially suffering the collision without
the added buffer radius) a collision is taken to actually occur. In
general, radii and mass are related by assuming a bulk density
ρ = 1 g cm−3 unless otherwise stated.

If a collision occurs, we then randomly generate the binary’s
mean anomaly M to determine the orbital phase of the binary
system. The relative position �x and velocity �v of the binary
components are estimated, and an impact trajectory is generated
from a uniform sphere. All collisions are assumed to occur with
relative velocity of Vi = 1 km s−1 unless otherwise stated.

To improve the realism of these simulations, we also treat
the mass loss during collisions, using the strength laws found
by Benz & Asphaug (1999) for ice in impacts at velocities on
the order of 0.5–3 km s−1. Based on the kinetic energy of the
impactor KEi, we estimate the mass of the largest remaining
fragment given the relationship

γ ≡ Mlrf
M0

= 1 − 0.5

(
KEi

M0Q
∗
D

)
, (6)

where M0 is the mass of the parent body and Q∗
D is the specific

energy required to disrupt 50% of the mass of the parent body
given by

Q∗
D = 7 × 107

(
R0

1 cm

)−0.45

+ 2.1ρ

(
R0

1 cm

)1.19

erg g−1, (7)

where ρ is the density of the parent body in g cm−1.
For “small” collisions (γ � 0.8), we assume that momentum

is conserved with perfectly inelastic collisions (with all of the
momentum of the impactor translated into the largest remaining
fragment), i.e., �vb,1 = �vb,0 + �vi

Mi

Mlrf
, where subscripts b and

i indicate binary components and impactor, respectively. We
treated all velocity changes as velocity changes of the secondary
with respect to the primary—therefore if a collision occurs on
the primary,

�vsecondary,1 = �vsecondary,0 − �vi

Mi

γMprimary
, (8)

whereas if a collision occurs on the secondary,

�vsecondary,1 = �vsecondary,0 + �vi

Mi

γMsecondary
. (9)

In larger collisions where a significant amount of mass loss
occurs, much of the impactor’s momentum is translated into
small fragments, and the largest remaining fragment experi-
ences a much smaller change in velocity. We use a simple
piecewise-linear prescription with γ to approximately repro-
duce the velocity of the largest remaining fragment Vlrf found
by Benz & Asphaug (1999), given by

Vlrf = min
(
V ′, (1.045 − 0.895γ )Vesc

)
, (10)

Figure 1. Ratio of velocity of the largest remaining fragment Vlrf to the parent
body’s escape velocity Vesc for a collision which results in a mass ratio of the
largest remaining fragment to the parent body of γ = Mlrf/M0. Curves illustrate
different schemes for estimating Vlrf/Vesc; adopted curve should be compared
to results of numerical simulations by Benz & Asphaug (1999, see Figures 15
and 16).

where V ′ is the velocity that would be expected if all of the
momentum of the impactor was translated into the largest
remaining fragment and Vesc is the escape velocity of the parent
body. Figure 1 illustrates this velocity distribution and compares
it to other schemes for treating momentum conservation for
massive collisions.

After each collision, the cross section of each component is
re-computed given their new mass, and the average time between
all future collisions t̄ is re-calculated to reflect the change in
collisional cross section. The total time assumed to have elapsed
at this point is the sum of all the t̄ values between all impacts
preceding the latest impact.

Given a new velocity vector �v1 post-impact, we transform
coordinates to (a, e, i) space. If the system has become unbound,
if the mutual apocenter has grown larger than the system’s Hill
radius RH , or if the components have merged (mutual pericenter
drops to less than the tidal Roche limit), integration is stopped.
The radius of the final impactor that disrupted the system, the
survival time τ (taken to be the elapsed time), and the total mass
lost by each component over its lifetime is recorded.

Figure 2 illustrates the result of integrating 1000 realizations
of two binary systems (2000 CF105 and 2001 QW322), with
N (R > 1 km) held fixed and qsmall randomly selected at
each realization from 2.0 < qsmall < 4.5. For steeper size
distribution slopes, smaller objects will often cause the final
disruption of a system. These two systems were selected for
illustration because they represent the extremes of rc for all the
systems characterized.

For most realizations, the total mass loss suffered by the
system is less than 10% of its initial mass, confirming the
result found by Petit & Mousis (2004) which found that for
reasonable size distributions, shattering collisions are much
less important for disrupting these binary systems compared to
smaller perturbations. The average mass lost by the two systems
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Figure 2. Results from 1000 collisional bath simulations for the binary systems 2000 CF105 (left panels) and 2001 QW322 (right panels), where N(R >1 km) is held
fixed at 1 × 1010 and differential size distribution power-law slope q is varied between 2.0 and 4.5. Top panels: points represent time until system was disrupted in
each case, while radius of each point represents the radius of the impactor that caused disruption, and red line shows fit to mean system lifetime as a function of q.
Open points illustrate a system where one or both components lost more than 50% of its mass by the end of the system lifetime. Bottom panels: average fraction of
mass remaining in primary (heavy solid line) and secondary (heavy dashed line), and standard deviations for each (shaded regions). These two systems represent the
extreme values of the critical impactor radius rc whose space density determines system lifetime.

(A color version of this figure is available in the online journal.)

2000 CF105 and 2001 QW322 is illustrated in Figure 2 as well,
and generally two trends can be seen; these trends are a result
of the way the impactor size distribution is normalized. At low
qsmall, relatively large amounts of mass can be lost to single
(large) impactors, but as qsmall increases the number of large
impactors decreases (since we hold N (R > 1 km) fixed) so
the total amount of mass lost decreases with increasing qsmall.
However, for large qsmall, the cumulative effect of many small
impactors begins to matter, and as qsmall increases the number
of these small impactors increases, and more mass is lost at
higher qsmall.

These simulations are similar to those run by Nesvorný
et al. (2011), but with several key differences. Here, we
treat binaries of arbitrary mass ratio, where Nesvorný et al.
(2011) treat only those with initial mass ratios of unity. The
simulations of Nesvorný et al. (2011) immerse the binaries in a
self-consistently evolving impactor distribution, so that the size
distribution of impactors changes with time, whereas the shape
of the size distribution in our model is assumed to be fixed in
time—however, uniform dynamical depletion of the impactor
population can be accounted for in a trivial way with our model.
This is discussed in Section 5.3.

3.1. Interpretation of Simulation Results

As a consequence of the way the impactor size distribution is
normalized at the number with R > 1 km, the trend in system
lifetime τ versus qsmall indicates the characteristic radius rc

of an impactor whose space density is the critical factor in
determining the lifetime of a given binary. For a system with
rc ∼ 1 km, the trend in the survival time versus qsmall should be
approximately flat (as seen for 2000 CF105, with rc = 1.65 km),
whereas if rc > 1 km the mean survival time should increase
with qsmall (as seen for 2001 QW322, with rc = 4.35 km) as
long as N (r > 1 km) is held fixed.

We fit the mean lifetime τ̄ as a function of slope q given the
collisional circumstances used in the simulation,

τ̄ (q) = K ×
(

rc km

1 km

)q

. (11)

The parameters K and rc for each system are given in Table 1.
Comparing the values of rc to the values of ri predicted by
Equation (1), we see that they are generally very similar.

The binned mean lifetimes can also be well reproduced by
applying a simple correction to the analytical lifetime estimates
from the previous section. Given that the analytical lifetime
estimate underestimates the effect of multiple small impactors
(both in random walk of orbital elements and mass loss through
many erosive collisions), we might expect this correction to go
as some power law with index ∼q. We find that the ratio between
the analytic lifetime estimate τa and the numerical simulation
estimate τsim is well reproduced for all binaries by the function

f = τa/τsim = 0.007 × 3.12q + 1. (12)
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Figure 3. Top panel: ratio of analytical estimate of system lifetime τa to binned results of collisional simulations τsim. Also illustrated is the correcting function f.
Bottom panel: fractional residuals between corrected lifetime and binned simulation results (filled points) and between power-law fit to simulation results and the
binned simulation results (open points). Note that, in general, the corrected analytical estimates have a comparable or lower scatter than the power-law fit. 68% and
95% contours of fractional residuals between corrected lifetime and binned simulation results shown by solid and dashed lines, respectively.

Table 1
Fit Parameters for Equation (11) and Adopted Parameters for Equation (13)

Name K rc ri
a Msys Rp

b Rs
b am

(yr) (km) (km) (kg) (km) (km) (km)

2000 CF105 3.81 × 107 1.60 1.65 1.85 × 1017 32.0 23.0 3.33 × 104

2001 QW322 2.54 × 106 4.50 5.74 21.1 × 1017 63.5 63.5 1.015 × 105

2003 UN284 4.50 × 106 3.79 3.83 12.4 × 1017 62.2 41.6 5.55 × 104

2005 EO304 3.43 × 106 4.31 3.74 20.7 × 1017 76.2 39.1 6.98 × 104

2006 BR284 8.38 × 106 3.08 3.26 5.7 × 1017 44.9 35.7 2.53 × 104

2006 JZ81 4.33 × 106 4.00 3.83 12.1 × 1017 60.8 38.7 3.23 × 104

2006 CH69 4.46 × 106 3.92 3.95 8.4 × 1017 50.4 41.2 2.76 × 104

Notes.
a Required impactor radius for disruption by collision with secondary, from Equation (1).
b Radii of components are estimated by adopting system mass and delta-magnitudes measured in Parker
et al. (2011) and assuming a bulk density of 1 g cm−3.

Figure 3 illustrates τa/τsim for all seven ultra-wide TNBs char-
acterized in this work and shows Equation (12) for comparison.
We stress that this correction has no rigorously physically moti-
vated form; other functional forms were explored, but in general
did not improve the scatter significantly. No obvious trend in
initial system separation, mass, or eccentricity was found when
attempting to reduce the scatter in the correction results. We
have also compared this correction to simulations with different
impact velocity (Vi = 0.5–2 km s−1), different bulk density
(ρ = 0.4–2 g cm−3), and simulations of much more tightly
bound binaries (am/RH � 0.01) and find that it generally holds
in these regimes as well. The correction is found to break down
at high size distribution slopes (q � 4) in cases of simultane-
ously high impact velocity (2 km s−1), low density (0.4 g cm−3),
and tightly bound binaries (am/RH � 0.01–0.02) because the
amount of mass-loss suffered before these systems become un-
bound tends to be rather large; as such, the true system lifetimes
tend to be somewhat shorter than predicted by the analytical
correction in these extreme cases. Figure 4 illustrates the same
quantities as Figure 3 for the ultra-wide binaries in a set of

simulations with Vi = 2 km s−1 and ρ = 0.4 g cm−3; in
general the same correcting function still performs better than
Equation (11) power-law fit to τ versus q, though the correc-
tion performs less well in this case than in the Vi = 1 km s−1,
ρ = 1 g cm−3 case.

Combining Equations (4) and (12) allows for an accurate
estimate of nearly any TNB,

τcorr �
(

(0.007 × 3.12q + 1)PiN0R
q−1
0

(
R3−q

s + R3−q
p

)

×
(

0.62

Vi

) 1−q

3
(

GMsys

am

) 1−q

6
)−1

. (13)

For all further discussion, system lifetimes are estimated as
τ = τcorr.

3.2. Small Object Population Limits

Given the current existence of a population of n objects today
with individual mean lifetimes τi , the initial population implied
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Figure 4. Same as Figure 3, but for simulations with Vi = 2 km s−1 and ρ = 0.4 g cm−3. Note the somewhat poorer performance of the correction function f at
extremely steep slopes due to increased mass loss; however, the single power-law fit to the system lifetime vs. q also performs poorly at these high slopes.

by that population is

n0 =
n∑

i=0

e
t
τi , (14)

where t is the time over which the binary population has
been decaying, estimated as 4 × 109 years. Given a maximum
initial population of binaries, we can then numerically solve
Equation (14) given τi determined by Equation (13) and the
parameters in Table 1. The parameter we choose to vary in
Equation (13) in order to solve Equation (14) is N0 which we
take to be N (R > 1 km) for a given power-law slope q. This
results in an estimate of the maximum population of R > 1 km
objects in the classical belt allowed by the continued existence of
our sample of ultra-wide binaries, given size distribution slope q
and an assumed initial population of binaries. This estimate also
assumes that the impactor size distribution is in equilibrium and
is not evolving in time. Thus, we take these estimates to reflect
the current collisional environment of the Kuiper Belt ignoring
any early collisional evolution of the size distribution.

Given a current binary fraction f and a primordial binary
fraction f0, the number of primordial binaries n0 implied by a
given number of extant binaries n is

n0 = n
f0

f
. (15)

As our most conservative estimate, we assume that ∼100% of
the current cold classical objects started their lives as binaries.
At present ∼30% of cold classical objects exist as tight to
moderately wide binaries (Noll et al. 2008b), so we set the
primordial ultra-wide binary fraction to be at most the remaining
70%. The current fraction of ultra-wide binaries is estimated to
be much lower, approximately 1.5% (Lin et al. 2010). To be
conservative, we assume that after disruption of a binary system,
only one of its components remains as a cold classical object
(the other being lost from the population). Using these binary

fractions, the n0 implied by our sample of seven ultra-wide
binaries is

n0 = 7
0.7

0.015
= 327 (case 1). (16)

However, such a high fraction of ultra-wide binaries is not
physically motivated by any formation model. To set a more re-
alistic upper limit of the impactor population, we consider the re-
sults of the binary formation simulations presented by Nesvorný
et al. (2010). These simulations modeled the formation of bi-
naries through gravitational collapse, and Parker et al. (2011)
found that while somewhat overproducing ultra-wide binaries
compared to the extant sample, the orbital distribution produced
was favorably similar to the observed distribution. The relative
fraction of ultra-wide binaries (splitting at am/RH = 0.07) pro-
duced by these simulations is approximately 20% of all binaries
formed. Therefore, even if the total binary fraction of the pri-
mordial cold classical Kuiper Belt was 100%, the primordial
ultra-wide binary fraction likely did not exceed 20% given this
formation scenario. Using this primordial binary fraction, the n0
implied by our sample of seven ultra-wide binaries is

n0 = 7
0.2

0.015
= 93 (case 2). (17)

We set n0 in Equation (14) first equal to 327 (case 1), then
to 93 (case 2) and solve for N (R > 1 km) as a function of q
given the collisional lifetimes from Equation (13), assuming two
values of Pi; 1.3×10−21 km−2 yr−1 suggested by Farinella et al.
(2000) for collisions between classical Kuiper Belt objects, and
4×10−22 km−2 yr−1 as derived by Dell’Oro et al. (2001) for the
same circumstances but assuming a different orbital distribution
and using a different derivation technique. The results are
illustrated in Figure 5; under any of the size distribution slopes
we consider, the population of 1 km radius objects in the classical
Kuiper Belt must be less than ∼2 × 1010 objects (assuming the
smaller Pi value) or less than 5 × 109 objects (assuming the
larger Pi value), with fewer objects being allowed for lower q.

For comparison, we extrapolate the measured large-object
population to R � 1 km. The CFEPS L7 synthetic model of the
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Figure 5. Upper limits on the number of objects larger than 1 km that
pass through the classical Kuiper Belt, assuming that ultra-wide binaries
today represent an eroded primordial population. Results assuming Pi =
1.3 × 10−21 km−2 yr−1 (black points) and Pi = 4 × 10−22 km−2 yr−1

(gray points). Triangles show the upper limit for case 1 (70% primordial ultra-
wide binary fraction), while diamond points show the upper limit for case
2 (20% primordial ultra-wide binary fraction). Open triangles show the limit
when 2000 CF105 is removed for case 2. The dotted line shows extrapolated
population assuming albedo of p = 0.1, determined as described in the text
with Equation (18). Dashed silver lines show best-fit (heavy line) and 1σ limits
(light lines) extrapolated from the estimate of the R � 250 m population by
occultations (Schlichting et al. 2009).

Kuiper Belt4 contains ∼45,500 objects with Hg < 8.5 in the
main classical Kuiper Belt (hot, stirred, and kernel components).
Extrapolating this population to a break magnitude of Hg = 10
with a luminosity function slope of α = 0.76 (e.g., Fraser &
Kavelaars 2009) we find ∼618,000 in this population larger
than the break magnitude (translated with p = 0.1 to a radius
of 26 km). We then extrapolate this number to R = 1 km using
a size distribution with slope q normalized at R = 26 km,

N (R > 1 km) = 618,000 ×
(

1 km

26 km

)1−q

. (18)

Current observations suggest that the cold classical Kuiper
Belt size distribution breaks at radii of 20–30 km to a slope
of approximately q � 2 (Bernstein et al. 2004; Fraser &
Kavelaars 2009; Fuentes et al. 2009). If this slope continues
all the way down to radii of 1 km, the implied population of
impactors would allow the survival of a relic ultra-wide binary
population over the age of the solar system. However, such
a slope would be inconsistent with the putative detection of
a single stellar occultation event by a ∼250 m TNO reported
by Schlichting et al. (2009). The convergence of the R > 1 km
population estimates at slopes of q ∼ 3.5 from extrapolating the
large-object population, collisional lifetimes of binaries, and
stellar occultations, combined with the fact that the total mass
of a population with size distribution slope steeper than q = 4
is infinite, suggests that the small-object size distribution slope
lies between 3.2 � q < 3.8, and N (R > 1 km) is a few billion.
Using the less conservative Pi = 1.3 × 10−21 km−1 s−1, the
maximum viable slope becomes q � 3.6 for case 1 and q � 3.5
for case 2.

At the steep-slope end, the current existence of the binary
2000 CF105 sets the strongest upper limit on the impactor

4 Available at http://www.cfeps.net/L7Release.html

population, as its low mass and wide separation make it
extremely easy to disrupt by the numerous small impactors
in this regime. Figure 5 includes the upper limit on the
impactor population with 2000 CF105 removed, and while at
low q there is no change, at high q the upper limit becomes
much less constraining. Small binaries like 2000 CF105 are at
present the least complete sample, as they suffer the strongest
flux bias—only those with very high albedos are detected in
current surveys, and 2000 CF105 likely represents the first
of a large population. Determining the prevalence of small
2000 CF105-like binaries in the current Kuiper Belt should
therefore be a critical goal of future large-scale surveys.

Note that these estimates remain fairly conservative; even
in case 2 (primordial ultra-wide binary fraction of 20%) we
assume that the total primordial binary fraction was 100%
and no intense period of collisional grinding occurred (that is,
the impactor population has not decayed significantly over the
age of the solar system). Such an epoch would be extremely
destructive to the primordial binary population (Petit & Mousis
2004; Nesvorný et al. 2011). Additionally, we assumed in each
case that when a binary was disrupted, only one of its two
components survived on as a solitary TNO; in reality, a large
fraction of both the disrupted primaries and secondaries would
survive as independent TNOs in this population. If we assume
that both components survive, n0 derived from Equation (15)
becomes

n0 = n
1 + f −1

1 + f −1
0

, (19)

which produces n0 = 195 for case 1 and n0 = 79 for case 2.
Also clear from Figure 5 is that these estimates are quite sen-

sitive to the adopted value of the intrinsic collisional probability.
In fact, the upper limit on the small-object population is inversely
proportional to the adopted value, as τ ∝ (PiN (R > 1 km))−1,
and therefore for a fixed lifetime, N (R > 1 km) ∝ P −1

i . Our
uncertainties on the upper limits on the small-object population
are driven largely by the uncertainty in Pi for today’s Kuiper
Belt; the difference between the two values adopted in this work
imparts a factor of 3.25 variation between their respective esti-
mates of the small-object population. Fortunately, when newer
and more accurate values are available the population estimates
we present can be revised by simply scaling them by the ratio
of our adopted values of Pi to the newer value.

3.3. Does Orientation Play a Role in Survival Time?

The asymmetry in the maximum stable tidal radius between
prograde and retrograde orbits allows wider orbits to exist stably
for retrograde orbits, but we have found that this additional
stable phase space does not significantly enhance the lifetime of
retrograde binaries subjected to collisions drawn from realistic
impactor size distributions.

By determining the change in velocity required to lift an
initial orbit to an arbitrary final semimajor axis, and using this
Δv to determine the impactor size required to affect this change
(under the assumption of a perfectly inelastic collision with the
binary’s secondary), the ratio of the population of impactors
capable of lifting a given binary to beyond its prograde tidal
limit to the population capable of lifting the same binary to
beyond its retrograde tidal limit is approximately

N (>Rp)

N (>Rr )
�

(
1 − a0/RH

1 − 2a0/RH

)(q−1)/6

, (20)
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where a0 is the initial semimajor axis, and assuming that the
stable tidal limit for retrograde orbits is one classical Hill radius
RH , while the stable limit for prograde orbits is one-half of the
classical Hill radius. Since the lifetime of the binaries is inversely
proportional to the population of impactors that are capable of
disrupting them, this ratio represents the ratio of lifetimes of
retrograde and prograde binaries. Comparing this relationship
to the known ultra-wide binaries (a0/RH ∼ 0.08–0.25), we
see that even with extremely steep impactor size distributions
this ratio is close to unity, and thus would expect very little
asymmetry between the expected mean lifetimes of the prograde
and retrograde binaries.

To verify that survival time is generally independent of
inclination, we performed a test of the effect of the tidal
stability asymmetry by re-running our numerical simulations
and approximating the tidal stability limits as

R′
H =

{
0.5RH if im � 90◦;
RH if im > 90◦.

We selected the initial inclination for each binary system from
a uniform distribution between 0◦ < i0 < 180◦ and determined
whether each binary’s mutual apocenter remain below our
approximate of the stable limit for its current inclination after
every collision. The resulting mean lifetimes (for values of q
ranging from 2 to 4.5) showed no discernible variation with
initial system inclination.

The lack of strong variation indicates that if the primordial
populations of prograde and retrograde populations were equal,
that equality should persist to the present day. If there was
any primordial asymmetry, however, evolution of the mutual
inclination may cause some system’s orientation to flip, thereby
causing the prograde-to-retrograde ratio to change over time.
We explore this possibility in the following section.

4. EVOLUTION OF ORBITAL PARAMETERS

4.1. Evolution of the Inclination Distribution

A significant unknown in the current understanding of how
to interpret the orbital distribution of TNBs is how inclination
evolves over time, as binary systems are subjected to various
perturbations; in the case of collisional perturbations, we can
determine the effect directly. In the following experiments, we
considered impactor populations with a fixed size distribution
slope of q = 3. We adopt this slope because it is still allowed
by the arguments of the previous section when considering
extrapolation of the R ∼ 1 km population from the measured
population of large objects and because steeper slopes allow
more chance of stochastic evolution of orbital evolution through
multiple small impacts.

In all of our collisional simulations, we record both the initial
mutual inclination a system is invoked with as well as the final
inclination the system reaches before being disrupted. Figure 6
shows the difference between the initial and final mutual
inclinations for 100 realizations of each binary system, where
the initial inclinations were drawn from a uniform distribution
(p(i) ∝ sin(i)) and impactors either struck uniformly from all
directions or were drawn from a longitudinally uniform disk
with half-width of 20◦. Final inclination was determined to
be the last inclination of the system prior to the final impact
that disrupted it. Many systems have little to no change in
inclination before disruption; however, significant change did
occur for some systems, and ∼15%–18% of the systems had
their orientation flipped from prograde to retrograde or vice

Figure 6. Histogram of the change in inclination before disruption of binary
systems. Initial inclinations were drawn from a uniform distribution, and
impactors either struck from random orientations or within a disk of half-width
20◦. Dashed histograms illustrate just those systems which had their orientation
reversed from prograde to retrograde (or vice versa). 15%–18% of systems are
reoriented, with disk-like impactor geometry more efficient.

versa, with the disk-like geometry more efficient at reversing
orientations. The final inclination distribution was found to be
indistinguishable from the initial, uniform distribution in both
cases; in general, random perturbations will tend to make a
non-uniform distribution more uniform, and not vice versa.

The inclination distribution of TNBs has been shown to
be indicative of formation mechanics (e.g., Schlichting &
Sari 2008), and it has been measured by recent surveys. The
ultra-wide binary inclination distribution is currently inconsis-
tent with being drawn from a uniform distribution (Parker et al.
2011). It lacks any high inclination systems (55◦ � im � 125◦)
and has a large number of systems at very low mutual inclina-
tion. This preference for pole-aligned mutual orbits is suggestive
of formation in a dynamically cold disk (e.g., Noll et al. 2008a).
In order to determine the evolution of a primordially cold in-
clination distribution, we repeated our collisional simulations
with an initial inclination distribution given by a sine times a
Gaussian, centered at i = 0◦ with a width of σ = 10◦,

p(i) ∝ sin(i)e− 1
2 ( i

10◦ )2

, (21)

and determined the final inclination distribution given impactors
striking uniformly from all directions or drawn from a longitu-
dinally uniform disk with half-width of 20◦. The results are
illustrated in Figures 7 and 8. Both final inclination distribu-
tions are strikingly similar to the present inclination distribution
of the ultra-wide binaries. In the case of randomly oriented im-
pact trajectories, more inclination evolution occurred regardless
of initial mutual inclination; however, in the case of disk-like
geometry for the impactors, systems with low initial inclina-
tion tended to suffer less inclination evolution than the rarer
systems with higher initial mutual inclination. A smaller frac-
tion of systems changed orientation than in the case of uniform
initial inclinations, due to the average system having to suffer
significantly larger excursions in inclination in order to change
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Figure 7. Same as Figure 6, but with initial inclinations drawn from p(i) ∝
sin(i)e− 1

2 ( i
10◦ )2

. Fewer systems are reoriented, at between 7% and 11%.

Figure 8. Comparison of initial and final inclination distributions after colli-
sional evolution (final inclination taken just prior to binary disruption). Initial

inclinations drawn from p(i) ∝ sin(i)e− 1
2 ( i

10◦ )2
(dashed line). Final inclinations

shown for random impact trajectories (light black line) and disk-like impactor
geometry (light gray line), and current ultra-wide TNB inclinations shown for
comparison (heavy black line).

orientation. Randomly oriented impacts caused roughly 7% of
systems to reorient, while impact trajectories drawn from a
disk-like distribution caused roughly 11% to reorient.

We also investigated the possibility that with a disk-like im-
pactor population, binaries which suffer collisions which widen
their orbits will preferentially have their mutual inclinations de-
creased; this can be understood by thinking of “stretching” an
initially inclined orbit in the plane of the impacts. We took syn-
thetic binaries with initial am/RH ∼ 0.02 and subjected them to
collisions with the same impactor populations as our ultra-wide

Figure 9. Comparison of initial and final inclination distributions after colli-
sional evolution (final inclination taken just prior to binary disruption). Initial
binary taken to have am/RH = 0.02, and only those systems which are widened
to am/RH > 0.07 before disruption are considered. Initial inclinations drawn
from p(i) ∝ sin(i) (dashed line), and final inclinations of widened systems are
shown for disk-like impactor geometry (gray line). Distribution of final inclina-
tions for random impact trajectories are identical to initial distribution. Current
ultra-wide TNB inclinations shown for comparison (heavy black line); that their
inclinations are drawn from distribution of widened binary sample is ruled out
at >95% confidence.

binary experiments, but only with impact trajectories drawn
from the disk-like distribution. We drew their initial inclinations
from a uniform distribution, then considered the final inclina-
tions of only those systems which had become widened (prior to
disruption) to am/RH � 0.07, comparable to the minimum sep-
aration of the ultra-wide binaries considered here. Since these
tighter systems take longer to disrupt than the ultra-wide sys-
tems, they were actually given a longer time over which to have
their inclination modified than the ultra-wide binaries in our
simulations. Figure 9 illustrates that while the inclination distri-
bution does evolve away from the uniform distribution (unlike
the behavior that would be expected from randomly oriented
impact trajectories), the inclination distribution does not change
significantly enough to make this mechanism feasible for ex-
plaining the current inclinations of the ultra-wide binaries. The
K-S statistic rules out that the ultra-wide binary inclination dis-
tribution was drawn from this collisionally modified uniform
distribution at greater than 95% confidence.

We conclude that if the ultra-wide binaries represent a highly
collisionally evolved population, then they must have had a
much colder primordial inclination distribution. Additionally,
they cannot have evolved from tighter binaries, because the
current inclination distribution of tighter systems are close to
uniform (Grundy et al. 2011; Parker et al. 2011) and collisions
cannot produce a widened population with as cold an inclination
distribution as is observed for the ultra-wide binaries when
starting with an initially uniform inclination distribution.

4.2. Evolution of Separation and Eccentricity

In addition to tracking the inclination of the ultra-wide bi-
naries during our collisional simulations, we also track their

9
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2006 CH69

2005 EO304

2006 BR284 2006 JZ81

2003 UN284 2000 CF105

2001 QW322

Figure 10. Two-dimensional histogram of the last orbit before collisional disruption for each ultra-wide binary characterized, sorted in order of increasing initial
am/RH . These panels show outcomes for simulations with q = 3. The heavy solid line is constant apocenter (e′ = (a0/a

′)(1 + e0) − 1). The heavy dashed line is
constant pericenter (e′ = 1 − (a0/a

′)(1 − e0)). These lines cross at the systems’ current am/RH and e. The light dashed line is where the initial apocenter is the final
pericenter (e′ = 1 − (a0/a

′)(1 + e0)), and the light solid line is where the initial pericenter is the final apocenter (e′ = (a0/a
′)(1 − e0) − 1). These lines mark the region

within which a single non-unbinding collision can drive a binary. Note that binaries prefer to evolve along the line of constant apocenter. Dotted lines mark apocenter
larger than the Hill radius, our criteria for disruption.

semimajor axis and eccentricity. Figure 10 illustrates the distri-
bution of am/RH and e just prior to collisional disruption for
each binary system simulated, again with size distribution fixed
with q = 3. Since collisions preferentially occur while the sys-
tem is at mutual apocenter, orbital evolution prefers to occur
along the line of constant apocenter: e′ = (a0/a

′)(1 + e0) − 1.
The most severe increase in semimajor axis that can occur
in a single non-unbinding collision is the condition where
the original apocenter becomes the system’s new pericenter:
e′ = 1 − (a0/a

′)(1 + e0). Evolution to wider separation requires
at least two significant collisions, and we find that it is uncom-
mon for a system to be subjected to two such collisions while
remaining bound. Between 90% and 95% of all final orbits have
final pericenters lower than their initial apocenter, and the most
common behavior is to have next-to-no significant evolution
prior to the collision which disrupts the system.

This conservation rule of q ′ � Q0 can be used to further argue
against the possibility that the current ultra-wide binaries rep-
resent a collisionaly widened tail of the tight binary population.
If this were the case, not only would we expect a randomized
inclination distribution, but we would also expect relatively high

eccentricities to be the rule among the ultra-wide binaries. For
an initially circular binary with initial a0/RH = 0.02, this con-
servation rule would state that if the system was widened to
a′/RH = 0.1 its eccentricity would usually exceed e′ � 0.8.
As only two of the seven binaries in our sample exceed this
eccentricity, it is unlikely that the ultra-wide binaries are the
outcomes of this kind of evolution. This is in line with the results
of Nesvorný et al. (2011) who also found that it is unlikely for
primordially tight binaries with primary radii of ∼50–100 km to
be collisionally widened to the presently observed separations
of the ultra-wide binaries.

In fact, because of the larger available phase space at high ec-
centricity, evolution along constant apocenter tends to increase
the system’s eccentricity for systems with low to moderate
initial eccentricity while decreasing separation. Thus, systems
like 2006 CH69 with extremely high mutual eccentricities may
represent the outcomes of collisional modification of initially
wider and less eccentric systems. This is an attractive prospect,
as the mutual pericenter passages of 2006 CH69 during the
high-eccentricity phases of its Kozai cycles (q � 31RP ; Parker
et al. 2011) may be close enough to cause significant orbital
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shrinking and circularization over the age of the solar system;
if instead its present eccentricity is the outcome of a relatively
recent collision, then it need not have maintained such close
pericenter passages over such a long period.

5. DISCUSSION

5.1. The Curious Case of 2000 CF105

As discussed in Section 3.2, the binary 2000 CF105 is the
most susceptible to collisional disruption under steep size dis-
tributions, due to its wide separation and very small compo-
nent sizes. Its current existence places the largest constraint on
the population of impactors for these high slopes, but since at
present it is only one binary, the level of confidence one should
have in this constraint is not immediately clear. For example,
there is a non-zero probability that it represents a system which
was primordially tightly bound which has been anomalously
widened, and it has not somehow survived over the age of the
solar system in its current configuration.

However, a number of aspects of 2000 CF105 lead us to
conclude that this case is very unlikely. First is its small size;
it fell within the flux limits of current surveys only because
of its extremely high albedo (p � 0.3). Parker et al. (2011)
argue that somewhat lower albedos appear to be more common
in the Kuiper Belt, and if this is the case then there is likely a
large population of low-albedo 2000 CF105-like binaries lurking
unseen beneath the flux limits of current surveys. In other words,
because of our current relative insensitivity to binaries of its size,
the detection of 2000 CF105 suggests that binaries of similar size
are intrinsically common.

Additionally, if 2000 CF105 were a collisionally evolved tight
binary, we would expect it to have both a high eccentricity and a
mutual inclination drawn from the same uniform distribution as
is observed for the tighter binaries (Parker et al. 2011; Grundy
et al. 2011). However, its eccentricity is one of the lowest in
our sample at e = 0.29, and it has the second-most aligned
mutual orbit pole of any TNB known with a mutual inclination
of 167.◦9. Randomly drawing such an inclination from a uniform
distribution is extremely unlikely (p(|im| < 13◦) � 0.026).

Together, the fact that 2000 CF105 is likely the harbinger of
many more small-radius binaries and that its current mutual
orbit appears inconsistent with being generated by widening
a tightly bound binary through collisions, we conclude that
the assumption that it has existed as an ultra-wide TNB in
a configuration relatively similar to its present state over the
age of the solar system is merited. By extension, we have
confidence that its continued existence is a valid constraint on the
small-object TNO population for steep size distributions.

5.2. Implications for Formation Mechanisms

In Parker et al. (2011), the ultra-wide binary inclination distri-
bution was found to be inconsistent with a uniform distribution
due to its preference for inclinations aligned with outer orbit
poles. Such an inclination distribution was found to be sugges-
tive of formation in a dynamically cold disk. However, because
the orientations of the ultra-wide binaries were found to be con-
sistent with no preference for prograde or retrograde, and they
ruled out an extreme preference for retrograde orientations pre-
dicted by Schlichting & Sari (2008) for formation by the L2s
mechanism in a very cold disk, it was concluded that at the time
of binary formation the velocity dispersion of the disk must have
been approximately the Hill velocity.

In this work, we have found that if the ultra-wide binary
inclination distribution is in fact non-uniform, it must have
been less uniform in the past with stronger preference for low
inclinations. However, we have also found that if subjected to
a maximally erosive disk over the age of the solar system, a
non-negligible fraction (7%–11%) of these systems could be
reoriented from prograde to retrograde and vice versa. If the
primordial prograde-to-retrograde ratio was ∼0.03 as predicted
by Schlichting & Sari (2008) for formation in a very dynamically
cold disk, then reorienting 10% of the binaries over the age
of the solar system would result in a current prograde to
retrograde ratio of ∼0.14. Even after this reorientation, however,
the probability of randomly sampling four prograde and three
retrograde systems from a distribution with a prograde-to-
retrograde ratio of 0.14 is less than 1%. Thus, it seems that
collisions cannot be invoked to reorient a sufficient number of
binaries to make the L2s mechanism a viable explanation for
the majority of ultra-wide binary orbits.

Parker et al. (2011) also explored the possibility that these
ultra-wide binaries formed through the gravitational collapse
mechanism posited by Nesvorný et al. (2010) and found gen-
erally encouraging results. However, it was found that when
correcting for observational completeness, the Nesvorný et al.
(2010) results somewhat overproduce ultra-wide binary systems
(roughly by a factor of four) with respect to the currently ob-
served separations. Given collisional decay of both populations,
we can estimate how the ratio of wide to tight binaries would
evolve over the age of the solar system:

N ′
wide

N ′
tight

= e
t
(

1
τtight

− 1
τwide

)
Nwide,0

Ntight,0
=

(
ftight,0

f ′
tight

)1− τtight
τwide Nwide,0

Ntight,0
,

(22)

where Nx,0 represents the primordial number of a given popu-
lation x, while N ′

x represents the current number of that same
population x after collisional decay, and f ′

tight and ftight,0 repre-
sent the current and primordial fraction of tight binaries. Using
Equation (5) to estimate τtight/τwide for binaries with the same
mass but a ratio of (atight/RH )/(awide/RH ) = 0.02/0.1 = 0.2
for a size distribution slope of q = 3 gives a ratio of life-
times of roughly 1.7. Comparing an even more tightly bound bi-
nary to a more widely separated one, (atight/RH )/(awide/RH ) =
0.01/0.2 = 0.05, we find an even larger lifetime ratio of ∼2.7.

Substituting τtight/τwide = 1.7 into Equation (22) along with a
primordial tight binary fraction of 80% (based on the sub-sample
of results of Nesvorný et al. 2010 considered by Parker et al.
2011, and assuming a total primordial binary fraction of 100%)
and a current binary fraction of ∼29% (e.g., Noll et al. 2008b),
we find that the fraction of wide to tight binaries could have been
scaled down by roughly a factor of 2.6 over the age of the solar
system. Using the larger lifetime ratio of τtight/τwide = 2.7, we
find that the fraction of wide to tight binaries could be reduced by
over a factor of 10 over the age of the solar system—however,
this case would imply a current ultra-wide binary fraction of
roughly half a percent, less than is observed.

Somewhere between these two cases, erosion is sufficient
to account for the roughly factor of four discrepancy between
the predictions of Nesvorný et al. (2010) and the current ratio
of wide to tight binaries. A primordial tight binary fraction
of 80% and a wide binary fraction of 20% scaled down to a
present-day binary fraction of 29% with a factor of four decrease
in relative fraction of wide binaries to tight binaries would imply
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a present-day wide binary fraction of roughly 1.4%, slightly less
than is observed. However, even this qualitative agreement is
very encouraging given the somewhat preliminary nature of the
simulations of Nesvorný et al. (2010) and the simplicity of the
analysis presented here.

5.3. Rapid Collisional Grinding versus Slow Erosion

Nesvorný et al. (2011) showed that during a period of intense
collisional grinding (motivated by the need to remove the excess
mass required by hierarchical accretion models of planetesimal
formation), a trend of decreasing binary fraction with decreasing
radius would be imprinted on the surviving population in the
radius range of the binaries considered in this work. Such
behavior can be easily understood by considering the ratio of
lifetimes expressed in Equation (5) and noting that for any
impactor size distribution with slope steeper than q = 2.5
system lifetime decreases with decreasing system mass.

We can estimate the implied trend in binary fraction analyt-
ically. Given Equation (5), the binary fraction with radius will
be the following exponential:

f (R) = 2
−

(
R50
R

)(4q−10)/3

, (23)

where R50 is the radius of a binary whose population will be
reduced by 50% due to collisional grinding after the elapsed
time considered, given by solving Equation (13) for R given τ =
t/ ln(2) with t being the elapsed time. To easily compare with the
results of Nesvorný et al. (2011), we convert Equation (13) into
terms of R50 and am/RH (assuming a binary with equal-mass
components on a circular orbit about the Sun) and solve

R50 =
[

2t(0.007 × 3.12q + 1)PiN0R
q−1
0

ln(2)

(
0.62

Vi

) 1−q

3

×
(

am

RH

aout

G
(

(8πρ)2

3 M�
) 1

3

) q−1
6

] 3
4q−10

. (24)

This simple analysis ignores breaks in the size distribution,
but these can be included trivially by treating Equation (23) in
a piecewise manner:

f (R) =
⎧⎨
⎩f1(R) = 2

−
(

R50
R

)(4q1−10)/3

: R > Rc

f2(R) = (f1(Rc))(
Rc
R )(4q2−10)/3

: R � Rc

, (25)

where Rc is the primary radius of a binary that can be disrupted
by impact with an object with radius Rb, which is the location
of the break in the impactor size distribution between slopes
q1 (large object slope) and q2 (small object slope). Rc can be
derived from Equation (1), and here we convert it to terms of
am/RH :

Rc =

⎛
⎜⎝Rb

(
Vi

0.62

) 1
3

⎛
⎝ am

RH

aout

G
( (8πρ)2

3 M�
) 1

3

⎞
⎠

1
6

⎞
⎟⎠

3
4

, (26)

which, for a binary at 45 AU with Vi = 1 km s−1 and
ρ = 1 g cm−2, reduces to approximately

Rc � 20.8 ×
(

Rb

1 km

) 3
4

(am/RH )
1
8 . (27)

Figure 11. Analytical estimate of the trend of binary fraction with primary
radius, given an impactor population with size distribution slope q1 = 3.5
valid for objects larger than Rb = 2 km, while the slope for smaller objects
is allowed to vary. This initial impactor size distribution (which has no break)
adopts the following parameters: N (R > 1 km) = 5 × 109, Vi = 1 km s−1,
Pi = 4 × 10−22 km−2 yr−1, and assumes that the binaries all have separations
am/RH = 0.1 and are equal-mass systems. Elapsed time is taken to be 4 × 109

years over which collisions have occurred. The heavy solid line shows the trend
with no break to a shallower slope, while dashed lines show several cases with
q � 2.5 where binary fraction will increase with decreasing radius.

As an illustrative example, we consider the expected binary
fraction with radius given an impactor population with N (R >
1 km)= 5 × 109 and q = 3.5 after 4 × 109 years have
elapsed. We adopt Pi = 4 × 10−22 yr−1 km−2. Given these
parameters and considering a binary with am/RH = 0.1, we
find R50 � 72.3 km—that is, over the age of the solar system,
this impactor population would destroy 50% of binaries with
primary radius 72.3 km and initial am/RH = 0.1. The resulting
predicted binary fraction trend with radius is illustrated in
Figure 11.

Also illustrated in Figure 11 are the trends if there is a break
arbitrarily added to the impactor size distribution at Rb = 2 km.
As a limiting example, the trivial case where there are no
impactors with radius less than 2 km is shown, as well as a
break to a shallower size distribution with q2 = 2.5 or q2 = 2.0
below the break. With the break radius at Rb = 2 km, the
primary radius where we would expect the binary fraction trend
to change is Rc = 26.2 km. For the case of q2 = 2.5, the binary
fraction remains fixed for all radii smaller than Rc, while for the
other cases the binary fraction climbs again for smaller radii.

Note that the resulting trends in radius, while not as strong, are
very similar to the trends predicted by the numerical simulations
presented in Nesvorný et al. (2011) when considering a short pe-
riod of intense collisional grinding. Though no strong evidence
currently exists for a trend in binary fraction with radius, if such
a trend is identified in the future, further work will be required to
disentangle its origin from one of two possibilities. Either such
a trend could be produced through a period of strong collisional
grinding in the early solar system or it could be the result of
slow collisional erosion over the age of the solar system (given
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a roughly steady-state impactor population with a size distribu-
tion slope steeper than q = 2.5). This complication lies atop
the underlying issue that at present there is currently little theo-
retical constraint on what trends of binary fraction with radius
might be produced by the binary formation mechanism directly,
without any subsequent modification by collisional erosion.

One of the aspects of the Nesvorný et al. (2011) simulations
can also be treated analytically here; size-independent dynami-
cal depletion of the impactor population. This is accomplished
by noting that the impactor population normalization constant
N0 is in fact the time-average value, which reduces to the current
value when considering an impactor population which is fixed in
time. Thus, if the favored impactor population has been dynami-
cally depleted by a factor d over the age of the solar system, then
the limits on N0 made by the preceding arguments can be trans-
lated into the current population limits by N0(current) = N0/d.
This estimate is valid only for size-independent depletion; the
effects become much less trivial if the size distribution shape
changes with time.

5.4. Second-order Effects: Mutual Tides and the Kozai Effect

This work generally ignored the effect of mutual tides (only
treating them to the extent that mutual pericenter approaches
within the Roche limit caused a merger) and did not include the
effect of Kozai oscillations (Kozai 1962; Fabrycky & Tremaine
2007; Perets & Naoz 2009) on the evolution of the binary
orbits. Because we found that the correction from the analytical
estimate of collisional lifetimes did not vary systematically with
system eccentricity, we do not expect that including Kozai cycles
will significantly alter the estimates of collisional lifetimes.
However, they may somewhat alter the behavior of the evolution
of inclination and eccentricity over the age of the solar system.
Future work is merited to fold in the effects of mutual tides
and Kozai cycles, especially when large samples of binaries are
uncovered by future surveys and the conclusions derived from
their orbital distribution become more precise.

5.5. Prospects for Detecting Catastrophic Collisions

Many of the collisions modeled in the numerical simulations
we present in Section 3 would produce a prodigious amount of
dust and debris. Such collisions may occasionally be detectable
as transient brightening events, similar to the event detected in
the main asteroid belt in early 2010 (Jewitt et al. 2010). Given the
frequent deep observations of large areas of the sky in upcoming
surveys like Pan-STARRS and LSST, we estimate the frequency
at which such events will be detectable. Similar estimates have
been made for collisions in the main asteroid belt (LSST Science
Collaborations & LSST Project 2009)

Using the estimates of debris cross-sectional area produced in
collisions derived in Wyatt & Dent (2002) for grains larger than
1 mm in radius, and conservatively assuming an albedo of 5%
for the debris produced by the catastrophic disruption of small
TNOs, we find that a collision which disrupts 50% of the mass
of a 700 m radius TNO will produce a debris cloud sufficiently
large to be detected in reflected light by LSST (given a single-
visit r-band depth of 24.7). Similarly, impacts which disrupt
80% of the mass of a 600 m radius TNO or 5% of the mass of
a 1.6 km radius TNO will also be detectable. By Equations (6)
and (7), we estimate that such disruption events will require
impactors of radius ∼58 m, 57 m, and 72 m, respectively (given
a relative velocity of ∼1 km s−1).

The lifetime of these events also factors into their detectability
and depends on the velocity dispersion of the debris cloud.

Figure 12. Estimate of the rate of collision events in the classical Kuiper Belt
detectable by LSST, given the small-object population limits discussed in the
text. Results assuming Pi = 1.3 × 10−21 km−2 yr−1 (black triangles) and
Pi = 4 × 10−22 km−2 yr−1 (gray triangles). Breaks indicate transition from
population limits determined by the observed number of large objects (leftmost
trend), binary survival (middle trend, only visible in the black triangles), and
occultation limits (rightmost trend).

Again adopting the derivations of Wyatt & Dent (2002) for the
rate of azimuthal spreading for debris clouds produced by such a
catastrophic impact, we estimate that such systems will remain
visible for roughly two to three weeks before their surface
brightness drops to below detectable levels.

Using the combination of R ∼ 1 km population estimates
presented earlier (extrapolation from large size, occultation
limits, and binary survival), we can estimate the frequency of
impacts as large or larger than this minimum detectable size as
a function of size distribution slope. Assuming the same two
values for intrinsic collision probability Pi as used in our earlier
analysis, we find that for reasonable size distribution slopes,
there may be tens to hundreds of collision events detectable by
LSST per year. Figure 12 illustrates the estimated frequency of
detectable impacts, and the expected rate of events detectable
by LSST is strongly dependent on the size distribution slope at
small size. Thus, the detection or non-detection of these transient
collision events in surveys like LSST may prove to be a strong
indicator of the size distribution of very small objects in the
Kuiper Belt.

6. SUMMARY

1. For most reasonable impactor populations, the collisional
lifetime of a TNB can be accurately estimated by analytical
arguments with a small empirical correction determined by
our simulations; the expression for collisional lifetime is
given by Equation (13). This estimate includes the effects
of multiple collisions and mass loss.

2. Evolution of separation and eccentricity preferentially oc-
curs along lines of constant apocenter, and 90%–95% of all
systems modeled have final pericenters lower than their
primordial apocenter. This is further evidence that the
ultra-wide binaries are not examples of primordially tight
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binaries which have been widened by collisional processes,
as we would expect eccentricities to be high on average
(e � 0.8).

3. Collisions with objects in the 1–5 km radius range are capa-
ble of unbinding the ultra-wide TNBs, and the continued ex-
istence of these systems constrains the number of impactors
that can presently exist in the classical Kuiper Belt. These
limits are compatible with the extrapolation of the measured
large object (R > 30 km) population to R ∼ 1 km with a
size distribution power-law slope of less than q � 3.5–3.7,
depending on the assumed intrinsic collisional probability.
These limits are also compatible with the putative detection
of a stellar occultation by a single ∼250 m object in the clas-
sical Kuiper Belt (Schlichting et al. 2009) for slopes greater
than q � 2.5–3. The convergence of these estimates sug-
gests that, barring more complicated structure in the size
distribution (e.g., a collisional “divot”; Fraser 2009), the
size distribution slope at small radii is roughly consistent
with collisional equilibrium at q ∼ 3.5.

4. Collisions with realistic collider size distributions do not
cause any strong asymmetry between prograde and retro-
grade survival times, and it is likely that the equal numbers
of prograde and retrograde mutual orbits reflect the pri-
mordial inclination distribution. A non-negligible fraction
of binaries have their orientation flipped from prograde
to retrograde and vice versa, but not a large enough frac-
tion to account for the observed prograde to retrograde
ratio if the binaries were formed by the L2s mechanism, as
Schlichting & Sari (2008) predict that roughly 97% of such
systems would form with retrograde orientation.

5. Even with impact trajectories drawn from a disk-like dis-
tribution, it is unlikely for the ultra-wide TNB inclina-
tions to have been generated by collisional modification
of an initially uniform inclination distribution. Instead, the
ultra-wide TNB inclination distribution must have been dy-
namically colder in the past.

6. Faster erosion of widely separated binary population plau-
sibly resolves the overproduction of ultra-wide binaries by
the model of Nesvorný et al. (2010), as reasonable impactor
populations can easily cause a reduction in the relative frac-
tion of wide binaries to tight binaries by the required factor
of roughly four.

7. Analytical arguments can reproduce similar trends in binary
fraction with primary radius as found by Nesvorný et al.
(2011), and slow erosion of the binary population was
found to produce similar trends in binary fraction with
radius as rapid collisional grinding. This will complicate
the interpretation of any future detection of a trend in binary
fraction with radius.

8. Upper limits on small-object populations still can allow
enough collisions to be occurring that next-generation op-
tical surveys like LSST may detect tens to hundreds of
transient brightening events per year due to large dust-
producing impacts. The rate of these events is extremely
sensitive to the size distribution at small size, and the detec-
tion or non-detection of such collisions may be a powerful
diagnostic of the decameter-scale impactor population in
the current Kuiper Belt.
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