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ABSTRACT

We use a thin flux tube model in a rotating spherical shell of turbulent convective flows to study how active region
scale flux tubes rise buoyantly from the bottom of the convection zone to near the solar surface. We investigate
toroidal flux tubes at the base of the convection zone with field strengths ranging from 15 kG to 100 kG at initial
latitudes ranging from 1◦ to 40◦ with a total flux of 1022 Mx. We find that the dynamic evolution of the flux tube
changes from convection dominated to magnetic buoyancy dominated as the initial field strength increases from
15 kG to 100 kG. At 100 kG, the development of Ω-shaped rising loops is mainly controlled by the growth of the
magnetic buoyancy instability. However, at low field strengths of 15 kG, the development of rising Ω-shaped loops
is largely controlled by convective flows, and properties of the emerging loops are significantly changed compared
to previous results in the absence of convection. With convection, rise times are drastically reduced (from years to
a few months), loops are able to emerge at low latitudes, and tilt angles of emerging loops are consistent with Joy’s
law for initial field strengths of �40 kG. We also examine other asymmetries that develop between the leading
and following legs of the emerging loops. Taking all the results together, we find that mid-range field strengths of
∼40–50 kG produce emerging loops that best match the observed properties of solar active regions.

Key words: Sun: dynamo – Sun: interior – Sun: surface magnetism

Online-only material: animation

1. INTRODUCTION

The Sun’s cyclic large-scale magnetic field with a period of
22 years is believed to be sustained by a dynamo mechanism.
The Hale polarity law (Hale et al. 1919) of solar active regions
indicates the presence of a large-scale subsurface toroidal
magnetic field generated by the solar dynamo. The current
prevailing picture is that the large-scale toroidal magnetic field
responsible for the formation of solar active regions is amplified
and stored at the base of the solar convection zone (e.g., Gilman
2000; Charbonneau 2010). Thus answering the question of how
active region flux tubes rise from the base of the convection
zone to the solar surface is vitally important in the development
of solar dynamo theory.

A large body of calculations based on a so-called thin flux tube
approximation has provided important insights into the dynamic
evolution of Ω-shaped rising loops in the solar convective
envelope (see review by, e.g., Fan 2009). The thin flux tube
model assumes that the radius of the tube is significantly smaller
than all other relevant scales of variation such as the pressure
scale height and the curvature of the tube. Given the observed
scale of flux ∼1022 Mx in a large solar active region, and
assuming that the field strength of the flux tubes at the base
of the convection zone is at least 10 kG, which is the order of
field strength in equipartition with convection, one finds that the
above condition for the thin flux tube approximation is satisfied
in the bulk of the solar convection zone. The thin flux tube
model solves for the mean motion of each tube segment under
the influence of various integrated forces acting on the tube
segment (see, e.g., Spruit 1981; Longcope & Klapper 1997).
Results from thin flux tube models without the influence of
convective flows suggest that the field strength of the toroidal
magnetic field at the base of the solar convection zone needs
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to be in the range of about 30 kG to about 100 kG in order
for the latitude of emergence and the tilt angles of the emerging
loops to be consistent with the observed properties of solar active
regions. If the field strength is �20 kG, the poleward deflections
of the trajectories of the rising flux tubes by the Coriolis force
are too large such that the emerging latitudes are inconsistent
with the observed sunspot latitudes (e.g., Caligari et al. 1995).

The thin flux tube calculations show that the Coriolis force
acting on the rising Ω-loops produces asymmetries between
the leading and the following legs of the loop (the leading
leg is the proceeding portion of the loop in the direction of
solar rotation), which provide explanations for several observed
asymmetries between the leading and following polarities of
bipolar active regions. First, a slight tilt of the emerging loop is
produced, with the leading leg being closer to the equator than
the following, consistent with the observed Joy’s law of active
region tilt angles (e.g., D’Silva & Choudhuri 1993). Second, an
asymmetric geometric shape of the emerging loop is produced,
where the leading side is inclined at a smaller angle to the surface
(e.g., Caligari et al. 1995). This may give rise to an apparent
faster proper motion of the leading polarity as the loop emerges
through the surface, which is observed (van Driel-Gesztely &
Petrovay 1990). A third asymmetry is in the field strength of the
loop, with a stronger field strength in the leading side compared
to the following, which may explain the observed more coherent
morphology of the leading polarity of an active region (e.g., Fan
et al. 1993). However, this field asymmetry is found to depend
on the assumed initial condition of the flux tube (Caligari et al.
1998; Fan & Fisher 1996).

The studies discussed previously do not address the dynam-
ical effects of turbulent convection on a rising flux tube. These
are shown to be adequate simplifications when the flux tube’s
magnetic field strength B � (Hp/a)1/2Beq ∼ 3–5Beq, where
Beq ∼ 10 kG is the field strength for which the magnetic energy
density is in equipartition with the kinetic energy density of con-
vection, Hp is the local pressure scale height, and a is the tube
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radius (Fan et al. 2003). Solar cycle dynamo models which take
into account the dynamic effects of the Lorentz force from the
large-scale mean fields suggest that the toroidal magnetic field
generated at the base of the convection zone is ∼15 kG, and
most likely cannot exceed 30 kG (e.g., Rempel 2006a, 2006b).
Therefore, it is important to understand how toroidal flux tubes
in the range of 15 kG to 30 kG rise through a turbulent solar con-
vective envelope. Thin flux tube simulations which neglect the
effect of convection (e.g., see review by Fan 2009) show that
tubes in this range of field strengths tend to be deflected sig-
nificantly poleward by the Coriolis force during their rise, and
so have difficulty reproducing the emergence of active regions
at low latitudes, as well as Joy’s law. At these field strengths,
convective downdrafts are capable of pinning down the flux
tube while helical upflows between the downdrafts can boost
the rise of the flux tube, and therefore the resulting emerging
loops would be significantly different from those produced in
the absence of convection.

A few studies have been performed to investigate the buoyant
rise of a flux tube in a turbulent convective velocity field (e.g.,
Fan et al. 2003; Jouve & Brun 2009). Fan et al. (2003) carried out
three-dimensional magnetohydrodynamic (MHD) simulations
of the evolution of a buoyant magnetic flux tube in a stratified
convective velocity field in a local Cartesian geometry without
the effect of solar rotation. It is found that buoyant flux tubes
with B � (Hp/a)1/2Beq ∼ 30 kG are strongly influenced by
convection, where portions of the tubes in convective downdrafts
become pinned down to the bottom of the domain, while the
rise speed of sections within upflow regions is significantly
boosted. It is found that the evolution of the flux tube is no longer
sensitive to the twist of the tube in this convection dominated
regime. Jouve & Brun (2009) have carried out the first set of
global anelastic MHD simulations of the buoyant rise of an
initially toroidal flux ring in a rotating, fully convective spherical
shell, possessing self-consistently generated mean flows such as
meridional circulations and differential rotation, representative
of the conditions of the solar convective envelope. Due to the
limited numerical resolution and the relatively high magnetic
diffusivity in these global three-dimensional simulations, flux
tubes with a very large initial field strength (ranging from
150 kG to 600 kG) and a large radius, corresponding to a
total flux on the order of a few times 1023 Mx, significantly
greater than the typical active region fluxes, are considered.
These large values are needed such that the rise times of flux
tubes are less than their diffusive timescales. Because most of
the cases considered are essentially in the magnetic buoyancy
dominated regime, the rising toroidal flux tube only develops
rather moderate undulations by the influence of the convective
flows, and Ω-shaped tubes with undulations extending the depth
of the convection zone are not found.

In this study, we use the thin flux tube model, with the in-
clusion of a (separately computed) three-dimensional turbulent
convective velocity field in a rotating model solar convective
envelope, to study its effects via the aerodynamic drag force,
together with the forces of magnetic buoyancy, tension, and
the Coriolis force, on the dynamic evolution of the emerg-
ing Ω-loops. Since the thin flux tube model preserves the
frozen-in magnetic field condition, it does not suffer the erosion
of magnetic buoyancy and the tension force due to artificial
diffusion of the magnetic field, as do the Eulerian-based multi-
dimensional simulations. Although these thin flux tube models
do not capture the internal structure and the possible fragmen-
tation of the flux tube, they provide an initial step toward un-

derstanding the effects of convective flows in relation to other
forces acting on the rising flux tubes.

This paper is organized as follows. The equations of thin flux
tube dynamics and the separately computed convective flow are
discussed in Section 2. Results of our simulations are presented
in Section 3, focusing in particular on the overall influence of
convection on the flux tubes, the latitude of emergence and tilt
angles of the flux tube, the asymmetry in field strength and
geometry of the emerging flux loops, and the rise time for the
flux tubes to reach the surface. We perform these thin flux tube
simulations for a range of magnetic fields (15–100 kG) from
near-equipartition to super-equipartition initial field strengths at
varying latitudes from 1◦ to 40◦ in both the northern and southern
hemispheres. A conclusion and discussion of the results is given
in Section 4.

2. MODEL DESCRIPTION

A discussion of the thin flux tube model, and how it is derived
from the MHD equations under the assumption that the tube
radius is thin compared to all other relevant scales of variation
can be found in many previous publications (see, e.g., Spruit
1981; Longcope & Klapper 1997; Fan 2009). For this work, the
equations that describe the evolution of the thin flux tube are
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where, r, v, B, ρ, p, T, which are functions of the time t and
arc length s measured along the tube, denote, respectively, the
position, velocity, magnetic field strength, gas density, pressure,
and temperature of a Lagrangian tube segment, l ≡ ∂r/∂s is the
unit vector tangential to the flux tube and k ≡ ∂2r/∂s2 is the
tube’s curvature vector, subscript “⊥” denotes the component
perpendicular to the flux tube, Φ = 1022 Mx is the constant
total flux of the tube, ρe, pe, Te, and μ, which are functions of
depth only, are, respectively, the pressure, density, temperature,
mean molecular weight of the surrounding external plasma, g
is the gravitational acceleration and a function of depth, �0 is
the angular velocity of the reference frame co-rotating with the
Sun, with Ω0 set to 2.7 × 10−6 rad s−1 in this calculation, Cd is
the drag coefficient, set to 1 in this calculation, γ is the ratio of
specific heats, and ve(r, t) (discussed below) is a time-dependent
velocity field (relative to the rotating frame of reference) that
impacts the dynamics of the thin flux tube through the drag force
term. In the above equations, we do not introduce an explicit
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Figure 1. Profiles of Te, ρe , pe, and adiabaticity factor δ for the entire simulation domain as a function of solar radius r for the reference solar model. The bottom left
panel shows the sub-adiabaticity in the overshoot region, whereas the bottom right panel shows the logarithm of the super-adiabaticity in the convection zone.

magnetic diffusion or kinematic viscosity term. However, we do
introduce a drag force, which is the last term in Equation (1).
This describes the interaction of the external fluid with the
flux tube in a high Reynolds number regime (e.g., Batchelor
1967). The thin flux tube is untwisted, and discretized with
800 uniformly spaced grid points along its arc length s. The
numerical method used to solve for the flux tube evolution as
determined by the above set of equations has been described in
detail in Fan et al. (1993).

For the stratification of the external field free plasma, namely
ρe, pe, Te, μ, g, γ , and the super-adiabaticity, we use the
reference solar model by Christensen-Dalsgaard et al. (1996)
for the solar convection zone with an extension of a simple
polytropic, sub-adiabatically stratified thin overshoot layer, as
described in Fan & Gong (2000). Profiles of Te, ρe, pe, and
the adiabaticity δ = ∇ − ∇ad, where ∇ = d ln Te/d ln pe and
∇ad is the value of ∇ one obtains by considering local adiabatic
perturbations, are shown in Figure 1. The bottom left panel
of Figure 1 shows the sub-adiabaticity of the thin overshoot
layer, which extends from 4.8 ×1010 cm to 5.026 ×1010 cm. The
bottom right panel shows the logarithm of the super-adiabaticity
in the convection zone, which extends from 5.026 ×1010 cm to
6.75 ×1010 cm.

The main new ingredient of the current thin flux tube simu-
lations is the inclusion into the drag force term of an external

time-dependent convective velocity field ve(r, t) relative to the
rotating frame of reference, computed separately from a three-
dimensional global convection simulation using the anelas-
tic spherical harmonic (ASH) code, as described in Miesch
et al. (2006, hereafter MBT06). In the anelastic approximation,
convective flows and thermal variations are treated as a lin-
ear perturbation to a background state which is taken from a
one-dimensional solar structure model. The computed ve(r, t)
captures giant-cell convection and the associated mean flows
(including the differential rotation and meridional circulation)
in the rotating solar convective envelope spanning r = 0.69 R�
to r = 0.97 R� (4.8 ×1010 cm to 6.75 ×1010 cm), resolved by
a grid of 129 points in r, 256 points in θ , and 512 points in
φ. ASH is a pseudo-spectral code with horizontal and vertical
basis functions given by spherical harmonics and Chebyshev
polynomials, each de-aliased by keeping only the lowest 2/3 of
modes (maximum spherical harmonic degree 	max = 170 and
Chebyshev degree nmax = 86).

Simulation parameters and boundary conditions are similar to
Case AB3 in MBT06. In particular, the lower thermal boundary
condition is the same as in Case AB3, with a latitudinal
entropy gradient imposed in order to implicitly capture thermal
coupling to the tachocline: S(θ, r1) = CP (a2Y20 + a4Y40),
where S is the specific entropy per unit mass, r1 is the
inner boundary, CP is the specific heat at constant pressure,
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Figure 2. Snapshot of convective radial velocity at a depth of 25 Mm below the
solar surface. An animation showing the evolution of the radial velocity at this
depth for over a period of about 315 days is available in the online version of
the journal.

(An animation of this figure is available in the online journal.)

Y	m(θ, φ) is the spherical harmonic of degree 	 and order
m, a2 = 1.7 × 10−6, and a4 = −0.43 × 10−6. This helps
promote a conical rotation profile but the strong rotational
shear is attributed to the convective Reynolds stress rather than
baroclinicity (see MBT06). However, the radial entropy gradient
imposed at the outer boundary is steeper, more in line with
solar structure models (e.g., Christensen-Dalsgaard et al. 1996);
∂S/∂r = −10−5 erg g−1 K−1 cm−1 in this case compared
to −10−7 erg g−1 K−1 cm−1 in Case AB3. This implies a
higher Rayleigh number, which is partially offset by higher
values of the turbulent viscosity ν and thermal diffusivity κ .
In this simulation the values of ν and κ at the outer boundary
(r = 0.97R) are 2×1013 and 4×1013 cm2 s−1, respectively, and
each decreases with depth in proportion to the inverse square
root of the background density ρ̂−1/2. The density contrast
across the domain is 69, which corresponds to 4.2 density scale
heights (somewhat larger than AB3, due to a slightly deeper
simulation domain). This yields a mid-convection zone Rayleigh
number Ra of 5×106 and Reynolds number Re of order 50. The
Rayleigh number is defined here as Ra = gr2dΔS/(νκCP )
where g is the gravitational acceleration and d = r2 − r1 is the
depth of the layer. The Reynolds number is given by Vrmsd/ν
where Vrms is the root mean square velocity relative to the
rotating reference frame. This value of Ra is somewhat larger
than that used in the flux tube simulations of Jouve & Brun
(2009), but Re is about a factor of two smaller.

This simulation is more laminar than some others done with
the ASH code (e.g., Miesch et al. 2008; Jouve & Brun 2009),
and we acknowledge that this may have an impact on our results.
However, the focus of this paper is the fundamental mechanisms
by which thin flux tubes interact with global convection and
mean flows. The convection simulation possesses all the relevant
features necessary to investigate this interaction, including
columnar, asymmetric, rotationally aligned cells at low latitudes
(density-stratified banana cells), a rapidly evolving downflow

(a) (b)

Figure 3. (a) Mean kinetic helicity density Hk and (b) angular velocity (with
respect to the inertial frame) in the convection simulation, averaged over
longitude and time (time interval 1366 days). Color tables saturate at the values
indicated, with extrema ranging from (a) −0.122–0.133 cm s−1 and (b) 326–
468 nHz.

network at higher latitudes in the upper convection zone,
dominated by helical plumes, and a strong, solar-like differential
rotation. The convective turnover timescale is τ ∼ 2 ×106 s, or
about 23 days. Our work provides a baseline for future work
which can further assess how the details of the convective flow
affect the results. Since even the highest-resolution simulations
exhibit similar basic features, we do not expect the essential
results to change significantly. The principle effect we expect
at higher Rayleigh and Reynolds numbers is an increase in
the random scatter due to stochastic turbulent fluctuations.
Decoherence of large-scale motions and turbulent drag from
small-scale motions could also slightly reduce rise times but we
expect this effect to be minor since we believe that large-scale,
columnar banana-like cells must persist even in highly turbulent
parameter regimes in order to provide the requisite Reynolds
stresses to account for the solar differential rotation.

Figure 2 shows a snapshot of the radial velocity of the giant-
cell convection at a depth of 25 Mm below the solar surface.
An associated movie showing the evolution of the convective
flow pattern at this depth for over a period of about 315 days
is also available in the electronic journal. The convective flow
pattern shows broad upflow cells surrounded by narrow and
intense downflow lanes. The maximum downflow speed in
the convective envelope reaches nearly 600 m s−1 at a depth
of about 86 Mm below the surface. Throughout most of the
convection zone, the combined influence of the Coriolis force
and the density stratification induces anti-cyclonic vorticity
in expanding upflows and cyclonic vorticity in contracting
downflows. This yields a mean kinetic helicity density Hk =
〈ω · v〉 which is negative in the northern hemisphere and positive
in the southern hemisphere (Figure 3(a)), where ω is the vorticity
of the convective flow with velocity v. There is a weak sign
reversal of Hk in the lower convection zone where downflows
expand and recirculate, inducing anti-cyclonic vorticity. Such a
helicity pattern is typical for rotating, compressible convection
(e.g., Miesch & Toomre 2009).
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Figure 4. Snapshot of a slice of the radial velocity field (r = 0.69 R� to
0.97 R�, θ from north solar pole to equator) at an arbitrary azimuthal angle φ,
with a cross section of a 15 kG flux tube (green, drawn to scale), at its initial
starting radius 6◦ above the equator. The dotted line represents the base of the
convection zone at 5.026 ×1010 cm.

At low latitudes there is a preferential alignment of elongated
downflow lanes with the rotation axis, reflecting the presence of
the so-called banana cells (Figure 2). These features propagate
in a prograde sense relative to polar regions, due in part
to the differential rotation and in part to an intrinsic phase
drift akin to traveling Rossby waves (e.g., Miesch & Toomre
2009). Such structures dominate the convective Reynolds stress,
maintaining a strong differential rotation comparable to that
inferred from helioseismic inversions. In particular, the total
angular velocity Ω/2π (with respect to the inertia frame)
decreases monotonically from about 470 nHz at the equator to
about 330 nHz at the poles and exhibits nearly conical contours
at mid latitudes (see Figure 3(b)), as in the solar convection zone
(Thompson et al. 2003).

As is in Fan & Gong (2000), our simulations start with
toroidal magnetic flux rings in mechanical equilibrium (neutral
buoyancy), located at a radial distance to the center of the Sun
r = r0 = 5.05 × 1010 cm, slightly above the base of the solar
convection zone at r = rczb = 5.026 × 1010 cm. Figure 4 shows
a snapshot of the radial velocity at an arbitrary azimuthal angle
φ, with the green dot representing the radius (to scale) of the
largest flux tube, which occurs for magnetic field strengths of
15 kG. This figure shows the flux tube at its initial starting
position compared to the base of the convection zone. Note
that the convective velocity field is allowed to penetrate into the
overshoot region. To ensure initial neutral buoyancy, the internal
temperature of the flux tube is reduced compared to the external
temperature. We consider a range of initial field strengths, with
B0 = 15 kG, 30 kG, 40 kG, 50 kG, 60 kG, and 100 kG, and initial
latitudes λ0 ranging from 1◦ to 40◦ for the toroidal flux ring.
Considering the rms of the convective downflows from the ASH
simulation at the base of the convection zone which are on the
order of 35 m s−1, the equipartition magnetic field is on the order
of Beq ∼ 5 kG. In this case, we are investigating flux tubes on
the order of 3–20 Beq. In all cases, the flux of the tube is constant
at 1022 Mx, on the order of large-scale solar active regions. For
this study, we perform two sets of simulations sampling different

time ranges of the ASH convective flow at each magnetic field
strength for each initial latitude in both the northern and southern
hemispheres. The toroidal ring in neutral buoyancy is perturbed
with small undular motions which consist of a superposition
of Fourier modes with azimuthal order ranging from m = 0
through m = 8 with random phase relations. In this work,
the external time-dependent three-dimensional convective flow
described above also impacts the flux tube through the drag
force term, and we study its effect.

3. RESULTS

3.1. Overview of Influence of Convection on Rising Flux Tubes

Figure 5 shows snapshots of the rising flux tube in the absence
of convection, developed from an initial toroidal flux ring at a
latitude of 6◦, at a time when its apex is approaching the top
boundary, with initial magnetic field strengths of 15 kG, 40 kG,
and 100 kG, respectively. The top three images show the flux
tube as if looking down on the Sun from the north pole, whereas
the bottom three images show the flux tube as if looking directly
at the equator. For these cases in the absence of convection,
emerging loops develop as a result of the nonlinear growth of
the magnetic buoyancy instability of the initial toroidal flux tube,
and the time for the flux tube to rise to the surface decreases
with increasing magnetic field strength. The rise time is 6.4, 2.1,
and 0.25 yr for 15, 40, and 100 kG, respectively. The rise of the
loop becomes more radial with increasing initial field strength,
with emergence latitudes of 23.◦3, 18.◦8, and 7.◦8 for 15, 40, and
100 kG magnetic fields, respectively. In Figure 5, we note the
appearance of predominately m = 2 modes for magnetic field
strengths of 40 kG and 100 kG. The 15 kG flux tube shows
a predominately m = 1 mode, superposed with a very small
amplitude m = 3 mode. The results are similar to those in Fan &
Gong (2000), where the toroidal flux ring develops the undular
buoyancy instability (e.g., Caligari et al. 1995), with m = 1 and
m = 2 being the dominant unstable modes, and Ω-shaped rising
loops form.

Figure 6 shows snapshots of the rising flux tubes with the
same initial conditions as Figure 5, but with the influence
of the external convective flow included. It can be seen that
with a low initial field strength of 15 kG, the development of
the rising loops is largely controlled by the convective flows.
Convection drastically decreases the rise time from 6.4 yr to
only 0.2 yr. On the other hand, at a large magnetic field strength
of 100 kG, we find that the development of the rising loops
is still mainly controlled by the development of the magnetic
buoyancy instability, with the strongest convective downdrafts
producing some moderate perturbations to the final emerging
loops. In this case, the presence of convection also shortens
the rise time by about one month. At 40 kG, the influence of
convection is somewhere in between the above two cases. Again
convection reduces the rise time, from 2.1 yr to 0.5 yr in this
case. Interestingly, with convection, the flux tube with 40 kG
initial field takes longer to rise than either cases with 15 kG or
100 kG. The predominately m = 2 mode for the 100 kG flux tube
is still discernible. However, at lower magnetic field strengths
the flux tube evolution is altered by convective flows such that
a dominant mode can no longer be established.

The differential rotation of the convective velocity field does
have an influence on the evolution of the rising flux tubes,
especially at low magnetic field strengths. Figure 7 plots the
average velocity in the azimuthal direction φ of the mass
elements in the legs of the emerging flux loop once it has
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Figure 5. Snapshots of the rising flux tube, developed from an initial toroidal flux ring at a latitude of 6◦, at a time when its apex is approaching the top boundary, with
initial magnetic field strengths of 15 kG, 40 kG, and 100 kG, respectively, in the absence of convection. The top images show a polar view, whereas the bottom images
show an equatorial view. In all cases, the image has been rotated such that the flux tube apex is on the right, and at the 3 o’clock position if looking down from the
north solar pole. The orange sphere has a radius of 4.9 ×1010 cm, which is 0.1 ×1010 cm above the base of the rotating solar convective envelope, and 0.15 ×1010 cm
below the initial position of the flux tubes.

Figure 6. Same as Figure 5, except the tube is subjected to the external convective flow.

reached the top of the simulation domain. We find that without
convection, the average velocity of the mass elements of the
emerging loop is always negative. This occurs because, as the
tube rises, the conservation of angular momentum drives a
retrograde motion of particles in the tube, producing a negative
velocity in the φ direction. At a large magnetic field strength
of 100 kG, the averaged azimuthal velocity of the emerging
loop in the presence of convection is found to be centered
around the azimuthal velocity for the tubes without convection.
With decreasing magnetic fields, the azimuthal velocity in the
presence of convection becomes preferentially faster than in the
case without convection. This indicates that differential rotation

is attempting to push the elements of the flux tube prograde
compared to the case without convection, especially at low
magnetic field strengths where tubes are more susceptible to
convective flows.

Figure 8 summarizes how long it takes for an Ω-shaped
loop to emerge at the top of the simulation domain. Without
convection, the time for the flux tube to emerge decreases
with increasing field strength. This agrees with Moreno-Insertis
(1983), where they find the same trend for flux tubes given
sinusoidal perturbations. Also, the range of variation in rise time
between tubes initiating from different latitudes (as represented
by the size of the error bar centered on the mean in Figure 8)
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Figure 7. Average velocity in the azimuthal direction φ of the mass elements in the legs of the emerging flux loop once it has reached the top of the simulation domain.
These values are plotted for initial magnetic field strengths of 100 kG, 60 kG, 50 kG, 40 kG, 30 kG, and 15 kG, respectively, in the presence of convection (plus signs),
and the absence of convection (diamonds).

decreases with increasing initial magnetic field. When the
influence of convection is included, a different trend emerges,
and the rise times are no longer monotonic with increasing
magnetic field strength. In all cases, the rise time is reduced
with the addition of convection, especially for the cases with
weaker fields. The rise time becomes the longest for mid-field
strength cases (i.e., 40 kG). At these mid-field strengths, the
effects due to the magnetic buoyancy and the average convective
downflows influencing the rise of the flux tube are of similar
magnitudes, and work against each other, keeping the flux
tube in the mid-convection zone for a longer period of time
than at other magnetic field strengths. These effects will be
discussed more in detail in the following paragraphs. For all
the field strengths investigated, convection is found to reduce
the variation of rise times for flux tubes with different initial
latitudes, as can be seen in the size of the error bars compared
to the case without convection.

To understand the importance of convection, we compare the
magnitude of the magnetic buoyancy force with that of the drag

force from the external convective flows, following Fan et al.
(2003). For the drag force to dominate buoyancy

CDρev
2
e

πa
>

B2

8πHp

, (6)

where Hp is the local pressure scale height, and a is the flux tube
radius a = (Φ/πB)1/2, with flux of the tube Φ = 1022 Mx. The
pressure scale height ranges from 5.6 ×109 cm at the base of
the convection zone to 6.9 ×108 cm at the top of the simulation
domain. Also, the radius of the flux tube spans from 4.6 ×108 cm
for an initial magnetic field strength of 15 kG to 1.8 ×108 cm
for 100 kG. For an order of magnitude estimate of the magnetic
buoyancy here, we have assumed thermal equilibrium between
the flux tube and the external fluid. Assuming 2CD/π is of order
1, then Equation (6) simplifies to

ve > va

(
a

Hp

)1/2

, (7)
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Figure 8. Average time for the flux tube to rise through the convection zone
for magnetic fields of 100 kG, 60 kG, 50 kG, 40 kG, 30 kG, and 15 kG in the
absence of convection (red diamond points), and in the presence of convection
(blue star points). Bars represent the variation in the rise time for different
starting latitudes of the flux tube.

i.e., in order for convection to dominate, the convective flow
speed ve needs to be greater than the Alfvén speed va =
B/(4πρe)1/2 multiplied by (a/Hp)1/2.

In Figure 9, we have plotted as a function of depth the peak
downflow, peak upflow, the rms of the downflow, and the rms
of the upflow of the convection velocity field at each constant
r surface. In comparison, we have also plotted the right-hand
side of Equation (7) evaluated at the apex (portion of flux tube
with largest r value) of each of the flux tubes shown in Figure 6
with different initial field strengths, as it traverses the convection
zone. It can be seen that for the 100 kG case, only the largest
convective downflows are strong enough to impact the rise of the
flux tube, whereas at 15 kG, even the rms of the convective flows,
both upflows and downflows, can significantly affect the rise of
the tube. In the case of 40 kG, all of the convective velocity
fields except for the rms upflows contribute to the development
of the rising loops. These explain the general behavior we see in
Figure 6. Note in Figure 9 that there is a concentration of points
for the 40 kG (green) and 15 kG (red) cases. This is due to
the fact that the flux tube is continually buffeted by convection,
with strong downflows pushing down some apices such that
new apices will take over for portions of the flux tube evolution.
Often, the apices are also aided by boosts from convective
upflows. Eventually, one loop becomes buoyant enough such
that it will finally emerge at the top of the simulation domain.
There is a jump in the 15 kG curve that occurs near 6.3 ×1010 cm
because one loop is boosted by a convective upflow and becomes
significantly more buoyant than the previous apex. It is clear
from Figure 9 that downflows in the convective velocity field
dominate in amplitude, however their spatial extent is small
compared to the upflows as indicated by the narrow downflow

Figure 9. Peak downflow, peak upflow, the root mean square (rms) of the
downflow, and the rms of the upflow of the convection velocity field in each
constant r surface as a function of r. Also plotted are the right-hand side of
Equation (7) at the apex of each of the flux tubes shown in Figure 6 with
different initial field strengths, as it traverses the convection zone.

lanes shown in Figure 2. Strong downflows can pin the flux
tubes to the base of the convection zone at the beginning of
the simulation faster than the Fourier mode perturbations can
in the case without convection. Especially at low magnetic field
strengths where the tube is highly susceptible to convection
deformation, many portions of the tube will become anchored as
compared to the case without convection. Also, rising loops can
be significantly boosted by broad upflows such that they emerge
at the top of the simulation domain much faster than in the
case without convection, where only buoyancy aids in driving
the tube to the surface. Convection can also enhance buoyancy
instabilities by introducing finite-amplitude perturbations and
subsequent gravity induced draining of fluid from the flux tube
apex. Figure 10 shows snapshots (one individual time instance)
of the radial distance r of the flux tube from Sun center as a
function of the azimuthal angle φ (black lines), as well as the
external radial velocity experienced by the tube at the height r
of each tube segment (red lines). These snapshots are for the
same flux tubes as used in Figures 6 and 9, with the left column
showing the snapshot at a time when the apex of the tube has
reached 0.82 R�, and the right column showing the snapshot
for the last time step when the flux tube apex has reached the
top of the simulation domain at 0.97 R�. From this figure, it is
evident that at large magnetic field strengths, only the strongest
downflows can perturb the tube. However, at small magnetic
field strengths, all flows are capable of deforming the flux tube.

3.2. Latitude of Emergence and Tilt Angles

In the absence of convection, we find that for weaker initial
field strengths, there is a low latitude zone devoid of flux
emergence due to the poleward deflection of the rising tube
by the Coriolis force (e.g., Choudhuri & Gilman 1987; Caligari
et al. 1995). This is shown in Figure 11, where we have plotted
the deflection of the flux tube in latitude (emergence latitude
minus initial latitude) as a function of the flux tube initial
latitude. The red diamonds (blue plus signs) show the deflection
of the flux tubes without (with) the influence of convection.
This low latitude zone void of flux emergence in the case
without convection shrinks as the initial magnetic field strength
is increased. This is because at larger initial magnetic field
strengths, the buoyancy force overpowers the Coriolis force
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Figure 10. Flux tube radial distance from center of the Sun r (black line), plotted with the external radial velocity experienced by the flux tube at the height r of the
flux tube segment (red line), both as functions of the azimuthal angle φ. Figures on the left are for an instance when the apex height is r = 0.82 R�, and on the right
are for the last time step when the apex has reached the top of the simulation domain at r = 0.97 R�. These snapshots show all the azimuthal angle values for the flux
tube, with all tubes originating at 6◦ latitude.

such that tubes rise more radially. However, when the flux tubes
are subjected to the convective flow, we find that they are able
to emerge at lower latitudes near the equator, even for low
field strength cases. In some cases, the convective velocity field
is able to push the flux tube such that its apex will emerge
closer to the equator than where the tube initially started. This
is indicated in Figure 11 by negative plus sign points. We note
that with convection, the poleward deflection of the flux tubes
is reduced for the majority of cases. Flux tubes subjected to
turbulent convection spend less time in the convection zone than
the flux tubes without convection (see Figure 8). As such, the
Coriolis force will have less time to deflect these flux tubes to
higher latitudes. Also, increased anchoring of weaker flux tubes
by convection reduces the fraction of the tube that moves away
from the rotation axes, and therefore reduces the effect of the
Coriolis force on the tube.

In most cases without convection, the variation of the emer-
gence latitude with initial latitude is smooth, except for the 15 kG
flux tube, where there is an abrupt 14◦ jump in emergence lati-
tude between the tubes originating at 5◦ and 10◦ (see diamond
points in the bottom right panel of Figures 11 and 12). At this
magnetic field strength in the absence of convection, flux tubes
originating at 5◦ and 1◦ have troughs which become anchored
to the overshoot region below the base of the convection zone.

However, for the same tubes originating from 8◦ and above, the
rising tubes do not become anchored. As such, the tube floats up-
ward as a whole, and experiences a relatively greater deflection
toward the pole and hence emerges at a higher latitude compared
to the anchored cases. In these cases, the m = 1 to m = 3 modes
grow slower than the m = 0 mode. This corresponds to a pole-
ward slip of the tube as a whole. Thereafter, modes on the order
of m = 1 to m = 3 begin to develop larger amplitudes, allowing
loops to develop, though the troughs do not anchor at the base
of the convection zone. With convection, at this same magnetic
field strength, all of the flux tubes have troughs which become
anchored because convective downflows pin them to the bottom
of the convection zone from the beginning of the simulation. We
note that the flux tubes tend to anchor (when they anchor at all)
around 5.0 ×1010 cm in both the cases with and without convec-
tion. At this depth, the sub-adiabaticity is δ = −1.3 ×10−4. The
flux tubes all originate at 5.05 ×1010 cm, 2.8 ×108 cm above
the base of the convection zone, and have a super-adiabaticity
here of δ = 3.2 × 10−8, or very nearly zero. Reducing the
sub-adiabaticity would reduce the chances for anchoring of
the portions of the flux tube that are perturbed into the over-
shoot region. Increasing the sub-adiabaticity would help anchor
these flux tubes if they were perturbed into the overshoot re-
gion and did not remain anchored at a reduced sub-adiabaticity.
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Figure 11. Latitudinal deflection (emergence latitude minus initial latitude) of flux tube apex as a function of initial latitude for initial tube field strengths of 100 kG,
60 kG, 50 kG, 40 kG, 30 kG, and 15 kG in the absence of convection (red diamond points), and in the presence of convection (blue plus sign points).

However, we find that the tubes which do not anchor in this
study are never perturbed into the overshoot region. Instabili-
ties of higher order with large enough amplitude to perturb the
tube into the overshoot region do not develop fast enough to
overcome the m = 0 mode.

Figure 12 shows the tilt angle of the emerging flux loops as a
function of the emergence latitude, for flux tubes with a range
of initial latitudes (from 1◦ to 40◦ as indicated by the color of
the points). The different panels in the figure show the results
for initial magnetic field strengths of 15 kG, 30 kG, 40 kG,
50 kG, 60 kG, and 100 kG, respectively. In the plots, results
with (without) the influence of convection are shown as plus
signs (diamonds).

It is well known that bipolar active regions on the Sun tend
to form with the leading polarity (in the direction of solar
rotation) being slightly closer to the equator than the following
polarity, and thus showing a tilt angle for the line connecting the
following to the leading polarities with respect to the east–west
direction, as described by Joy’s law (e.g., Hale et al. 1919;
Dasi-Espuig et al. 2010). On average, the tilt angle of the active
region increases with its latitude. In Figure 12, the tilt angle is
computed as the angle between the tangent vector at the apex of
the emerging loop and the local east–west direction. We define
a positive sign of tilt as a clockwise (anticlockwise) rotation
of the tangent vector away from the east–west direction in the

northern (southern) hemisphere, consistent with the direction of
the observed mean tilt of active regions. If on the other hand the
magnitude of the tilt angle exceeds 90◦, then it means that there
is an anti-Hale polarity arrangement for the active region.

It is important to note that we do not consider the effect
of magnetic field line twist on the evolution of flux tubes.
Fan (2008) considers the effect of twist on the tilt angle of
emerging flux tubes for a three-dimensional MHD simulation
in a local Cartesian geometry without an external velocity field.
They find that in order for emerging flux tubes of highly super-
equipartition field strength on the order of 105 G to have tilts
consistent with Joy’s law, the initial twist rate of the flux tube
needs to be smaller than about a half of that required for the
tube to rise cohesively. However, in the case of flux tubes in
a convecting box with equipartition magnetic field strengths
on the order of 104 G, it is found that convective downflows
dominate over magnetic buoyancy effects, and the evolution of
the tube is no longer sensitive to the initial twist of the tube (Fan
et al. 2003). In this paper, we are primarily concerned with how
convection alters the overall evolution of the rising flux tubes,
and the thin flux tube model used here does not address the
effect of the field line twist.

Dasi-Espuig et al. (2010) analyzed Mount Wilson and
Kodaikanal sunspot group tilt angle and latitude data span-
ning solar cycles 15–21. In order to rederive Joy’s law, they
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Figure 12. Tilt angle as a function of emergence latitude for initial magnetic field strengths of 100 kG, 60 kG, 50 kG, 40 kG, 30 kG, and 15 kG, respectively, and for
cases with (plus signs) and without (diamond points) the influence of convection. The gray line is the least-squares fit for flux tubes in the absence of convection. The
best-fit line slopes with uncertainties for field strengths of 100 kG, 60 kG, 50 kG, 40 kG, 30 kG, and 15 kG are 0.25 ± 0.01, 0.30 ± 0.02, 0.22 ± 0.02, 0.12 ± 0.01,
−0.07 ± 0.05, and −0.13 ± 0.13. The black line is the fit to the cases subjected to the convective flow, with best-fit line slopes for fields strengths of 100 kG, 60 kG,
50 kG, 40 kG, 30 kG, and 15 kG of 0.30 ± 0.08, 0.34 ± 0.05, 0.34 ± 0.12, 0.44 ± 0.14, 0.12 ± 0.18, and 0.15 ± 0.21. A color bar indicates the original starting latitude
of the flux tube. Dashed lines indicate 0◦.

performed a fit for the equation: α = mλ to the data, where
α, m, and λ represent the tilt angle, the slope, and the latitude,
respectively. The fit is forced to go through zero because no
tilt is expected for equatorial sunspot groups. They obtained a
slope of 0.26 ± 0.05 and 0.28 ± 0.06 for Mount Wilson and
Kodaikanal data, respectively.

In Figure 12, we show the same kind of linear least-squares fit
for both the simulated tilt angles with and without the influence
of the convective flow. The slope of the best-fit lines with
uncertainties for 100 kG, 60 kG, 50 kG, 40 kG, 30 kG, and 15 kG
without convection are, respectively: 0.25 ± 0.01, 0.30 ± 0.02,
0.22 ± 0.02, 0.12 ± 0.01, −0.07 ± 0.05, and −0.13 ± 0.13.
Thus the slopes of the best-fit lines fall within the range found
by Dasi-Espuig et al. (2010) only for flux tubes with initial
field strengths of 100 kG, 60 kG, and 50 kG. For weaker initial

field strengths (below about 40 kG) the emerging loops begin
to show negative tilt angles, opposite to the sign of the active
region mean tilts. This occurs because flow along the flux tube
at the loop apex changes from diverging into converging as it
enters the upper layers of the convection zone (e.g., Caligari
et al. 1995; Fan & Fisher 1996), and the Coriolis force acting
on the converging flow drives a tilt of the wrong sign. With the
influence of the convective flow included, the slopes of the best
linear fits to the tilt angles all increase due to the systematic
effect of the kinetic helicity (see Figure 3(a)) associated with
the rotating convective flows, which tends to drive rotation at the
apex of the loops in the direction consistent with the sign of the
observed active region mean tilts. The slope of the best-fit lines
with convection for initial magnetic field strengths of 100 kG,
60 kG, 50 kG, 40 kG, 30 kG, and 15 kG are, respectively:
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Figure 13. dB/ds at the apex of the emerging flux loop as a function of emergence latitude for tubes with an initial field strength of 100 kG, 60 kG, 50 kG, 40 kG,
30 kG, and 15 kG, respectively, for cases with (plus signs) and without (diamond points) the influence of convection. A color bar indicates the original starting latitude
of the flux tube. Note that the y-axes are not the same for every plot.

0.30±0.08, 0.34±0.05, 0.34±0.12, 0.44±0.14, 0.12±0.18,
and 0.15 ± 0.21. As a result, the tilt angles of emerging loops
with initial field strengths of 100 kG, 60 kG, 50 kG, and
40 kG are all consistent with Joy’s law. These field strengths
all show a positive Joy’s law trend, given the uncertainties
in the fitted slopes. However, at lower field strengths, the tilt
angles show large random scatters produced by convection, and
do not show a significant systematic dependence on latitude
as described by Joy’s law. The uncertainty of the slope also
tends to increase with decreasing magnetic field, reflecting the
random scatter produced by convection. While the slopes of
the best-fit lines for 30 kG and 15 kG are still positive, the
uncertainties are too large to report a definitive positive Joy’s
law trend for these field strengths. There is a larger than expected
uncertainty on the slope for 100 kG. This occurs because there
is an outlier, which cannot be seen in Figure 12 as it falls
outside the region graphed. The outlier corresponds to a flux
tube which originates in the southern hemisphere, but emerges
in the northern hemisphere such that the emergence of the

tube would result in an anti-Hale polarity arrangement for the
active region.

3.3. Asymmetry in Field Strength

Another well-known observed asymmetry is in the morphol-
ogy of the leading and the following polarities of an active
region, where the leading polarity flux tends to be concentrated
into a well-formed sunspot, whereas the following polarity flux
tends to appear more fragmented and dispersed (e.g., Bray &
Loughhead 1979). The thin flux tube simulations of Fan et al.
(1993) showed that the preceding leg of an emerging magnetic
flux loop has a stronger magnetic field than the following leg
as a result of the differential stretching of the rising loop due to
the Coriolis force. This gives an explanation for the observed
more coherent and less fragmented morphology for the leading
polarity flux in an active region. However, subsequent simula-
tions (e.g., Caligari et al. 1995; Fan & Fisher 1996) using the
mechanical equilibrium initial state (which is more physical) as
opposed to the temperature equilibrium as used by Fan et al.
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(1993) found that the leading leg of the emerging loop has a
stronger magnetic field than the following only for flux tubes
with an initial field strength that is below about 60 kG. For
flux tubes with higher initial field strengths, the field strength
asymmetry reverses at the top of the loop.

Here we investigate this magnetic field asymmetry by calcu-
lating dB/ds at the apex of the emerging flux loop as shown in
Figure 13. If dB/ds is greater (less) than zero, then the leading
(following) leg has a stronger magnetic field. As can be seen
in Figure 13, at 50 kG and below, the majority of the emerging
loops show stronger field in the leading leg than the following
leg in the presence of convection. However, at 100 kG, with con-
vection, only some of the emerging flux loops at higher latitudes
have stronger field in the preceding leg. At 60 kG there are about
equal number of positive and negative dB/ds cases. Thus with
convection, loops with initial field �50 kG tend to emerge with
the appropriate magnetic field asymmetry (i.e., with a stronger
field in the preceding leg and therefore can be expected to re-
sult in an emerging active region with a more coherent leading
polarity).

3.4. Asymmetry of Inclination

When looking down on the emerging loops from the pole,
it is apparent that there is an asymmetry in the inclination
of the leading and following legs with respect to the vertical
direction, as is evident in the cases without convection shown
in Figure 5. The following leg tends to have a steeper slope
than the leading leg. This asymmetry is caused by the Coriolis
force and the conservation of angular momentum as the tube
rises through the convection zone (Moreno-Insertis et al. 1994;
Caligari et al. 1995, 1998), and provides an explanation for
the apparent asymmetric east–west proper motions of the two
polarities of an emerging active region. As the tube rises above
a constant r surface, inclination of the legs of the loop causes an
apparent more rapid motion of the leading polarity spot away
from the emerging region as compared to the motion of the
following polarity spots.

Here we quantify the steepness of each leg of the emerging
loop by calculating what we call the inclination angle. To do
this, first we find the portion of the emerging loop which is
concave downward. Then we find the best-fit line for each leg
from the flux tube apex in the concave down portion. The angle
between the best-fit line for each leg and −r̂ is the inclination
angle. The smaller this angle, the steeper the slope of the
leg. In Figure 14, we have plotted the average difference of
the inclination angles (leading leg minus the following leg).
Only the average inclination difference for each magnetic field
strength is plotted because we find that the inclination difference
does not vary systematically with latitude. The bars are the
standard deviation, showing the spread in inclination angle dif-
ference for each magnetic field strength. This spread is due
primarily to convective effects. Positive inclination difference
means the following leg is steeper, consistent with the results
of Moreno-Insertis et al. (1994) and Caligari et al. (1995,
1998). We find that at all field strengths, the majority of the
emerging loops develop a steeper slope for the following leg.
The inclination angle differences are overall reduced with the
inclusion of convection.

It is worthwhile to note that convection aids in bringing the
footpoints of the rising flux loops closer together, most notably
in the 15 kG and 40 kG cases as can be seen in Figures 5 and 6.
This can also be observed in Figure 10, where strong convective

Figure 14. Average difference of the inclination angles (see description in the
text) between the leading and the following sides of the emerging loop for initial
magnetic field strengths of 100 kG, 60 kG, 50 kG, 40 kG, 30 kG, and 15 kG,
respectively, for cases with (blue star points) and without (red diamond points)
the influence of convection. Bars represent the variation in inclination angle
difference for different starting latitudes of the flux tube.

downflows pin portions of the tube down, creating many buoyant
loops with very close footpoints at 15 kG.

4. DISCUSSION

In subjecting the thin flux tube model to a turbulent solar
convective velocity field computed separately from a three-
dimensional global convection simulation in a rotating spherical
shell representing the solar convective envelope, we study how
convection can influence the development and emergence of
solar active region flux tubes. Although idealized, the thin flux
tube approximation allows us to investigate flux emergence at
moderate to strong field strengths (15–100 kG) in localized flux
concentrations under perfect flux frozen-in conditions. We find
that as the field strength of the initial toroidal flux ring placed
near the bottom of the solar convective envelop is increased
from 15 kG to 100 kG, the development and the evolution
of the emerging flux loops change from being convection
dominated to magnetic buoyancy dominated. At 15 kG initial
field strength, the development of the emerging flux loops is
largely controlled by the convective flows. Both the average
upflows and downflows can significantly affect the rise of the
flux tube. On the other hand, at 100 kG initial field strength,
the development of the emerging loops is largely controlled by
the growth of the magnetic buoyancy instability and only the
strongest convective downdrafts can significantly impact the
rising tubes.

With the inclusion of the convective flows, the previous issue
of 15–30 kG flux tubes being significantly deflected poleward by
the Coriolis force during their rise is resolved. Loops can now
emerge at low latitudes all the way to the equator. The main
reasons for this are the anchoring of the emerging flux loops by
the convective downdrafts and also the faster rise of the loops
propelled by the upflows. Convection is also found to produce
random scatters in the tilts of the emerging loops, especially for
the weaker field strength cases where the scatters are greater. In
addition, because the convective flow in the rotating spherical
envelope shows a mean kinetic helicity that is negative (positive)
in the northern (southern) hemisphere, it on average tends to
drive clockwise (anticlockwise) tilts for the rising loops in the
northern (southern) hemisphere, consistent with the sign of the
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active region mean tilts. As a result, the inclusion of convection
tends to increase the slope of the linear Joy’s law fit of the
tilt angles of the emerging loops as a function of emerging
latitudes. Flux tubes with initial field �40 kG and �100 kG are
found to produce a mean tilt angle dependence on latitude that
is consistent with the observed Joy’s law. However, the effect
of the kinetic helicity in the convective flow is not sufficient, on
average, to correct the tendency for loops to develop tilts of the
wrong sign (opposite to that of the observed active region mean
tilt) for tubes with initial field strength < 40 kG.

Similar to Caligari et al. (1995) and Fan & Fisher (1996), we
find that at or below 50 kG, the leading leg of the emerging loop
tends to have a larger magnetic field than the following, which
may provide an explanation for the observed better cohesion of
the leading polarity of an emerging active region compared to
the following polarity. This trend of asymmetry in field strength
reverses for tubes with initial field >60 kG. Also, we find
that the inclusion of convection does not change the general
trend of the asymmetry in the geometry of the emerging loop
found in previous studies (e.g., Caligari et al. 1995), where
the leading leg tends to be more horizontally inclined than the
following, which would provide an explanation for the apparent
asymmetric east–west proper motions of the two polarities of
an emerging active region. This trend of geometric asymmetry
is not dependent on the magnetic field strength.

These results combined suggest that in order for the emerging
loops to be consistent with the observed properties of solar active
regions, the best range of field strengths for toroidal magnetic
field at the bottom of the convection zone is ∼40–50 kG.
Above this range, the magnetic field is strong enough to resist
convection such that the flux tube properties are not changed
significantly from the case without convection, but the magnetic
field asymmetry of the emerging loops tends to be of the wrong
sense. Below this range, convection dominates the development
and evolution of the emerging loops. The loops are able to
emerge at low latitudes, but their tilt angles show very large
scatter. Increasing the number of simulations run to collect more
data may result in a reduction of the uncertainty on the slope of
the Joy’s law best-fit lines, such that 15 kG and 30 kG flux tubes
may also show a positive Joy’s law trend.

The main limitation of the thin flux tube approach is that
the model assumes the tube remains cohesive, and does not
address the dynamic effect of the internal twist of the flux
tube. Also, as the ASH convective flow is computed separately,
the calculations do not address how the rising flux tube might
affect the surrounding convective flow. Full three-dimensional
spherical-shell MHD simulations (e.g., Jouve & Brun 2009)
are necessary to address the above questions, but it is still

beyond the current computational capabilities to adequately
resolve an active region scale flux tube in a global convection
simulation. It is important to note that these results are for flux
tubes which have reached 21 Mm below the solar surface. Even
though these flux tubes still must traverse a small portion of
the convection zone and encounter the solar surface shear layer,
we feel that the behavior of the flux tubes at this depth may
give a good representation of the large-scale pattern of flux
emergence at the solar surface. This paper serves as an initial
study to understand how active region scale flux tubes of various
strengths are affected by convective flows as they rise through
the solar convective envelope.
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