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ABSTRACT

We study the clustering of inertial particles in turbulent flows and discuss its applications to dust particles in
protoplanetary disks. Using numerical simulations, we compute the radial distribution function (RDF), which
measures the probability of finding particle pairs at given distances, and the probability density function of the
particle concentration. The clustering statistics depend on the Stokes number, St , defined as the ratio of the particle
friction timescale, τp, to the Kolmogorov timescale in the flow. In agreement with previous studies, we find that,
in the dissipation range, the clustering intensity strongly peaks at St � 1, and the RDF for St ∼ 1 shows a fast
power-law increase toward small scales, suggesting that turbulent clustering may considerably enhance the particle
collision rate. Clustering at inertial-range scales is of particular interest to the problem of planetesimal formation. At
these large scales, the strongest clustering is from particles with τp in the inertial range. Clustering of these particles
occurs primarily around a scale where the eddy turnover time is ∼τp. We find that particles of different sizes tend
to cluster at different locations, leading to flat RDFs between different particles at small scales. In the presence of
multiple particle sizes, the overall clustering strength decreases as the particle size distribution broadens. We discuss
particle clustering in two recent models for planetesimal formation. We argue that, in the model based on turbulent
clustering of chondrule-size particles, the probability of finding strong clusters that can seed planetesimals may
have been significantly overestimated. We discuss various clustering mechanisms in simulations of planetesimal
formation by gravitational collapse of dense clumps of meter-size particles, in particular the contribution from
turbulent clustering due to the limited numerical resolution.
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1. INTRODUCTION

Dust grains of microscopic to millimeter size are an important
component of many astrophysical environments, and perhaps
most significantly of protoplanetary disks. Although they con-
tain a small mass fraction (approximately 1% with no gas–grain
separation), solid particles affect the gas dynamics and emission
through various processes such as thermal exchange, surface
chemistry, and radiative transfer. In protoplanetary disks, their
migration, sedimentation, and collisional coalescence and frag-
mentation set the stage for planet formation. Solid particles are
dragged by gas motions, which are generally turbulent in astro-
physical systems. The drag force of the gas turbulence, along
with the generic feature that the inertial particle trajectories are
dissipative, gives these particles a complex dynamics consisting
of stochastic accelerations and decelerations, resulting in mo-
tions that partially reflect features of the velocity field of the gas
that carries them.

The effect of turbulence on particle or droplet growth has
been studied for over half a century (Arenberg 1939; East
& Marshall 1954), and remains a challenging problem today
in many research fields, particularly in the study of turbulent
atmospheres. It is relevant to cloud formation, rain initiation (see
Shaw 2003 for a general review), and the general microphysics
(Pruppacher & Klett 1997) of the atmospheres of planets and
moons (e.g., Barth & Rafkin 2007; McGouldrick & Toon 2008),
and of cool stars and brown dwarfs (Helling & Woitke 2006;
Helling et al. 2008; Marley et al. 2010; Freytag et al. 2010).

For disks, an important effect is that turbulent motions can
induce random relative velocities between inertial particles that

are much larger than Brownian velocities, increasing the particle
collision rates, and hence growth rates, but also leading to
destructive collisions if the relative particle speed exceeds a
threshold believed to be of order a few cm s−1 (see Blum &
Wurm 2008 for a review; Güttler et al. 2010 for an update).
In this paper, we focus on another aspect of the coupling of
turbulence with solid particles in disks: turbulent clustering.
Because the inertia of particles prevents a perfect coupling
with the flow, dissipative trajectories forced by turbulence can
cause the formation of dense clusters of particles, even if the
flow is incompressible. The process is sometimes referred to as
“preferential concentration” (Fessler et al. 1994) in atmospheric
and engineering applications.

The ability of incompressible turbulence to generate clusters
of small particles was suggested in a seminal paper by Maxey
(1987), and has been confirmed both numerically (Squires
& Eaton 1991; Wang & Maxey 1993) and experimentally
(Fessler et al. 1994; Uhlig et al. 1998; Kostinski & Shaw 2001;
Aliseda et al. 2002; Pinsky & Khain 2003; Wood et al. 2005;
Lehmann et al. 2007). The basic features of turbulent clustering
were established in a number of theoretical studies (Elperin
et al. 1998a, 1998b, 2002; Balkovsky et al. 2001; Zaichik &
Alipchenkov 2003; Zaichik et al. 2003) and low-resolution
simulations (Sundaram & Collins 1997; Zhou et al. 1998; Reade
& Collins 2000a, 2000b; Wang et al. 2000). Most of these
studies focused on clustering at the dissipation-range scales. In
this scale range, the clustering intensity was found to peak for
particles with Stokes numbers (the ratio of particle friction time
to the Kolmogorov timescale) close to unity, and the clustering
amplitude was shown to increase toward smaller scales as a
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power law. Higher-resolution turbulence simulations (Hogan
et al. 1999; Hogan & Cuzzi 2001; Collins & Keswani 2004;
Falkovich & Pumir 2004; Bec et al. 2006; Cencini et al. 2006)
have confirmed these basic results, but still differ concerning the
scaling of the clustering amplitude with the Stokes and Reynolds
numbers.

The process of turbulent clustering has been proposed as
a possible solution to the problem of raindrop formation in
atmospheric clouds (Jameson & Kostinski 2000; Falkovich
et al. 2002; Vaillancourt et al. 2002), due to its effects on the
collision rate of droplets. As in the case of droplet formation,
the collision rate between dust grains in astrophysical systems
may be enhanced by turbulent clustering. A major goal of this
paper is a general introduction of the phenomenon of turbulent
clustering to the astronomy community, presenting a detailed
physical discussion and numerical results. We also discuss the
application of our simulation results to models of planetesimal
formation in protoplanetary disks.

Planetesimals are kilometer-size objects believed to be the
necessary precursors to the formation of fully fledged rocky
planets. The classic theory assumes that planetesimals form by
gravitational instability, as the dust particles vertically settle to
a dense thin layer at the midplane (Safronov 1969; Goldreich
& Ward 1973). However, even without preexisting turbulence,
size-differentiated sedimentation of the particles results in
vertical shear that can lead to Kelvin–Helmholtz instabilities as
suggested by Weidenschilling (1980; see Barranco 2009 for a
recent detailed study). The resulting turbulent mixing prevents
settling to a thin dust layer, and the dust density needed for
the gravitational instability to occur may be difficult to achieve
(e.g., Youdin & Shu 2002; Chiang 2008). Another possibility
is that planetesimals form by the collisional growth of dust
particles. Early work on the collisional growth of planetesimals
and planets was reviewed by Lissauer (1993). The most serious
problem for planetesimal formation in a turbulent disk continues
to be that both theoretical (e.g., Ormel et al. 2007; Brauer
et al. 2008b) and experimental (see Blum & Wurm 2008 for
a thorough review) studies indicate that particle growth is
stalled in the centimeter–meter-size range, a conundrum usually
referred to as the meter-size problem. Fast radial migration of
centimeter–meter particles could be alleviated with a modest
enhancement of the dust-to-gas ratio, but these particles acquire
such large velocities that collisional fragmentation appears
inevitable (see Brauer et al. 2008b). A recent summary of
work on planetesimal growth is presented by Chiang & Youdin
(2010), who emphasize the possibility that drag instabilities
can concentrate particles and initiate gravitational instability of
particle clusters (Goodman & Pindor 2000; Youdin & Goodman
2005; Johansen et al. 2007).

One response to these problems is to use them to argue that
turbulence must not exist. Another is to accept one of several
mechanisms (see Chiang & Youdin 2010) suggested to avoid
the meter-size problem. Some of these mechanisms are based
on the formation of dense particle clumps by the clustering of
particles via disk turbulence (Cuzzi et al. 2008), or by streaming
instability and other clustering effects (Johansen et al. 2007,
2009b, 2011). The point of view of the present paper is to take a
critical look at the aspects of the models that rely on clustering
of small particles as a part of planetesimal formation, using a
new high-resolution turbulence simulation, along with a set of
physical guidelines to the clustering behaviors.

This paper is organized as follows. Section 2 is a general
introduction to the physics of turbulent clustering. In Section 3

we describe our numerical simulations. We present results on
the clustering statistics of identical particles in Section 4. In this
section, we also discuss the Reynolds number dependence and
possible effects of the back-reaction, largely based on a review
of numerical results from the literature. The clustering statistics
of particles of different sizes are presented in Section 5. We
apply our understanding of turbulent clustering to the problem
of planetesimal formation in Section 6, with specific discussions
of the models by Cuzzi et al. (2008) and Johansen et al. (2007).
Our conclusions are summarized in Section 7.

2. INERTIAL PARTICLE CLUSTERING
IN TURBULENT FLOWS

In order to guide the interpretation of the numerical results,
we present here a brief introduction to the problem of particle
clustering. We show how simple physical arguments allow us to
make rough predictions about the Stokes number dependence
of turbulent clustering that will be computed later from our
numerical simulation.

The velocity, v(t), of an inertial particle suspended in a
turbulent velocity field, u(x, t), is given by the equation

dv

dt
= u(xp(t), t) − v

τp
, (1)

where u(xp(t), t) is the flow velocity along the particle trajec-
tory, xp(t), and the friction timescale, τp, represents the particle
inertia and is essentially the time needed for the particle velocity
to relax toward the flow velocity through the friction force.

The estimate of the friction timescale depends on the particle
size, ap, relative to the mean free path of the gas molecules, λg,
in the flow (see, e.g., Weidenschilling 1977; Cuzzi et al. 1993).
If ap � λg, the particle-flow friction is in the Epstein regime
where the drag force is controlled by collisions between the
particle and the flow molecules. The friction time is calculated
by

τp =
(

ρd

ρg

) (
ap

Cs

)
, (2)

where Cs is the gas thermal velocity, ρg is the density of the
flow, and ρd is the density of the particle material. For compact
dust grains, ρd ∼ 1 g cm−3. The gas mean free path is estimated
to be ∼1(ρg/10−9 g cm−3)−1 cm, assuming the cross section
of hydrogen molecules is ∼10−15 cm2. Therefore, the friction
between dust particles and the flow is in the Epstein regime
for particle sizes up to ∼1(ρg/10−9 g cm−3)−1 cm. Due to
the density dependence, this critical size varies with the radial
locations in the disk and depends on the disk parameters.

On the other hand, for particles with ap � λg, the friction
force is determined by the flow around the particle surface. If
the flow around the particle is laminar, the friction timescale is
given by the Stokes law

τp = 2

9

(
ρd

ρg

) (
a2

p

ν

)
, (3)

where ν is the kinematic viscosity of the carrier flow.
The Stokes number, St , defined as the ratio of the friction

timescale to the Kolmogorov timescale, τη, i.e., St ≡ τp/τη,
is commonly used to characterize the particle inertia. The
Kolmogorov timescale is essentially the turnover time of the
smallest eddies and is thus the smallest timescale in a turbulent
flow. It is defined as τη = (ν/ε̄)1/2, where ε̄ is the average
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energy dissipation rate. In incompressible turbulence, we have
ε̄ = ν〈ω2〉 with 〈ω2〉 being the vorticity variance, thus τη

can be calculated as τη = 〈ω2〉−1/2. It can also be roughly
estimated from the large-scale properties of the flow by τη �
(L/U )Re−1/2, where L, U, and Re are, respectively, the outer
length scale, the rms flow velocity, and the Reynolds number.
A crucial length scale in the clustering statistics of inertial
particles is the Kolmogorov dissipation scale, η, which is given
by η ≡ (ν3/ε̄)1/4 � LRe−3/4. Numerical values for these
quantities applicable to disks are given in Section 6.1.

The spatial clustering of inertial particles in turbulent flows
has different behaviors for St < 1 and St > 1. We discuss the
two Stokes number ranges separately.

2.1. Particles with St < 1

The trajectories of small particles with St � 1 deviate from
those of the fluid elements only slightly, and the particle phase
can be approximately described as a fluid. The velocity field,
vi(x, t), of the particle flow can be estimated from Equation (1).
Assuming that the particle acceleration, dvi/dt , can be ap-
proximated by the local flow acceleration, dui/dt , we have
vi(x, t) � ui(x, t)− τpdui(x, t)/dt . The assumption is justified
for St � 1 particles because the friction timescale τp is smaller
than τη, the smallest timescale in the flow. The approximation
is essentially the Taylor expansion of Equation (1) to the first
order of St .

With this approximation, one can estimate the divergence,
∂ivi , of the particle velocity field. If the carrier flow is incom-
pressible, we have

∂ivi = −τp∂iuj ∂jui, (4)

where we used dui/dt = ∂ui/∂t + uj∂jui and ∂iui = 0.
Equation (4) suggests that the particle flow has a finite com-
pressibility even though the carrier flow is incompressible, and
this would lead to spatial clustering of the particles. Intuitively,
the physical origin for clustering is that the particles’ inertia
causes them to lag behind or lead in front of the flow elements
when the flow experiences an acceleration or deceleration.

The amplitude of the particle velocity divergence depends on
the flow velocity gradient. On average, the velocity gradient in
a turbulent flow is ∼(ε̄/ν)1/2 = 1/τη (e.g., Monin & Iaglom
1975). Therefore we have an estimate that ∂ivi � St/τη. In the
limit of small Stokes numbers, the divergence increases with
increasing St , and thus the degree of clustering is expected to
increase with St .

The particle velocity divergence can be rewritten as τp(ω2/2−
sij sij ), where sij = (∂iuj + ∂jui)/2 is the strain tensor (Maxey
1987). This suggests that the vortices tend to expel particles,
while the strain collects particles. Therefore, dense particle
clusters are expected to be found in the strain-dominated regions
with low vorticity. This effect is illustrated in Appendix A where
we use Burgers vortex tubes as a model for the small-scale
structures in turbulent flows. The effect of vortices as centrifuges
for inertial particles was first recognized by Maxey (1987), and
has been subsequently studied in detail with both numerical
simulations (e.g., Wang & Maxey 1993) and experiments (e.g.,
Fessler et al. 1994).

Equation (4) can also be written as ∂ivi = τp∂
2
i P /ρg.

This means that the particle flow divergence is negative at
local pressure maxima where ∂2

i P /ρg < 0. Therefore, particle
clustering in turbulent flows is sometimes interpreted as a
collection of particles at local pressure maxima.

The velocity gradient field in a turbulent flow has a correlation
length scale of η, and thus the divergence of the particle flow is
decorrelated at scales larger than η. Therefore, the probability for
the existence of coherent particle compressions or expansions
at scales significantly larger than η would be rare, suggesting
that, at St � 1, particle clustering would primarily occur below
the Kolmogorov length scale. However, this does not mean that
the particle clusters appear as spheres of size ∼η. Instead, they
are found to be in the form of filaments or sheets of thickness
∼η.

Particle clusters are subject to disruption by the stretching of
the carrier flow, which tends to disperse the clusters. The balance
between the disruption and the compressibility in the particle
flow determines the clustering intensity. At smaller scales, it
takes longer for stretching to disperse particle clusters to scales
larger than η where essentially no coherent compressions or
expansions exist. Therefore, a higher level of clustering is
expected at smaller scales because clusters at these scales can
experience coherent compressions for longer times (Falkovich
& Pumir 2004).

It is interesting to note that the quadratic dependence of the
particle flow divergence on the velocity gradients is similar to
that of the energy dissipation rate ε(x, t) = 1/2ν(∂iuj + ∂jui)2.
Therefore, like the dissipation rate, ∂ivi would also display
spatial fluctuations, which may give rise to a broad probability
density function (PDF) for the particle concentration. Also, it is
known that the PDF of the energy dissipation rate broadens with
increasing Reynolds number (Frisch 1995). A similar Reynolds
number dependence is likely to exist for the concentration PDF
of St � 1 particles.

2.2. Particles with St > 1

With increasing inertia, the particle trajectories deviate more
from those of the flow elements. A large particle has a long
memory, and its current velocity has significant contribution
from the memory of the flow velocity in the past. Therefore,
the particle velocity cannot be simply estimated by the local
carrier flow. The approximation, Equation (4), for the particle
flow divergence breaks down for St larger than 1.

In fact, nearby large particles with St � 1 do not move
coherently, and at small scales the particle phase can no longer be
viewed as a fluid. Intuitively, due to their large inertia, two large
particles can keep a significant relative speed when approaching
each other. Therefore, the relative particle motions at small
scales appear to be random. Bec et al. (2010) found that, for
St > 1, the velocity difference, δv(St, l), of two particles at a
separation l is constant at small values of l, indicating that their
relative motions are similar to the thermal motions of molecules
in kinetic theory. Thus, a fluid description for these particles
would not be sufficient. The physical reason for a constant
δv(St, l) at small l (for a given St) is that the relative velocity
between nearby particles is dominated by their memory of the
flow velocity difference they “saw” within a friction timescale
in the past (Pan & Padoan 2010).

We consider the response behavior of St > 1 particles to
turbulent eddies of different sizes, which provides physical
insight into the clustering properties of these particles. A length
scale of particular interest is the size of turbulent eddies whose
turnover timescale is equal to the particle friction timescale, τp.
If τp corresponds to an inertial-range timescale of the carrier
flow, we have lτp � ε̄1/2τ

3/2
p (or equivalently �St3/2η) using

Kolmogorov scaling.
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Particles can efficiently respond to eddies much larger than
lτp . At these scales, the particle motions are well coupled to
the carrier flow, and the particle velocity difference, δv(St, l),
essentially follows the flow velocity difference, δu(l) (see
Bec et al. 2010). Therefore, no strong particle clustering is
expected at these large scales. Eddies much smaller than lτp

do not efficiently affect the relative particle motions because the
particle response time, τp, is much longer than the eddy turnover
time. Thus, at scales below lτp , the flow and the particle motions
are decoupled, and the relative velocity between two particles
is determined by their memory of the flow velocity difference
at scales around lτp , where the particle motions are partially
coupled to the carrier flow. As discussed above, particles show
random relative motions at these small scales, and thus no
clustering would be found at l � lτp either. This means that
significant clustering could occur only around the scale ∼lτp .
This physical picture also suggests that the particle phase has
an effective mean free path of lτp . A fluid description for the
particle phase may be valid at scales above lτp .

For particles with τp larger than the turnover time, TL, at
the outer scale of the flow, all eddies evolve at a timescale
smaller than τp, and lτp cannot be defined. Such particles do not
closely follow the flow velocity at any scale. Motions of these
particles are expected to be random at all scales, and the spatial
distribution would be essentially homogeneous. We focus on
inertial-range particles with τη � τp � TL in our discussions.

The clustering intensity for inertial-range particles is expected
to decrease with increasing St . As discussed above, these
particles cluster primarily at the length scale, lτp , which increases
with St . Therefore, clusters of larger particles are spatially more
spread out, and, since no strong fluctuations exist below lτp ,
the concentration level within the clusters would decrease with
increasing St . In other words, smaller particles can form thinner
clusters with higher density contrast and hence exhibit stronger
clustering. The decrease of the clustering intensity with St is
illustrated by an intuitive example in Appendix A. The example
shows that larger particles (with St > 1) form clusters of larger
sizes, and the particle concentration in the clusters becomes
smaller with increasing St .

We estimate the compressibility in the particle collective
motions around the scale lτp , which is used in Appendix B
for the derivation of the Brownian scale. Here the scale lτp is
of special interest because the maximum flow velocity gradient
that the particles can efficiently “feel” is that at lτp . The gradient

is approximately δu(lτp )/lτp , which is ∝ ε̄1/3l
−2/3
τp using the

Kolmogorov scaling. The gradient decreases as (τp)−1 with
τp, which also suggests weaker clustering for larger particles.
The divergence of the particle motions around the scale lτp

is calculated by the same method (Equation (4)) as for the
St < 1 particles. This is justified because the friction time is
smaller than the turnover time of eddies larger than lτp . Inserting
δu(lτp )/lτp for the velocity gradients in Equation (4) shows that
the effective divergence is ∼τ−1

p = (Stτη)−1. Therefore, for
St � 1, the particle collective motions are less compressible as
St increases.

We note that, unlike particles with St < 1, the effective
divergence estimated above for St > 1 only depends on the
particle friction time, but not on the flow properties in the inertial
range. This is because clustering of these particles occurs at
scales “selected” by the particle timescale. At the selected length
scale, the turnover timescale is around τp, and the flow velocity
gradient is ∼τ−1

p . It is thus not surprising that the effective

divergence is determined solely by the friction timescale. The
possibility of clustering of large particles at an inertial-range
scale ∼lτp has also been discussed in earlier studies (e.g., Eaton
& Fessler 1994; Boffetta et al. 2004; Bec et al. 2007).

In summary, inertial particles suspended in a turbulent flow
are expected to show inhomogeneous spatial distribution even
if the carrier flow is incompressible. Inertial particles tend to
be expelled from vortices and accumulate in high-stain regions.
For small particles with St � 1, clustering occurs primarily
at scales below the Kolmogorov scale η, and the degree of
clustering increases with increasing St . Large particles with
1 � St � TL/τη cluster around a scale, lτp , which increases
with St as �St3/2η. The clustering intensity decreases with St
for St � 1. Overall, the clustering intensity is expected to peak
at St ∼ 1.

2.3. Clustering of Particles of Different Sizes

The discussion above is for particles of the same size, an
idealized situation usually referred to as the monodisperse case.
In realistic environments, the particle size is likely to have
significant variations either due to an initial size distribution
(from the formation process of the particles) or as a result
of collisional coagulation or fragmentation. Therefore, it is
necessary to consider the clustering statistics for particles of
different sizes.

Numerical simulations by Zhou et al. (2001) showed that par-
ticles with different sizes tend to cluster at different locations in
the flow (see also Reade & Collins 2000b). This is also clearly
illustrated by our example in Appendix A. A consequence of
this effect is that the probability of finding nearby particles of a
different size is smaller than that of finding identical particles,
given equal number densities of the two particles. This has in-
teresting effects on the collision kernel for particle coagulation
models (Reade & Collins 2000b). It also has important impli-
cations on the overall spatial distribution of particle density/
concentration when the particles have an extended size range.
A detailed analysis of the clustering statistics for particles of
different sizes will be given in Section 5.

3. NUMERICAL SIMULATIONS

With the rough but physically motivated arguments of
Section 2 in hand, we now present and interpret the results
of our numerical simulation. The simulation was carried out in
a periodic box with 5123 grid points. The hydrodynamic equa-
tions with an isothermal equation of state were solved by the
Enzo code (O’Shea et al. 2005 and references therein), which
uses a direct Eulerian formulation of the piecewise parabolic
method (PPM; Colella & Woodward 1984). To drive the turbu-
lent flow and maintain the kinetic energy at the desired level, we
apply a large-scale solenoidal force with a fixed spatial pattern
and a constant power in the range of wave numbers 1 � k � 2.
The amplitude of the driving force is chosen such that the rms
Mach number, Ms, in the flow is �1 (the simulation setup is the
same as Kritsuk et al. 2007, except for the lower Mach num-
ber and the solenoidal forcing adopted here). Unlike previous
simulations devoted to exploring particle clustering in incom-
pressible turbulence (e.g., Sundaram & Collins 1997; Reade &
Collins 2000a; Hogan & Cuzzi 2001; Collins & Keswani 2004;
Falkovich & Pumir 2004; Cencini et al. 2006), our simulated
flow is compressible.

We chose to study turbulent clustering with a compressible
flow because we aimed to explore dust grain dynamics in
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various environments including highly compressible interstellar
clouds. In the current work, we will focus on the application
in protoplanetary disks where the turbulence is essentially
incompressible. We expect from the following considerations
that the clustering statistics in our simulated flow would be close
to that in incompressible turbulence. First, at Mach numbers
close to unity, the density fluctuations are weak, with the
rms amplitude 〈δρ2

g〉1/2/ρ̄g at a level of ∼10%. Second, the
velocity structures in a transonic flow are very close to those in
incompressible flows (Porter et al. 2002; Padoan et al. 2004;
Pan & Scannapieco 2010). In Section 4.1, we find that the
clustering properties in our transonic flow are indeed in good
agreement with the results from direct numerical simulations
(DNS) for incompressible flows by Collins & Keswani (2004).
This agreement validates the application of our results to
protoplanetary disks.

One important quantity in our statistical analysis is the
Kolmogorov length scale. This length scale is difficult to
evaluate because our PPM simulations do not explicitly include
the viscous term and the kinetic energy dissipation is through
numerical diffusion. We compute η using two methods. In the
first method, we start with an estimate of the effective viscosity,
νeff . We calculate νeff from the equation ε̄ = νeff〈ω2〉, because
solenoidal modes dominate the kinetic energy dissipation even
in a transonic flow (Pan & Scannapieco 2010). The energy
dissipation rate, ε̄, can be derived either from Kolmogorov’s
4/5 law (which also applies to transonic flows; see Pan &
Scannapieco 2010 and also Benzi et al. 2008), or from the
relation, ε̄ = Du′3/L1, established by DNS, where u′ and L1
are the one-dimensional velocity dispersion and the integral
length scale, and the coefficient D � 0.4 (Ishihara et al. 2009).
The dissipation rate values derived from the two approaches
are consistent with each other. The effective viscosity νeff is
then calculated from ε̄ and 〈ω2〉. With νeff , we find the effective
Taylor Reynolds number in our simulated flow is Reλ = 250.
We calculate the Kolmogorov length scale from η = (ν3

eff/ε̄)1/4,
which turns out to be 1/2 the resolution scale (Benzi et al. 2008).
The Kolmogorov timescale is computed by 〈ω2〉−1/2.

In the second method, we estimate η by comparing the
second-order velocity structure function, S(r) = 〈(ui(x + r, t)−
ui(x, t))2〉, in our flow to that established for incompressible
turbulence from theory, experiments, and simulations. We adjust
the Kolmogorov scale (or equivalently the effective viscosity)
in our flow to obtain a best fit. Our result is shown in Figure 1,
where the length scale and the structure function are normalized
to the Kolmogorov scale, η, and velocity, uη, respectively. The
data points represent the structure function measured in our
simulated flow. The Kolmogorov scale is set to be 0.4 times the
computation cell size. With this value for η, we estimated the
effective viscosity and the Taylor Reynolds number. The latter
is ∼300. The dashed line is the expected structure function
in an incompressible turbulent flow with Reλ = 300. It is
obtained from a bridging formula given in Zaichik et al. (2006),
which connects the established scaling behaviors of the structure
function in different scale ranges. Clearly, the data points are in
good agreement with the dashed line. This agreement suggests
that our simulations can be safely used for the study of turbulent
clustering in weakly compressible turbulence such as that in
protoplanetary disks. The best-fit value for the Kolmogorov
scale, 0.4 cell size, is close to that derived from the first method,
suggesting our estimate of η is reliable. Throughout the paper,
we set η to be 0.4 cell size and assume that the Taylor Reynolds
number is 300.

100
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103

 1  10  100

S(
r)

/u
η2

r/η

Reλ = 300

Figure 1. Second-order velocity structure function in our simulated flow (data
points). The dashed line is the structure function for an incompressible flow
with Reλ = 300, obtained from a bridging formula that connects the established
scaling behaviors in different scale ranges (see the text).

A strength of the PPM method is that it yields a quite
broad inertial range already at the resolution of 5123. A clear
Kolmogorov scaling is seen in Figure 1 at scales from �30η
to �300η in the velocity structure function. To our knowledge,
turbulent clustering has not been studied in simulations that have
a clear inertial range. The inertial-range velocity scaling was
used in our physical discussion in Section 2.2. Our numerical
results show that the clustering behaviors are different at scales
below and above the Kolmogorov scale η. We will refer to the
scales below η as the dissipation range, and loosely call the scale
range l > η the inertial range, although the latter usually refers
to the scales showing a Kolmogorov scaling.

Because the Kolmogorov scale is below the resolution scale,
one may be concerned with the reliability and accuracy of the
measured statistics around or below η. Fortunately, we find
that the velocity field at the unsolved scales may be reliably
approximated by interpolation. This is because the velocity
structure function is already smooth at the resolution scale, as
seen from the r2 scaling at the smallest scales in Figure 1. This
scaling means that the velocity difference is linear with r, and a
linear interpolation (see below) may sufficiently reflect the sub-
grid velocity statistics. Therefore, our simulation can provide
good clustering statistics at scales around or below η. This is
again supported by the agreement of our results with those from
DNS (see Section 4.1).

We chose 16 different values for the particle size, and for each
size we evolved 8.4 million particles in the simulated flow. The
average particle density for each size is 1 per 16 computation
cells. Due to the slight density fluctuations in our transonic flow,
the friction timescale for a particle of a given size is not constant
along its trajectory. The friction timescales with the gas density,
ρg, as τp ∝ ρ−1

g in the Epstein regime (the regime of primary
interest in our astrophysical applications), and we calculated the
local values of τp using this scaling at each integration step for
the particle trajectory. A linear interpolation is used to obtain
the flow velocity and density at the particle positions inside the
computation cells. A higher-order interpolation scheme may
be needed for more accurate measurements of the clustering
statistics below the resolution scale (e.g., Yeung & Pope 1988).
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Figure 2. Positions of all the particles with St = 1.2 (left panel) and St = 4.9 (right panel) within a thin slice of thickness equal to 2% of the computational box.
Density fluctuations are much stronger for particles with St = 1.2 than for those with St = 4.9, but this cannot be fully appreciated from the images, due to the overlap
of particle positions. Notice the very small scale structures present in the spatial distribution of the St = 1.2 particles. Dense particle filaments and large voids can be
seen in both panels, with sizes approaching the integral length of the flow, estimated to be approximately 0.2 times the computational box size. The estimated size of
the dissipation scale, η, is approximately 10−3 times the box size, as discussed in Section 3.

Like the friction timescale, the Stokes number has weak
spatial variations. For each particle size, we define an average
Stokes number using the average friction timescale based on the
mean flow density. The 16 particle sizes cover a Stokes number
range from 0.08 to 3000. Our statistical analysis will focus on
11 relatively small particle sizes with St in the range [0.08, 43],
as the larger particles do not show significant clustering.
Furthermore, the largest particles have a long relaxation time,
and their statistics may not have saturated at the end of our
simulation run.

We neglect particle collisions in our simulations. This is
a good approximation if the volume filling factor, Φv, is
much smaller than 1, which is the case for dust particles in
astrophysical environments. The volume filling factor is defined
as Φv = 4π/3n̄pa

3
p , where n̄p is the average particle number

density.
The back-reaction of the particles on the carrier flow is also

neglected. The importance of the back-reaction is measured by
the mass loading factor, Φm = (ρp/ρg)Φv (the ratio of the bulk
particle mass density to the flow density). On average, Φm is
small, ∼0.01, for dust particles in astrophysical environments
with metallicities close to the solar value. However, the local
mass loading factor could be significant in clusters with particle
concentrations much larger than the average. The effect of mass
loading should be considered in such clusters. We will discuss
this effect in more detail in Section 4.5.

In our transonic flow, we find that particles are clustered
with statistical properties very similar to those in incompress-
ible flows. The particle clustering found here is not due to
the compressibility of the gas flow because very strong par-
ticle concentration enhancement exists after compensating for
the flow compressibility by dividing the particle number density
by the flow density. The strongest clustering is indeed found for
particles with St ∼ 1. Much smaller particles (with much shorter
friction timescales) behave essentially like tracer particles,

and do not show any clustering relative to the gas. Cluster-
ing of larger particles is also weaker and occurs at larger scales.
Figure 2 shows the position of all the particles with St = 1.2
and St = 4.9 within a slice of thickness equal to 2% of the
computational box. At large scales, the spatial distribution of
the St = 4.9 particles (right panel) appears to roughly coincide
with that of the St = 1.2 particles (left panel). However, the
largest particle densities achieved by the St = 1.2 particles are
much larger than those of the St = 4.9 particles (this cannot be
fully appreciated in Figure 2, due to the overlap of the particle
positions in the densest regions). Furthermore, the St = 1.2 par-
ticles show much more small-scale structure than the St = 4.9
particles.

The largest particle densities are found in very elongated
structures, especially in the case of the St = 1.2 particles
(see Figure 2). The length of these dense particle filaments
approaches the integral scale, L1, of the flow, which is estimated
to be approximately 0.2 times the simulation box size. The
integral scale is defined as L1 = 3π

∫
k−1E(k)dk/(4

∫
E(k)dk),

where E(k) is the energy spectrum of the flow. The particle
distribution of Figure 2 is also characterized by large voids, with
sizes spanning the whole inertial range up to the L1. The statistics
of inertial-range-size voids has been studied by Yoshimoto &
Goto (2007). The consequences of such dense filaments and
voids in the particle distribution have never been studied in the
astrophysical literature. We will focus on this important feature
of turbulent clustering in a separate work.

In Figure 3, we plot the flow vorticity and density on a
thin slice of the simulation box, with thickness equal to two
computational zones, or 5η. The particle positions are also
shown (blue dots). From the left panel, we see that particles
are mainly located in between regions with strong vorticity.
This is consistent with our physical discussion that inertial
particles are expelled by vortices and accumulate in the strain-
dominated regions. On the other hand, the particle distribution
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Figure 3. Flow vorticity (left panel) and density (right panel) on a slice of the simulation box. The thickness of the slice is two computational zones. The color scale is
linear with vorticity or density, and the red color represents high vorticity or density values. Blue dots are locations of particles with St = 1.2. A clear anti-correlation
is seen between the vorticity field and the particle positions, whereas the particle distribution is independent of the flow density. The total number of particles is the
same in the two panels. The impression that the left panel has more particles than in the right panel is due to the color contrast.

(A color version of this figure is available in the online journal.)

is generally independent of the flow density, suggesting that
particle clustering in our flows is not caused by or significantly
affected by compressible modes in our flow.

4. CLUSTERING STATISTICS OF IDENTICAL PARTICLES

4.1. The Radial Distribution Function

The spatial distribution of particles can be studied by com-
puting the density correlation function from the particle number
density field, n(x, t). The correlation function is defined as

ξ (St, r) = 1

n̄2
〈(n(x, t) − n̄)(n(x + r, t) − n̄)〉, (5)

where n̄ is the average particle number density and 〈· · ·〉 denotes
the ensemble average. The correlation function ξ (St, r) is
independent of x and t assuming statistical homogeneity and
stationarity. Alternatively, one can examine the fluctuations in
the particle density, nr, coarse-grained over different length
scales, r (see, e.g., Falkovich & Pumir 2004). The variance,
〈(δnr)2〉 (where δnr ≡ nr − n̄), of the coarse-grained density
field as a function of r provides equivalent statistical information
as the correlation function ξ (St, r). The two measures can
be converted from each other using the correlation-fluctuation
theorem (see below).

Here we use another approach based on the counting of
particle pairs at given separations. We compute the radial
distribution function (RDF), g(St, r). It is defined such that the
average number, P(St, r), of particles in a volume element, dV ,
at a distance, r(> 0), from a reference particle is given by

P (St, r) = n̄g(St, r)dV. (6)

This definition is essentially the same as that of the two-point
correlation function of galaxies in cosmology (e.g., Peebles
1980). Clearly, for a uniform distribution, g(St, r) = 1. From
their definitions, the RDF is equivalent to the density correlation
function, i.e., g(St, r) = 1 + ξ (St, r) (see Shaw 2003). The
measured RDF can be used to calculate the variance, 〈(δnr)2〉,

of the particle density fluctuations at a given scale r through the
correlation-fluctuation theorem. The theorem states that

〈(δnr)2〉
n̄2

= 1

n̄V (r)
+

1

V (r)

∫
V (r)

(g(St, r ′) − 1)d3r ′, (7)

where V (r) is a volume of size r. The derivation of Equation (7)
can be found in, e.g., Landau & Lifshitz (1980) and Peebles
(1980). The first term on the right-hand side is the reciprocal of
the average particle number in V (r) and corresponds to the effect
of shot noise (Poisson process). The term is negligible for the
case of dust particles at length scales, r, of astrophysical interest.
If ξ (St, r) or g(St, r) is a power-law function of r, as found to be
the case at r < η (see below), we have 〈(δnr)2〉 � n̄2ξ (St, r).

The RDF is especially useful in estimating the collision
kernel for particle coagulation models. The kernel is given
by 2πd2

pg(St, dp)δv(St, dp), where dp = 2ap is the particle
diameter and δv(St, dp) denotes the radial relative speed of
two particles at a distance of dp (Wang et al. 2000). Both
clustering and turbulence-induced relative speed tend to increase
the particle collision rate.

For our simulation data, computing the RDF is a better ap-
proach than the statistical measures based on the particle den-
sity. This is because the number of particles in our simulations
is limited, and, at small scales, the particle density may not be
evaluated with high accuracy. On the other hand, we find that
the number of particles is enough to provide sufficient statistics
for the RDF well below the Kolmogorov scale, η (see Figure 5).

Figure 4 shows our numerical results for the RDF, g(St, r̃),
as a function of the particle separation normalized to the
Kolmogorov scale, r̃ ≡ r/η, for different Stokes numbers. The
left panel plots the RDFs for St = 0.08, 0.16, 0.31, and 0.62
from bottom to top. The RDF increases with the Stokes number
at all scales, and this monotonic increase actually continues
to St = 1.2 (in the right panel). This is in agreement with
our discussions in Section 2.1 for St � 1. For these small
Stokes numbers, strong clustering is observed at small scales.
Consistent with previous simulation results, we find that, for

7



The Astrophysical Journal, 740:6 (21pp), 2011 October 10 Pan et al.

Figure 4. Radial distribution functions for particles with St < 1 (left panel) and St > 1 (right panel). The Stokes number for each curve is indicated by a nearby label.

Figure 5. Radial distribution functions at scales r � η. Solid lines are power-law fits. Left and right panels correspond to St < 1 and St > 1, respectively. The Stokes
number for each curve is indicated by a nearby label.

r � η, g(St, r̃) can be well fit by a power law,

g(St, r̃) = C(St)r̃−μ(St). (8)

This is shown in the left panel of Figure 5 where we give the
power-law fits (solid lines) to the measured RDF (dashed lines)
in the scale range from 0.03 η to 2 η. The exponent μ(St)
increases with St for St � 1 (see Figure 6). The power-law
RDFs at r � η suggest self-similarity of the particle structures
in the dissipation range. On the other hand, at scales r � 2η,
the RDFs cannot be fit by power laws, meaning that the particle
density structures are not self-similar in the inertial range. The
curvature of the RDF curves in the inertial range indicates that
the clustering process becomes faster and faster as the length
scale decreases toward the Kolmogorov scale. The same trend
is seen in the St = 1.2 curve in the right panel.

The clustering behavior for St � 1 is shown in the right panel
of Figure 4. From top to bottom, the solid lines correspond to
St = 1.2, 2.4, 4.9, 10, 21, and 43. The shape of the RDF
for St = 1.2 is very similar to those shown in the left panel.
However, starting from St = 4.9, the curvature of the RDFs
is completely different. For these large particles, the RDF first
increases steadily toward smaller r. As r decreases further, a
clear decrease in the RDF slope occurs at an inertial-range
scale for St � 4.9. The scale at which the RDF starts to
flatten increases with the Stokes number. Below that scale, the
RDF becomes essentially flat for St � 10, suggesting that no

Figure 6. Scaling exponent, μ(St), of the RDFs in the dissipative range. Error
bars show the measurement uncertainty (±3σ ).

significant particle density fluctuations exist at these scales. This
is in agreement with our physical discussion. In Section 2.2,
we argued that large particles cluster mainly at a scale, lτp ,
and, below lτp , the particle relative motions are random, and
no further clustering occurs. This explains the flat part in the
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Figure 7. RDF as a function of the Stokes number at different length scales.

RDFs of St � 1 particles. Therefore, the scale at which the
RDF flattens corresponds to lτp , which increases with τp as τ

3/2
p

for τp in the inertial range. This predicts that the scale for the
RDF slope change is St3/2. Unfortunately, due to the limited
numerical resolution, it is not clear if this scaling is strictly
obeyed. In the inertial range, the clustering intensity of large
particles can be significantly larger than that of small particles
with St � 1, as can be seen from a comparison of the St = 1.2
RDF to the St = 4.9, 10, 21 curves in the scale range from 5η
to 50η. The study of turbulent clustering at inertial-range scales
of astrophysical systems should thus pay particular attention to
large particles with St � 1.

In the right panel of Figure 5, we plot the RDFs in the scale
range from 0.03 to 2η for St > 1 particles. As in the St < 1 case,
they can also be fit by power laws (solid lines). The RDF slope
decreases with St in this Stokes number range, and the RDF for
St � 10 is completely flat. In Figure 6, we show the scaling
exponent μ(St) as a function of St , which peaks at St = 0.63.

In Figure 7, we plot the RDF as a function of the Stokes
number at six length scales. The RDF decreases with increasing
length scale. At scales below η, the degree of clustering strongly
peaks at St ∼ 1. The peak systematically moves to larger
Stokes numbers as the length scale r becomes larger than η. As
discussed above, the strongest clustering at the inertial-range
scales is from particles with τp corresponding to the inertial
range.

Our results for the RDF are in good agreement with Collins
& Keswani (2004), who investigated clustering of St ∼ 1
particles in incompressible flows using DNS. Figure 5 of
Collins & Keswani (2004) shows the exponent μ measured at
different resolutions. The exponent has apparently converged
at their highest resolution (1923). At that resolution, μ is
around 0.69 for St = 0.4 and 0.7, and decreases to 0.65 and
0.50 at St = 1 and St = 1.5, respectively. These μ values
match very well with our Figure 6. The agreement provides
an important support for the numerical schemes adopted in our
study, including the interpolation method for the velocity field
at sub-grid scales. It also suggests that our simulation results can
be reliably used to explore the clustering statistics in essentially
incompressible flows. The coefficient C(St) in Equation (8)
from our simulations is also consistent with Collins & Keswani
(2004). The coefficient is equal to the RDF at r = η, and from

the St = 1.2 curve in our Figure 4 we have C � 6.2 for
St = 1.2. This is close to the measured values (∼6–7) of C(St)
at St � 1 from the 1923 run of Collins & Keswani (2004). The
agreement also has interesting implications for the Reynolds
number dependence of the RDF (Section 4.3.1).

From Figure 4, we see extremely strong clustering at very
small scales for particles with St ∼ 1. The RDF keeps increasing
with decreasing length scale below η. From the RDF plot at
smaller scales (Figure 5), we find that the RDF is as large as
50 at r � 0.03η for St = 0.62. This indicates very strong
clustering: the probability of finding another particle across
a small distance to a given particle can be enhanced by a
factor of ∼100, relative to the case of uniformly distributed
particles. The rms concentration, 〈δn2

r 〉1/2/n̄, at this scale is very
large, ∼10.

Particle clustering at small scales can strongly enhance the
particle collision rates. This needs to be accounted for in particle
coagulation models. As mentioned earlier, the collision rate
is proportional to the RDF, g(St, dp), at a separation equal
to the particle diameter dp. The collision frequency is thus
g(St, dp) times larger than if turbulent clustering is neglected.
In other words, turbulent clustering reduces the coagulation/
collision timescale by a factor of g(St, dp). The particle diameter
is usually much smaller than η, and g(St, dp), at dp can be
evaluated by extrapolation using our power-law fits at scales
below η.

The increase of the RDF toward the particle size, dp, may be
suppressed by the Brownian motions of particles. The Brownian
motions diffusively spread the particles and tend to smear out
the particle density fluctuations. There is a scale below which
the Brownian motions dominate over the production of particle
fluctuations by turbulent clustering. We will refer to this scale
as the Brownian scale and denote it as lB. We give a derivation
of lB in Appendix B. Below lB no further clustering is expected,
and the RDF should be flat. Therefore, if the Brownian scale is
larger than the particle diameter, we have g(St, dp) � g(St, lB),
and the extrapolation should stop at lB. On the other hand, if
lB � dp, we need to extrapolate the RDF down to dp for the
estimate of g(St, dp).

In summary, we have measured the RDF for particles of
different sizes from our simulation data, and the results are
consistent with the physical discussions in Section 2. The
strongest clustering is found to occur at St ∼ 1. The RDFs in
the dissipation-range scales follow power laws and the exponent
μ(St) is largest at St � 1. The power-law increase of the RDF
toward small scales implies a strong effect of turbulent clustering
on the particle collision rate. Large particles (St > 1) cluster
primarily at inertial-range scales, where their clustering intensity
is larger than that of St < 1 particles.

4.2. The Particle Concentration PDF

As a second-order statistical measure, the RDF reflects the
rms amplitude of the particle density fluctuations. In some ap-
plications, high-order statistics, corresponding to clusters with
extreme particle density, are of particular interest. For exam-
ple, in Section 6 we will discuss planetesimal formation models
based on particle clusters of high concentration level in proto-
planetary disks. The probability of finding these dense clusters
can be estimated from the PDF of the particle concentration.

We will compute the concentration PDF at different length
scales. At each length scale, r, we consider regions of size r,
and in each region we define a particle concentration C ≡ nr/n̄,
where nr is the average number density in that region. We denote
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Figure 8. Cumulative PDFs of the particle concentration for St = 1.2 particles
at different length scales.

as Pr(C) the concentration PDF at scale r, which represents the
probability of finding clusters of size r with a given particle
concentration, C.

The computation of the PDF from our simulation data is done
as follows. We first divide the simulation box into cubes of size
r and evaluate the particle number density and the concentration
in each cube. The particle density (and hence the concentration)
can be accurately measured only if the number of particles in a
cube is much larger than one. We thus decided to count only the
cubes containing four or more particles, while the cubes with
less particles were simply ignored. Therefore, the measured
PDF starts from a minimum concentration corresponding to
four particles per cube. The minimum increases with decreasing
length scale r (see Figure 8) because, for smaller cube sizes,
four particles per cube implies a larger concentration. Using
this method, we computed the concentration PDF down to the
scale �η.

Due to the limited number of particles, the measured PDFs
can be contaminated or even dominated by the Poisson noise,
especially at small scales. We compared the measured concen-
tration PDF at each scale to the PDF that arises purely from
Poisson poise. At small scales (r � 5η), we measured only the
high tails of the PDF, and the probability in the tails appears to
be well above the Poisson noise PDF (by at least two orders of
magnitude) for Stokes numbers in the range 0.3 � St � 10.
Particles outside this range are less clustered, and the measured
PDFs are close to the Poisson PDF. For those particles, we
need a larger number of particles in the simulations to obtain
accurate statistics. At large scales (r � 10η), we have good
measurements for particles with 0.16 � St � 40, whose PDFs
are significantly broader than the Poisson PDF.

In Figure 8, we plot the cumulative PDF, Pr(>C) =∫ ∞
C

Pr(C ′)dC ′ at different scales for St = 1.2. The PDF
is broader at smaller scales, corresponding to the increase
of the RDF with decreasing length scale. As r decreases toward
η, the broadening of the PDF appears to be faster, consistent
with the trend observed in the RDF for St = 1.2. The scale
dependence here is quite sensitive. The PDFs at large scales
(r � η) are much narrower than those at small scales.

From Figure 8, we see that at 1.25η there is a finite probability
of finding regions with very high concentration enhancement,
C ∼ 103. The trend that the PDF becomes broader with

decreasing scale suggests that even higher density clusters may
be found at scales below ∼η. The growth of the PDF tail may
continue to the Brownian scale, below which further clustering
is suppressed. However, the PDFs shown in Figure 8 do not
account for the back-reaction from the particles to the carrier
flow, which is not included in our simulations. The back-reaction
cannot be neglected in regions with C � 103, because the local
mass loading factor Φm is much larger than one (assuming an
average dust-to-gas ratio of 0.01). Therefore, the back-reaction
may significantly affect the high tails of P (C) (Hogan & Cuzzi
2007). This will be discussed in more detail in Section 4.5.

Following Hogan et al. (1999), we also considered the PDF
with mass-weighting, Pm(C), which is related to the volume-
weighted PDF, P (C), by Pm(C) = CP (C)/〈C〉 (here the
subscript “r” for the scale dependence is dropped for simplicity
of the notation). The cumulative PDF with mass-weighting is
thus Pm(>C) = ∫ ∞

C
C ′P (C ′)dC ′/〈C〉, which is the fraction

of the total number (or mass) of particles experiencing a
concentration larger than C. The cumulative mass-weighted
PDF is plotted as dotted lines in Figure 8. We find that the
volume- and mass-weighted PDF tails at r = 2.5η in our
Figure 8 are quite close to the results in Hogan et al. (1999, their
Figures 3(c) and (d), respectively) for St = 1 particles at r = 2η
in a Reλ = 140 flow. The cumulative PDF with mass-weighting
has much broader tails. For example, the PDF tail at r = 1.25η
in our Figure 8 shows that the mass-weighted probability for
C � 103 is about 103 times larger than the volume-weighted
one. We note that the PDFs shown in Figure 4 of Cuzzi et al.
(2001) and in Figure 1 of Cuzzi et al. (2008) correspond to the
mass-weighted cumulative PDFs in Figure 3(d) of Hogan et al.
(1999).

Although our Figure 8 looks similar to Figure 1 in Cuzzi
et al. (2008), they are different. In our figure, the particle size and
numerical resolution are fixed; the curves correspond to different
length scales. On the other hand, Figure 1 of Cuzzi et al. (2008)
shows the concentration PDFs at different numerical resolutions
with the Stokes number and the normalized length scale fixed
at St � 1 and r̃ = 2, respectively.

We also computed the concentration PDFs for other Stokes
numbers. At a given scale, the PDF tails as a function of St have
a similar behavior as the RDFs shown in Figure 7. At r � η,
the PDF tail first broadens with increasing St , and reaches a
maximum width at St � 1. As St increases further, the PDF tail
becomes narrower. Also consistent with the RDF in Figure 7,
the Stokes number at which the PDF width reaches maximum
becomes larger with increasing length scale. For example, at
r = 10η and 40η, the PDF tail reaches maximum at St = 4.9
and 10, respectively. Again the highest clustering intensity at
inertial-range scales is from particles with τp in the inertial
range. In Figure 9, we show the dependence of the PDF tail
on St at the scale r = 10η. Starting from St = 4.9 where the
PDF has the maximum width, the tail becomes narrower as St
increases. At St � 93, the PDF is quite close to the Poisson
PDF, indicating only a slight or negligible clustering effect.

4.3. Reynolds Number Dependence

Currently available numerical studies are far from resolving
scales around the turbulence dissipation scale, η, in interstellar
clouds or protoplanetary disks, as the characteristic Reynolds
number in these astrophysical systems is Re � 106. The
possible dependence of the clustering properties on the Reynolds
number must be carefully examined if results of numerical
simulations are to be applied to astrophysical environments.
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Figure 9. Cumulative PDFs of the particle concentration at r = 10η. At this
scale the PDF width peaks at St = 4.9. For larger St , the PDF becomes narrower.
The dotted line shows the PDF of Poisson noise.

The Re dependence is usually discussed in a unit system
where the length scale and the particle friction timescale are nor-
malized, respectively, to the Kolmogorov length and timescales
in the carrier flow. Numerical simulations used to study the Re
dependence usually keep the large-scale properties (such as the
rms velocity and the integral length scale) roughly constant, and
decrease the viscosity (and hence the Kolmogorov scale) with
increasing resolution. In the statistical analysis, these studies
normalize all the quantities to the smallest scales (i.e., η and τη)
in the simulated flows, and examine how the clustering proper-
ties at given St and r̃(≡ r/η) change with the Reynolds number.
Note that, in the comparison of the clustering statistics in sim-
ulated flows with the same large-scale properties, but different
Re, given values of St and r̃ correspond to different particle
sizes (i.e., different τp) and different actual length scales, r (i.e.,
larger particle size and length scale in the flow with lower Re).

The Reynolds number dependence of particle clustering
has been discussed in a number of numerical studies using
simulations at different resolutions (e.g., Hogan et al. 1999;
Wang et al. 2000; Reade & Collins 2000a; Hogan & Cuzzi
2001; Falkovich & Pumir 2004; Collins & Keswani 2004). Here
we give a brief summary of the results from these studies.

4.3.1. Reynolds Number Dependence of the RDF

The RDF was found to increase with Re at very low Re. Wang
et al. (2000) computed the RDF at r = η in four simulated flows
with the Taylor Reynolds number, Reλ, in the range from 24 to
75. Their results show that the RDF increases linearly with Reλ

(i.e., by a factor of three as Reλ goes from 24 to 75), and that
the shape of g(St, r̃ = 1) as a function of St does not change
with Reλ (see also Hogan & Cuzzi 2001). A similar increase in
the RDF with increasing Reλ is observed by Reade & Collins
(2000a) for r = 0.025η in a similar range of Reλ.

At higher resolutions, different conclusions were obtained in
different studies. Using numerical simulations with Reλ � 130,
Falkovich & Pumir (2004) found that, for St < 1, the scaling
exponent, μ(St) of the RDF at r < η has a significant increase
with increasing Reλ. This dependence has been suggested
to have important implications for the growth of droplets
in terrestrial clouds. On the other hand, Collins & Keswani
(2004), who explored St ∼ 1 particles in a similar Reλ

range (up to 152), showed that the scaling exponent, μ(St), is
essentially independent of Reλ, and that the coefficient, C(St),
first increases with Reλ at small Reλ, and then converges to
a constant at Reλ = 152. These results suggest that the RDF
may be Re-independent at sufficiently large Re. In Section 4.1,
we found that the RDF of St � 1 particles in our simulated
flow with Reλ � 300 are in good agreement with Collins &
Keswani (2004). This supports the claim by Collins & Keswani
(2004) that the RDF is Re-independent at high Reynolds
numbers. However, we think that a conclusive answer to the
Re dependence of the RDF still needs confirmation from
simulations of higher resolutions.

The Re dependence of the RDF of St > 1 particles in the
inertial range has not been investigated. These large particles
cluster at a scale, lτp , in the inertial range, which was barely
resolved in existing studies. To accurately capture the clustering
statistics at the scale lτp , an extended range between lτp and
the flow outer scale, L, is needed, where the RDF increases
toward smaller scales (see Figure 4). This requires even higher
numerical resolutions than for the study of St � 1 particles. We
speculate that the Re dependence for St > 1 particles would
be weaker than that for St � 1 particles. In Section 2.1, we
showed that, for St < 1, the divergence of the particle flow is
proportional to the velocity gradient squared, which has a fairly
strong Re dependence. In contrast, the effective compressibility
estimated for St > 1 particles in Section 2.2 does not depend on
the flow properties. Therefore, the Re dependence for St > 1
particles is expected to be weaker. If the RDF of St � 1 particles
is Re-independent at large Re, the same is probably also true
for St > 1. Future numerical studies can test this speculation.

4.3.2. Reynolds Number Dependence of the PDF

In Section 2.1, we derived the divergence of the particle flow
for St � 1, and found that it has a quadratic dependence on
the flow velocity gradient. The PDF of the velocity gradient
in a turbulent flow is known to broaden with increasing Re.
The same is thus expected for the PDF of the particle flow
divergence, meaning that the probability of strong compressing
or expanding events is higher at larger Re. As a consequence,
the concentration PDF for St � 1 particles is likely to become
broader with increasing Reynolds number. Note that a Re-
dependent PDF does not suggest that the RDF, a second-order
statistical measure, must also depend on Re. It is possible that
the tails of a PDF broaden considerably with Re, while its
second-order moment is constant.

Broadening of the particle concentration PDF with increasing
resolution was found in the numerical study of Hogan et al.
(1999) for particles with St = 1. Hogan et al. (1999) carried
out a multifractal analysis of the particle concentration field
that can be used to extrapolate the PDFs measured from
low-Re simulations to realistic values of Re. They computed
the singularity spectra of the particle concentration field at
different scales (2 � r̃ � 8) from simulations with three
different values of Re. Figure 2 of Hogan et al. (1999) shows
that, at each Reynolds number, the spectra are different at
different scales, indicating that the particle density structures
are not self-similar at scales above 2η. This is consistent
with our observation that the RDF is not a power law at
scales above 2η in our simulations.5 Strictly speaking, the

5 The singularity spectrum at scales � η may be scale-independent because
particle structures at these scales appear to be self-similar, based on the
power-law RDFs below ∼η.
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scale dependence of the singularity spectrum means that the
particle structures are not “fractals.” However, the multifractal
analysis provides useful information on how the clustering
process proceeds with decreasing length scales. The singularity
indices are significantly smaller at smaller scales, suggesting
the development of strong particle density structures becomes
faster toward smaller r.

On the other hand, the singularity spectra at a given scale, r̃ ,
are found to be independent of the Reynolds number. Based on
this dependence, Hogan et al. (1999) gave a model to extrapolate
the concentration PDF from simulation results to that at realistic
Reynolds numbers. Applying the extrapolation to Re values
typical of turbulence in planetary disks, Cuzzi et al. (2001)
found a significant probability of finding regions (of size ∼η)
with extreme concentration enhancement (C ∼ 104–105).

The singularity spectrum of the particle concentration at 2η
measured by Hogan et al. (1999) is very similar to that of the
dissipation rate in the turbulent flow (see their Figure 2). The
reason is probably that, like the dissipation rate, the particle
velocity divergence has a quadratic dependence on the flow
velocity gradient.

Hogan et al. (1999) only investigated particles with St ∼ 1,
and the Re dependence of the concentration PDF at St < 1 or
St > 1 has not been studied. We expect that the concentration
PDF of small particles (St < 1) would broaden with increasing
Re in a similar way as St ∼ 1 particles, because the divergence
of these particles has a similar dependence on the velocity
gradients. It is unknown how the concentration PDF of St > 1
particles changes with Re. As in the RDF case, we argue that, in
the St > 1 case, the Re dependence of the concentration PDF
would be weak in comparison to the St ∼ 1 particles. This is
again based on our observation in Section 2.2 that the effective
compressibility (∼1/τp) of large particles at the clustering scale
lτp does not show an explicit dependence on the flow velocity
gradients or differences.

4.4. Interpretation of Simulation Results

Due to the limited numerical resolution, the Kolmogorov
timescale in simulated flows is usually much larger than that
in a real flow. The Stokes number of a particle of a given size
would be much smaller in a simulation than in the real flow.
A consequence of this mismatch of the Stokes numbers is that
the clustering intensity from a simulation may not correctly
reflect that in the real situation, as the clustering statistics have a
quite sensitive dependence on St . Therefore, simulation results
involving the clustering properties of inertial particles need to
be interpreted with caution.

We discuss how the clustering statistics obtained in simula-
tions may differ from that in the real flow, based on the RDF
shown in our Figure 7. This can be examined from the three
correction steps given below, which allow us to see how the real
RDF compares to that from a simulation. We use the subscript
“n” to denote the numerical results, and the subscript “r” for the
real flow.

First, for a given length scale r, r̃r in the real flow is larger
than r̃n in the simulated flow. This shifts the RDF in Figure 7
toward lower values of g, which decreases with increasing r̃ .
Second, the Stokes number is larger in the real flow than in the
simulation. This corresponds to a shift to the right side along
the RDF curve. If Stn � 1 and the shift moves St closer to
unity, this correction could give an increase in the clustering
strength. On the other hand, if Stn � 1, the shift would result in
smaller values of g. Finally, we need to account for the possible

Reynolds number dependence. The Reynolds number is larger
in the real flow and, if it exists, the Re dependence would move
the RDF curves upward (see Section 4.3.1).

We consider a specific example where the actual particle size
has Str � 1 in the real flow, but by coincidence corresponds to
Stn ∼ 1 in the simulated flow. This example is interesting for our
discussion of the planetesimal formation model in Section 6.3.
In this case, the first two steps discussed above would give a
clustering intensity much lower than in the simulated flow. In
particular, the effect of the St correction, is quite strong, as the
RDF curves in Figure 7 decrease very rapidly with increasing
St (for St > 1). Therefore, the RDF measured in the simulation
would overestimate that in the real flow by a large amount,
unless there is a strong Re dependence. The same argument
can be made for the width of the concentration PDF tails. The
Re dependence to be applied here is that for the clustering of
St > 1 particles at inertial-range scales, which has not been
studied. In Sections 4.3.1 and 4.3.2, we argued that the Re
dependence for these particles is likely to be weak. Therefore,
the Re dependence may not be able to compensate the decrease
in g resulting from the first two corrections. We thus conclude
that, if in a simulation the particle Stokes number has an artificial
value close to unity, the clustering intensity of those particles
may be significantly overestimated. This needs to be considered
when interpreting results from astrophysical simulations.

4.5. Back-reaction

We have only considered the effect of the turbulent flow
on the inertial particles, but neglected the dynamical effect
of the inertial particles on the carrier flow. As shown in our
simulations, turbulent clustering can give rise to regions with
particle concentration enhanced by a factor of 103 (see Figure 4),
leading to local particle densities even larger than the flow
density. In these regions, the feedback effect from the mass
loading is not negligible, and a discussion of the two-way
interactions between the particles and the flow is needed.

The modulation of the carrier flow by the back-reaction from
the particle phase has been shown to depend on the particle
size. Different results have been found for St < 1 particles
and St > 1 ones, concerning how the back-reaction changes
the turbulent kinetic energy, how the kinetic energy transfers
between the flow and particle phases, and how the energy
spectrum of the flow is affected by the two-way coupling
(Sundaram & Collins 1999; Boivin et al. 1998; Ferrante &
Elghobashi 2003; Shotorban & Balachandar 2009).

Here we are more interested in the effect of the two-way
coupling on the clustering intensity. From brief discussions in
Sundaram & Collins (1999, for St > 1) and in Shotorban &
Balachandar (2009, for St < 1), we see that including the back-
reaction gives only a slight change (�10%) in the RDF and the
particle concentration variance. It seems that the second-order
clustering statistics is not significantly affected by the back-
reaction if the rms mass loading factor is smaller than one. A
systematic study of the effect of two-way coupling on the RDF
is needed to confirm if this is indeed the case.

On the other hand, the particle feedback may considerably
affect the tails of the particle concentration PDF because clusters
of high particle concentration can induce much larger mass
loading than the rms level. Hogan & Cuzzi (2007) studied the
back-reaction effect on the concentration PDF for particles with
St = 1. They built up a model assuming that the development
of the fluctuations in the particle concentration and the flow
enstrophy (defined as vorticity squared, ω2) can be described
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as a joint cascade process. In the model, a flow parcel breaks
up into two equal-sized subdivisions in each cascade step,
and the partitioning of the particle concentration and the flow
enstrophy in the two subdivisions is controlled by a probability
distribution, called the multiplier PDF. Hogan & Cuzzi (2007)
computed the multiplier PDF for the step from 3η to 1.5η in
their simulations, and found that the multiplier PDF becomes
narrower as the mass loading factor, Φm, exceeds ∼10. When
Φm becomes larger than ∼100, the multiplier PDF is essentially
a delta function, meaning that the bifurcation of the particle
density stops in these highly loaded regions. This sets an upper
limit for the concentration enhancement: the particle density
cannot exceed 100 times the flow density. In short, the particle
back-reaction was found to suppress the probability of forming
particle clusters with extreme concentration enhancements.

The two-way interactions between the dust particles and the
turbulent flow give rise to an interesting phenomenon in differen-
tially rotating circumstellar disks. Youdin & Goodman (2005)
found that, with two-way coupling, the presence of a radial
pressure gradient in such disks leads to an instability, named
the streaming instability. They suggested that the instability can
produce local particle overdensities, which may help the forma-
tion of planetesimals. The simulations by Youdin & Johansen
(2007) confirmed the instability and its clumping effect.
Johansen & Youdin (2007) showed that, in the saturation stage
of the instability, the effect is most prominent for marginally
coupled particles with friction timescales close to the rotation
period of the disk.

Johansen et al. (2007) showed that including the particle feed-
back amplifies the maximum concentration from particle clus-
tering in the disk turbulence driven by the magneto-rotational
instability (MRI). It suggests that the streaming instability from
two-way coupling gives enhanced clustering strength in such
disks. This appears to be different from the case of isotropic
turbulence where the particle feedback reduces the high tails of
the concentration PDF. (We note, however, that the maximum
particle density does not exceed 100 times the flow density in
the simulations of Johansen et al. (2007) with no self-gravity.)
The amplification in the clustering intensity by the streaming
instability was important for the planetesimal formation model
of Johansen et al. (2007). A more detailed discussion of their
model will be given in Section 6.3.

5. CLUSTERING STATISTICS OF
PARTICLES OF DIFFERENT SIZES

So far we have only studied clustering of particles of the
same size. In this section, we consider the relative spatial
distribution of different particles. As mentioned earlier, the
particle clustering location shifts in space as the particle size
changes. This has interesting consequences for the clustering
statistics of particles of different sizes. We quantify this effect
by analyzing our simulation data.

5.1. The Bidisperse RDF

We first compute the bidisperse RDF, g(St1, St2, r), for two
different particles with Stokes numbers St1 and St2, which is
defined as the probability of finding a particle with St2 (or St1)
at a distance r from a reference particle with St1 (or St2). The
computation is done in a similar way as for the monodisperse
case. The RDF for the bidisperse case is equivalent to the two-
point cross-correlation function for the (number) density fields
of two different particles.

Figure 10. Bidisperse RDFs for different Stokes number pairs. One of the
Stokes numbers, St1, is fixed at 1.2. The dotted line is the monodisperse RDF
for St = 1.2. Thinner lines are used to plot RDFs with St2 farther away
from St1.

Figure 10 shows the bidisperse RDF as a function of the
length scale for different Stokes number pairs. One of the
Stokes numbers is fixed at St1 = 1.2, and the dotted line is
the monodisperse RDF with St = 1.2. We see that, at large
scales, the bidisperse RDF is close to the monodisperse one.
This is because the particle clusters are generally located at the
same regions when viewed at these large scales. With decreasing
length scale, the bidisperse RDF becomes flat, consistent with
results by Reade & Collins (2000b) and Zhou et al. (2001).
This indicates that the density fields of the two different
particles become less correlated at smaller scales. The spatial
separation between clustering locations becomes visible when
examined at small scales. The length scale at which the RDF
flattens increases as the ratio of the particle sizes increases,
corresponding to a larger separation between the clustering
positions of the two particles. Similar behaviors have been found
for the bidisperse RDFs with other values for the fixed Stokes
number St1. Chun et al. (2005) showed that the flattening trend
exists as long as there is a difference in the particle sizes. Even if
the Stokes number difference is small, one still finds a flat part in
the RDF when going to sufficiently small scales, due to the finite
(but small) shift in the clustering locations. This result suggests
that, in the bidisperse case, the clustering effect contributes less
to the particle collision rates than to the monodisperse case.

In Figure 11, we show the bidisperse RDF as a function of
St2. The other Stokes number St1 is fixed at 1.2. Different curves
correspond to different length scales. For r̃ ∼ 1, the bidisperse
RDF peaks at St2 ∼ St1, and decreases rapidly as the Stokes
number ratio increases. The RDF is significantly reduced as
the ratio increases to 3, and the density fields are essentially
uncorrelated when the Stokes number ratio is larger than 10. At
larger length scales, the RDF peak moves to the right. This is
because at these scales (r � η) large particles (St > 1) have
stronger density fluctuations than smaller ones (St < 1).

In summary, we found the bidisperse RDF becomes flat at
small scales because particles of different sizes tend to cluster at
different places. The bidisperse RDF decreases with increasing
particle size ratio, and the effect of clustering on the particle
collision rates between different particles is weaker than in the
monodisperse case. The overall fluctuation amplitude of the
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Figure 11. Bidisperse RDFs at six length scales. St1 is fixed at 1.2.

particle density may be significantly suppressed if the particle
size spanned an extended range.

5.2. The Concentration PDF for Multiple Particle Sizes

In Figure 12, we show the concentration PDFs for two
combinations of different particles with St centered around 1.2.
For comparison, we also plot the PDF for the monodisperse
case with St = 1.2 (the dotted line). The dashed lines and the
solid lines correspond to the results for combinations of three
and five different particle sizes, respectively. The concentration
factor shown in Figure 12 represents the enhancement in the
total number density in local regions relative to the average.
When computing C in each local region, we obtained the local
number density by counting the total number of particles with
sizes in the chosen range and then divided it by the average. Each
particle size was given the same weighting factor as we have
the same number of particles for each size in our simulations.
The concentration C computed this way can be understood
as the enhancement factor in the particle mass density if the
particle size distribution is such that the total mass of particles
of each size is the same. Figure 12 is just an illustration of
how the concentration PDF changes in the presence of multiple
particle sizes. For practical applications, one needs to use the
proper weighting factor for each size according to the actual
size distribution.

At r = 1.25η, the PDF moves toward significantly smaller C,
as the particle size range increases. There are two reasons for the
behavior. First, at scales ∼η, the degree of clustering for each
individual size decreases as the Stokes number gets farther from
1.2. Including particles with St larger or smaller than 1 leads
to weaker overall clustering. Second, the bidisperse RDFs in
Figure 10 show that if the Stokes number ratio of two particles
is larger than 2, their clustering locations do not overlap at
length scales r ∼ η. This means that particles of different sizes
chosen in Figure 12 essentially occupy different places when
viewed at scales �η. This has the effect of smoothing out the
fluctuations in the overall particle density distribution, giving
narrower PDF tails. The maximum C in the measured PDFs at
r = 1.25η and 2.5η for the five-particle case is smaller than
for the monodisperse case (dotted line) by a factor of four to
five. This confirms that the strongest clusters of the five particles
are spatially separated, with the typical separation larger than

Figure 12. Cumulative concentration PDFs at different length scales for multiple
particle sizes. The dotted line corresponds to the monodisperse case with
St = 1.2, and the dashed and solid lines are for three and five particle sizes,
respectively.

∼η. The shift of the PDF tail toward smaller C implies that the
probability of finding particle clusters of extreme concentration
level is greatly reduced if the particle size has an extended range.
Therefore, using a single typical (or average) particle size to
approximate a size distribution could significantly overestimate
the clustering intensity.

As the length scale increases, the shift of the PDF tail becomes
smaller, and at r = 40η the tail is essentially unchanged.
One reason is that the clustering locations of these particles
overlap when viewed at r = 40η (see Figure 10 and the
discussion in Section 5.1). Also unlike the case of small scales
(r � η) where the clustering intensity peaks at St � 1, at
r = 40η the clustering strength for particles of each individual
size keeps increasing as St increases from 0.31 to 4.9 (see
Figure 7). Therefore, the clustering intensity of larger particles
(i.e., St = 2.4, 4.9) and smaller particles (i.e., St = 0.31, 0.62)
is, respectively, higher and lower than that from particles of
average size (St = 1.2), and their contributions to the overall
clustering can compensate each other. This explains why the
PDF at 40η is almost unchanged.

We also computed the concentration PDFs for combinations
of particle sizes centered around St = 10. In that case, we found
that the PDF at 40η for a combination of five different particles
with St = 2.4, 4.9, 10, 21, and 43 is significantly narrower than
the monodisperse PDF for St = 10. The effect of the existence
of multiple particle sizes on the overall clustering intensity at
a given scale depends on both the average particle size and the
width of the size distribution. The effect can be understood by
considering whether the clustering locations of these particles
overlap and how much each individual size contributes to the
overall clustering.

To summarize, we find that the presence of an extended parti-
cle size range tends to reduce the overall clustering intensity, and
thus an accurate estimate of the clustering amplitude requires a
careful consideration of the particle size distribution.

6. APPLICATION TO PROTOPLANETARY DISKS

Turbulent clustering of inertial particles has potential appli-
cations to dust particles in many astrophysical environments,
such as the interstellar medium, protoplanetary disks, and the

14



The Astrophysical Journal, 740:6 (21pp), 2011 October 10 Pan et al.

atmospheres of planets and dwarf stars. As mentioned earlier,
clustering of dust grains may significantly increase their col-
lision rates for particles of similar sizes, and thus needs to be
considered in coagulation models. Here we will consider clus-
tering of dust particles in protoplanetary disks and, in particular,
its role in models for planetesimal formation. Applications to
different environments may require exploring other complexi-
ties. For example, a study of dust grain dynamics in interstellar
clouds needs to account for the Lorenz force due to the electrical
charges on the grain surface and the presence of magnetic fields
in the clouds.

Preferential clustering of inertial particles in turbulence has
attracted attention from the community of planet formation be-
cause it may provide a possible solution to the long-standing
problem of planetesimal formation. As mentioned in the In-
troduction, the classic planetesimal formation theory is chal-
lenged by the self-generated turbulent stirring, and the growth
of dust particles to kilometer size by collisional coagulation suf-
fers from the meter-size barrier. Two potential solutions to this
problem have been recently proposed by Johansen et al. (2007)
and by Cuzzi et al. (2008). The model by Cuzzi et al. (2008)
is directly based on turbulent preferential clustering. Particle
clumping in the simulations of Johansen et al. (2007) may also
have contribution from turbulent clustering. Before discussing
these models, we first consider the properties of turbulence in
protoplanetary disks.

6.1. Turbulence in Protoplanetary Disks

Following Cuzzi et al. (2001), we use the α prescription
for turbulence in the disks, i.e., the turbulent viscosity, νt, is
parameterized as νt = αCsH . An α value in the range of 10−3

to 10−5 is consistent with observations (see discussions in Cuzzi
et al. 2001, 2008). The scale height, H, of the disk is given by
H � Cs/ΩK, with ΩK being the Keplerian rotation frequency.
The turbulent viscosity can be estimated from the turbulent rms
velocity, U, and the integral scale, L, by νt � UL. Assuming
the turnover time, ∼L/U , of the largest turbulent eddies is of
the order of ∼ Ω−1

K (Cuzzi et al. 2001), we have U = α1/2Cs

and L = α1/2H .
We assume a standard minimum-mass solar nebula where

the density and temperature profiles are given by ρg = 1.7 ×
10−9(R/AU)−2.75 g cm−3 and T = 280(R/AU)−0.5 K. With
these scalings, we find U = 103α

1/2
−4 (R/AU)−0.25 cm s−1 and

L = 5 × 104α
1/2
−4 (R/AU)1.25 km, where α−4 ≡ α/10−4. To cal-

culate the Kolmogorov scales, we need to estimate the molecular
viscosity, ν. Assuming a cross section of 2.5 × 10−15 cm2 for
hydrogen molecules, we have ν = 5 × 104(R/AU)2.5 cm2 s−1.
We then obtain η = 5 × 103α

−1/4
−4 (R/AU)2.38 cm and τη =

5 × 102α
−1/2
−4 (R/AU)2.25 s. The friction timescale is given by

τp = 6 × 103(ap/cm)(R/AU)3 s, where we assumed the density
of the dust material is ρd = 1 g cm−3 and used the formula,
Equation (2), for the Epstein regime. Finally, we find that the
Stokes number is St = 12(ap/cm)(R/AU)3/4. Therefore, at
1 AU, the particle size with most intense turbulent clustering
(St � 1) is ap � 0.1α

−1/2
−4 cm.

In our discussions below on planetesimal formation models,
we will take the radius 5 AU as an example. Using the formulas
given above, we find U = 7α

1/2
−4 m s−1 and L = 4 × 105α

1/2
−4

km at 5 AU. The Kolmogorov length and timescales are,
respectively, η � 2α

−1/4
−4 km and τη � 2 × 104α

−1/2
−4 s. The

friction timescale is given by τp = 8 × 105(ap/cm) s, and

we have the Stokes number St = 40α
1/2
−4 (ap/cm). Therefore,

at 5 AU the particle size corresponding to St = 1 is ap =
0.025α

−1/2
−4 cm.

As summarized by Brauer et al. (2008a) and others, the-
oretical disk models, millimeter-wavelength observations, as
well as a careful reevaluation of the minimum-mass solar neb-
ular by Davis (2005) all find radial density profiles flatter than
the conventional −3/2 power law. Brauer et al. (2008a) adopt
ρg ∝ R−0.8, and, with this flatter density profile, the gas den-
sity at 1 AU would be 30 times smaller given the total mass of
the disk. This gives changes to some quantities of interest here,
which can be seen by examining their density dependence. For
example, the friction timescale τp scales with ρg as ρ−1

g in the
Epstein regime. The Kolmogorov length- and timescales de-
crease with ρg as ρ

−3/4
g and ρ

−1/2
g , respectively. More interest-

ingly, we have St ∝ ρ
−1/2
g . Therefore, if the gas density at 1 AU

is 30 times smaller, then the particle size with most intense clus-
tering at 1 AU will be reduced by a factor of 5.5, relative to the
case of a standard minimum-mass solar nebula.

The optimal particle size for turbulent clustering in planetary
disks may correspond to the size of chondrules, depending on
the specific disk physical parameters. Cuzzi et al. (2001) sug-
gested that turbulent clustering can play an important role in
collecting and sorting chondrules in primitive chondritic me-
teorites. Using simulations that include multiple particle sizes,
they showed that the particle size distribution in dense clus-
ters produced by turbulent clustering is in good agreement with
the size distribution of chondrules found in chondritic mete-
orites. However, size sorting alone is not sufficient to explain
the formation of large bodies (planetesimals or asteroids) with
a significant fraction of their mass in the form of chondrule
inclusions. Some other mechanism responsible for the aggrega-
tion of chondrules into larger bodies (and also an explanation
for the origin of their thermal processing) must be envisioned.
Cuzzi et al. (2008) proposed that large self-gravitating clusters
of chondrule size particles could contract into planetesimals,
which we discuss next.

6.2. The Model by Cuzzi et al. (2008)

Cuzzi et al. (2008, hereafter C08) outlined a mechanism for
planetesimal formation, based on dense clumps of chondrule-
size particles produced by turbulent clustering. C08 first found
that, due to the gas pressure and the fact that the chondrule-
size particles are quite tightly coupled to the gas flow, even
the densest clumps (with a local particle-to-gas ratio ∼100)
cannot undergo a direct gravitational collapse. Instead, the self-
gravity only leads to a gradual and gentle sedimentation of
particles toward their mutual center. A slowly contracting clump
is subject to various disruption mechanisms. An examination of
the ram pressure disruption by head winds from the gas flow
gives a constraint on the clump size. For a clump with the
maximum loading factor of 100, its size is required to be larger
than ∼104 km in order for self-gravity to be able to stabilize it.
These persistent clumps would form “sandpile” planetesimals
of 10–100 km, once the particle sedimentation toward the clump
center is complete.

Cuzzi et al. (2010) and Chambers (2010) further developed
this idea and gave quantitative predictions for the planetesimal
formation rate and the initial mass function of asteroids (Cuzzi
et al. 2010). The key element in these studies is the prediction of
the probability of finding clumps of sufficient size (�104 km)
and intensity (with local Φ ∼ 100). From the calculations in
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Section 6.1, at 5 AU the integral scale is L � 4 × 105 km
and the Kolmogorov scale is η ∼ 2 km. This means that the
critical clump size 104 km is within the inertial range of the disk
turbulence. Therefore the prediction of the probability requires
understanding of turbulent clustering at inertial-range scales,
which, however, has not been well explored. In their quantitative
predictions for that probability, Chambers (2010) and Cuzzi
et al. (2010) made use of the cascade mode for the joint PDF of
the particle concentration and the flow enstrophy developed by
Hogan & Cuzzi (2007).

Before discussing the prediction of the cascade model, we
first have a look at Figure 1 in C08, which was used to illustrate
the existence of strong particle clusters. From this figure, we
can obtain a rough estimate of the probability of finding strong
clumps of size 104 km. The figure plots the concentration
PDFs of St = 1 particles for the case neglecting particle
back-reaction, and it shows both the PDFs measured from the
low-Re simulations and those extrapolated to the realistic Re
values using the multifractal model of Hogan et al. (1999).
As mentioned earlier, the latter is much broader. The PDFs in
Figure 1 of C08 represent the probability of finding clumps
of size 2η � 4 km. To estimate the probability for clumps of
size 104 km, we need to increase the length scale by a factor
of ∼3 × 103. In Section 4.2, we showed that the PDF tails
become narrower with increasing length scales. For example,
as the length scale increases from 2.5η to 40η in our Figure 8,
the PDF tail moves to the left, and the concentration C in
the high tail decreases by a factor of ∼50. This indicates a
very sensitive dependence of the PDF tail on the length scale.
Increasing the length scale by a factor of 3 × 103 (from 2η to
104 km) would push the extrapolated PDFs in Figure 1 of C08
to the left by two or three orders of magnitude, resulting in a
narrow PDF at 104 km. The concentration level at the high tail
(with P (> C) � 10−6) would be reduced to around or below
C ∼ 100.

We also note that the particle concentration PDF shown in
Figure 1 of C08 is mass-weighted. To estimate the probability
of finding particle clumps of a given size, we need to use the
volume-weighted PDF. This means that another correction is
needed to account for the difference between the volume- and
mass-weighted PDFs. This correction also gives a significant
reduction because the volume-weighted PDF is narrower than
the mass-weighted one (see Section 4.2).

The discussion above shows that dense clumps of size 104

km are quite rare, and the probability of finding such a clump
is much smaller than the direct impression one may have from
Figure 1 of C08. The small probability is due to the narrow
scale range (between the turbulence integral scale and 104 km)
available for turbulent clustering to proceed.

We next argue that the cascade model used in the quantitative
calculations of Chambers (2010) and Cuzzi et al. (2010) may
considerably overestimate the probability of finding large and
dense particle clumps for planetesimal formation. In their
Appendix A, C08 preformed a 24 level cascade for St = 1
particles, and found a significant probability (10−5–10−6) for the
existence of clumps with C = 1000 (see Figure 5 in C08). A 24
level cascade corresponds to a scale range of 256. Therefore, if
the turbulent outer scale L = 4×105α

1/2
−4 km, the prediction was

for the scale ∼2000α
1/2
−4 km. We can roughly estimate the PDF

tail at this scale by making adjustments (including the length
scale increase and the mass- to volume-weighting correction), to
the extrapolated PDFs at 2η in Figure 1 of C08 (see discussions

above). It appears that the probability for C = 1000 estimated
this way is much smaller than predicted by the cascade model,
suggesting a significant overestimate may exist in the cascade
model prediction.

We give a physical argument on why the cascade model
may considerably overestimate the clustering intensity. The
prediction of the cascade model depends on the multiplier PDF
that controls each cascade step (Section 4.5). The multiplier
PDF used in C08 and the follow-up studies was measured from
a cascade step in the dissipation range, from 3η to 1.5η (see
Hogan & Cuzzi 2007). This multiplier PDF was assumed to
apply to all cascade steps including those in the inertial range.

The validity of using the multiplier PDF from the 3η–1.5η
step in all cascade steps relies on the scale invariance of
the multiplier PDF. Hogan & Cuzzi (2007) were concerned
with this issue and gave some indirect evidence for this scale
independence. However, it was not directly verified, due to
the limitations in the numerical resolution and the number
of particles. In fact, it is reasonable to suspect the multiplier
PDF may have a scale dependence considering that the density
structures in the inertial range are not self-similar in simulations
neglecting the back-reaction. This non-similarity was seen
from the RDF (Section 4.1) and the scale dependence of the
singularity spectra of the particle density field measured by
Hogan et al. (1999; see discussions in Section 4.3.2). As
mentioned earlier, these results suggest that the clustering
process occurs faster and faster as the length scale decreases
toward η. Therefore, if one measures the multiplier PDF for the
particle concentration in the simulations neglecting the back-
reaction, its width would decrease with increasing length scales.
If the cascade process has the same trend when the back-reaction
is included, then the multiplier PDF in the inertial range would
be narrower than that from the 3η–1.5η step. This is of special
concern for scales (∼104η) well separated from the Kolmogorov
scale, η. Considering the large number of cascade steps, a slight
overestimate in the multiplier PDF could result in a significant
overestimate for the tail of the concentration PDF. There is a
possibility that the inclusion of particle back-reaction may lead
to a scale-independent multiplier PDF, but this remains to be
verified.

The argument above suggests that the planetesimal formation
rates calculated by Chambers (2010) and Cuzzi et al. (2010)
using the cascade model could have been overestimated sub-
stantially. Chambers (2010) and Cuzzi et al. (2010) found that,
to satisfy various constraints, the mean dust-to-gas ratio is re-
quired to be much larger than the standard value. If the cascade
model overestimates the clustering intensity, then the required
dust-to-gas ratio is even higher.

C08 and the follow-up studies only considered a single par-
ticle size corresponding to St = 1. As discussed in Section 5.2,
the concentration PDF tends to become narrower if the par-
ticles size has a broader distribution around the average size.
Therefore, using a typical particle size to approximate the entire
size distribution may significantly overestimate the probabil-
ity of finding strong clusters. It is likely that dust particles in
protoplanetary disks have an extended size range as a result of
coagulation (see, e.g., Dullemond & Dominik 2005). An accu-
rate estimate for the probability requires a careful consideration
of the effect of the particle size distribution on the clustering
intensity.

In Section 4.1, we found that, at a length scale r in the inertial
range, St > 1 particles can have higher clustering intensity
than St = 1 particles. For r ∼ 104η, the particles that have the
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strongest clustering would be those with St ∼ 300, assuming
the clustering length scale for St > 1 particles increase with St
as St3/2. With the disk parameters adopted in Section 6.1, the
Stokes number, St = 300, corresponds to a particle size of a few
to 10 cm at 5 AU. Clearly, this size varies with the parameters,
and its exact value depends on the precise physical conditions
in protoplanetary disks. If the clustering intensity is the primary
concern for the C08 model of planetesimal formation, then
considering Stoke numbers ∼300 may be a better choice because
these values of St give stronger clustering than St = 1 at scales
∼104 km. However, the concentration PDF for St ∼ 300 at the
scale of 104 km may also be quite narrow.

In summary, the estimate of the probability of finding suf-
ficiently large and dense clumps needed in the planetesimal
formation model by C08 requires an understanding of turbulent
clustering at inertial-range scales. Our discussion suggests that
the cascade model of Hogan & Cuzzi (2007) may significantly
overestimate the probability of finding the required clumps, and
thus Chambers (2010) and Cuzzi et al. (2010) could have over-
estimated the planetesimal formation rates by the C08 mecha-
nism. A future systematic study of the inertial-range clustering,
accounting for various effects such as the presence of multi-
ple particle sizes, is needed to better quantity the planetesimal
formation rate of the C08 model.

6.3. The Model by Johansen et al. (2007)

Johansen et al. (2007, hereafter J07) carried out numerical
simulations evolving meter-size boulders in the MRI-driven
turbulence in protoplanetary disks. Dense particle clumps are
observed in the simulations. In their runs neglecting the par-
ticle back-reaction, the solids-to-gas ratio reaches a maximum
of several tens in the densest particle clumps. The maximum
concentration level is further amplified by an order of mag-
nitude when the particle back-reaction is included. The parti-
cle density in the densest clumps is ∼100 times the local gas
density, and these clumps of meter-size particles can undergo
gravitational collapse, leading to rapid formation of planetesi-
mals. In this subsection, we discuss various clustering mecha-
nisms that contribute to the formation of particle clumps in J07
simulations.

For realistic turbulent flows in rotating disks, three distinct
scale ranges are expected. The first range is the large scales
dominated by the rotation effects. The second one is the inter-
mediate length scales regulated primarily by nonlinear interac-
tions, where the flow statistics are expected to be isotropic. The
planetesimal formation model by Cuzzi et al. (2008) discussed
in Section 6.2 is based on turbulent clustering in this range.
The last is the dissipation range at the smallest scales. The lim-
ited resolution in J07 simulations does not resolve scales in
the intermediate range, and thus the rotation-dominated scales
connect directly to a dissipation range corresponding to the
hyper-diffusion term used in their simulations. We discuss the
clustering effects in these two scale ranges separately.

In the rotation-dominated range, the effect of the Coriolis
force is of particular interest. The Coriolis force has the effect
of pushing particles toward the cores of anticyclonic vortices
(whose vorticity is opposite to the disk rotation), leading to
particle trapping in these vortices (e.g., Barge & Sommeria
1995). Numerical studies in two-dimensional found long-lived
anticyclonic vortices, and particle trapping in these vortices
was proposed to be a candidate mechanism for planetesimal
formation (e.g., Bracco et al. 1999). However, for realistic three-
dimensional flows, the origin, the stability, and the lifetime of

anti-cyclonic vortices have been debated (e.g., Johansen et al.
2004; Fromang & Nelson 2005; Barranco & Marcus 2005).

Numerical simulations have shown that long-lived large-scale
zonal flows exist in MRI-driven turbulence (e.g., Johansen et al.
2009a; Fromang & Stone 2009). Associated with these zonal
flows are large-scale pressure bumps (where the vorticity is
supposedly anticyclonic). The particle trapping capability of
these pressure bumps was emphasized by Johansen et al. (2011).
Comparing results from 2563 and 5123 simulations, they found
numerical convergence for the strength of the pressure bumps
and the particle trapping effect (Figure 5 of Johansen et al. 2011).
However, the clustering intensity at these large scales seems to
be low.

Figure 2 of J07 shows the formation process of gravitationally
unstable clumps. More impressive than the large-scale clumps,
strong particle clusters are seen at the smallest scales in
the central four panels showing the particle concentration
field before self-gravity is turned on. Some degree of radial
contraction occurs around the small clumps after the gravity
is turned on, and in a few rotation periods planetesimals form
out of the contracted clusters. This suggests that the small-scale
clusters may provide the primary seeds for the gravitational
collapse of planetesimals, and thus clustering at small scales
appears to be more important for the J07 model than the large-
scale clumping. The maximum concentration factor reported
in J07 is measured at the smallest scale in the simulations,
corresponding to ∼1.6 × 105 km. A dense cluster at this scale
can have sufficient mass to form a planetesimal of a fairly large
size.

Given the apparent importance of small-scale clustering in
J07, we now briefly discuss the clustering physics at small
scales in the dissipation range of their simulations. An important
quantity for the small-scale clustering is the Kolmogorov
timescale. Using the rms vorticity provided by A. Johansen
(2007, private communication), we calculated the Kolmogorov
timescale, τη = 〈ω2〉−1/2, which is 0.18 Ω−1

K in the 2563 run.
With this value of τη, the friction timescales ((0.25–1)Ω−1

K ) of the
four particle sizes chosen in J07 correspond to a Stokes number
range St ∈ (1.4–5.6). These numbers are close to unity, and
thus turbulent clustering, in the sense of particle accumulation in
strain-dominated regions (Section 2.1), may have considerable
contribution to the small-scale clustering in J07.

Because the Kolmogorov timescale τη is only moderately
smaller than the rotation period, the effect of the Coriolis force is
not negligible even at the smallest scales in the J07 simulations,
and it may also contribute to the small-scale clustering. We
analyze the Coriolis effect from a derivation of the particle
flow divergence using the same approach as in Section 2.1.
The derivation yields two interesting terms. The first one is
τp(ω2/2 − sij sij ), which is the same as that given in Section 2.1
and thus corresponds to turbulent clustering. The second term
is from the Coriolis force, and is given by 2τpΩKωz, where ωz

is the vorticity component in the direction of disk rotation. This
term reflects the trapping effect of the anticyclonic vortices.
The derivation here is under the assumption that τp < τη. This
condition is not strictly satisfied for particles in J07. However,
those particles have St close to 1, and the derived divergence
terms give a useful illustration for the Coriolis effect on particle
clustering at small scales.

We first point out that the Coriolis term only acts on vorticity
in the z-direction, and does not affect turbulent clustering due to
vortices in other directions. For vorticity in the vertical direction,
the amplitude of the Coriolis term, 2τpΩKωz, is close to the
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vorticity term, τpω
2/2, for turbulent clustering, since ω � 5ΩK.

This suggests that, in anticyclonic vortices, the Coriolis force
is strong enough to resist the particle expelling effect from
turbulent clustering. On the other hand, the Coriolis force helps
turbulent clustering push particles out of the cyclonic vortices.
The opposite effects of the Coriolis force in anticyclonic and
cyclonic vortices may cancel each other, and the clustering
intensity in the strain-dominated regions may be similar to that
due to the turbulent clustering effect alone.

The contribution from turbulent clustering is artificial in the
sense that, due to the limited resolution, the friction timescales of
the chosen particles happen to be close to the smallest timescale
in the simulated flow. As discussed in Section 4.4, for particles
with an artificial St value close to 1 in a simulated flow,
the clustering intensity is likely to decrease as the numerical
resolution (or Re) increases. This is because St becomes larger
with increasing Re, causing a reduction in the clustering strength
(see Section 4.4 for a detailed discussion). In the real flow, the
meter-size particles chosen by J07 have huge Stokes numbers,
St � 2000 at 5 AU, and for such large St the contribution from
turbulent clustering is likely to be negligible. As for the effect
of the Coriolis force on the small-scale clustering, it is not clear
how it would change with increasing resolution.

Johansen et al. (2011) conducted simulation runs at two
resolutions, 2563 and 5123. Their Figure 7 shows the total
mass of gravitationally bound clumps and the mass of most
massive clumps as a function of time in the two runs. Although
it converges at late times, the total mass is smaller in the 5123

simulation than in the 2563 one in the early stage, when the
formation of bound objects primarily depends on dense particle
clusters. The mass of the most massive clumps in the 5123

run is also smaller than in the 2563 run at all times. This
could be due to the numerical reasons given in Johansen et al.
(2011). The other possibility is that the small-scale clustering is
actually less strong in the 5123 run where the Stokes numbers are
larger. The latter would be expected if turbulent clustering were
the dominant (though artificial) clustering mechanism at small
scales.

We finally discuss the effect of particle back-reaction on the
clustering intensity. As mentioned earlier, J07 found that in-
cluding the back-reaction significantly increases the clustering
amplitude. This was argued to be due to the streaming instability
(Youdin & Goodman 2005; see discussions in Section 4.5). The
particles chosen in J07 are marginally coupled to the disk rota-
tion, and the effect of the streaming instability was shown to be
most prominent for these particles (Johansen & Youdin 2007).
Bai & Stone (2010) studied numerical convergence for the
steaming instability with two-dimensional simulations neglect-
ing vertical stratification, and found that the particle concentra-
tion PDF converges at the resolution of 20482. However, due to
the peculiar properties of two-dimensional turbulent flows, it is
not clear if a similar convergence would also be found in three
dimensions. If such a numerical convergence is confirmed by
future three-dimensional simulations including the effect of ver-
tical stratification, then, as the numerical resolution increases,
the streaming instability can maintain sufficiently high cluster-
ing intensity for the planetesimal formation mechanism by J07,
even though the contribution from turbulent clustering at small
scales would decrease.

To summarize, we argued that, along with other clumping
mechanisms, turbulent clustering gives considerable contribu-
tion to the small-scale clumps in the simulations by J07. This
contribution is due to the limitation in the numerical resolution,

and would probably decrease as the resolution increases. Future
work is needed to investigate how the small-scale clustering in-
tensity changes with numerical resolution, and hence quantify
the relative importance of turbulent clustering.

7. CONCLUSIONS

We have studied the spatial clustering of inertial particles
suspended in turbulent flows using numerical simulations. We
have presented a detailed analysis of the clustering statistics for
11 particle sizes covering the approximate Stokes number range
0.1 � St � 100. From the simulation data, we have measured
the RDF and the probability distribution function of the particle
concentration. Our main results are summarized as follows.

1. For St � 1, the clustering intensity increases with St , and
very strong clustering is found in the dissipation range. On
the other hand, if St > 1 and τp corresponds to an inertial-
range timescale in the turbulent flow, clustering occurs
primarily at an inertial-range scale, lτp . The clustering
intensity at the scale lτp decreases with increasing St . At
scales below ∼η, the RDF has a strong peak at St � 1
and decreases rapidly as St gets away from 1. At a given
inertial-range scale, the maximum clustering intensity is
from particles with τp in the inertial range.

2. For St ∼ 1, the RDF increases rapidly toward smaller
scales and reaches large values at scales well below the
Kolmogorov scale, η. This suggests that turbulent clustering
can strongly increase the particle collision rates due to the
enhanced probability of finding nearby particles. At all
Stokes numbers, the RDFs below η follow power laws,
and the scaling exponent, μ, peaks at St � 1. The increase
of the RDF can continue to the larger of the two scales: the
Brownian scale or the particle size.

3. At small scales (∼η), particles with St � 1 show the
broadest PDF tails. In our 5123 simulation with Reλ � 300,
the PDF tail of St = 1.2 particles reaches C ∼ 100–1000
at r ∼ η. The PDF width for these particles decreases
rapidly as the length scale increases, consistent with the
RDF results. At a given inertial-range scale, the PDF
width peaks at a Stokes number in the inertial range (i.e.,
St > 1), and the Stoke number with maximum PDF width
increases with increasing length scale. This suggests that,
at length scales relevant for the formation of planetesimals
in protoplanetary disks, the strongest clustering would be
achieved by particles with St much larger than 1.

4. Consistent with previous studies, the bidisperse RDF be-
tween particles of different sizes becomes flat at small scales
because different particles tend to cluster at different loca-
tions. Therefore, the contribution from turbulent clustering
to the collision rate between different particles is weaker
than in the case of identical particles. The spatial drift of the
clustering location as the particle size changes has the effect
of smoothing the overall spatial distribution of the particles.
This tends to make the particle concentration PDF narrower
if the particle size distribution spans an extended range. Us-
ing a typical size instead of the actual size distribution may
significantly overestimate the overall clustering intensity.

Several recent studies have proposed that strong clustering of
dust particles in protoplanetary disks could provide a solution to
the problem of planetesimal formation. The model of Cuzzi et al.
(2008) is based on particle clusters of sufficient size (104 km)
and concentration level (with local mass loading factor Φm ∼
100) produced by turbulent clustering. The probability of finding
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these strong clusters depends on the clustering statistics at
inertial-range scales, which are not well understood. We argued
that the cascade model used by Cuzzi et al. (2010) and Chambers
(2010) may significantly overestimate this probability and hence
the predicted planetesimal formation rate. Further numerical
studies are needed to better quantify the amplitude of turbulent
clustering in the inertial range and set firmer constraints on this
planetesimal formation model.

We discussed various clustering mechanisms in the planetes-
imal formation simulations of Johansen et al. (2007, 2011). We
argued that turbulent clustering may have considerable contri-
bution in these simulations, because the particle sizes chosen in
the study happen to have St around unity due to the limited nu-
merical resolution. The contribution is likely to decrease with
increasing resolution and become negligible as the Reynolds
number increases to its realistic value. Further numerical work
should establish that particle clustering by other mechanisms in
the simulations by Johansen et al. (2007), such as the particle
trapping effect by the Coriolis force and the streaming insta-
bility, remains intense as the resolution increases, allowing the
formation of planetesimals despite the reduced effect of turbu-
lent clustering.

While our study provides a detailed analysis of the statistics
of turbulent clustering, several important questions remain to
be answered by future work. Our discussion on the Reynolds
number dependence of the clustering properties was based on
a review of previous numerical studies. A definite result on
the Reynolds number dependence requires simulations with
higher numerical resolution. A larger number of particles would
reduce the Poisson noise and help improve the accuracy of the
statistical measurements, especially for less clustered particles.
Clustering statistics at inertial-range scales are of special interest
to planetesimal formation models based on turbulent clustering,
and deserve a careful and thorough exploration. We neglected
back-reaction from the particles to the carrier flow in our
simulations. A systematic study of the back-reaction effect on
both the RDF and the PDF for particles over an extended Stokes
number range would help better understand the role of turbulent
clustering in various astrophysical environments.
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APPENDIX A

PARTICLE CLUSTERING IN BURGERS VORTEX

The physics of turbulent clustering of inertial particles de-
scribed in Section 2 can be illustrated by a simple example
using Burgers vortex tube as a model for the small-scale ve-
locity structures in turbulent flows. This example also provides
insight into the relative spatial distribution between particles of
different sizes.

Vortex tubes are found to be fundamental building blocks in
incompressible turbulence flows. Visualizations of the vorticity
field in high-resolution simulations show numerous tube-like
vortex structures. We use Burgers vortex, an exact solution of
the Navier–Stokes equation, as a model for these tubes. The
velocity in a Burgers vortex is given by

ur = −Ar

uθ = Γ
2πr

(
1 − exp

(
−Ar2

2ν

))
uz = 2Az,

(A1)

where r is the radial distance to the tube axis, ν is the kinematic
viscosity, A is the strain that drives the vortex, and Γ is the
circulation of the vortex. The circulation velocity, uθ , has a
maximum, U0, at the radius r0 = 1.585(ν/A)1/2. This radius
and the maximum circulation velocity have been measured by
experiments, and the two parameters, A and Γ, can be converted
from r0 and U0. In our illustrative example, we adopt r0 = 6η
and U0 = 14uη from the experimental results by Mouri et al.
(2007) for intense tubes in a turbulent flow with Taylor Reynolds
number Reλ � 2000 (Re � 105). We also tried different values
for the parameters and found qualitatively similar behaviors for
the particle spatial distribution.

The motion of an inertial particle in a Burgers vortex is
determined by the competition between the drag toward the
tube center by the radial flow (ur) and the centrifugal force
from the rotation induced by the circulation velocity (uθ ). For
a particle released at a large distance from the tube axis, the
radial drag dominates at first. As it moves closer to the center,
the particle rotates faster. When the centrifugal force from the
rotation balances the radial drag, the particle ends up in a steady-
state orbit (Marcu et al. 1995). Very small particles may not have
steady-state orbits, instead they reach the tube center because
of the efficient radial drag. The steady-state radius, which we
will refer to as the equilibrium radius, can be estimated from
the equation u2

θ /r = Ar/τp (Marcu et al. 1995). Using uθ as
a function of r in Equation (A1), we see that larger friction
timescales give larger equilibrium radii. The particle motion in
the z-direction is decoupled from that in the r–θ (or x–y) plane.

In Figure 13, we show the particle distribution in a vortex tube.
The particles are released at a constant rate from a cylinder at
a distance of 100η from the center. The initial particle velocity
is set to be the same as the flow velocity. For small particles, a
ring forms at the equilibrium radius. Inside the ring, there are
no particles because of the ejection by vorticity. With increasing
friction timescale, the radius of the ring increases and more
particles accumulate in the ring, leading to a larger particle
density there. This results in a stronger clustering effect at larger
Stokes number for St � 1. For Stokes numbers much larger than
1, we find expanded “rings” around the equilibrium radius. A
large particle can overshoot the equilibrium radius because of
its long memory of the flow radial velocity. When it is dragged
back by the radial flow from the other side, it overshoots the
equilibrium radius again. This produces a “ring” that is quite
spread out, and as a consequence it has a smaller density than
in the thin rings for St � 1. For St > 1, the ring becomes
thicker as St increases, and the clustering intensity decreases.
This simple example thus provides an intuitive explanation for
why the maximum clustering occurs at St � 1.

The example also offers insight into the clustering statistics
for particles of different sizes. As seen from Figure 13 different
particles have different equilibrium radii around the vortex tube.
This suggests that clusters of different particles are located at
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Figure 13. Spatial distribution of inertial particles in a Burgers vortex tube with
r0 = 6η and U0 = 14uη . The four panels correspond to particles of different
Stokes numbers ranging from 0.1 to 6.4.

different places in the flow. The density fluctuations of two
different particles would be uncorrelated at scales below the
typical separation between their clustering locations. The effect
is especially strong for St � 1 particles. The implication of this
effect is discussed in detail in the text.

APPENDIX B

THE BROWNIAN SCALE

Collisions with flow molecules induce Brownian motions
of the inertial particles, which would diffusively spread the
particles in space, and limit clustering at small scales. In this
appendix, we estimate the Brownian scale, lB, below which
clustering is suppressed by Brownian motions.

The Brownian scale is essentially controlled by the compe-
tition of two effects: the diffusive Brownian motions and the
compressibility in the collective particle motions. We calculate
the Brownian scale by estimating how far Brownian motions
transport a particle during a timescale, τc, characteristic of the
rate of compression/expansion in the particle flow. If the Brow-
nian diffusion coefficient is D, we assume lB � (Dτc)1/2.

The diffusion coefficient D can be derived from the Langevin
equation (see, e.g., Gardiner 2004), D = v2

Bτp, where the
Brownian speed, vB, is given by (kT /mp)1/2 assuming a thermal
equilibrium between the gas molecules and the inertial particles.
We estimate the characteristic compression timescale, τc, by
(∂ivi)−1.

Using Equation (4) for the particle flow divergence for St < 1
gives τc � τ 2

η /τp, and we have

lB = vBτη, for St < 1. (B1)

Note that lB here is actually the scale at which the flow velocity
difference equals the Brownian speed. This is expected since no
particle clustering would occur if the relative speed between
particles is dominated by the contribution from Brownian
motions. Typically, lB is much smaller than η because vB is

usually smaller than vη. This allows strong clustering deep in
the dissipative range.

Similarly, using the effective compressibility for St > 1
particles given in Section 2.2, we obtain

lB = vBτp, for St > 1. (B2)

The effective compressibility for St > 1 was evaluated us-
ing rough assumptions, and thus the Brownian scale given
here should also be taken as a rough estimate. However, an accu-
rate estimate of lB is not crucial for St � 1 particles because the
RDF for St � 10 is flat below the scale lτp (see Figure 4), and
the degree of clustering does not change significantly toward
smaller scales.

Balkovsky et al. (2001) suggested that particle clustering is
suppressed below the diffusion scale defined as lD = (Dτη)1/2.
This scale is the same as that defined in the context of turbulent
mixing of passive tracers. The Brownian scale we derived is
different from the diffusion scale, lD, for St �= 1. We argue
the Brownian scale defined here is more appropriate for the
suppression of particle clustering by Brownian motions.

In the context of turbulent mixing, the diffusion scale is the
smallest scale where the scalar fluctuations exist. It reflects
the competition between turbulent stretching, which produces
structures at progressively smaller scales, and the molecular (or
Brownian) diffusion, which tends to smooth out the structures.
Here we are interested in the scale where the maximum
clustering intensity is achieved. It represents the effect of
Brownian motions on suppressing the growth of the fluctuation
intensity by turbulent clustering. Although it can transfer the
fluctuation power toward small scales, turbulent stretching does
not enhance the overall fluctuation amplitude. In particular, it
does not give rise to a power-law increase in the clustering
amplitude toward small scales. Therefore, it does not play a
role in determining the Brownian scale where the clustering
amplitude reaches the maximum.

Comparing lB with lD, we find that lB = lD/St1/2 for St < 1
and lB = St1/2lD for St > 1. Therefore, lB is larger than
lD at all St , except at St = 1. This means that the particle
density structures can exist below lB due to turbulent stretching.
However, the power-law increase toward smaller scales would
end at lB, below which the fluctuation amplitude does not
significantly increase any more.
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