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ABSTRACT

We study the effect of radiative feedback on accretion onto intermediate-mass black holes (IMBHs) using the
hydrodynamical code ZEUS-MP with a radiative transfer algorithm. In this paper, the first of a series, we assume
accretion from a uniformly dense gas with zero angular momentum and extremely low metallicity. Our one-
dimensional (1D) and 2D simulations explore how X-ray and UV radiation emitted near the black hole regulates
the gas supply from large scales. Both 1D and 2D simulations show similar accretion rates and periods between
peaks in accretion, meaning that the hydro-instabilities that develop in 2D simulations do not affect the mean flow
properties. We present a suite of simulations exploring accretion across a large parameter space, including different
radiative efficiencies and radiation spectra, black hole masses, density, and temperature, T∞, of the neighboring
gas. In agreement with previous studies, we find regular oscillatory behavior of the accretion rate, with duty cycle
∼6%, mean accretion rate 3% (T∞/104 K)2.5 of the Bondi rate and peak accretion ∼10 times the mean for T∞
ranging between 3000 K and 15,000 K. We derive parametric formulae for the period between bursts, the mean
accretion rate, and the peak luminosity of the bursts and thus provide a formulation of how feedback-regulated
accretion operates. The temperature profile of the hot ionized gas is crucial in determining the accretion rate, while
the period of the bursts is proportional to the mean size of the Strömgren sphere, and we find qualitatively different
modes of accretion in the high versus low density regimes. We also find that a softer radiation spectrum produces
a higher mean accretion rate. However, it is still unclear what the effect of a significant time delay is between the
accretion rate at our inner boundary and the output luminosity. Such a delay is expected in realistic cases with
non-zero angular momentum and may affect the time-dependent phenomenology presented here. This study is a
first step to model the growth of seed black holes in the early universe and to make a prediction of the number
and the luminosity of ultraluminous X-ray sources in galaxies produced by IMBHs accreting from the interstellar
medium.
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1. INTRODUCTION

The occurrence of gas accretion onto compact gravitating
sources is ubiquitous in the universe. The Bondi accretion
formula (Bondi & Hoyle 1944; Bondi 1952), despite the
simplifying assumption of spherical symmetry, provides a
fundamental tool for understanding the basic physics of the
accretion process. Angular momentum of accreted gas, in nearly
all realistic cases, leads to the formation of an accretion disk
on scales comparable to or possibly much greater than the
gravitational radius of the black hole, rg ∼ GM/c2, thus
breaking the assumption of spherical symmetry in the Bondi
solution. However, the fueling of the disk from scales larger
than the circularization radius rc ∼ j 2/GM, where j is the gas
specific angular momentum, can be approximated by a quasi-
radial inflow. Thus, assuming that numerical simulations resolve
the sonic radius, rs, the resolved gas flow is quasi-spherical if
rc � rs . The Bondi formula, which links the accretion rate
to the properties of the environment, such as the gas density
and temperature, or the Eddington-limited rate is often used
in cosmological simulations to model the supply of gas to the
accretion disk from galactic scales (Volonteri & Rees 2005; Di
Matteo et al. 2008; Pelupessy et al. 2007; Greif et al. 2008;
Alvarez et al. 2009).

However, the Bondi formula is a crude estimation of the
rate of gas supply to the accretion disk because it does not
take into account the effect of accretion feedback loops on
the surrounding environment. Radiation emitted by black holes
originates from gravitational potential energy of inflowing gas
(Shapiro 1973) and a substantial amount of work has been
performed to understand the simplest case of spherical accretion
onto compact X-ray sources or quasars. Several authors have
used hydrodynamical simulations to explore how feedback
loops operate and whether they produce time-dependent or
steady accretion flows. A variety of feedback processes have
been considered: X-ray preheating, gas cooling, photo-heating,
and radiation pressure (Ostriker et al. 1976, 2010; Cowie et al.
1978; Bisnovatyi-Kogan & Blinnikov 1980; Krolik & London
1983; Vitello 1984; Wandel et al. 1984; Milosavljević et al.
2009a; Novak et al. 2010). Typically, the dominance of one
process over the others depends on the black hole mass and the
properties of the gas accreted by the black hole. The qualitative
description of the problem is simple: gravitational potential
energy is converted into other forms of energy such as UV and
X-ray photons or jets, which act to reduce and reverse the gas
inflow, either by heating the gas or by producing momentum-
driven outflows (Ciotti & Ostriker 2007; Ciotti et al. 2009; Proga
2007; Proga et al. 2008). In general, these feedback processes
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reduce the accretion rate and thus the luminosity of the accreting
black hole (Ostriker et al. 1976; Begelman 1985; Ricotti et al.
2008). Consequently, the time-averaged accretion rate differs
from Bondi’s solution. There have been works on self-regulated
accretion of supermassive black holes (SMBHs) at the center of
elliptical galaxies (Sazonov et al. 2005; Ciotti & Ostriker 2007;
Ciotti et al. 2009) and radiation-driven axisymmetric outflow in
active galactic nuclei (Proga 2007; Proga et al. 2008; Kurosawa
et al. 2009; Kurosawa & Proga 2009a, 2009b). However, far
less has been done in order to quantify the simplest case of
spherical accretion onto IMBHs as a function of the properties of
the environment. Recent theoretical (Milosavljević et al. 2009a,
hereafter MBCO09) and numerical (Milosavljević et al. 2009b,
hereafter MCB09) works explore accretion of protogalactic
gas onto IMBHs in the first galaxies. MCB09 describe the
accretion onto a 100 M� black hole from protogalactic gas
of density nH,∞ = 107 cm−3 and temperature T∞ = 104 K.
Our study, which complements this recent numerical work, is
a broader investigation of accretion onto IMBHs for a set of
several simulations with a wide range of radiative efficiencies,
black hole masses, densities, and sound speeds of the ambient
gas. Our aim is to use simulations to provide a physically
motivated description of how radiation modifies the Bondi
solution and provide an analytical formulation of the problem
(see MBCO09).

The results of the present study will help to better understand
the accretion luminosities of IMBHs at high z and in the present-
day universe (Ricotti 2009). Applications of this work include
studies on the origin of ultraluminous X-ray sources (ULXs;
Krolik et al. 1981; Krolik & Kallman 1984; Ricotti 2007;
Mack et al. 2007; Ricotti et al. 2008), buildup of an early
X-ray background (Venkatesan et al. 2001; Ricotti & Ostriker
2004; Madau et al. 2004; Ricotti et al. 2005), and growth of
SMBHs (Volonteri et al. 2003; Volonteri & Rees 2005; Johnson
& Bromm 2007; Pelupessy et al. 2007; Alvarez et al. 2009).
For example, different scenarios have been proposed for the
formation of quasars at z ∼ 6 (Fan et al. 2003): growth by
mergers, accretion onto IMBHs, or direct formation of larger
seed black holes from collapse of quasi-stars (Carr et al. 1984;
Haehnelt et al. 1998; Fryer et al. 2001; Begelman et al. 2006;
Volonteri et al. 2008; Omukai et al. 2008; Regan & Haehnelt
2009; Mayer et al. 2010) that may form from metal-free gas
at the center of rare dark matter halos (Oh & Haiman 2002).
Understanding the properties which determine the efficiency of
self-regulated accretion onto IMBHs is important to estimate
whether primordial black holes produced by Pop III stars can
accrete fast enough to become SMBHs by redshift z ∼ 6
(Madau & Rees 2001; Volonteri et al. 2003; Yoo & Miralda-
Escudé 2004; Volonteri & Rees 2005; Johnson & Bromm 2007;
Pelupessy et al. 2007; Alvarez et al. 2009).

In this paper, we focus on simulating accretion onto IMBH
regulated by photo-heating feedback in one-dimensional (1D)
and 2D hydrodynamic simulations, assuming spherically sym-
metric initial conditions. We provide fitting formulae for the
mean and peak accretion rates, and the period between accre-
tion rate bursts as a function of the parameters we explore,
including radiative efficiency, black hole mass, gas density, tem-
perature, and spectrum of radiation. In Section 2, we introduce
basic concepts and definitions in the problem. Numerical pro-
cedures and physical processes included in the simulations are
discussed in Section 3. Our simulation results and the param-
eter study are shown in Section 4. In Section 5, we lay out
a physically motivated model that describes the results of the

simulations. Finally, a summary and discussion are given in
Section 6.

2. BASIC DEFINITIONS

2.1. Bondi Accretion and Eddington Luminosity

The assumption of spherical symmetry allows us to treat
accretion problems analytically. The solution (Bondi 1952)
provides the typical length scale at which gravity affects gas
dynamics and the typical accretion rate as a function of the
black hole mass Mbh, ambient gas density ρ∞, and sound speed
cs,∞. The Bondi accretion rate for a black hole at rest is

ṀB = 4πλBr2
bρ∞cs,∞

= 4πλBρ∞
G2M2

bh

c3
s,∞

, (1)

where rb = GMbhc
−2
s,∞ is the Bondi radius and λB is the dimen-

sionless mass accretion rate, which depends on the polytropic
index, γ , of the gas equation of state P = Kργ :

λB = 1

4

[
2

5 − 3γ

] 5−3γ

2(γ−1)

. (2)

The value of λB ranges from e3/2/4 � 1.12 for an isothermal
gas (γ = 1) to 1/4 for an adiabatic gas (γ = 5/3).

However, a fraction of the gravitational potential energy of
the inflowing gas is necessarily converted into either radiation
or mechanical energy when it approaches the black hole,
significantly affecting the accretion process. Photons emitted
near the black hole heat and ionize nearby gas, creating a hot
bubble which exerts pressure on the inflowing gas. Radiation
pressure may also be important in reducing the rate of gas inflow
(see MBCO09). These processes may act as self-regulating
mechanisms limiting gas supply to the disk from larger scales
and, thus, controlling the luminosity of the black hole. We
quantify the reduction of the accretion rate with respect to the
case without radiative feedback by defining the dimensionless
accretion rate

λrad ≡ Ṁ

ṀB

, (3)

where ṀB is the Bondi accretion rate for isothermal gas (ṀB =
e3/2πG2M2

bhρ∞c−3
s,∞). This definition of λrad is consistent with

the one adopted by MBCO09.

2.2. Luminosity and Radiative Efficiency

The Eddington luminosity sets an upper limit on the lumi-
nosity of a black hole. In this limit the inward gravitational
force on the gas equals the radiation pressure from photons in-
teracting with electrons via Compton scattering. Although this
limit can be avoided in some special cases, observations suggest
that black hole and SMBH luminosities are sub-Eddington. The
Eddington luminosity is thus

LEdd = 4πGMbhmpc

σT

� 3.3 × 106 L�

(
Mbh

100 M�

)
. (4)

The luminosity of an accreting black hole is related to the
accretion rate via the radiative efficiency η: L = ηṀc2. From
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the Eddington luminosity, we define the Eddington gas accretion
rate ṀEdd ≡ LEddc

−2, and the dimensionless accretion rate and
luminosity as

ṁ ≡ Ṁ

ṀEdd
and l ≡ L

LEdd
. (5)

Hence, in dimensionless units, the bolometric luminosity of the
black hole is l = ηṁ, where ṁ is the accretion rate onto the
black hole. Note that our definition of ṀEdd is independent of
the radiative efficiency η. Therefore, if we impose the sub-
Eddington luminosity of the black hole, the dimensionless
accretion rate ranges between 0 < ṁ � 1

η
. The radiative

efficiency, η, depends on the geometry of the accretion disk and
on ṁ. For a thin disk, η � 0.1, whereas η ∝ ṁ for an advection-
dominated thick disk or for spherical accretion (Shapiro 1973;
Park & Ostriker 2001). In this study we consider two idealized
cases for the radiative efficiency: the case of constant radiative
efficiency η = constant, and the case in which the radiative
efficiency has a dependence on the dimensionless accretion rate
and luminosity, η = constant for l � 0.1 and η ∝ ṁ for l < 0.1.
The second case we explored accounts for the lower radiative
efficiency expected when the accreted gas does not settle into
a thin disk. In both formulations, the radiative efficiency is one
of the free parameters we allow to vary, and we do not find
important differences between the two cases. Observations of
Sgr A*, the best studied case of low accretion rate onto an
SMBH, suggest that the radiative efficiency is indeed low but
not as low as implied by the scaling η ∝ ṁ. Recent theoretical
work by Sharma et al. (2007) demonstrates that there is indeed
a floor on the radiative efficiency.

Because the Bondi rate, ṀB , does not include radiation
feedback effect, it provides an upper limit on the accretion rate
from large scales to radii near the black hole. The Eddington rate
provides the maximum accretion rate onto the black hole, limited
by radiation feedback at small radii. Thus, numerical simulations
are necessary to obtain realistic estimates of the accretion rates.
If the accretion rate onto the black hole is lower than the gas
accretion from large scales, the accreted material accumulates
near the black hole, creating a disk whose mass grows with
time. We cannot simulate such a scenario because it is too
computationally challenging to resolve a range of scales from
the Bondi radius to the accretion disk in the same simulation.
Here we assume that accretion onto the black hole is not limited
by physical processes taking place on radial distances much
smaller than the sonic radius. For instance, even if the angular
momentum of the accreted gas is small and the circularization
radius rc � rs , further inflow will be slowed down with respect
to the free-fall rate. The rate of inflow will be controlled by
angular momentum loss (e.g., torques due to MHD turbulence)
and there will be a delay between the accretion rate at the inner
boundary of our simulation (rmin) and the accretion luminosity
associated with it. The effect of the aforementioned time delay
on the feedback loop is not considered in this paper but will
be considered in future works. We also assume that the effect
of self-gravity is negligible in our simulations since we have
estimated that the mass within the H ii region around the black
hole is smaller than the black hole mass for Mbh < 1000 M�.

If the rate of gas supply to the disk is given by the Bondi rate,
accretion onto the black hole is sub-Eddington for black hole
masses

Mbh <
c3
s,∞

GnH,∞σT cη
∼ 40 M� T 1.5

∞,4n
−1
H,5η

−1
−1, (6)

where we use the notations of T∞,4 ≡ T∞/(104 K), nH,5 ≡
nH,∞/(105 cm−3), and η−1 ≡ η/10−1. Thus, in this regime
we may assume that the accretion is quasi-steady in the sense
that the mean accretion rate onto the black hole equals the gas
supply from large scales when the accretion rate is averaged
over a sufficiently long timescale.

3. NUMERICAL SIMULATIONS

3.1. ZEUS-MP and Radiative Transfer Module

We perform a set of hydrodynamic simulations to under-
stand accretion onto IMBHs regulated by radiation feedback.
Numerical simulations of radiative feedback by black holes
are challenging because they involve resolving a large dynam-
ical range in length scales. In this study, we use ZEUS-MP
(Hayes et al. 2006), a modified parallel version of the non-
relativistic hydrodynamics code ZEUS (Stone & Norman 1992).
For the present work, we add a radiative transfer module
(Ricotti et al. 2001) to ZEUS-MP to simulate the radiative trans-
fer of UV and X-ray ionizing photons emitted near the black
hole. A detailed description of the numerical methods used to
solve radiative transfer and tests of the code are presented in
Appendices A, B, and C.

As X-ray and UV photons ionize the surrounding medium,
different reactions take place depending on the density and
composition of the gas. Photo-ionization changes the ionization
fraction of H and He. The detailed evolution of the Strömgren
sphere depends on the cooling function Λ(T ,Z) of the gas and
thus on the metallicity, Z, and the fraction of gas in the molecular
phase. For a gas of primordial composition, the cooling rate
depends on the formation rates of H− and H2, which depend
on both the redshift and the intensity of the local dissociating
background in the H2 Lyman–Werner bands (e.g., Shapiro &
Kang 1987; Abel et al. 1998; Ricotti et al. 2002a, 2002b).
In addition, the cooling function may depend on redshift due
to Compton cooling of the electrons by cosmic microwave
background (CMB) photons. We adopt atomic hydrogen cooling
for temperatures T > 104 K, and use a simple parametric
function to model complicated cooling physics of gas at T <
104 K. Thus, the temperature structure inside the ionized bubble
is appropriate only for a low-metallicity gas. For a subset of
simulations we also include the effect of helium photo-heating
and cooling. We assume that gas cooling at temperatures below
T∞ is negligible in order to achieve thermal equilibrium in the
initial conditions far from the black hole. For the parameter
space in which we can neglect the effect of radiation pressure,
we find (see Section 5.1) that the accretion rate is a function of
the temperature both outside and inside the H ii region. The
temperature outside the H ii region depends on the cooling
function of gas at T < 104 K and on the heating sources.
The temperature inside the H ii region depends on the spectrum
of radiation and cooling mechanism of gas at T > 104 K.
Thus, it depends on the gas metallicity and the redshift at
which Compton cooling might become important. However, for
the parameter space we have explored, we find that Compton
cooling has a minor effect on the temperature inside and outside
the Strömgren sphere.

The gas heating rate depends on the flux and spectral energy
distribution (SED) of the radiation emitted near the black hole.
We assume a luminosity of the black hole l = ηṁ (see
Section 2.2), where ṁ is calculated at the inner boundary
in our simulation (typically rmin ∼ 3 × 10−5 pc). We adopt
a single power law ν−α for the SED, where the spectral
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index α is one of the parameters we vary in our set of
simulations.

We use an operator-split method to calculate the hydrody-
namic step and the radiative transfer and chemistry steps. The
hydrodynamic calculation is done using ZEUS-MP, then for
the radiative transfer calculation we use a ray-tracing module
(Ricotti et al. 2001). The radiative transfer module calculates
chemistry, cooling, and heating processes along rays outgoing
from the central black hole, and thus is easily parallelized in the
polar angle direction.

We perform 1D and 2D simulations in spherical coordinates.
In both cases, we use a logarithmically spaced grid in the radial
direction typically with 256–512 cells to achieve high resolution
near the black hole. The size ratio between consecutive grids is
chosen according to the free parameters of the simulation to
resolve the ionization front and resolve the region where the
gas is in free fall. In the 2D simulations we use evenly spaced
grids in the polar angle direction and compute radiative transfer
solutions in each direction. Flow-out inner boundary conditions
and flow-in outer boundary conditions are used in the radial
direction (r), whereas in polar angle directions (θ ), reflective
boundary conditions are used.

To determine the optimal box size of the simulations we make
sure that we resolve important length scales in the problem: the
inner Bondi radius, rb,in, the outer Bondi radius, rb,∞, the sonic
radius, rs, and the ionization front, Rs. We select the value of the
inner boundary (typically ∼3 × 10−5 pc for Mbh = 100 M�) to
be smaller than the sonic point or the inner Bondi radius (both
still far larger than the Schwarzschild radius of the black holes).
We find that once the sonic radius is resolved, reducing the
inner boundary box size does not create significant differences
in the results. In most cases the ionization front is located
outside of the outer Bondi radius and the box size is selected
to be large enough to cover both length scales. We select a
box size that achieves the highest possible resolution with a
given number of grids, making sure that the physical quantities
around boundaries remain constant during the simulations. The
box is sufficiently large to minimize the effect of spurious wave
reflections at the outer boundary.

In this paper, the first of a series, we adopt idealized initial
conditions of uniform density and temperature, zero velocity,
and zero angular momentum of the gas relative to the black
hole. In future work we will relax some of these assumptions
by adding turbulence in the initial condition and considering
the effect of black hole motion with respect to the ambient
medium and considering the effect of a time delay between the
accretion rate at the inner boundary of our simulations and the
accretion luminosity. We assume monatomic, non-relativistic
ideal gas with γ = 5/3, which is initially neutral (electron
fraction xe ∼ 10−5). In this paper, we also neglect the effect
of radiation pressure. Our goal is to add to the simulations one
physical process at a time to understand which feedback loop is
dominant in a given subset of the parameter space. We take this
approach to attempt an interpretation of the simulation results
in the context of a physically motivated analytical description
of the accretion cycle. We will explore the effect of radiation
pressure due to H i ionization and Lyα scattering in future works.
However, a simple inspection of the relevant equations suggests
that radiation pressure is increasingly important for large values
of the ambient gas density (nH,∞ ∼ 107 cm−3; see MBCO09
and Section 6) since the accretion rate approaches the Eddington
limit.

4. RESULTS

4.1. Qualitative Description of Accretion Regulated by
Radiative Feedback

Our simulations show that UV and X-ray photons modify
the thermal and dynamical structure of the gas in the vicinity
of the Bondi radius. A hot bubble of gas is formed due to
photo-heating by high-energy photons, and sharp changes of
physical properties such as density, temperature, and ionization
fraction occur at the ionization front. Figure 1 shows eight
snapshots from one of our 2D simulations. The top half of each
snapshot shows the gas density and the bottom half shows the
hydrogen ionization fraction. We show the periodic oscillation
of the density and the ionization fraction from a 2D simulation
in Figure 1. The time evolution of the density, temperature,
and ionization fraction profiles for the 1D simulation is shown
in Figure 2. We can identify the following three evolutionary
phases that repeat cyclically.

1. Once the Strömgren sphere is formed, it expands and
the gas density inside that hot bubble decreases, roughly
maintaining pressure equilibrium across the ionization
front. At the front, gas inflow is stopped by the hot gas
and the average gas density inside the bubble decreases due
to the following two physical processes. First, the black
hole continues accreting hot gas within an accretion radius,
racc, defined as the radius where the gravitational force of
the black hole dominates the thermal energy of the hot
gas. The accretion radius is similar to the Bondi radius
defined by the temperature inside Strömgren sphere, but
there exists a difference between them since the kinematic
and thermal structures of gas is modified significantly by
the photo-heating and cooling. Second, the gas between racc
and the ionization front moves toward the ionization front
due to pressure gradients. The left panel of Figure 3 shows
inflowing gas within racc and outflowing gas outside racc.
A dense shell forms just outside the ionization front. Thus,
the mass of the shell grows because gravity pulls distant
gas into the system at the same time when gas within the
hot bubble is pushed outward.

2. As the average density inside the hot bubble decreases, the
accretion rate diminishes. During this process the radius
of the Strömgren sphere remains approximately constant
since the reduced number of ionizing UV and X-ray
photons is still sufficient to ionize the rarefied hot bubble.
Figure 5 illustrates this. Thus, the average gas temperature,
ionization fraction, and the size of the H ii region remain
constant. As the accretion rate increases during the burst,
it produces a rapid expansion of the Strömgren sphere
radius. During one cycle of oscillation, there are small
peaks in the Strömgren sphere radius which are associated
with minor increases in the accretion rate. Rayleigh–Taylor
(RT) instabilities develop quickly when the accretion rate
increases. In these phases, the acceleration of the dense
shell is directed toward the black hole, so the dense shell,
supported by more rarefied gas, becomes RT unstable.

3. As gas depletion continues, the pressure inside the hot bub-
ble decreases to the point where equilibrium at the ioniza-
tion front breaks down. The outward pressure exerted by
the hot bubble becomes too weak to support the gravita-
tional force exerted on the dense shell. The dense shell of
gas collapses toward the black hole, increasing dramatically
the accretion rate and creating a burst of ionizing photons.
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Figure 1. Evolution of the gas density and ionization fraction in a simulation of an accreting black hole of mass Mbh = 100 M�, gas density nH,∞ = 105 cm−3, and
temperature T∞ = 104 K. In each panel, the top halves show the density (number of hydrogen atoms per cm3) and the bottom halves show the ionization fraction,
xe = ne/nH, of the gas. The evolutionary sequences are shown in a clockwise direction. Top panels from left to right: a Strömgren sphere forms fueled by ionizing
photons as the black hole accretes gas. The higher pressure inside the Strömgren sphere stops the gas inflow while the black hole at the center consumes the hot gas
inside the ionization front. Inflowing gas accumulates in a dense shell outside the hot bubble while exponential decay of the accretion rate occurs due to decreasing
density inside the hot bubble as gas depletion continues. Although the number of emitted ionizing photons decreases, the ionized sphere maintains its size because
of the decrease in density inside the hot bubble. Bottom panels from right to left: the density of hot gas inside the Strömgren sphere keeps decreasing until pressure
equilibrium across the front can no longer be maintained. Middle left: the dense shell in front of the Strömgren sphere collapses onto the black hole and this leads to a
burst of accretion luminosity. Top left: the Strömgren sphere reaches its maximum size and the simulation cycle repeats.

The ionization front propagates outward in a spherically
symmetric manner, creating a large Strömgren sphere and
returning to the state where the high pressure inside the
Strömgren sphere suppresses gas inflow from outside.

4.2. Comparison of 1D and 2D Simulations

In agreement with previous studies, our simulations show that
radiation feedback induces regular oscillations of the accretion
rate onto the IMBH. This result is in good agreement with nu-

merical work by MCB09 for accretion onto a 100 M� black hole
from a high density (nH,∞ = 107 cm−3) and high temperature
(T∞ = 104 K) gas. Periodic oscillatory behavior is found in all
our simulations for different combinations of parameters, when
assuming spherically symmetric initial conditions and a station-
ary black hole. This oscillation pattern is quite regular and no
sign of damping is observed for at least ∼10 cycles.

For the same parameters, our 1D and 2D simulations are
nearly identical in terms of oscillatory behavior in accretion
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Figure 2. Top to bottom: radial profiles of density, temperature, and neutral/
ionization fractions in 1D simulation for η = 0.1, Mbh = 100 M�, nH,∞ =
105 cm−3, and T∞ = 104 K. Different lines indicate profiles at different times:
t = 0.0 (dotted), t = 1.13 ×104 (solid), t = 1.28×104 (short dashed), t = 1.43 ×
104 (long dashed), t = 1.58 ×104 (dot-short dashed), and t = 1.71 × 104 yr
(dot-long dashed). Solid lines: at the maximum expansion of the Strömgren
sphere. Dot-long dashed lines: at the collapsing phase of the dense shell. Physical
properties inside the Strömgren sphere change as a function of time. The number
density and temperature of hydrogen decrease with time after the burst. The
neutral fraction increases as a function of time from the burst.

Figure 4. Accretion rates as a function of time in 1D and 2D simulations with
η = 0.1, Mbh = 100 M�, nH,∞ = 105 cm−3, and T∞ = 104 K. Both results
show similar oscillation patterns with the same period and average accretion
rate.

rate and Strömgren sphere size. Figure 4 shows accretion rate
in 1D and 2D simulations for Mbh = 100 M�, T∞ = 104 K,
and nH,∞ = 105 cm−3. Note the similar pattern in accretion
rate and period between bursts. This indicates that the 1D result
adequately represents 2D cases when the accretion flow does
not have significant angular momentum.

Moreover, this result demonstrates that RT instabilities which
we observe in the 2D simulations do not affect the mean
accretion rate or the period of oscillations. The RT instability
develops during the phase when the dense shell in front of
the ionization front is supported against gravitational accretion
by the low-density medium inside the hot bubble (Whalen &
Norman 2008a, 2008b). The top panels in Figure 1 show small
instabilities when ionization fronts move outward, which largely

Figure 3. Gas density and velocity field for the simulation with η = 0.1, Mbh = 100 M�, nH,∞ = 105 cm−3, and T∞ = 104 K. Left: when a Strömgren sphere is
formed, gas inside the hot bubble is depleted by accretion onto the black hole and the outflow toward the dense shell due to pressure gradient. Right: gas depletion
inside the Strömgren sphere leads to the collapse of the dense shell, creating a burst of accretion.

(A color version of this figure is available in the online journal.)
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Figure 5. Evolution of the Strömgren radius with time for 2D simulation with
η = 0.1, Mbh = 100 M�, nH,∞ = 105 cm−3, and T∞ = 104 K. The solid line
shows the mean size of the Strömgren radius and dotted lines show the minimum
and maximum Strömgren radii. It shows the same period of oscillation seen in
the accretion rate as a function of time. In general, the Strömgren radius is
proportional to the accretion rate which determines the number of ionizing
photons. When the accretion rate is maximum, the size of the Strömgren sphere
also has its maximum size.

decay over time. The pressure gradient inside the Strömgren
sphere creates an outward force which helps suppress the
development of the instability.

In summary, we believe that 1D simulations can be used in
place of higher dimension simulations to determine the cycle
and magnitude of the periodic burst of gas accretion onto the
IMBH. This allows us to reduce the computational time required
to explore a large range of parameter space.

4.3. Parameter Space Exploration

In this section we present the results of a set of 1D simulations
aimed at exploring the dependence of the accretion rate and the
period of oscillations of the black hole luminosity as a function
of the black hole mass Mbh, the ambient gas density nH,∞,
temperature T∞, and the radiative efficiency η. In Section 5
we present results in which we allow the spectrum of ionizing
radiation to vary as well. The accretion can be described by three
main parameters: τcycle, the mean period between bursts, λrad,max,
the maximum value of the dimensionless accretion rate (at the
peak of the burst), and 〈λrad〉, the time-averaged dimensionless
accretion rate. These parameters are typically calculated as the
mean over ∼5 oscillation cycles and the error bars represent the
standard deviation of the measurements.

After reaching the peak, the luminosity decreases nearly
exponentially on a timescale τon that we identify as the duration
of the burst. Both τon and the duty cycle, fduty, of the black hole
activity (i.e., the fraction of time the black hole is active), can
be expressed as a function of τcycle, λrad,max, and 〈λrad〉:

τon ≡ 〈λrad〉
λrad,max

τcycle, (7)

fduty ≡ τon

τcycle
= 〈λrad〉

λrad,max
. (8)

Figure 6. Dependence of accretion rate and period of oscillations on the radiative
efficiency η. From top to bottom, the evolution of accretion rate is shown for
η = 0.1, 0.03, 0.01, and 0.003. The peak accretion rate does not change much
with η, but intervals between oscillations decrease with decreasing η.

The values of λrad,max and fduty as a function of the black hole
mass, the density, and the temperature of the ambient medium
are important for estimating the possibility of detecting IMBHs
in the local universe because these values provide an estimate
of the maximum luminosity and the number of active sources
in the local universe at any time. On the other hand, the mean
accretion rate 〈λrad〉 is of critical importance for estimating the
IMBH growth rate in the early universe.

The four panels in Figure 7 summarize the results of a set
of simulations in which we vary the free parameters one at a
time. We find that, in most of the parameter space that we have
explored, the period of the oscillations and the accretion rates
are described by a single or a split power law with slope β.
In the following paragraphs, we report the values of β derived
from weighted least-squares fitting of the simulation results.
The weight is 1/σ, where σ is the standard deviation of 〈λrad〉
or λrad,max over several oscillations.

(1) Dependence on the radiative efficiency. First, we explore
how the accretion depends on the radiative efficiency η. This
parameter describes the fraction, η, of the accreting rest-mass
energy converted into radiation while the remaining fraction,
1 − η, is added to the black hole mass. We have explored both
constant values of the radiative efficiency and the case η ∝ ṁ
for l < 0.1 (see Section 2.2). The simulation results shown in
this section are obtained assuming η is constant. We find similar
results for 〈λrad〉, λrad,max, and τcycle when we assume η ∝ ṁ.
The radiative efficiency for a thin disk is about 10%. Here, we
vary η in the range 0.2%–10%. The other free parameters are
kept constant with values nH,∞ = 105 cm−3, Mbh = 100 M�,
and T∞ = 104 K. Figure 6 shows the accretion rate as a
function of time for different values of the radiative efficiency:
η = 0.1, 0.03, 0.01, and 0.003. Panel (a) in Figure 7 shows
the dependence on η of the three parameters that characterize
the accretion cycle. The maximum accretion rate increases
mildly with increasing η (log slope β = 0.13 ± 0.06). The
average accretion rate is 〈λrad〉 ∼ 2.9% ± 0.2%, which is

7
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Figure 7. For each panel, peak accretion rate, average accretion rate, and period between bursts are shown from top to bottom as a function of a given parameter. Error
bars represent the standard deviation around the mean values over ∼5 accretion cycles. (a) Dependence on η. 〈λrad〉 ∼ constant while τcycle ∝ η1/3. Open symbols
indicate the simulations including helium photo-heating and cooling, which show ∼41% lower accretion rate and ∼42% shorter period. (b) Same plots as a function
of Mbh. 〈λrad〉 ∼ constant while τcycle ∝ M

2/3
bh . (c) Same plots as a function of nH,∞ of gas. At low densities, τcycle ∝ n

−1/6
H,∞ , whereas at higher density, τcycle ∝ n

−1/3
H,∞ .

(d) Same plots as a function of T∞. Average accretion rate 〈λrad〉 ∝ T 2.5∞ . With an exception at lowest temperature τcycle ∝ T −0.5∞ .

(A color version of this figure is available in the online journal.)

nearly independent of η (β = −0.04 ± 0.01). The period of the
oscillations increases with η as τcycle ∝ η1/3. We also show the
simulation results including helium photo-heating and cooling,
shown as open symbols in the same panel of Figure 7. We find
that including helium does not change the qualitative description
of the results, but does offset the mean accretion rate, which
is ∼41% lower, and the period of the accretion bursts, which
is ∼42% shorter. This offset of the accretion rate and period
with respect to the case without helium is due to the higher

temperature of the gas inside the H ii region surrounding the
black hole.

(2) Dependence on black hole mass. We explore a
range in black hole mass from 100 M� to 800 M�,
while keeping the other parameters constant (η = 0.1,
nH,∞ = 105 cm−3, and T∞ = 104 K). The results
are shown in panel (b) of Figure 7. The mean accretion
rate is 〈λrad〉 ∼ 2.7% ± 0.4% and the maximum accretion
rate is λrad,max ∼ 42% ± 12% (β = −0.26 ± 0.20). They

8
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are both independent of Mbh within the error of the fit. The
period of the bursts is well described by a power-law relation
τcycle ∝ M

2/3
bh .

(3) Dependence on gas density of the ambient medium. Panel
(c) in Figure 7 shows the dependence of accretion rate and burst
period on the ambient gas density, nH,∞. We explore a range of
nH,∞ from 5 × 103 cm−3 to 107 cm−3, while keeping the other
parameters constant at η = 0.1, Mbh = 100 M�, and T∞ =
104 K. For densities nH,∞ � 105 cm−3, 〈λrad〉 and λrad,max are
insensitive to nH,∞ (β = −0.04 ± 0.08 and β = −0.18 ± 0.13,
respectively). However, for nH,∞ � 105 cm−3, 〈λrad〉 and λrad,max

are proportional to n
1/2
H,∞ (β = 0.44±0.02 and β = 0.37±0.09,

respectively).
The bottom of Figure 7(c) shows the effect of density

in determining the oscillation period. For densities nH,∞ �
105 cm−3, τcycle is fitted well by a power law with τcycle ∝ n

−1/3
H,∞ ,

and for the densities nH,∞ � 105 cm−3 it is fitted well by a power
law τcycle ∝ n

−1/6
H,∞ . However, τcycle at nH,∞ = 107 cm−3 is lower

than predicted by the power-law fit for nH,∞ � 105 cm−3.
Although Figures 4 and 6 do not clearly show the magnitude of
accretion rate during the inactive phase, it is evident in a log–log
plot that accretion rate at minima is four orders of magnitude
lower than during the peak of the burst. This is the case for
all simulations but the ones with nH,∞ = 107 cm−3 in which
the accretion rate at minima is two orders of magnitude higher
than in all other simulations. The simulations show that the
ambient gas density is an important parameter in determining the
accretion luminosity and period between bursts of the IMBH.
One of the reasons is that the gas temperature inside the hot
ionized bubble and the thickness and density of the dense shell
in front of it depend on the density via the cooling function. The
drop in the accretion rate we observe at low densities can be
linked to an increase of the temperature within the sonic radius
with respect to simulations with higher ambient density. This
results in an increase in the pressure gradient within the ionized
bubble that reduces the accretion rate significantly.

(4) Dependence on the temperature of the ambient medium.
Panel (d) in Figure 7 shows the dependence of accretion rate and
period of the bursts on the temperature of the ambient medium,
T∞. We vary T∞ from 3000 K to 15,000 K while keeping the
other parameters constant at η = 0.1, Mbh = 100 M�, and
nH,∞ = 105 cm−3. We find that 〈λrad〉 and λrad,max depend
steeply on T∞ as T

5/2
∞ (β = 2.44 ± 0.06). Except for the

simulation with T∞ = 3000 K, the period of the accretion
cycle is fitted well by a single power law τcycle ∝ T

−1/2
∞ .

5. ANALYTICAL FORMULATION OF BONDI
ACCRETION WITH RADIATIVE FEEDBACK

In this section we use the fitting formulae for 〈λrad〉, λrad,max,
and τcycle obtained from the simulations to formulate an analytic
description of the accretion process. For ambient densities
nH,∞ � 105 cm−3, we have found that the dimensionless mean
accretion rate 〈λrad〉 depends only on the temperature of the
ambient medium. It is insensitive to η, Mbh, and nH,∞. Thus, for
nH,∞ � 105 cm−3 we find

〈λrad〉 ∼ 3.3% T
5/2
∞,4 n−0.04

H,5 ∼ 3.3% T
5/2
∞,4, (9)

while for nH,∞ � 105 cm−3 we find

〈λrad〉 ∼ 3.3% T
5/2
∞,4 n

1/2
H,5. (10)

As mentioned above, the dependence of 〈λrad〉 on the density
is due to the increasing temperature inside the ionized bubble
at low densities. The period of the accretion cycle depends on
all the parameters we have investigated in our simulation. In the
range of densities nH,∞ � 105 cm−3, we find

τcycle = (6 × 103 yr) η
1
3
−1M

2
3

bh,2 n
− 1

3
H,5 T

− 1
2

∞,4, (11)

where we use the notation Mbh,2 ≡ Mbh/(102 M�). However, at
lower densities nH,∞ � 105 cm−3, we find

τcycle = (6 × 103 yr) η
1
3
−1 M

2
3

bh,2 n
− 1

6
H,5 T

− 1
2

∞,4, (12)

in which only the dependence on nH,5 changes. The different
dependence of τcycle on nH,∞ is associated with a change of
the mean accretion rate 〈λrad〉 for each density regime. The
deviation of τcycle from the power-law fit at nH,∞ = 107 cm−3

is not associated with any variation of the mean accretion rate.
Our value of τcycle for nH,∞ = 107 cm−3 is in good agreement
with the value found by MCB09.

5.1. Dimensionless Accretion Rate: 〈λrad〉
In this section we seek a physical explanation for the relation-

ship between the mean accretion rate 〈λrad〉 and the temperature
of the ambient medium found in the simulations. The model is
valid in all parameter spaces we have explored with a caveat
in the low density regime (nH,∞ < 3 × 105 cm−3) and at low
ambient temperatures (T∞ < 3000 K).

Figure 8 shows the time-averaged temperature profiles for
simulations in which we vary η, Mbh, nH,∞, and T∞. In the case
of different Mbh the radii are rescaled so that direct comparisons
can be made with the case of 100 M�. Vertical lines indicate the
accretion radius racc, inside of which gas is accreted and outside
of which gas is pushed out to the ionization front. We find that
the value of racc is generally insensitive to the parameters of the
simulation as is the gas temperature at racc.

Accretion onto the black hole of gas inside the hot ionized
sphere is limited by the thermal pressure of the hot gas and by
the outflow velocity of the gas that is produced by the pressure
gradient inside the Strömgren sphere. Thus, the accretion radius,
racc, is analogous to the inner Bondi radius, rb,in, modified to
take into account the temperature and pressure gradients inside
the hot bubble.

Let us assume that the average accretion rate onto the black
hole is

〈Ṁ〉 = 4πλBr2
accρincs,in, (13)

where ρin and cs,in (and the corresponding temperature Tin) are
the density and the sound speed at racc. Based on the results
illustrated in Figure 8, we expect the accretion rate to depend
only on ρin, since racc and cs,in can be taken to be constants.

When a Strömgren sphere is formed, the gas inside the hot
bubble expands and its density decreases. Inside the ionization
front, the temperature is about 104–105 K. Thus, assuming
pressure equilibrium across the ionization front, we find the
dependence of ρin on T∞:

ρin ≈ ρ∞
T∞
Tin

= ρ∞

(
cs,∞
cs,in

)2

. (14)

We find f = racc/rb,in ∼ 1.8 and the temperature at racc is
Tin ∼ 4 × 104 K independent of η, Mbh, nH,∞, and T∞ for a
fixed spectral index of radiation α = 1.5. The dimensionless

9



The Astrophysical Journal, 739:2 (15pp), 2011 September 20 Park & Ricotti

Figure 8. Time-averaged temperature profiles as a function of simulation parameters. Different vertical lines indicate accretion radii, racc, for each parameter. Top
left: η ranges from 0.1 (solid line) to 0.003 (long dashed line). Top right: Mbh ranges from 100 M� (solid) to 800 M� (long dashed). Bottom left: density ranges from
104 cm−3 (solid) to 107 cm−3 (long dashed). Bottom right: T∞ ranges from 5000 K (solid) to 15,000 K (long dashed).

accretion rate inside of the Strömgren sphere normalized by the
Bondi accretion rate in the ambient medium is then

〈λrad〉 � λB

r2
accρincs,in

r2
b,∞ρ∞cs,∞

� 1

4
(1.8)2

(
ρin

ρ∞

) (
cs,in

cs,∞

)−3

� 3%T 2.5
∞,4, (15)

where we have used λB = 1/4, appropriate for an adiabatic gas.
Thus, 〈λrad〉 ∝ T

5/2
∞ , which is in agreement with the simulation

result, given that racc and Tin remain constant when we change
the simulation parameters. However, racc and Tin may not stay
constant if we modify the cooling or heating function, for
instance by increasing the gas metallicity or by changing the
spectrum of radiation; this result suggests that the accretion
rate is very sensitive to the details of the temperature structure
inside the Strömgren sphere, which shows a dependence on
nH,∞. The temperature profile changes significantly for nH,∞ <
3×104 cm−3 and this is probably the reason why our model does
not perfectly fit 〈λrad〉 from the simulations in the lower density
regime. In the next section we test whether Equation (13) is still
a good description of our results when we change the thermal
structure inside the H ii region.

5.1.1. Dependence on Temperature at Accretion Radius

In this section we study the dependence of the accretion rate
on the time-averaged temperature Tin at racc. We change the
temperature Tin by varying the spectral index α of the radiation
spectrum and by including Compton cooling of the ionized gas
by CMB photons. Here we explore the spectral index of the
radiation spectrum in the range α = 0.5, 1.0, 1.5, 2.0, and 2.5,
with the energy of photons from 10 keV to 100 keV. The other
parameters are kept constant at η = 0.1, Mbh = 100 M�,
nH,∞ = 105 cm−3, and T∞ = 104 K.

Figure 9 shows the different time-averaged temperature
profiles for different values of α. Spectra with lower values of
the spectral index α produce more energetic photons for a given
bolometric luminosity, increasing the temperature inside the
ionized bubble. Simulations show that the averaged accretion
rate 〈λrad〉 increases for a softer radiation spectrum. Different
slopes (0.5 � α � 2.5) of the power-law spectrum lead to
different Tin (59,000 K to 36,000 K) and 〈λrad〉 (0.0076 to
0.0509). Adopting a harder spectrum (with α = 0.5) instead
of the softer one (α = 2.5) increases Tin by a factor of 1.6 and
〈λrad〉 decreases by a factor 6.7. The fit to the simulation results
in Figure 9 show that 〈λrad〉 depends on temperature at racc as

〈λrad〉 ∝ T −4
in ∝ c−8

s,in. (16)

10
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Figure 9. Left: average temperature profiles of the H ii region as a function of spectral index α. Smaller α results in smaller racc and higher Tin. Right: relation between
temperature at racc and average accretion rate 〈λrad〉. We find 〈λrad〉 ∝ T −4

in .

The dependence on cs,in differs from Equation (15). However,
this is not surprising because in these simulations the values of
racc and cs,in do not remain constant while we vary the value of
the spectral index α. This is due to a change of the temperature
and pressure gradients within the H ii region. The accretion
radius, racc, can be expressed as a function of the Bondi radius
inside the hot bubble, rb,in = GMbhc

−2
s,in. From the simulations,

we obtain the following relationship between these two radii:

f = racc

rb,in
� 1.8

(
Tin

4 × 104 K

)−0.7±0.2

. (17)

Thus, if our model for the accretion rate summarized by
Equation (13) is valid, we should have

〈λrad〉 � 1

4

r2
accρincs,in

r2
b,∞ρ∞cs,∞

� (1.8)2

4

(
ρin

ρ∞

)
c−5.9
s,in c3

s,∞

� 3% T 2.5
∞,4

(
Tin

4 × 104 K

)−4

, (18)

in agreement with the simulation results 〈λrad〉 ∝ T 2.5
∞ T −4

in ,
where the dependence on Tin was not explored initially. Thus,
Bondi-like accretion on the scale of racc is indeed a good
explanation of our results. Given the steep dependence of the
value of accretion rate 〈λrad〉 on Tin, it is clear that it is very
sensitive to the details of the thermal structure inside the H ii

region. This means that 〈λrad〉 depends on the spectrum of
radiation and gas metallicity.

5.2. Accretion Rate at Peaks and Duty Cycle: λrad,max, fduty

We estimate fduty by comparing λrad,max and 〈λrad〉 using
Equation (8). This quantity gives an estimate of what fraction of
black holes are accreting gas at the rate close to the maximum.
Within the fitting errors, the log slopes of λrad,max and 〈λrad〉 as
a function of the parameters Mbh and T∞ are zero. Thus, we
assume that the dimensionless accretion rates are independent
of these parameters.

For nH,∞ � 105 cm−3, λrad,max can be expressed as λrad,max ∼
0.55η0.13

−1 n−0.18
H,5 T 2.0

∞,4 and the dependence of fduty on these pa-
rameters can be expressed using Equation (9) as

fduty ∼ 6% η−0.13
−1 n0.14

H,5 T 0.5
∞,4, (19)

where we include the mild dependence of 〈λrad〉 on the density.
For nH,∞ � 105 cm−3, λrad,max ∼ 0.55η0.13

−1 n0.37
H,5 T 2.0

∞,4 has a
different power-law dependence on the density and we get fduty
as

fduty ∼ 6%η−0.13
−1 n0.07

H,5 T 0.5
∞,4, (20)

where fduty shows a milder dependence on the gas density. Thus,
we expect about 6% of IMBHs to be accreting near the maximum
rate at any given time. This value depends weakly on η, nH,∞,
and T∞.

5.3. Average Period between Bursts: τcycle

In this section we derive an analytical expression for the
period of the luminosity bursts as a function of all the parameters
we tested. Although τcycle shows a seemingly complicated
power-law dependence on the free parameters, we find that
τcycle is proportional to the time-averaged size of the Strömgren
sphere. This is shown in Figure 10. The linear relation between
τcycle and the average Strömgren radius 〈Rs〉 explains the
dependence of τcycle on every parameter considered in this work.

The number of ionizing photons created by accretion onto
a black hole is determined by the average accretion rate and
the radiative efficiency η. The average accretion rate itself can
be expressed as a fraction of the Bondi accretion rate 〈λrad〉.
Therefore, the average number of ionizing photons emitted near
the black hole can be expressed as

Nion ∝ η〈λrad〉ṀB ∝ η〈λrad〉G
2M2

bh

c3
s,∞

ρ∞. (21)

It follows that

τcycle = tout ≈ 〈Rs〉
vout

∝
(

3Nion

4παrecn
2
H

) 1
3

∝
(

1

n2
H

) 1
3
(

η〈λrad〉G
2M2

bh

c3
s,∞

ρ∞

) 1
3

, (22)

where we find vout ∼ 1
3cs,in. Ignoring constant coefficients and

using Equation (9) for nH,∞ � 105 cm−3, we find

τcycle ∝ η
1
3 M

2
3

bh n
− 1

3
H,∞ T

− 1
2∞ , (23)
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Figure 10. Period of accretion bursts as a function of the average Strömgren
radius. All simulation results from all the parameters are plotted together. The
average size of the Strömgren sphere shows a linear relation with the period
τcycle. The only exception happens at the highest density (nH,∞ = 107 cm−3),
but this result is in agreement with the work of MCB09 (symbol with error bar).

(A color version of this figure is available in the online journal.)

or using Equation (10) for nH,∞ � 105 cm−3, we find

τcycle ∝ η
1
3 M

2
3

bh n
− 1

6
H,∞ T

− 1
2∞ , (24)

which are exactly as in the empirical fitting formulae in both
density regimes and also in good agreement with the analytical
work by MBCO09. This explains the dependence of τcycle on
any tested parameter η, Mbh, nH,∞, and T∞. In Figure 10 we also
show simulation results assuming η ∝ ṁ. All simulations show
the same relationship between τcycle and 〈Rs〉. However, the
simulation with the highest ambient density (nH,∞ = 107 cm−3)
deviates from the linear relationship, but is in agreement with
the numerical simulation of MCB09. It appears that in the high
density regime, τcycle decreases steeply with decreasing 〈Rs〉.

We can interpret τcycle as the timescale at which the gas
inside H ii region gets depleted. If the gas depletion inside
the Strömgren sphere is dominated by the outward gas flow,
then τcycle ∝ 〈Rs〉/cs,in, in agreement with the empirical linear
relation in Figure 10. However, the depletion timescale may
be different if the accretion by the black hole dominates gas
consumption inside the Strömgren sphere. We can derive this
timescale as

tin = MH ii

Ṁ
=

( 〈Rs〉
racc

)2 〈Rs〉
3cs,in

∼
( 〈Rs〉

racc

)2
tout

9
.

Roughly, we expect τcycle = min (tout, tin). So, for 〈Rs〉/racc � 3,
the period of the cycle scales as 〈Rs〉3. This may explain the
deviation of the period for nH,∞ = 107 cm−3 from the linear
relation. We see in Figure 8 that the ratio 〈Rs〉/racc ∼ 5 for
nH,∞ = 107 cm−3, which is much smaller than the ratio found
for other densities.

5.3.1. Rayleigh–Taylor Instability

In 2D simulations we find that RT instability develops across
the Strömgren radius, but it decays on short timescales. This
can be explained by the pressure gradient inside the Strömgren
sphere which does not allow the RT to grow. In the linear regime,
the growth timescale of the RT instability of wavelength λ is

τRT �
√

ρsh + ρin

ρsh − ρin

2πλ

g
�

√
2πλ

g
,

where ρsh is the density of the shell and g � GMth〈Rs〉−2 is
the gravitational acceleration at the shell radius. Thus, the RT
timescale can be expressed as

τRT � 〈Rs〉
cs,in

√
2πλ

rb,in
. (25)

So, during one cycle perturbations grow on scales:

λRT <

(
τRT

τcycle

)2
rb,in

2π
<

rb,in

2π
,

where rb,in is the inner Bondi radius. Thus, only instability on
angular scales θ ∼ λRT/2π〈Rs〉 � rb,in/(2π )2〈Rs〉 grows in our
simulation.

6. SUMMARY AND DISCUSSION

In this paper we simulate accretion onto IMBHs regulated
by radiative feedback assuming spherically symmetric initial
conditions. We study accretion rates and feedback loop periods
while varying radiative efficiency, mass of black hole, density
and temperature of the medium, and spectrum of radiation. The
aim of this work is to simulate feedback-regulated accretion in
a wide range of the parameter space to formulate an analytical
description of processes that dominate the self-regulation mech-
anism. Thus, in this first paper we keep the physics as simple
as possible, neglecting the effect of angular momentum of the
gas and radiation pressure, and assuming a gas of primordial
composition (i.e., metal and dust free). We will relax some of
these assumptions in future works. However, the parametric for-
mulae for the accretion presented in this paper should provide
a realistic description of quasi-spherical accretion onto IMBH
for ambient gas densities nH,∞ � 105–106 cm−3, as radiation
pressure should be minor for these densities.

We find an oscillatory behavior of the accretion rate that
can be explained by the effect of UV and X-ray photo-heating.
The ionizing photons produced by the black hole near the
gravitational radius increase gas pressure around the black hole.
This pressure prevents the surrounding gas from being accreted.
An overdense shell starts to form just outside the Strömgren
sphere. Due to the decreased accretion rate, the number of
emitted ionizing photons decreases and the density inside the
Strömgren sphere also decreases with time. Gas accretion onto
the black hole is dominant in decreasing the density inside the
H ii region only for ambient gas density nH,∞ � 107 cm−3; for
lower values of the ambient gas density, the gas inside the H ii

region is pushed outward toward the dense shell by a pressure
gradient that develops behind the ionization front. Eventually,
the pressure gradient inside the Strömgren sphere is not able
to support the weight of the overdense shell that starts to fall
toward the black hole. The accretion rate rapidly increases and
the Strömgren sphere starts to expand again.
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However, the introduction of a small, non-zero, angular mo-
mentum in the flow could change the time-dependent behavior
of the accretion and feedback loop. The inflow rate in the accre-
tion disk that will necessarily develop, and which is not resolved
in our simulations, is typically much slower than the free-fall
rate since the viscous timescale in units of the free-fall time is
tvisc/tff ∼ α−1M2, where α is the dimensionless parameter for
a thin disk (Shakura & Sunyaev 1973) and M is the gas Mach
number. Therefore, angular momentum may produce a long de-
lay between changes in the accretion rate at the inner boundary
of our simulation and their mirror in terms of output luminos-
ity. Hence, α � 0.01–0.1 and M at the inner boundary of our
simulations is of order of unity; time delays of 10–100 free-fall
times are shorter if the disk is smaller than the inner boundary of
the simulation. We have started investigating the effect of such a
delay on the periodic oscillations and preliminary results show
that the period of the oscillations can be modified by the time
delay but the oscillatory behavior is still present (at least for
delays of 10–100 free-fall times calculated at the inner bound-
ary). As long as the time delay is shorter than the oscillation
period, which depends mainly on the gas density, it does not
seem to affect the results. We are carefully investigating this in
the low and high density regimes where the oscillation pattern
and the periods are different. At low densities, a time delay of
a few hundred free-fall times is much smaller compared to the
oscillation period, whereas at the high densities the maximum
time delay that we have tested is comparable to the oscillation
period. We will publish more extensive results on this effect in
our next paper in this series.

We find that the average accretion rate is sensitive to the
temperature of the ambient medium and to the temperature
profile inside the ionized bubble, and so it depends on the gas
cooling function and SED of the radiation. The period of the
accretion bursts is insensitive to the temperature structure of the
H ii region, but is proportional to its radius.

Our simulations show that 1D results adequately re-
produce 2D results in which instabilities often develop.
We find that the accretion rate is expressed as λrad �
3% T 2.5

∞,4

(
Tin/4 × 104 K

)−4
. We also derive τcycle as a function

of η, Mbh, nH,∞, and T∞. The dependencies of 〈λrad〉 and τcycle
on our free parameters can be explained analytically. Assuming
pressure equilibrium across the Strömgren sphere is a key in-
gredient to derive the dependence of 〈λrad〉 on T∞, whereas the
linear relation between the average size of the Strömgren sphere
and τcycle is used to derive the dependence of τcycle on all the
parameters we varied.

The qualitative picture of the feedback loop agrees with
the description of X-ray bursters in Cowie et al. (1978).
After extrapolating our analytical formulae to black holes of
a few solar masses studied by Cowie et al. (1978), we find
that the average accretion rate is in good agreement (L ∼
2 × 1035 erg s−1). However, the details of the accretion rate as
a function of time, burst period, and peak accretion rates show
qualitative differences. The Cowie et al. (1978) simulations do
not show periodic oscillation while our simulations have a well-
defined fast rise and exponential decay of accretion followed
by quiescent phases of the accretion rate. This regular pattern
of accretion bursts is possible only when spherical symmetry
is maintained on relatively large scales during oscillations.
An axisymmetric radiation source (Proga 2007; Proga et al.
2008; Kurosawa et al. 2009; Kurosawa & Proga 2009a, 2009b)
or inhomogeneous initial condition on the scale of the Bondi
radius can break the symmetry.

Our simulations are also in excellent qualitative agreement
with simulations by MCB09 who studied accretion onto a
100 M� black hole for the case nH,∞ = 107 cm−3. However, we
find a dimensionless accretion rate 〈λrad〉 ∼ 3% (〈λrad〉 ∼ 2%
including helium heating/cooling) that is about one order of
magnitude larger than in MCB09. The cycle period, τcycle,
is in better agreement since τcycle ∝ 〈Rs〉 ∝ 〈λrad〉1/3. The
discrepancy in the mean accretion is likely produced by the
effect of radiation pressure on H i, which becomes important
for large nH,∞ and which we have neglected. In addition, our
results indicate that the qualitative description of the feedback
loop starts to change at ambient densities >106–107 cm−3: the
oscillation period decreases much more rapidly with increasing
ambient density as gas depletion inside the ionized bubble
becomes dominated by accretion onto the IMBH. The accretion
luminosity during the quiescent phase of the accretion also
increases and the two phases of growth and collapse of the
dense shell become blended into a smoother modulation of the
accretion rate. Hence, further numerical studies are required to
characterize accretion onto IMBH in the high density regime.

As mentioned above, in this study we have neglected three
important physical processes that may further reduce the ac-
cretion rate: (1) Compton heating, (2) radiation pressure, and
(3) Lyα scattering processes. The importance of these pro-
cesses is thoroughly discussed in MBCO09. Ricotti et al. (2008)
and MBCO09 find that Compton heating is not an impor-
tant feedback mechanism in regulating the accretion rate onto
IMBHs, in which the gas density inside the Strömgren sphere is
roughly independent of the radius. However, MBCO09 sug-
gest that both radiation pressure on H i and Lyα radiation
pressure can contribute to reducing the accretion rate onto
IMBH. At higher densities, accretion becomes Eddington lim-
ited (〈λrad〉ṀB � ṀEdd). By assuming 〈λrad〉 ∼ 1% T 2.5

∞,4, which
is suggested by simulations including helium, and manipulating
Equation (6) we obtain Mbh,2 T∞,4 nH,5η−1 � 40 as a crite-
rion for the Eddington-limited condition. This expression pre-
dicts that radiation pressure becomes important at gas density
nH,5 ∼ 10–100, with other parameters fixed to unity. It also
implies that this critical density depends on the black hole mass,
gas temperature, and radiative efficiency. We expect radiation
pressure to play a minor role at low densities also because the
accretion luminosity is negligible during the quiescent phases
of accretion (between accretion bursts). However, at densities
nH,∞ � 107 cm−3 the accretion rate during the quiescent phases
is not negligible, thus radiation pressure can be important in
this regime. The main effect of the Thomson radiation pres-
sure is to prevent the accretion luminosity from exceeding the
Eddington limit. The continuum radiation pressure due to H i

ionization can instead be important for sub-Eddington lumi-
nosities, but will be strong only at the location of the ionization
front during the peak of the accretion burst. We will present
more extensive results in the next paper of this series.

The results of this study provide a first step in estimating
the maximum X-ray luminosity and period of oscillations of an
accreting IMBH from a medium with given physical conditions.
Hence, they may be useful for modeling detection probability
of ULX originating from accreting IMBHs in the local universe.
From the average growth rate of IMBHs accreting in this manner,
it is also possible to estimate the maximum masses of quasars
at a given redshift starting from seed primordial black holes.
One of the main motivations of this study is to derive simple
analytical prescriptions to incorporate the growth of seed black
holes from Population III stars into a large-scale cosmological
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Figure 11. Left: simulated Bondi accretion rate (λB ) as a function of minimum radius with given adiabatic index γ without radiative feedback. Dashed lines are
analytically estimated values for each γ =1.2, 1.4, and 1.6. In order not to overestimate the accretion rate, the sonic point should be resolved where the velocity of
the inflowing gas becomes supersonic. Right: test of the Strömgren radius with a given number of ionizing photons. Solid line is the prediction for the given number
of ionizing photons from 1040 to 1050 s−1. Triangle symbols represent the location where the ionization fraction of nH (xH i) is 0.50. Squares are for xH i = 0.90 and
circles are for xH i = 0.99.

(A color version of this figure is available in the online journal.)

simulation. However, before we are able to use these results in
a cosmological simulation, we need to understand the effects
of relaxing our assumption of spherically symmetric accretion:
we need to simulate accretion onto moving black holes (Hoyle
& Lyttleton 1939; Shima et al. 1985; Ruffert & Arnett 1994;
Ruffert 1996) and use more realistic initial conditions, including
gas with non-zero angular momentum or a multi-phase turbulent
interstellar medium (Krumholz et al. 2005, 2006).

The simulations presented in this paper were carried out
using high performance computing clusters administered by
the Center for Theory and Computation of the Department of
Astronomy at the University of Maryland (“yorp”), and the
Office of Information Technology at the University of Maryland
(“deepthought”). This research was supported by NASA grants
NNX07AH10G and NNX10AH10G. The authors thank the
anonymous referee for constructive comments and feedback.

APPENDIX A

BASIC TESTS OF THE CODE

We test the Bondi accretion formula using ZEUS-MP for the
adiabatic indexes γ = 1.2, 1.4, and 1.6. For a given equation of
state, the sonic point where the gas inflow becomes supersonic
must be resolved so as not to overestimate the accretion rate
λB . The left panel of Figure 11 shows the steady accretion rate
as a function of radius at the inner boundary normalized by
the Bondi radius. Different lines show results for γ =1.2, 1.4,
and 1.6.

We also test whether our radiative transfer module pro-
duces radii of the Strömgren spheres in agreement with the
analytical prediction: (4π/3)R3

s nenHαrec = Nion, where Rs is
the Strömgren radius and Nion is the number of ionizing pho-
tons emitted per unit time. The right panel of Figure 11 shows
the test of the 1D radiative transfer module without hydrody-
namics. Different symbols indicate the radii for the different

ionization fractions: xe = 0.99 (circle), 0.90 (square), and 0.50
(triangle).

APPENDIX B

RADIATIVE TRANSFER MODULE AND TIME STEPPING

Our hydrodynamic calculation is performed using ZEUS-
MP, returning the density and gas energy at each time step
to the radiative transfer module. The operator-splitting method
is applied to mediate between hydrodynamics and radiative
transfer with a photon-conserving method (Whalen & Norman
2006). For each line of sight, radiative transfer equations are
solved in the following order.

1. At the inner boundary, the average inflow mass flux Ṁ is
calculated.

2. The mass flux is converted into accretion luminosity L,
and thus into the number of ionizing photons for a given
radiative efficiency η.

3. The photon spectrum is determined using a power-law SED
with spectral index α. We use up to 300 logarithmically
spaced frequency bins for photons between 10 eV and
100 keV.

4. The ordinary differential equation for time-dependent ra-
diative transfer cooling/heating and chemistry of the gas
are solved using a Runge–Kutta or semi-implicit solver for
each line of sight with a maximum of 10% error. Photo-
heating, cooling for a given cooling function, and Compton
cooling are calculated.

5. The energy density and the abundances of neutral and
ionized hydrogen are updated.

Parallelization is easily implemented in the polar angle
direction because radiative transfer calculations along each ray
are independent of one another.
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Figure 12. Comparisons between simulations of η = 0.1, Mbh = 100 M�,
nH,∞ = 105 cm−3, and T∞ = 104 K with various resolutions. Solid: 384 grid
run. Dotted: 512 grid run. Long dashed: 768 grid run. Short dashed: 512 grid
with a Courant number of 0.05.

(A color version of this figure is available in the online journal.)

APPENDIX C

RESOLUTION STUDIES

We perform a resolution study to confirm that the number
of grid zones does not affect the results. The number of zones
from 384 to 768 are tested and they all show similar outputs in
terms of accretion rate at peaks, average accretion rate, decaying
shape, and the period between peaks. Figure 12 shows that the
details of the accretion rate history from simulations are not
identical but the physical quantities which we are interested in
(average accretion rate, peak accretion rate, and period of the
bursts) do not show significant deviation from each other. In
general, a Courant number of 0.5 is used for most simulations,
but we try a Courant number which is one order of magnitude
smaller to investigate how the results are affected by reducing
the hydro-time step by an order of magnitude. The chemical/
cooling time steps are calculated independently by the radiation
transfer module.
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