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ABSTRACT

We investigate the effect of solar visible and infrared radiation on electrons in the Sun’s atmosphere using a Monte
Carlo simulation of the wave–particle interaction and conclude that sunlight provides at least 40% and possibly
all of the power required to heat the corona, with the exception of dense magnetic flux loops. The simulation
uses a radiation waveform comprising 100 frequency components spanning the solar blackbody spectrum. Coronal
electrons are heated in a stochastic manner by low coherence solar electromagnetic radiation. The wave “coherence
time” and “coherence volume” for each component is determined from optical theory. The low coherence of solar
radiation allows moving electrons to gain energy from the chaotic wave field which imparts multiple random
velocity “kicks” to these particles causing their velocity distribution to broaden or heat. Monte Carlo simulations of
broadband solar radiative heating on ensembles of 1000 electrons show heating at per particle levels of 4.0 × 10−21

to 4.0 × 10−20 W, as compared with non-loop radiative loss rates of ≈1 × 10−20 W per electron. Since radiative
losses comprise nearly all of the power losses in the corona, sunlight alone can explain the elevated temperatures
in this region. The volume electron heating rate is proportional to density, and protons are assumed to be heated
either by plasma waves or through collisions with electrons.

Key words: solar wind – Sun: atmosphere – Sun: chromosphere – Sun: corona – Sun: fundamental parameters –
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1. INTRODUCTION

The region surrounding the Sun made visible during total
solar eclipses is known as the corona and is one of the most
intriguing features of our star. The magnetic energy release
events known as solar flares and coronal mass ejections which
can affect Earth and its near-space environment occur in the
corona. This region is also the origin of the supersonic solar
wind, which bathes Earth in a constant plasma flow and may
receive its energy from the corona. Therefore, determining
the physical conditions and drivers in the corona is crucial
for understanding the Sun’s affect on the Earth. Among the
most important coronal characteristics is its temperature. In
1942, it was discovered that several spectral lines emitted by
the corona were radiated by highly ionized iron and calcium,
which can only exist in a plasma with a temperature of at least
1×106 K (Edlen 1943). A discussion of the history surrounding
this discovery can be found in Phillips (2000). The corona is
much hotter than the photosphere, which has a temperature of
5800 K. Since the temperature at the surface of the Sun, the
source of the corona’s energy, is much lower than the coronal
value, it cannot be heated by thermal conduction. There must
be a nonconductive heating mechanism.

Some basic characteristics of the coronal heating mechanisms
can be inferred from observations showing that the temperature
varies slowly in time and space in regions where the density
varies smoothly, indicating that the heating must extend through-
out the region with little spatial or temporal variation except in
regions with strong density gradients. Vigorous efforts to de-
termine how the corona is heated have focused on nonthermal
mechanisms which satisfy these requirements (Phillips 2000;
Aschwanden 2001b). In spite of the considerable attempts to
deduce the cause or causes of the high coronal temperatures,
it has remained unknown. This has motivated our investiga-
tion of heating of the coronal plasma by solar electromagnetic

radiation, a nonconductive mechanism which is nearly constant
in time and varies slowly in space. The radiation intensity in the
corona is high, with peak values of 6.6 × 107 W m−2 near the
surface, and are a factor of ≈105 larger than estimated required
coronal power levels, as demonstrated in Section 5. Therefore,
only a small fraction of solar electromagnetic radiation must be
converted to heat in order to explain coronal temperatures.

Radiative heating of the inner solar atmosphere by contin-
uum and spectral line emission has been investigated and it was
found that under certain simplifying assumptions a tempera-
ture rise is predicted above the photosphere consistent with the
existence of a hot chromosphere (Cayrel 1964, 1966; Mihalas
1978). Modeling of the solar chromospheric radiative energy
balance showed that heating by absorption of hydrogen Lyα
and Balmer continuum radiation provides part of the power re-
quired to balance losses (Vernazza et al. 1981). Chromospheric
heating by the absorption of electromagnetic waves that origi-
nate from the photospheric blackbody radiation has also been
investigated (Tsiklauri & Pechhacker 2011). The absorption is
provided by the electron–neutral collisions in which electrons
oscillate in the wave field and electron–neutral collisions damp
the wave. Given the uncertain nature of the collision cross sec-
tion due to the plasma microturbulence, it is shown that for
plausible physical parameters, the heating flux produced by the
absorption of radiation in the chromosphere is between 20%
and 45% of the heat required.

We investigate a stochastic radiative coronal heating mech-
anism by which “partially coherent” solar electric wave fields
cause multiple random velocity “kicks” to moving electrons, in-
creasing mean particle speeds and temperatures to their coronal
values. The possibility of this heating depends upon a property
of light known as “coherence,” which is the spatial or temporal
extent over which waves are approximately in phase. We sim-
ulate this process using a Monte Carlo method incorporating
coherence characteristics predicted by optical theory. From this
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analysis, we find that radiative heating supplies at least 40% of
the power required to balance radiative losses and might provide
all of the power necessary to satisfy coronal requirements.

We present the basic theory of optical coherence in Section 2
and the stochastic radiative heating in Section 3. We then
compare the predictions of the theory with coronal heating
requirements in Section 4. Our conclusions are presented in
Section 5 and a discussion of the results is presented in Section 6.

2. SOLAR RADIATION COHERENCE

There are two types of optical coherence: temporal and spatial
(Wolf 2007; Mandel & Wolf 1995). Furthermore, there are
two types of spatial coherence: transverse and longitudinal.
Coherence is described by either a “coherence length” or
“coherence time,” over which radiation maintains a predictable
phase relationship. Sunlight is an example of a radiation field
with limited coherence. Solar visible and infrared radiation
arises from many spatially separated random uncorrelated
electron–atom recombination events which produce negative
hydrogen ions (Chandrasekhar 1989). These recombination
events produce wavetrains which overlap in the corona, resulting
in a field with a low level of spatial and temporal coherence. To
determine the effect of solar radiation on the corona, we must
know the coherence time of this field.

The standard expression for the coherence time τc of a wave
field with a bandwidth of Δν was derived from Fourier analysis
under the implicit assumption that phase is independent of
wavelength: τc = (Δν)−1 (Mandel & Wolf 1995). Since ν ≈ Δν
for the solar spectrum, this yields τc ≈ τw, where τw is the wave
period. However, it would not be appropriate to use a single
value for τc for all frequencies for several reasons. To define a
wave, there must be at least one minimum and one maximum.
If τc < τw the wave is not coherent for a full period and the
wavelength and frequency cannot be defined. Furthermore, if
τc = 1.5 τw, the wave field is not balanced over a coherence
time, which would not be physical and would lead to unbalanced
driving of free charge particles. Therefore, if the Fourier analysis
treatment for coherence time is adopted, one should assume that
τc ≈ τw for each frequency.

The conclusion that τc ≈ τw also results from the analysis of
Agarwal et al. (2004), who computed the degree of coherence
as a function of angle for a sphere of incoherent monochromatic
emitters in the near-field case. They found that the coherence
function and coherence length they derived agreed with that
yielded by the far-field treatment for distances greater than
10 wavelengths from the surface, with the coherence length
lt given by lt ≈ λ. From this they concluded that the far-field
assumption was likely to also be valid in the case of solar
radiation close to the Sun. We will assume that this relation
applies at each wavelength. Since light propagation directions
from disk center and the limb are approximately perpendicular in
the low corona, we will assume that the longitudinal coherence
length ll is given by ll ≈ lt . We define the “geometric coherence
time” as the effective coherence time in case of infinite source
coherence time. The geometric coherence time is then given by
τc ≈ ll/c, where c represents the speed of light, so that τc ≈ τw.
Given that there are no measurements of coherence time in the
corona, we will assume this value for τc. Therefore sunlight is
assumed to be coherent over a spherical volume of diameter
≈ λ. We may consider the corona to comprise multiple adjacent
“coherence cells,” with centers separated by λ. The geometric
coherence time, τc, is approximately equal to the wave period,
τc ≈ τw = ll/c.

In general, the coherence time is determined by both the
geometric and source coherence times. But if one coherence
time is much shorter than the other, then the lower value will
equal the effective coherence time. The source coherence time
is determined by the electron–hydrogen atom recombination
process which creates sunlight (Chandrasekhar 1989). We may
determine a lower limit to the source coherence time from solar
observations at 1 AU using the Fourier Transform Spectrograph
(FTS) at the McMath–Pierce Telescope at the National Solar
Observatory at Kitt Peak. The FTS varies the path difference
between two solar beams from 0 m to 0.5 m and recombines
the beams to obtain an interferogram that is inverted to yield the
solar spectrum between 2000 Å and 30 μm (Ridgway & Brault
1984). From these measurements, a lower limit on the source
coherence time τsc may be calculated: 0.5 m/c, where c is the
speed of light. This yields a lower limit for τsc of 1.6 × 10−9 s.
Since τc � τsc, the effective coherence time in the corona
equals τw.

The effect of solar radiation on coronal electrons will depend
on whether the field is fully “chaotic” at the electron’s position.
In this case, the electric field at any time is independent of
the electric field in the past. This is not the case for any fixed
coronal position. The light at a given coronal location comprises
multiple overlapping wavetrains resulting from uncorrelated
separated recombination events on the disk. Since τc � τsc,
the field will be pseudochaotic over times much less than τsc.
But over times large compared with τsc, it will average to zero
since the time integral of a single wavetrain field equals zero,
and therefore the field will not be fully chaotic. However, we
must also consider the effect of the electron’s motion. A moving
electron transits a coherence cell in a transit time, τtr given by
τtr = λ/v, where v is the electron speed. If τtr � τsc, the field
at the electron will be chaotic. For a coronal electron thermal
speed of 6 × 106 m s−1 and a mean solar wavelength of 5000 Å
τtr = 8.3 × 10−14 s as compared with a minimum value of τsc of
5×10−9 s. Therefore, τtr � τsc, implying that the radiation field
at the electron is chaotic in the electron’s frame and radiation of a
given wavelength comprises a series of wavepackets of random
phase, each defined by a Gaussian envelope with a width of
≈τw, and separated in time by an interval of ≈τw.

3. THEORY OF RADIATION-DRIVEN ELECTRON
VELOCITY SPACE DIFFUSION

As demonstrated in Section 4, the partially coherent solar
radiation field imparts a series of random velocity kicks to coro-
nal electrons. In order to understand the effect of this radiation,
we will demonstrate how random kicks cause diffusion and
broadening of the electron velocity distribution. This analysis
will yield the theoretical electron heating rate resulting from
radiation-driven velocity diffusion.

The evolution and heating of the electron distribution is
determined by the velocity space diffusion coefficient, Dv .
The three-dimensional diffusion coefficient Dv is given by

Dv = 1

6

δv2

τc

(1)

where δv is the velocity kick since there is one kick per coher-
ence time τc. We assume that the electron velocity distribution
is represented by F (v), where v is the particle speed: F (v) is a
function only of the electron speed. The normalization condition
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is given by ∫ ∞

0
F (v) 4π v2 dv = 1 (2)

since the angular component of the integral equals 4π . Ignoring
non-wave influences on velocity, we can express the diffusive
component of the time derivative of F (v) under the assumption
of isotropic diffusion as

dF(v)

dt
= Dv

(
d2F (v)

dv2
+

2

v

dF(v)

dv

)
. (3)

The mean kinetic of a coronal electron, 〈Ue〉, is given by the
average of the particle energy (1/2) me v2:

〈Ue〉 =
∫ ∞

0
F (v)

mev
2

2
4π v2 dv. (4)

As diffusion broadens the distribution, the stochastic radiative
heating rate per particle from solar radiation, He, is given by

He = d〈Ue〉
dt

(5)

and therefore, from Equation (4),

He = me

2

∫ ∞

0

dF(v)

dt
4π v4 dv. (6)

From Equation (3), we may then express He as

He = me

2

∫ ∞

0
Dv

(
d2F (v)

dv2
+

2

v

dF (v)

dv

)
4π v4 dv. (7)

We may further express He as

He = Dvme

2
G, (8)

where G is the definite integral given by

G =
∫ ∞

0

(
d2F (v)

dv2
+

2

v

dF(v)

dv

)
4π v4 dv. (9)

The integral G may be evaluated by parts using the normalization
condition given in Equation (2) if (v4 F (v), v3 dF (v)/dv) → 0
as v → ∞, yielding G = 9. From Equation (8), we may then
express He as

He = 4.5 me Dv. (10)

4. SIMULATION OF ELECTRON VELOCITY DIFFUSION
AND HEATING IN THE SOLAR RADIATION FIELD

4.1. Electron Motion Simulation in the Low Coherence Solar
Radiation Field

Consider the effect of a monochromatic beam of light of
amplitude, E, circular frequency, ω, and phase δ,

E = Eo sin(ωt + δ), (11)

where ω = ν/2π , ν is the frequency, and t is the time. In the
one-dimensional case, the field exerts a force on a free charged
particle of mass m and charge q, with the resulting velocity v
determined by the momentum equation

m
dv

dt
= qEo sin (ωt + δ). (12)

Figure 1. Solar blackbody intensity Iνi
component amplitudes plotted vs.

frequency ν. The infrared (IR) and visible ranges of the spectrum are indicated.

The field will cause a sinusoidal motion, with the magnitude of
v given by

v = qEo

mω
. (13)

Thus, electron speeds will be greater than proton speeds by a
factor of the proton–electron mass ratio, 1836, and so we ignore
the proton motion and set q = e and m = me, where me

represents the electron mass.
The wave amplitude Eo is related to the Poynting vector, So,

by

So = c εo

2
E2

o, (14)

where εo is the electric permittivity, equal to 8.85×10−12 F m−1.
The field strength, Eo, is then given by

Eo =
(

2 So

εo c

)−1/2

. (15)

The Poynting vector in the corona is determined by the solar
disk irradiance. This is the intensity of light radiated by the
photosphere into the corona, which is given by the relation

So = σSB T 4
s r−2

n , (16)

where σSB is the Stefan–Boltzmann constant, equal to 5.67 ×
10−8 W m−2 K−4 and Ts is the solar surface temperature, equal
to 5800 K and rn is the normalized heliocentric distance. This
formula yields a value of So of 1366 W m−2 at 1 AU, as it should.
In addition, the solar spectrum measured at 1 AU follows at
blackbody spectrum for Ts = 5800 K. At wavelengths less than
3000 Å or frequencies greater than 1×1015 s−1, the corona is not
optically thin owing to resonance absorption and therefore the
spectrum in that range is not given by the blackbody distribution.
However, the emission in the extreme ultraviolet comprises
less than 1% of the solar irradiance and we may ignore that
radiation in our investigation. The value of So at the coronal
base is 6.6 × 107 W m−2, which corresponds to a field strength
amplitude Eo of 2.2 × 105 V m−1. The rms field strength Erms is
given by Erms = 0.7 Eo.

To simulate the effect of solar radiation on electrons, we
decompose the blackbody solar spectrum into 100 spectral
components, at frequencies νi given by νi = i 1.0 × 1013 s−1

where i covers the range (1, 100). A plot of the spectrum between
ν = 0 and ν = 1.0 × 1015 s−1 is shown in Figure 1. The
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Figure 2. Plots of three wavepackets of frequency 5 × 1014 s−1, along with the
wavetrain constructed by summing the packets, each of which has a different
random phase δ.

frequencies νi are indicated on the plot as is the boundary
between the IR and visible regions, at ν = 4.3 × 1014 s−1,
which corresponds to a wavelength of 7000 Å. We compute
a wavetrain for each field component separately by summing
sequential wavepackets with random phases and assume that
the amplitude, Eνi

, of a wavepacket at frequency νi is given by

Eνi
= Eνi,o sin (ωit + δ) e−((t−ti,k )/(0.6 σi ))2

, (17)

where Eνi,o, σi , and ωi are the amplitude, Gaussian width, and
circular frequency of the ith frequency component, respectively,
and ti,k is the center time of the kth wavepacket at the ith
frequency. From the requirement that τc ≈ τw,i , where τw,i is
the period for frequency νi , it follows that σi ≈ τw,i . Therefore
σi = a τw,i , where a ≈ 1. Furthermore, it also follows that the
packets are separated by an interval of ≈τw,i . The kth packet is
then centered at ti,k , where ti,k = b k τw,i and b ≈ 1. Each packet
overlaps with the leading and trailing packets so that the field
transitions are smooth, as expected in nature. The requirement
that (a, b) ≈ (1, 1) ensures that the overlapping wavepacket
fraction is independent of frequency.

The electric field at each frequency νi is computed from the
Poynting vector at that frequency, Sνi

, given by

Sνi
= Ω Iνi

Δ ν, (18)

where Iνi
is the solar blackbody intensity at frequency νi , given

by

Iνi
= 2h

c2

ν3
i

ehνi/kTs − 1
, (19)

where h, k, and Ts are Planck’s constant, Boltzmann’s constant,
and the solar photospheric temperature, respectively, and Δν =
1. × 1013 s−1. The units of Iνi

are W m−2 s−1 sr−1. An example
of three consecutive wavepackets of frequency 5 × 1014 s−1

forming a wavetrain of 1.2 × 10−14 s duration is shown in
Figure 2. In this case, we assumed (a, b) = (0.84, 1.4). Each
packet has a different random phase δ. We plot each wavepacket
separately along with the resulting wavetrain, which is computed
by summing the wavepackets.

The total broadband field strength, Et, is given by the sum of
the 100 field components Eν,i :

Et = Σ100
1 Eνi

. (20)

The field components were simulated over a 1 × 1014 s period
for the case: (a, b) = (0.84, 1.4). In order to test the mutual

Figure 3. Plots of the normalized ν1 and ν100 wave field components, E1,N and
E10,N , along with a plot of the total field amplitude, Et and resulting electron
velocity, v.

coherences or correlation of the field components we summed
the 100 individual intensities associated with the Eνi

amplitudes
and integrated over the simulation period and compared that
with the time integral of the intensity corresponding to the total
field Et. If the field components are mutually incoherent the two
time-integrated intensities should be equal. We found that the
intensity time integrals differed by less than 0.01%, indicating
that the field components are uncorrelated. We corrected for
limb darkening using the three parameter linear relationship in
cos ψ , where ψ is the angle between the Sun’s radius vector and
the line of sight (Cox 2000). We also computed the Fourier
transform of the field and integrated the power in the 100
frequency components to verify that the 100 amplitudes matched
the blackbody spectrum, which they did. The field amplitudes
for frequencies 1×1014 s−1, E1 and 1×1015 s−1, and E100 and the
total field strength Et are plotted in Figure 3. The corresponding
electron velocity v was computed by integrating the momentum
equation with the total field amplitude shown in Figure 3 using
the third-order Adams–Bashforth numerical scheme with time
steps of 5×10−17 s and is plotted along with the field amplitude.
Note that v is strongly correlated with Et, but does not follow
the field exactly. The maximum magnitude of v is ≈40 m s−1,
but after the wavetrain, |v| < 1 m s−1, so that a change in speed
over the wavetrain duration is not apparent on the plot.

4.2. Coronal Radiative Heating Simulation

To investigate coronal electron velocity diffusion in the solar
radiation field, we consider an ensemble of 1000 electrons,
simulate the low coherence wave field strength for each electron
for several cases consistent with the requirement that (a, b) ≈
(1, 1), and integrate the momentum equation as in the above
demonstration. We then measure the heating rate by computing
the mean electron kinetic energy as the distribution evolves.

We may ignore the effect of collisions if the times for
electron–electron and electron–proton collisions, τee and τep,
respectively, are much longer than the effective coherence time.
Consider the collision rates at the coronal base where the
density is greatest, 2 × 108 cm−3, and the rates are largest.
The electron–electron collision rate νee is given by νee =
2.9 × 10−6 ne Λc T

−3/2
e s−1 (Braginskii 1965) where ne is the

electron density in cm−3, Λc is the Coulomb logarithm, and Te
is the electron temperature in eV. The collision time is given by
τee = ν−1

ee . For a typical coronal temperature of 2 × 106 K, or
190 eV, Λ = 15 and τee = 7. × 10−3 s. The electron–proton
collision time is given by τep = 2 τee. Thus, the collision times
are much larger than τc, and therefore, we may ignore particle
collisions.
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Figure 4. Plots of the averaged one-dimensional velocities 〈|v|〉 of 50 electrons
driven by the simulated solar radiation field vs. time.

Figure 5. Plots of the one-thousand-electron one-dimensional distribution
function Fv at 5 × 10−13 s (solid) and 4.5 × 10−12 s (dashed).

The heating simulations were carried out over 5 × 10−12 s, or
5 ps. These required 105 time steps of 5×10−17 s. Computation
time varied from 8 hr to 15 hr and depended upon the choice
of wavepacket parameters (a, b), which determined the number
and widths of wavepackets in the wavetrain. The simulation
began with each electron at rest. The variations in velocity
caused by radiation-driven diffusion were less than 1 m s−1

over the simulation period, which were much smaller than the
fluctuations caused by the random wave fields demonstrated in
the plot of v shown in Figure 3. As such, the effects of diffusion
are not apparent without significant averaging of the velocities.
We smoothed the velocity curves by applying two consecutive
2×10−13 s wide box car filters to reduce the fluctuations, which
made the smaller variations caused by diffusion apparent.

Four heating simulations spanning the (a, b) parameter ranges
of (0.8, 1.2) were performed, consistent with our requirements.
Plots of 50 representative averaged electron velocities 〈|v|〉
versus time for the case (a, b) = (1.0, 0.8) are shown in
Figure 4. Note that after averaging, the velocity fluctuation levels
are ≈0.25 m s−1, as compared with the ≈40 m s−1 fluctuations
in the unsmoothed velocity. The velocity curves in Figure 4
demonstrate diffusion or broadening of the distribution with
time, which is equivalent to heating. Plots of the velocity
distribution Fv for this simulation at 5.0 × 10−13 s and 4.5 ×
10−12 s computed by averaging each electron velocity over 104

time steps, or 5 × 10−13 s, are shown in Figure 5. These two
distributions also show the radiative broadening or heating over
time evident in Figure 4.

Figure 6. Plots of the average electron energies 〈Ue〉 vs. time for the case
(a, b) = (0.8, 0.8), (cross) and (a, b) = (1.2, 1.2), (10 × 〈Ue〉) (star). Also
plotted are lines fit to 〈Ue〉 over the heating portion of the interval for each case.
The slope of each line, which equals the corresponding radiative heating rate
per electron, He (10−20 W), is indicated.

The radiative heating rate per electron, He, was computed
from the average energy for the ensemble of 1000 electrons,
〈Ue〉, over sequential periods of 104 time steps, or 5 × 10−13 s,
as the velocity distribution broadens using Equation (5). The
maximum and minimum heating rates were obtained for the
(a, b) parameter cases (0.8, 0.8) and (1.2, 1.2), respectively.
The heating rate increases with decreasing packet width and
spacing, since they determine the smoothness of transitions
between wavepackets. The sharper the transition, the greater
will be the velocity kick and the heating rate. The averaged
energies 〈Ue〉 computed for these two cases are plotted versus
time in Figure 6. Note that for the (a, b) = (1.2, 1.2) case,
〈Ue〉 ∝ t with a constant slope over the simulation period, as
predicted by the velocity diffusion theory presented in Section 3,
while the curve for the (0.8, 0.8) case has a constant slope
only for t > 3 × 10−12 s. In the smoother waveform case,
heating begins only after a lag time. A line was fit to the
entire curve in the (0.8, 0.8) case and to the portion of the
curve in the interval (3 × 10−12 s < 5 × 10−12 s) in the (1.2,
1.2) case, in order to measure the corresponding heating rates.
The (0.8, 0.8) case simulation yielded the maximum heating
rate of 4.0 × 10−20 W, while the (1.2, 1.2) case yielded the
minimum heating rate of 4.0×10−21 W. Thus, a small difference
in wavepacket parameters changes He by a factor of 10. The
heating rate obtained for the (1.2, 1.2) case, 4.0×10−21 W, is the
minimum amount of coronal electron heating delivered by solar
radiation. For comparison, the simulations were also carried out
using a ten-component wave field. The resulting heating rates
were larger than those yielded using a one-hundred-component
field, by a factor of 1.2—a relatively small difference. Thus,
the heating rates do not depend strongly on the number of field
components used.

5. COMPARISON OF PREDICTED AND OBSERVED
CORONAL HEATING

Radiative heating theory makes several qualitative predictions
regarding coronal conditions, which we may compare with
observations. First, it predicts that the heating is constant in time.
This is confirmed by observations showing that temperature
varies slowly, except during eruptions such as flares. Second, it
predicts that heating extends everywhere in the corona at some
level. This is consistent with observations showing elevated
temperatures everywhere in the corona in all times, except in
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some structures that are magnetically connected to the Sun,
such as prominences and spicules, which have different loss
mechanisms. Third, the theory predicts that the volume heating
rate Hn depends on the electron density, ne, and the heating rate
per electron He,

Hn = ne He. (21)

This is qualitatively consistent with volume radiative loss rates
which extend throughout the corona but are peaked at its base
where ne is also at a maximum.

Radiative heating theory also predicts radiative heating rates
which may be compared with energy losses. There are several
possible loss mechanisms: ultraviolet (UV) radiation and heat
conduction and convection. Of these mechanisms, only UV
radiation can be determined accurately and is known to be
operating at the coronal base at all times. Thus, the UV radiation
energy loss rate determines the minimum heating that solar
radiation must provide. It also likely comprises the major part
of coronal energy losses. These loss rates are typically given in
the form of a graph of the radiative loss function FL (W cm3).
The radiative loss rate per electron, Re, is given by

Re = ne FL, (22)

where ne is units of cm−3. The loss function FL depends on
the elemental abundances and has been calculated for a variety
of minor element fractions based on measured photospheric
concentrations. A set of loss rate functions computed by various
authors has been compiled by Aschwanden (2004). These
rates vary between 10−29 W cm3 and 10−28 W cm3 for electron
temperatures of 1 × 106–2 × 106 K. A more recent calculation
yielded ≈5 × 10−29 W cm3 for that temperature range (Colgan
et al. 2008). Coronal abundances may differ between regions,
and therefore radiative loss rates might also vary with location.
We will assume a nominal radiative loss function value of
5 × 10−29 W cm3.

In the quiet corona the base electron density determined from
spectroscopic UV observations equals ≈2×108 cm−3 (Doschek
et al. 1997; Laming et al. 1997). Thus, the required volume
heating rate is 1 × 10−20 W. This amount of heating is a factor
of 2.5 larger than the minimum heat injected into the corona
by radiation as determined by our simulations, 4.0 × 10−21 W,
and is factor of 4 less than the maximum rate consistent with
that requirement, 4.0 × 10−20 W. Therefore, we find that visible
and IR solar radiation provide at least 40% of the power lost
to UV radiation in the low corona outside of dense loops and
possibly outside all of it. Thus, radiation provides at least 40%
and maybe all of the heat required by more than 99.99% of the
low corona volume. Since the maximum heating rate yielded
by the simulations is a factor of four larger than the required
quiet corona rate, radiation could also compensate for additional
power losses, such as thermal conduction to the transition region
and chromosphere.

The time required to heat an electron to the coronal tempera-
ture of 2×106 K may be computed from the radiative heating rate
required to balance the radiative cooling rate. The energy cor-
responding to the coronal temperature is 200 eV, or 3 × 10−17 J.
Assuming cooling and heating rates of 1×10−20 W, the heating
time, τh, equals 3000 s. Assuming that the mean kick frequency
equals the mean wave frequency of 2 × 1014 s−1, the number of
kicks required equals 6 × 1017. We may estimate the mean kick
magnitude using Equations (1) and (10). Given a heating rate
of 1 × 10−20 W, the velocity diffusion coefficient is given by
Dv = 2.5 × 109 m2 s−1. Therefore, given a mean step time of

5×10−15 s, the velocity kick is given by δv = 9.0×10−3 m s−1,
or 0.9 cm s−1.

Solar radiation will also provides some heat to the magnetic
flux loops observed in the UV in active regions. These flux
loops, which comprise less than 0.01% of the coronal, have
electron densities that are higher than quiet coronal values by
a factor of 1–100, as measured using UV observations. The
largest densities measured in the loops are ≈2 × 1010 cm−3

(Tripathi et al. 2009; Warren & Brooks 2009; O’Dwyer et al.
2011). Therefore, volume radiative heating rates in loops are
also higher by the same factor. Since the maximum rates
yielded by our simulations are a factor of four larger than
those required in the quiet corona, it seems possible that
radiation could heat loops with densities up to 8 × 108 cm−3.
Radiative heating of these structures would be consistent with
the computed vertical loop heating profiles which show a peak
at the footpoints (Aschwanden 2001a; Aschwanden et al. 2001).
Since the volume heating rate is proportional to density, a peak
at the footpoint would be expected for radiative heating. In
that case, the excess heat provided to the quiet corona may be
conducted to the chromosphere.

The low-density open magnetic field regions known as
coronal holes will also heated by solar radiation. For a given
heliocentric radius above the base, the density in holes is lower
than that in the surrounding corona (Wilhelm et al. 1998;
Dwivedi et al. 2000). Therefore, radiative losses there are less,
and radiative heating can provide more than enough heat to
explain coronal hole temperatures. The logical destination of the
surplus radiative power is the fast solar wind, which originates
in these regions (Krieger et al. 1973). Electron thermal energy
gained from radiation may be converted into gravitational
and kinetic proton energy, thereby powering the fast solar
wind.

We may compute the cross section for radiative heating at the
coronal base, σrh, from the intensity, S0, and the heating rate,
He, assuming that it balances the radiative losses:

σrh = He

S0
. (23)

Given the coronal base values of So, 6.6 × 107 W m−2 and He,
1.0 × 10−20 W, the cross section for radiative heating may be
computed: σrh = 1.0 × 10−28 m2. The minimum solar radiation
power flux absorbed by the corona through heating, Ph, can be
estimated from the integral of the volume loss rate:

Ph =
∫

n2
e FL dr, (24)

where the integral extends over the range (R
,∞). We assume
that the density follows an exponential dependence on r, with a
scale height ld given by ld = (3 k (Te + Tp)/(mp gs), where gs
is the gravitational acceleration at the surface, k is Boltzmann’s
constant, and Te and Tp are the coronal electron and proton
temperatures, respectively, estimated at 2 × 106 K. The scale
height can be evaluated: ld ≈ 1.8 × 108 m. The required power
can then be estimated: Ph = n2

e,o FL ld , where ne,o is the
base density. This yields a power level of Ph = 810 W m−2,
as compared with the base radiant flux of 7 × 107 W m−2.
Therefore, Ph is a factor of ≈10−5 lower than the radiant power
density. Radiative heating will convert a small fraction of the
visible and IR continuum radiation into UV line emission, which
might have implications for the Sun–Earth connection. The
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power absorbed by the corona will vary with the solar cycle
as the density varies and may contribute slightly to solar visible
and IR radiation variations.

6. CONCLUSION

We find that solar electromagnetic radiation can provide suffi-
cient heat to explain coronal temperatures under the assumption
that the optical coherence time is approximately equal to the
wave period. To summarize the predictions of the coronal and
chromospheric stochastic radiative heating model: (1) the radia-
tive heating rate per electron is constant in time but varies with
heliocentric distance and the volume heating rate is proportional
to electron density, and (2) the radiative heating rates per elec-
tron at the coronal base yielded by our Monte Carlo simulation
range from 4.0 × 10−21 to 4.0 × 10−20 W. The minimum ra-
diative power delivered equals at least 40% and possibly all of
that required to balance radiative losses outside of dense mag-
netic flux loops, which comprise at most 0.01% of the coronal
volume. Thus, the region which could be heated by radiation in-
cludes at least 99.99% of the corona. However, it cannot supply
the amount of heat required by dense loops.

7. DISCUSSION

The basic explanation for coronal heating by sunlight is
twofold: (1) the Sun is a very bright light source, and (2) coronal
densities are low enough that radiative losses are relatively weak.
In addition to these reasons, other key contributing factors are
the low mass of the electron, which allows the radiation electric
field to accelerate it; and the temporal and spatial randomness
in the low coherence wave field, which results from the partial
coherence of sunlight. If the light from the Sun were perfectly
coherent in space and time, electrons would oscillate in its
radiation field indefinitely at a velocity amplitude of ≈40 m s−1,
and heating could not occur. But since sunlight is only partially
coherent in space and time, the random phase changes in
the field impart many stochastic velocity kicks to electrons
transiting coherence zones which heat the plasma to a high
temperature.

Radiative heating of the corona is analogous to radio fre-
quency (RF) heating in some laboratory plasmas, with the main
differences being the frequency range, electron density, and the
optical coherence of the radiation, which determines the type of
heating possible. In the corona, light has a very low level of co-
herence, while laboratory experiments use RF radiation which
is often fully coherent. In some RF-heated plasmas, electrons
diffuse in velocity space because of collisions, which decouple
the particle oscillation from the field (e.g., Kaganovich et al.
1996). This is essentially the mechanism proposed by Tsiklauri
& Pechhacker (2011) to model partial radiative heating of the
solar chromosphere. Turbulence has also been considered as a
mechanism to introduce randomness to the wave–particle inter-
action and allow heating (Geller 1996). In the corona, collisions
and turbulence are not required to explain heating, owing to the

intrinsic spatial and temporal randomness in the low coherence
wave field.

We have found that the minimum amount of heat deposited
in the Sun’s corona by electromagnetic radiation from the
photosphere is sufficient to balance at least 40% of the radiation
losses at quiet coronal base densities. Therefore, we expect that
any sufficiently hot star will be surrounded by a hot corona
with temperatures ≈106 K. The density within the star will
decrease with distance from its center until a point at which the
plasma is optically thin to visible radiation. The atmosphere at
that height is defined as the photosphere and the temperature
there is the stellar blackbody temperature. The photosphere
will radiate strongly outward. Above this height, the density
decreases exponentially through the chromosphere, which is
heated by electromagnetic radiation, but does not reach 106 K
temperatures because the density ne and the radiative losses are
too large. Since the volume radiative heating rate is proportional
to ne and the volume radiative loss rate is proportional to n2

e ,
ne will fall to a level at which heating can balance cooling at
a high temperature. The point at which radiative heating and
losses balance is the inner boundary of the hot corona.
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