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ABSTRACT

We develop a theoretical framework that combines measurements of galaxy–galaxy lensing, galaxy clustering, and
the galaxy stellar mass function in a self-consistent manner. While considerable effort has been invested in exploring
each of these probes individually, attempts to combine them are still in their infancy. These combinations have the
potential to elucidate the galaxy–dark matter connection and the galaxy formation physics responsible for it, as well
as to constrain cosmological parameters and to test the nature of gravity. In this paper, we focus on a theoretical
model that describes the galaxy–dark matter connection based on standard halo occupation distribution techniques.
Several key modifications enable us to extract additional parameters that determine the stellar-to-halo mass relation
and to simultaneously fit data from multiple probes while allowing for independent binning schemes for each probe.
We construct mock catalogs from numerical simulations to investigate the effects of sample variance and covariance
for each probe. Finally, we analyze how trends in each of the three observables impact the derived parameters of
the model. In particular, we investigate various features of the observed galaxy stellar mass function (low-mass
slope, “plateau,” knee, and high-mass cutoff) and show how each feature is related to the underlying relationship
between stellar and halo mass. We demonstrate that the observed “plateau” feature in the stellar mass function at
M∗ ∼ 2 × 1010 M� is due to the transition that occurs in the stellar-to-halo mass relation at Mh ∼ 1012 M� from a
low-mass power-law regime to a sub-exponential function at higher stellar mass.
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1. INTRODUCTION

Improved measurements of the link between galaxies and the
dark matter distribution will benefit a variety of cosmological
applications but will also provide important clues about the role
that dark matter plays in the galaxy formation process. Although
multiple techniques have been developed for this purpose, no
single method has yet emerged as the ultimate tool and all suffer
from various drawbacks. The goal of this paper is to develop
the theoretical foundations required to combine multiple probes
into a single tool that will provide more powerful constraints
on the galaxy–dark matter connection. This paper extends and
complements a growing body of work on this topic (Seljak
2000; Guzik & Seljak 2001, 2002; Berlind & Weinberg 2002;
Tasitsiomi et al. 2004; Mandelbaum et al. 2005, 2006b; Yoo
et al. 2006; Cacciato et al. 2009; Tinker et al. 2010).

At present, there are only two observational techniques
capable of directly probing the dark matter halos of galaxies
out to large radii (above 50 kpc): galaxy–galaxy lensing (e.g.,
Brainerd et al. 1996; McKay et al. 2001; Hoekstra et al. 2004;
Sheldon et al. 2004; Mandelbaum et al. 2006a, 2006b; Heymans
et al. 2006; Johnston et al. 2007; Leauthaud et al. 2010) and the
kinematics of satellite galaxies (McKay et al. 2002; Prada et al.
2003; Brainerd & Specian 2003; van den Bosch et al. 2004;
Conroy et al. 2007; Becker et al. 2007; Norberg et al. 2008;
More et al. 2009, 2011). Galaxy–galaxy lensing (hereafter “g–g
lensing”) utilizes subtle distortions induced in the shapes and
orientations of distant background galaxies in order to measure
foreground mass distributions. The satellite kinematic method

uses satellite galaxies as test particles to trace out the dark
matter velocity field. Neither method can probe the halos of
individual galaxies. Instead, both techniques must stack an
ensemble of foreground galaxies in order to extract a signal.
Nonetheless, with the advent of data sets large enough to provide
statistically significant samples, improvements in photometric
redshift techniques, and spectroscopic follow-up programs, both
methods have emerged as powerful probes of the galaxy–dark
matter connection and have truly evolved into mature techniques
over the last decade.

In addition to these two direct probes, there are also sev-
eral popular indirect methods to infer the galaxy–dark matter
connection from the statistics of galaxy clustering. For exam-
ple, numerous authors have employed a statistical model to
describe the probability distribution P (N |Mh) that a halo of
mass Mh is host to N galaxies above some threshold in luminos-
ity or stellar mass. This statistical model, commonly known as
the halo occupation distribution (HOD), has been considerably
successful at interpreting the clustering properties of galaxies
(e.g., Seljak 2000; Peacock & Smith 2000; Scoccimarro et al.
2001; Berlind & Weinberg 2002; Bullock et al. 2002; Zehavi
et al. 2002, 2005, 2011; Zheng et al. 2005, 2007; Tinker et al.
2007; Wake et al. 2011; White et al. 2011). The HOD pro-
vides a description of the spatial distribution of galaxies at all
scales, but it is usually inferred observationally by modeling
measurements of the two-point correlation function of galaxies,
ξgg(r). Since they were introduced a decade ago, HOD models
have progressively increased in fidelity and complexity owing
to stronger observational constraints but also to the availability
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of larger, high-resolution cosmological N-body simulations of
the dark matter. For example, analytical descriptions of the form
and evolution of the halo mass function and the large-scale
halo bias, both of which are key ingredients for HOD mod-
els, are approaching percent-level precision (e.g., Tinker et al.
2008, 2010). A variety of extensions to the basic HOD frame-
work have also been proposed. For example, the conditional
luminosity function Φ(L|Mh)dL specifies the average num-
ber of galaxies of luminosity L ± dL/2 that reside in a halo
of mass Mh (e.g., Yang et al. 2003; van den Bosch et al. 2003b,
2007; Vale & Ostriker 2004, 2008; Cooray 2006) and the condi-
tional stellar mass function Φ(M∗|Mh)dM∗ describes the aver-
age number of galaxies with stellar masses in the range M∗±dM∗
as a function of host halo mass Mh (e.g., Yang et al. 2009;
Moster et al. 2010; Behroozi et al. 2010). Furthermore, a num-
ber of studies are also starting to take into account, not only the
simple expectation values of the underlying relations, but also
the scatter between the observable and halo mass (e.g., More
et al. 2011; Behroozi et al. 2010; Moster et al. 2010), a crucial
ingredient for a complete description of the galaxy–dark matter
connection.

Finally, halo mass constraints from the galaxy stellar mass
function (hereafter “SMF”) have also been derived by assuming
that there is a monotonic correspondence between halo mass (or
circular velocity) and galaxy stellar mass (or luminosity; e.g.,
Kravtsov et al. 2004; Vale & Ostriker 2004, 2006; Tasitsiomi
et al. 2004; Conroy & Wechsler 2009; Drory et al. 2009;
Moster et al. 2010; Behroozi et al. 2010; Guo et al. 2010). This
particular technique, often referred to as “abundance matching,”
is economic in terms of data requirements since it only considers
the observed stellar mass (or luminosity) function. However,
prior knowledge about the mass distribution of halos (and
substructure within those halos) from cosmological N-body
simulations is necessary as well as the assumption that field
halos and sub-halos of the same halo mass contain galaxies of
the same stellar mass.

While considerable effort has been invested in exploring each
of these probes individually, attempts to combine them in a fully
consistent way are still in their infancy. Nevertheless, savvy
combinations hold great potential not only to elucidate the evolu-
tion of the galaxy–dark matter connection, and consequently the
galaxy formation physics responsible for it, but also to constrain
fundamental physics, including the cosmological model and the
nature of gravity. For example, measurements of small-scale
galaxy clustering alone do not yield cosmological constraints
unless coupled with probes that are sensitive to the mass scales
of dark matter halos (e.g., cluster mass-to-light ratios, satellite
kinematics, g–g lensing, etc.; van den Bosch et al. 2003a; Tinker
et al. 2005; Seljak et al. 2005). In particular, Yoo et al. (2006)
and Cacciato et al. (2009) have shown that the combination of
g–g lensing and galaxy clustering is sensitive to Ωm and σ8. Con-
ceptually, this sensitivity arises from the fact that this particular
combination simultaneously probes the shape and amplitude of
the halo mass function at small scales and the overall matter
density and the bias of the galaxy sample at large scales.

Other combinations can be sensitive to parameters in modified
gravity theories. A generic metric theory of gravity has two
scalar potentials: φ, which affects the clustering and dynamics
of galaxies, and ψ , which affects the lensing of light around
galaxies. Combining probes of g–g lensing with clustering and/
or satellite dynamics allows a test of the general relativity (GR)
prediction that ψ = φ as well as the Poisson equations which
relate these potentials to the underlying density distribution. For

example, Reyes et al. (2010) have used a combination of g–g
lensing, galaxy clustering, and redshift space distortions to place
limits on possible modifications to GR on ∼10 Mpc scales.

Tests of gravity on smaller scales, though complicated by
the fact that structures have undergone nonlinear evolution,
are interesting in several respects. First, all of our direct
probes of the dark matter are either intrinsically limited to
small scales (e.g., a few Mpc for satellite kinematics) or have
significantly larger signals on small scales (e.g., below 10 Mpc
for both cosmic shear and g–g lensing). Second, there are many
alternative gravity theories which predict unique and interesting
modifications on these scales (Smith 2009; Hui et al. 2009;
Schmidt 2010; Jain & Khoury 2010).

In this paper, we develop the theoretical framework necessary
to constrain the galaxy–dark matter connection by combining
measurements of galaxy clustering, g–g lensing, and the galaxy
SMF. The formalism outlined in this paper could also be applied
to model satellite kinematics (see More et al. 2011). For this
work, we adopt the standard HOD framework but with several
key modifications. For instance, a procedure often adopted in
clustering studies is to fit a set of HOD parameters (typically
three to five) independently to the clustering signal and number
density for each galaxy sample. However, adopting this strategy
would require selecting a common binning scheme for all
probes. In practice, we would like to avoid using a single
binning scheme because various probes have different signal-
to-noise ratio (S/N) requirements. We therefore modify the
standard HOD model so that we can simultaneously fit data
from multiple probes while allowing for independent binning
schemes for each probe. Also, since we are interested in the
galaxy–dark matter connection, we modify the HOD model so as
to specifically include a parameterization for the stellar-to-halo
mass relation (hereafter “SHMR”). In Leauthaud et al. (2011,
hereafter Paper II), we demonstrate that this model provides
an excellent fit to g–g lensing, galaxy clustering, and SMF
measurements in the Cosmic Evolution Survey (COSMOS)
from z = 0.2 to z = 1.0.

For 2 deg2 surveys such as COSMOS, the finite sample size
of the observational data set is also an important concern. We
will present an estimate of the sample variance using mock
surveys from numerical simulations. We will also estimate the
covariance of the data for each observational measure. We
will demonstrate that this is especially important for modeling
the SMF, an effect that is usually not incorporated into most
analyses. The finite sample size in COSMOS biases clustering
measurements through the integral constraint, an effect we will
also model through our mock surveys.

The layout of this paper is as follows. To begin with, we
introduce the parametric form used to model the SHMR in
Section 2. Next, in Section 3, we present the general HOD
framework and our extensions to this model. In Section 4, we
show how this model can be used to simultaneously fit g–g
lensing, galaxy clustering, and SMF measurements. In Section 5,
we describe the influence of each model parameter on the three
observables. We then construct a set of mock catalogs designed
to mimic the COSMOS survey and describe the behavior of the
covariance matrices for the three probes in Section 6. Finally,
we draw up our conclusions in Section 7.

We assume a WMAP5 ΛCDM cosmology with Ωm = 0.258,
ΩΛ = 0.742, Ωbh

2 = 0.02273, ns = 0.963, σ8 = 0.796, and
H0 = 72 km s−1 Mpc−1 (Hinshaw et al. 2009). Unless stated
otherwise, all distances are expressed in physical Mpc. The
letter Mh denotes halo mass. The halo radius is denoted by Rh.
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In this paper, halo mass is defined as M200b ≡ M(< R200b) =
200ρ̄ 4

3πR3
200b, where R200b is the radius at which the mean

interior density is equal to 200 times the mean matter density
(ρ̄). We note however that our theoretical framework is valid for
any reasonable choice of halo definition. Stellar mass is denoted
by M∗.

2. THE STELLAR-TO-HALO MASS RELATION FOR
CENTRAL GALAXIES

To begin with, we present the mathematical function that we
use to model the SHMR and describe the influence of each of
the five parameters that regulate its shape. We will assume that
the SHMR is specifically valid for “central” galaxies which are
located by definition at the center of their parent halos. Dark
matter halos also contain smaller bound density peaks that or-
bit around the center of the potential well. These substructures
are commonly referred to as sub-halos; these sub-halos are the
likely sites of “satellite” galaxies that have been accreted onto
their parent halos. The abundance matching technique com-
monly assumes that satellite galaxies follow the same SHMR as
centrals provided that halo mass is defined at the epoch when
satellites were accreted onto their parent halos (Macc), rather
than the current sub-halo mass (Conroy et al. 2006; Moster
et al. 2010; Behroozi et al. 2010). However, this presupposes
that satellite stellar growth occurs at a similar rate as centrals of
equivalent halo mass (that is to say with a halo mass equal to
Macc). Since one might expect that satellites and centrals experi-
ence distinct stellar growth rates, we model central and satellite
galaxies separately in order to keep our model as general as
possible.

In Section 3.2, we will show how the SHMR can be used
to predict the central occupation function and then we will
introduce the model for satellite galaxies in Section 3.3.

2.1. Functional Form for the SHMR

Let us consider the conditional SMF (the analog of the con-
ditional luminosity function) which represents the number of
galaxies with M∗ in the range M∗ ± dM∗/2 at fixed halo mass
and is denoted by Φ(M∗|Mh) (e.g., Yang et al. 2009; Moster
et al. 2010; Behroozi et al. 2010). The conditional SMF can
be divided into a central component and a satellite compo-
nent: Φ(M∗|Mh) = Φc(M∗|Mh) + Φs(M∗|Mh). Φc(M∗|Mh) is
the conditional SMF for central galaxies, and it will be our
mathematical representation of the SHMR. Note that in our
model, the halo mass in the term Φs(M∗|Mh) refers to the host
halo mass.

In addition to the shape and evolution of the mean SHMR,
astrophysical processes are expected to induce an intrinsic
scatter in stellar mass at fixed halo mass, which is important
to take into consideration when defining a functional form for
Φc(M∗|Mh). Another non-negligible source of scatter can be the
measurement error associated with the determination of stellar
masses. In the absence of strong observational or theoretical
guidance for the form and magnitude of the total scatter
(intrinsic plus measurement), we adopt a stochastic model
where Φc(M∗|Mh) is a log-normal probability distribution
function (hereafter “PDF”) with a log-normal scatter6 denoted
by σlog M∗ . Since we have assumed a log-normal functional form,

6 Scatter is quoted as the standard deviation of the logarithm base 10 of the
stellar mass at fixed halo mass.

Φc(M∗|Mh) can be written as

Φc(M∗|Mh) = 1

ln(10)σlogM∗
√

2π

× exp

[
−

[
log10(M∗) − log10(fshmr(Mh))

]2

2σ 2
logM∗

]
, (1)

where fshmr represents the logarithmic mean of the stellar mass
given the halo mass for the Φc distribution function. Equation (1)
is normalized such that the integral of Φc(M∗|Mh) over M∗ is
equal to 1.

To model Φc we must specify a functional form for both
fshmr and σlog M∗ . There is increasing evidence to suggest that
low- and high-mass galaxies have different stellar-to-halo mass
ratios, probably as a result of multiple feedback mechanisms that
operate at distinct mass scales and regulate star formation. We
therefore require an SHMR that is flexible enough to capture
such variations. We adopt the functional form presented in
Behroozi et al. (2010, hereafter “B10”), which has been shown to
reproduce the local Sloan Digital Sky Survey (SDSS) SMF using
the abundance matching technique. In practice, fshmr(Mh) is
mathematically defined via its inverse function:

log10(f −1
shmr

(M∗)) = log10(Mh)

= log10(M1) + β log10

(
M∗
M∗,0

)
+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ
− 1

2
, (2)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass end slope, γ controls the
transition region, and δ controls the massive end slope. Details
regarding the justification of this functional form can be found
in Section 3.4.3 of B10.

Note that a variety of similar functional forms have been
proposed by previous authors. For example, the interested reader
can look at Equation (2) in Moster et al. (2010) and Equation (20)
in Yang et al. (2009).

In contrast to B10, we do not parameterize the redshift
evolution of this functional form. Instead, in Paper II, we bin the
data into three redshift bins and check for redshift evolution in
the parameters a posteriori. Another difference with respect to
B10 is that we assume Equation (2) is only relevant for central
galaxies whereas B10 assume that the SHMR also applies to
satellite galaxies, provided that the halo mass of a satellite galaxy
is defined as Macc.

It is important to note that our SHMR traces the location
of the mean-log stellar mass: fshmr(Mh) ≡ 〈log10(M∗(Mh))〉.
Other authors may report the mean stellar mass, 〈M∗(Mh)〉, or
even the mean halo mass at fixed stellar mass, 〈Mh(M∗)〉 (e.g.,
Conroy et al. 2007). These averaging systems will yield different
results in the presence of scatter. For example, 〈Mh(M∗)〉 will be
biased low compared to 〈log10(M∗(Mh))〉 if σlog M∗ is non-zero.
This bias will increase with σlog M∗ and for larger values of the
high-mass slope of f −1

shmr
.

In Figure 1, we illustrate the impact of the five parameters that
determine fshmr on the shape of the SHMR. A brief description
is as follows.

1. M1 controls the characteristic halo mass; increasing M1 will
result in larger halos hosting galaxies at a given stellar mass.
In Figure 1 (which represents M∗ on the x-axis and Mh on
the y-axis), M1 controls the y-axis amplitude (halo mass) of
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Figure 1. Illustration of the influence of M1, M∗,0, β, δ, and γ on the shape of the SHMR. M1 controls the characteristic halo mass. M∗,0 controls the characteristic
stellar mass. β controls the low-mass power-law slope. δ regulates how rapidly the SHMR climbs at high M∗. γ controls the transition regime between the low-mass
power-law regime and the high-mass sub-exponential behavior.

(A color version of this figure is available in the online journal.)

f −1
shmr

so that a constant change in M1 leads to a constant
up/down logarithmic shift in f −1

shmr
. Note that this constant

logarithmic shift may not be visually obvious because the
slope of the SHMR increases sharply at M∗ > 1011 M�.

2. M∗,0 controls the characteristic stellar mass; increasing
M∗,0 will result in smaller halos hosting galaxies at a given
stellar mass. In Figure 1, M∗,0 controls the x-axis amplitude
of f −1

shmr
.

3. β controls the low-mass power-law slope of f −1
shmr

. When
β increases, the low-mass end slope becomes steeper.

4. The δ parameter regulates how rapidly f −1
shmr

climbs at
high M∗. Indeed, f −1

shmr
asymptotes to a sub-exponential

function at high M∗, which signifies that f −1
shmr

climbs
more rapidly than a power-law function but less rapidly
than an exponential function (see discussion in B10).

5. γ controls the transition regime between the low-mass
power-law regime and the high-mass sub-exponential be-
havior. A larger value of γ corresponds to a more sharp
transition between the two regimes.

A quantity that is of particular interest is the mass (we refer
here to both M∗ and Mh) at which the ratio Mh/M∗ reaches
a minimum. This minimum is of noteworthy importance for
galaxy formation models because it marks the mass at which
the accumulated stellar growth of the central galaxy has been
the most efficient. In this paper, and in subsequent papers, we
will refer to the stellar mass, halo mass, and ratio at which this
minimum occurs as the “pivot stellar mass,” M

piv
∗ , the “pivot

halo mass,” M
piv
h , and the “pivot ratio,” (Mh/M∗)piv. Note that

M
piv
∗ and M

piv
h are not simply equal to M1 and M∗,0. Indeed, the

mathematical formulation of the SHMR is such that the pivot
masses depend on all five parameters. The three parameters
that have the strongest effect on the pivot masses are M1, M∗,0,
and γ . For example, as can be seen in the right-hand panel of
Figure 1, M

piv
∗ and M

piv
h are inversely proportional to γ . To a

lesser extent, the two remaining parameters, β and δ, also have
a small influence on the pivot masses.

2.2. Scatter between Stellar and Halo Mass

We now turn our attention to the second component of
Φc(M∗|Mh), which is the scatter in stellar mass at fixed
halo mass, σlog M∗ . The total measured scatter will have two
components: an intrinsic component (denoted by σ i

log M∗ ) and a
measurement error component due to redshift, photometry, and
modeling uncertainties in stellar mass measurements (denoted
by σ m

log M∗ ). It is reasonable to assume that the intrinsic scatter
component is independent of the measurement error component.
Assuming Gaussian error distributions, we can write

(σlog M∗ )2 = (
σ i

log M∗

)2
+

(
σ m

log M∗

)2
. (3)

While the error distribution for the stellar mass estimate for
any single galaxy may be non-Gaussian, in this work we are
only concerned with stacked ensembles. B10 have tested that
the error distribution for a stacked ensemble is Gaussian to
good approximation and that small non-Gaussian wings in this
distribution are not likely to affect this type of analysis.

In practice, since the data are always binned according to M∗,
the observables are actually sensitive to the scatter in halo mass
at fixed stellar mass, which we denote by σlog Mh

. It will therefore
be useful to understand the link between σlog Mh

and σlog M∗ . If
the SHMR is a power law, the relationship between σlog Mh

and
σlog M∗ is simply

σlog Mh
= σlog M∗

d(log10 Mh)

d(log10 M∗)
. (4)

For example, if there is a power-law relation between halo
mass and stellar mass such that Mh = M

η
∗ then σlog Mh

=
η × σlog M∗ . In our case, the SHMR behaves like a power
law at low M∗. At high M∗, however, d(log10 Mh)/d(log10 M∗)
increases as a function of M∗. Therefore, if σlog M∗ is constant,
σlog Mh

will be equal to σlog Mh
= β × σlog M∗ at low M∗ but then

will continuously increase with M∗ at a rate set by γ and δ.
If we adopt the best-fit model to the SHMR from Paper II in

the redshift range 0.22 < z < 0.48, we find that the power-law
index of the SHMR increases steeply at log10(M∗) > 11 so that
σlog Mh

becomes quite large. For example, σlog Mh
∼ 0.46 dex at
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log10(M∗) = 11 and σlog Mh
∼ 0.7 dex at log10(M∗) = 11.5.

In practical terms, this implies that the most massive galaxies
do not necessarily live in the most massive halos. For example,
a galaxy with M∗ ∼ 2 × 1011 M� could be the central galaxy
of a group with Mh ∼ 1013–1014M�, or could also be the
central galaxy of a cluster with Mh > 1015M�. The increase
of σlog Mh

with M∗ will lead to a noticeable effect in the g–g
lensing, clustering, and SMFs at large M∗ that is analogous to
Eddington bias. This effect will be discussed in further detail in
Section 5.

3. HOD FRAMEWORK

In this section, we show how Φc(M∗|Mh) can be used to
determine the central halo occupation function and introduce
five new parameters to describe the satellite occupation function.

3.1. Halo Occupation Functions

In this paper, we assume that stellar mass is used to implement
the HOD model since it is expected to be a more faithful tracer
of halo mass than galaxy luminosity.

Consider a galaxy sample such that M∗ > Mt1∗ (a “thresh-
old” sample). The central occupation function, denoted by
〈Ncen(Mh|Mt1∗ )〉, is the average number of central galaxies in
this sample that are hosted by a halo of mass Mh. The satellite
occupation function, denoted by 〈Nsat(Mh|Mt1∗ )〉, is the equiva-
lent function for satellite galaxies.

In what follows, we focus on the appropriate equations for
threshold samples. In Paper II, however, we will use “binned”
samples (Mt1∗ < M∗ < Mt2∗ ) to calculate the g–g lensing and the
SMF. We therefore note that the occupation functions for binned
samples are trivially derived from the occupation function for
threshold samples via

〈Ncen(Mh|Mt1∗ ,Mt2∗ )〉 = 〈Ncen(Mh|Mt1∗ )〉 − 〈Ncen(Mh|Mt2∗ )〉
(5)

and

〈Nsat(Mh|Mt1∗ ,Mt2∗ )〉 = 〈Nsat(Mh|Mt1∗ )〉−〈Nsat(Mh|Mt2∗ )〉. (6)

3.2. Functional Form for 〈Ncen〉
For a threshold sample of galaxies, 〈Ncen(Mh|Mt1∗ )〉 is fully

specified given Φc(M∗|Mh) according to

〈Ncen(Mh|Mt1∗ )〉 =
∫ ∞

M
t1∗

Φc(M∗|Mh)dM∗. (7)

Because the integral of Φc(M∗|Mh) over M∗ is equal to 1,
〈Ncen(Mh|Mt1∗ )〉 will vary between 0 and 1.

To begin with, let us make the simplifying assumption
that σlog M∗ is constant. Because Φc is parameterized as a
log-normal distribution, the central occupation function can
be analytically derived from Equation (7) by considering the
cumulative distribution function of the Gaussian:

〈Ncen(Mh|Mt1∗ )〉

= 1

2

[
1 − erf

(
log10(Mt1∗ ) − log10(fshmr(Mh))√

2σlog M∗

)]
, (8)

where erf is the error function defined as

erf(x) = 2√
π

∫ x

0
e−t2

dt. (9)

It is important to note that Equation (8) is only valid when
σlog M∗ is constant. In the more general case where σlog M∗ varies,
〈Ncen〉 can nonetheless be calculated by numerically integrating
Equation (7). In Paper II, we will consider cases in which σlog M∗
varies due to the effects of stellar-mass-dependent measurement
errors. In this case, we will numerically integrate Equation (7)
to calculate 〈Ncen〉 (see Section 4.2 in Paper II).

We note that most readers may be more familiar with a
simplified version of Equation (8) that assumes fshmr(Mh)
is a power law. We will now describe the assumptions made
in order to obtain the more commonly employed equation for
〈Ncen〉 from Equation (8).

If we make the assumption that fshmr(Mh) ∝ M
p

h and we
define Mmin such that Mmin ≡ f −1

shmr
(Mt1∗ ) (in other terms, Mmin

is the inverse of the SHMR relation for the stellar mass threshold
Mt1∗ ) then using Equation (8) we can write

〈Ncen(Mh|Mt1∗ )〉

= 1

2

[
1 − erf

(
log10(Mp

min) − log10(Mp

h )√
2σlog M∗

)]
. (10)

If we now use the fact that erf(−x) = −erf(x) and if we
define σ̃logM such that σ̃log M ≡ σlog M∗/p we can write

〈Ncen(Mh|Mt1∗ )〉

= 1

2

[
1 + erf

(
log10(Mh) − log10(Mmin)√

2σ̃log M

)]
, (11)

which is a commonly employed formula for 〈Ncen〉. First, it is
important to note that Equation (11) is only an approximation
for 〈Ncen〉 for the case when the SHMR is a power law and is
certainly not valid over a large range of stellar masses. Second,
σ̃logM can be interpreted as the scatter in halo mass at fixed stellar
mass if and only if the SHMR is a power law and if σlog M∗ is
constant. Since there is accumulating evidence that the SHMR
is not a single power law (and the same is in general true for
the relationship between halo mass and galaxy luminosity), we
recommend using Equation (8) instead of Equation (11).

Figures 2 and 3 illustrate the difference in 〈Ncen〉 when
Equation (8) is used to describe clustering instead of
Equation (11). To make this figure, we have assumed the para-
meter set: log10(M1) = 12.71, log10(M∗,0) = 11.04, β = 0.467,
δ = 0.62, γ = 1.89, and σlog M∗ = 0.25. For each stellar mass
threshold in Figure 2, we determine the values of Mmin and σ̃logM

in Equation (11) such that the number density of central galax-
ies and the bias of those galaxies is the same as that achieved
with Equation (8). Thus, our procedure mimics what one would
obtain through analysis of the clustering and space density of
such samples, assuming that the satellite occupation would be
the same in either analysis.

Figure 2 reveals that because the SHMR has a sub-exponential
behavior at log10(M∗) � 10.5, 〈Ncen〉 begins to deviate from a
simple erf function for high stellar mass samples and therefore is
not well described by Equation (11). Assuming that Equation (8)
correctly represents 〈Ncen〉, the error made on Mmin can be
of order 10%–40% at Mh = f −1

shmr
(Mt1∗ ) � 1012 M� if

Equation (11) is used to describe 〈Ncen〉 instead of Equation (8).
We note that this does not invalidate Equation (11) as a

possible parameterization of the central occupation function.
However, interpreting Mmin in Equation (11) as f −1

shmr
(Mt1∗ )

can result in a 10%–40% error in the true mean halo mass (with
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Figure 2. Impact of the analytic model for the mean number of central galaxies in a given halo. Black lines show the form of 〈Ncen〉 for stellar mass threshold samples
using Equation (8). Orange lines show 〈Ncen〉 when Equation (11) is used to describe the clustering instead of Equation (8). The parametric form of the SHMR is a
power law at low M∗ and thus Equation (11) provides a reasonable description of 〈Ncen〉 at log10(M∗) � 10.5. At log10(M∗) � 10.5, however, 〈Ncen〉 deviates from a
simple erf function and there are noticeable differences between the two proposed forms for 〈Ncen〉.
(A color version of this figure is available in the online journal.)
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Figure 3. Difference between two analytic models for the mean number of
central galaxies in a given halo. Assuming that Equation (8) correctly represents
〈Ncen〉, we evaluate the difference between the value for Mmin if Equation (11)
is used (denoted here as M

Eq11
min ) to fit clustering data and f −1

shmr
(Mt1∗ ) (denoted

here as M
Eq8
min ). The difference is negligible below log10(Mmin) � 12 but can be

of order 10%–40% at higher masses.

(A color version of this figure is available in the online journal.)

larger errors for σlog M∗ > 0.25). Also, the “scatter” (̃σlogM )
constrained by this parameterization is not equal to the scatter
in a log-normal distribution of stellar mass at fixed halo mass.
Finally, one troublesome aspect of using the erf functional form
in Equation (11) is that 〈Ncen〉 curves for different stellar mass
thresholds may actually cross at low halo mass, implying the
unphysical condition that halos of mass Mh have a “negative”
amount of galaxies between two threshold values. This is seen
at Mh ∼ 1011.5 M� in Figure 2. For values of σlog M∗ larger
than what we have assumed here, this effect will occur at even
higher halo mass. Using Equation (8) with a model for the
SHMR prevents this from occurring, and 〈Ncen〉 for various
galaxy samples can be calculated self-consistently.

3.3. Functional Form for 〈Nsat〉
In addition to the five parameters introduced to model 〈Ncen〉

and σlog M∗ , we introduce five new parameters to model 〈Nsat〉.
In order to simultaneously fit g–g lensing, clustering, and
SMF measurements that employ different binning schemes,

we require a model for 〈Nsat〉 that is independent of any
given binning scheme. For this reason, we parameterize the
satellite function with threshold samples. The number of satellite
galaxies in a bin of stellar mass is determined by a simple dif-
ference of two threshold samples. This also eliminates the
need to integrate over stellar mass, as required when working
explicitly through the conditional SMF.

Numerical simulations demonstrate that the occupation of
sub-halos (e.g., Kravtsov et al. 2004; Conroy et al. 2006) and
satellite galaxies in cosmological hydrodynamic simulations
(Zheng et al. 2005) follow a power law at high host halo
mass, then fall off rapidly when the mean occupation becomes
significantly less than unity. Thus, we parameterize the satellite
occupation function as a power of host mass with an exponential
cutoff and scaled to 〈Ncen〉 as follows:

〈Nsat(Mh|Mt1∗ )〉
= 〈Ncen(Mh|Mt1∗ )〉

(
Mh

Msat

)αsat

exp

(−Mcut

Mh

)
, (12)

where αsat represents the power-law slope of the satellite mean
occupation function, Msat defines the amplitude of the power
law, and Mcut sets the scale of the exponential cutoff. Here, Mh
refers to the host halo mass of satellite galaxies.

Observational analyses have demonstrated that there is a
self-similarity in occupation functions such that Msat/Mmin ≈
constant for luminosity-defined samples (Zehavi et al. 2005,
2011; Zheng et al. 2007, 2009; Tinker et al. 2007; Abbas
et al. 2010), where Mmin is taken from Equation (11) and
is conceptually similar to f −1

shmr
(Mt1∗ ) (modulo a 10%–40%

difference as shown in Figure 3) and where Mt1∗ is the stellar
mass threshold of the sample. Instead of simply modeling Msat

and Mcut as constant factors of f −1
shmr

(Mt1∗ ), we add flexibility
to our model by enabling Msat and Mcut to vary as power-law
functions of f −1

shmr
(Mt1∗ ):

Msat

1012M�
= Bsat

(
f −1

shmr
(Mt1∗ )

1012M�

)βsat

(13)
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Table 1
Parameters in Model

Parameter Unit Description 〈Ncen〉 or 〈Nsat〉
M1 M� Characteristic halo mass in the SHMR 〈Ncen〉
M∗,0 M� Characteristic stellar mass in the SHMR 〈Ncen〉
β None Faint end slope in the SHMR 〈Ncen〉
δ None Controls massive end slope in the SHMR 〈Ncen〉
γ None Controls the transition regime in the SHMR 〈Ncen〉
σlog M∗ dex Log-normal scatter in stellar mass at fixed halo mass 〈Ncen〉
βsat None Slope of the scaling of Msat 〈Nsat〉
Bsat None Normalization of the scaling of Msat 〈Nsat〉
βcut None Slope of the scaling of Mcut 〈Nsat〉
Bcut None Normalization of the scaling of Mcut 〈Nsat〉
αsat None Power-law slope of the satellite occupation function 〈Nsat〉

and
Mcut

1012M�
= Bcut

(
f −1

shmr
(Mt1∗ )

1012M�

)βcut

. (14)

Zheng et al. (2007) find that Msat/Mmin ∼ 18 for SDSS and
Msat/Mmin ∼ 16 using luminosity-defined samples in DEEP2.
For Bcut, the expectation is that the cutoff mass scale occurs at
Mmin < Mcut < Msat, although it can be significantly smaller.

3.4. Total Stellar Mass as a Function of Halo Mass

Using this model, one can also compute the total amount of
stellar mass in galaxies (summing the contribution from both
centrals and satellites) as a function of halo mass Mh. To begin
with, let us consider the total stellar mass as a function of
halo mass in some stellar mass bin: M tot

∗ (Mh|Mt1
∗ ,Mt2

∗ ). The
expression for M tot

∗ (Mh|Mt1
∗ ,Mt2

∗ ) is given by

M tot
∗ (Mh|Mt1

∗ ,Mt2
∗ )

=
∫ Mt2

∗

Mt1∗
[Φc(M∗|Mh) + Φs(M∗|Mh)] M∗dM∗. (15)

However, in the previous section we have only specified the
analytic form for Φc (Equation (1)) but not for Φs . Indeed,
in Section 3.3 we outlined an analytic model for 〈Nsat〉 but
calculating the analytic derivative of 〈Nsat〉 would be tedious.
Thankfully, however, we do not specifically need to know the
functional form of Φs in order to calculate Equation (15). By
using the integration by parts rule, we can rewrite Equation (15)
in a more convenient form as follows:

M tot
∗ (Mh|Mt1

∗ ,Mt2
∗ )

=
∫ Mt2

∗

Mt1∗
〈Ncen(Mh|M∗)〉dM∗ − [〈Ncen(Mh|M∗)〉M∗]

Mt2
∗

Mt1∗

+
∫ Mt2

∗

Mt1∗
〈Nsat(Mh|M∗)〉dM∗ − [〈Nsat(Mh|M∗)〉M∗]

Mt2
∗

Mt1∗
.

(16)

This equation provides us with a convenient way to calculate
the total stellar mass locked up in galaxies with Mt1

∗ < M∗ <

Mt2
∗ as a function of halo mass Mh.

3.5. Summary of Model Parameters

In total, we have introduced six parameters to model the
central occupation function (M1, M∗,0, β, δ, γ , σlog M∗ ) and

five parameters to model the satellite occupation function (βsat,
Bsat, βcut, Bcut, α). In addition, one could introduce a model
for σlog M∗ or assume that the scatter is constant in which case
there would be a total of 11 parameters for this model. In
Figure 8 of Paper II, we show the two-dimensional marginalized
distributions for this parameter set using data from the COSMOS
survey. The model described in this paper provides an excellent
fit to COSMOS data. Figure 8 in Paper II demonstrates that
this model is reasonably free of parameter degeneracies. A
summary and description of these parameters can be found in
Table 1. Figure 4 gives an illustration of the central and satellite
occupation functions for galaxy samples in bins and thresholds
of stellar mass.

4. HOW TO DERIVE THE SMF, G–G LENSING, AND
CLUSTERING FROM THE MODEL

We now describe how the model outlined in the previous sec-
tion yields analytic descriptions for the g–g lensing, clustering,
and SMF, which can then be fit simultaneously to observations.

4.1. Analytical Model for the Stellar Mass Function

The SMF is typically calculated in bins in stellar mass. Let us
consider the stellar mass bin Mt1∗ < M∗ < Mt2∗ . The abundance
of galaxies within this stellar mass bin, ΦSMF(Mt1∗ ,Mt2∗ ), is
simply obtained from our model and the halo mass function,
dn/dMh, according to

ΦSMF(Mt1∗ ,Mt2∗ )

=
∫ ∞

0

[∫ M
t2∗

M
t1∗

Φ(M∗|Mh)dM∗

]
dn

dMh

dMh

=
∫ ∞

0
〈Ntot(Mh|Mt1∗ ,Mt2

∗ )〉 dn

dMh

dMh, (17)

where we recall that Φ(M∗|Mh) represents the conditional SMF
and 〈Ntot〉 is the total occupation function (including both
satellites and centrals).

4.2. The Lensing Observable, ΔΣ

The shear signal induced by a given foreground mass dis-
tribution on a background source galaxy will depend on the
transverse proper distance between the lens and the source and
on the redshift configuration of the lens–source system. A lens
with a projected surface mass density, Σ(r), will create a shear
that is proportional to the surface mass density contrast, ΔΣ(r):

ΔΣ(r) ≡ Σ(< r) − Σ(r) = Σcrit × γt (r). (18)
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Figure 4. Illustration of the occupation functions for various galaxy samples as a function of stellar mass. The upper panels represent binned galaxy samples, whereas
the lower panels represent threshold samples. Left panels: central occupation function. Middle panels: satellite occupation function. Right panels: total occupation
function where 〈Ntot〉 = 〈Ncen〉 + 〈Nsat〉. The parameters chosen for this HOD model correspond to the best-fit parameters from Paper II for 0.48 < z < 0.74.

Here, Σ(< r) is the mean surface density within proper radius
r, Σ(r) is the azimuthally averaged surface density at radius r
(e.g., Miralda-Escude 1991; Wilson et al. 2001), and γt is the
tangentially projected shear. The geometry of the lens–source
system intervenes through the critical surface mass density,7

Σcrit, which depends on the angular diameter distances to the
lens (DOL), to the source (DOS), and between the lens and
the source (DLS):

Σcrit = c2

4πGN

DOS

DOL DLS
, (19)

where GN represents Newton’s constant.

4.3. Relationship between ΔΣ, the Density Field, and
Correlation Functions

Consider two different populations characterized, respec-
tively, by δa and δb. The two-point cross-correlation function
of δa and δb at comoving position rco is given by

ξab(rco) ≡ 〈δa(rco)δb(xco + rco)〉. (20)

For example, if δg and δdm are, respectively, the overdensities
of galaxies and dark matter, then we can characterize their

7 Note that some authors consider the comoving critical surface mass density
which has an extra factor of (1 + z)−2 with respect to ours.

relative distributions via the galaxy-mass cross-correlation
function, which is denoted by ξgm and is equal to

ξgm( rco) = 〈δg( rco)δdm( xco + rco)〉. (21)

Similarly, ξgg refers to the galaxy autocorrelation function.
In the following, rco is the three-dimensional comoving

distance, r||,co is the projected comoving line-of-sight distance,
and rp,co is the projected comoving transverse distance:

rco =
√

r2
p,co + r2

||,co. (22)

In Paper II, we will employ physical coordinates for g–g
lensing measurements whereas for clustering we will use
comoving coordinates. In previous work, Mandelbaum et al.
(2006b) have used comoving coordinates and Johnston et al.
(2007) have used physical coordinates. Therefore, our g–g
lensing formulas more closely resemble those of Johnston
et al. (2007). The relationship between comoving and physical
distances is simply rco = rph(1 + z). In a similar fashion to
Equation (22), we can write

rph =
√

r2
p,ph + r2

||,ph. (23)

In comoving coordinates, the density field is ρ(rco, z) =
ρ(1 + ξgm(rco, z)), where ρ = ρc,0Ωm,0 is the average density of
matter in the universe. Since ξgm is often expressed in comoving
coordinates, we first derive Σ in comoving units (denoted by Σco)
and then we transform Σ into physical units (denoted by Σph)

8
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before computing ΔΣ. For a lens at redshift zL, the projected
surface mass density, Σ, is obtained by integrating the three-
dimensional density over the line of sight:

Σco(rp,co, zL)

=
∫

ρ
(√

r2
p,co + r2

||,co, zL

)
dr||,co

= ρc,0Ωm,0

∫ [
1 + ξgm

(√
r2

p,co + r2
||,co, zL

)]
dr||,co,

(24)

where rp,co and r||,co refer, respectively, to the comoving trans-
verse and line-of-sight distance from the lens. In principle, this
integral should extend from the redshift of the observer (zO) to
the redshift of the source (zS). However, ξgm falls off rapidly
enough that in practice, the redshift evolution of ξgm can be ne-
glected and integrating only out to a distance of r||,co = 50 Mpc
is sufficient. Furthermore, for the purpose of computing ΔΣ, the
constant term in Equation (24) can be dropped (due to the sub-
traction in ΔΣ) and the mean excess projected density Σ(r) can
be approximated by the radial integral:

Σco(rp,co, zL)

= 2ρc,0Ωm,0

∫ 50 Mpc

0
ξgm

(√
r2

p,co + r2
||,co, zL

)
dr||,co. (25)

The mean excess projected density in physical units is then
Σph = Σco × (1 + zL)2.

The average Σ within radius r is equal to

Σph(< rp,ph) = 2

r2
p,ph

∫ rp,ph

0
Σph(r ′)r ′dr ′. (26)

Finally, ΔΣ is obtained by combining Equations (18), (25),
and (26).

4.4. Analytical Modeling of ξgg and w(θ )

Our model for calculating the autocorrelation function of
galaxies is based on the model given in Tinker et al. (2005)
(also see Zheng 2004). As described above, the HOD is broken
into central and satellite galaxy occupation functions. Thus,
in the HOD context, pairs of galaxies come from two distinct
terms: pairs within a single halo and pairs between galaxies in
two different halos. The total correlation function is

ξgg(rco) + 1 =
[
ξ 1h

gg (rco) + 1
]

+
[
ξ 2h

gg (rco) + 1
]
, (27)

where 1h and 2h refer to “one-halo” and “two-halo” terms,
respectively. The one-halo correlation function is written as

1 + ξ 1h
gg (rco) = 1

2πr2
con

2
g

∫
dMh

dn

dMh

× 〈N (N − 1)〉M
2

1

2Rh

F ′
(

rco

2Rh

)
, (28)

where n̄g is the space density of galaxies in the sample being
modeled, 〈N (N −1)〉M is the second moment of the distribution
of galaxies within halos as a function of halo mass, and F ′(x)
is the radial distribution of pairs within the halo normalized
to unity. Within a halo, pairs of galaxies can be between the

central galaxy and a satellite, or between two satellite galaxies.
The radial pair profile is different for these two combinations,
thus we express their relative contributions to ξ 1h

gg (rco) as

〈N (N − 1)〉M
2

F ′(x) = 〈NcenNsat〉MF ′
cs(x)

+
〈Nsat(Nsat − 1)〉M

2
F ′

ss(x), (29)

where F ′
cs is the pair distribution for central–satellite pairs and

F ′
ss is the equivalent for satellite–satellite pairs. The former is

related to the density profile of satellite galaxies, and the latter
is related to the density profile convolved with itself (analytic
expressions for this convolution can be found in Sheth et al.
2001). Here we assume that the radial distribution of satellite
galaxies is the same as the dark matter, for which we assume
the profile form of Navarro–Frenk–White (NFW; Navarro et al.
1997) using the mass–concentration relation of Muñoz-Cuartas
et al. (2010). Since we assume that satellites trace the dark
matter, F ′

cs will be equal to the quantity F ′
c that we will introduce

in Equation (35) and F ′
ss will be equal to F ′

s .
Central galaxies only exist as one or zero objects in a halo, thus

they have no second moment. For the second moment of satellite
galaxies, we assume Poisson statistics about 〈Nsat〉, which is
in good agreement with results from numerical simulations
(Kravtsov et al. 2004; Zheng et al. 2005). Possible deviations
from Poisson behavior (Busha et al. 2010; Boylan-Kolchin et al.
2010) mainly affect clustering for galaxy samples where a
majority of the satellites originate in halos with Mh < Msat
because in this case, 〈Nsat〉 drops to 〈Nsat〉 � 1. Luminous
red galaxies (LRGs) fall into this category for example. Indeed,
satellite galaxies in LRG samples mainly originate in Mh < Msat
halos because Msat is close to the exponential cutoff in the halo
mass function (for LRGs, Msat ∼ 4 × 1014 M�). However, for
the types of samples that we consider in Paper II, deviations from
Poisson statistics should not significantly affect the clustering
predictions of the HOD.

A detailed description of the two-halo term can be found in
Tinker et al. (2005). Briefly, in the regime where r > Rh of
massive halos, this term can be expressed as

ξ 2h
gg (rco) = b2

gζ
2(rco)ξm(rco), (30)

where ξm(rco) is the nonlinear matter correlation function and
bg is the large-scale bias of galaxies in the sample, and ζ (rco) is
the scale dependence of dark matter halo bias. For ξm(rco), we
use the fitting function of Smith et al. (2003). For ζ (rco), we use
the fitting function of Tinker et al. (2005). The galaxy bias is
computed from the HOD by

bg = n̄−1
g

∫
b(Mh)〈N〉M dn

dMh

dMh, (31)

where dn/dMh is the halo mass function for which we use
Tinker et al. (2008), and b(Mh) is the halo bias function for
which we use Tinker et al. (2010).

In the regime where r < Rh, Equation (30) breaks down due
to the effects of halo exclusion; i.e., the effect that the center
of one halo cannot exist within the virial radius of another halo
(and still be considered a “two-halo” pair). This is explained in
detail in Tinker et al. (2005). Because the mass function and bias
relation used in this analysis are taken from numerical results
based on spherical overdensity (SO) halo catalogs (Tinker et al.
2008, 2010), the halo exclusion must be modified to match this

9
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Figure 5. Angular correlation function for two different stellar mass thresholds. The filled points are the full HOD calculation for w(θ ). The different curves break the
calculation into its distinct parts: the solid curve is the one-halo term and the dotted curve is the two-halo term. We further break the one-halo term into the relative
contribution of central–satellite galaxy pairs (dash-dot curve) and satellite–satellite galaxy pairs (long-dash curve). For more massive galaxy samples, the one-halo
term is more prominent and it is dominated by central–satellite pair counts.

(A color version of this figure is available in the online journal.)

halo definition. In the SO halo finding algorithm of Tinker et al.
(2008), halos are allowed to overlap so long as the center of
one halo is not contained within the radius of another halo.
Thus, the minimum separation of two halos with radii R1 � R2
is R1, rather than the sum of the two radii, as done in Tinker
et al. (2005). For a projected statistic like w(θ ), this makes
only a small difference in clustering at the one-halo to two-
halo transition, but significantly speeds up computation of the
two-halo term.

Once we have calculated ξgg(rco) for a given HOD model, we
compute the observable w(θ ) by

w(θ ) =
∫

dz N2(z)
drco

dz

∫
dx ξ

(√
x2 + r2

coθ
2

)
, (32)

where N (z) is the normalized redshift distribution of the galaxy
sample, rco is the comoving radial coordinate at redshift z, and
drco/dz = (c/H0)/

√
Ωm(1 + z)3 + ΩΛ.

Figure 5 shows the breakdown of the angular correlation
function into the one-halo and two-halo terms for low-mass and
high-mass galaxy samples.

4.5. Analytical Modeling of ξgm and ΔΣ

We have shown in Section 4.3 that the lensing observable,
ΔΣ, can be obtained from ξgm by performing two integrals
(Equations (25) and (26)). Following the approach of Yoo et al.
(2006), ξgm is computed from the HOD and ΔΣ is obtained by
combining Equations (18), (25), and (26). Thus, ΔΣ is fully
specified given our model. Note that the calculation of ξgm
is performed in comoving units and then the projections of
Equations (25) and (26) to obtain ΔΣ are performed in physical
units (to match our measured g–g lensing signal which is
computed in physical units in Paper II).

Typically, ξgm is decomposed into a one-halo and a two-halo
term,

1 + ξgm(rco) = [1 + ξ 1h
gm(rco)] + [1 + ξ 2h

gm(rco)], (33)

where the one-halo term represents galaxy–matter pairs from
single halos and is dominant on small scales (�Mpc) and the
two-halo term corresponds to pairs from distinct halos and
is dominant on larger scales (�Mpc). The one-halo term is

obtained according to

1 + ξ 1h
gm(rco)

= 1

4πr2
cong

∫ ∞

0

dn

dMh

Mh

ρ

1

2Rh

〈Ntot〉F ′
(

rco

2Rh

)
dMh. (34)

Further details about the origin of Equation (34) are presented
in the Appendix.

The product ngF
′ is split into two terms:

ngF
′(x) = ncF

′
c(x) + nsF

′
s (x), (35)

where F ′
c is linked to the density profiles of dark matter

halos (see the Appendix) and F ′
s is related to the convolution

of the dark matter density profile and the satellite galaxy
distribution. To calculate F ′

c we assume spherical NFW profiles
truncated at Rh and we adopt the Muñoz-Cuartas et al. (2010)
mass–concentration relation for a WMAP5 cosmology. To
calculate F ′

s we assume that the satellite galaxy distribution
follows the dark matter distribution. Given this assumption, F ′

s

is simply related to the convolution of the NFW profile with
itself.

In this paper, we neglect the contribution to ΔΣ from sub-
halos; Yoo et al. (2006) have shown this component to be
negligible at the 10% level.

We calculate the two-halo term as described in Yoo et al.
(2006), with two major exceptions. First, as stated in the previous
section, we are using the halo exclusion from the SO halo
definition. Second, because the halo mass function of Tinker
et al. (2008) and the halo bias function of Tinker et al. (2010) are
normalized such that integrating over all Mh produces the mean
matter density and a bias of unity, there is no need to employ the
“break mass” from Yoo et al. (2006, see their Equation (16)). In
the limit where r > Rh of massive halos,

ξ 2h
gm(rco) = bgζ (rco)ξm(rco), (36)

analogous to Equation (30).
In addition to the two terms presented above, we add another

component to the modeling of ΔΣ which is absent in Yoo et al.
(2006), namely the contribution to ΔΣ from the baryons of the
central galaxy which can be non-negligible on very small scales
(<50 kpc). Although the baryons typically follow Sérsic profiles
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Figure 6. Illustration of the various terms that contribute to a g–g lensing signal. The solid black curve shows the total g–g lensing signal which can be decomposed
into a sum of terms that contribute at various scales. On small scales (∼10 kpc), the signal is dominated by the baryonic content of galaxies represented by the red curve
(dotted). At intermediate radii (∼200 kpc), dark matter halos come into play as shown by the blue (dashed) and magenta (dash-dot) curves. The former represents an
NFW profile and the latter is due to a contribution from satellite galaxies. On large scales (>3 Mpc), the g–g lensing follows the dark matter linear autocorrelation
function scaled by the bias factor as depicted by the gray curve (triple-dot-dashed). It is interesting to note that the total g–g lensing signal is roughly a power law,
despite the fact that the various contributing components deviate strongly from power laws.

(A color version of this figure is available in the online journal.)

(Sérsic 1963), at the scales of interest for this study, well above
a few effective radii (>20 kpc), the lensing contribution of the
baryons can be modeled by a simple point source, scaled to
〈M∗〉, the average stellar mass of the galaxies in the sample:

ΔΣstellar(r) = 〈M∗〉
πr2

. (37)

In total, the final g–g lensing signal is modeled as the sum of
three terms: ΔΣtot = ΔΣstellar + ΔΣ1h + ΔΣ2h. Note that the one-
halo and two-halo terms can also be decomposed into central
and satellite contributions, but for simplicity, we have grouped
these terms together.

In order to illustrate the various terms that contribute to the
g–g lensing signal, we have plotted the signal in Figure 6.

5. INFLUENCE OF THE MODEL PARAMETERS
ON THE OBSERVABLES

In the previous section, we have outlined how our model
can be used to analytically predict the SMF, g–g lensing, and
clustering signals. We will now investigate how each parameter
in the model affects the three observables. For this exercise,
we adopt the best-fit model parameters for 0.48 < z < 0.74
from Paper II and we vary each parameter in turn by 2σ around
the best-fit model. For this section, we assume that σlog M∗ is
constant with M∗. We also assume that αsat is constant and we
set αsat = 1 in this section since this is also the assumption that
we make in Paper II. In total, we therefore study the effects of
10 parameters: M1, M∗,0, β, δ, γ , σlog M∗ , βsat, Bsat, βcut, and Bcut.
The results are shown in Figures 7 and 8 and are described in
further detail below.

5.1. Effect of Parameters on the SMF

The influence of each model parameter on the observed SMF
is shown in the right-hand column in Figure 7 (the same column
is reproduced in Figure 8). The data point with an error bar
represents the typical error bar for a COSMOS-like survey where
the error bar includes sample variance computed from a series

of mock catalogs (described in the following section). The first
point worth mentioning here is that the errors on the SMF are
relatively small compared to the clustering and the lensing. It
is always the case that the measurement of a one-point statistic
from a given set of data is more precise than the measurement of
a two-point (or higher) statistic. This implies that the SMF will in
general play an important role in constraining the parameters of
the SHMR. However, in follow-up work we will investigate the
sensitivity of this probe combination to cosmological parameters
and models of modified gravity for example. In these studies,
the clustering and the g–g lensing will play a critical role despite
their typically larger errors bars.

A second noteworthy point in Figure 7 is that the SMF appears
to be sensitive to all 10 parameters, whereas certain parameters
such as M∗,0 and β have very little effect on the clustering and
lensing signals. Coupled with the fact that the SMF has fairly
small error bars, this implies that the SMF will have quite a lot
of constraining power on the overall model compared to the g–g
lensing for example.

The effects of M1 and M∗,0 on the SMF are fairly intuitive.
M1 roughly induces an up/down shift in the amplitude of the
SMF and M∗,0 corresponds to a left/right shift in the SMF. A
larger value of Bsat implies that there are fewer satellite galaxies
in high-mass halos for a given stellar mass threshold. Thus,
we see that an increase in Bsat corresponds to a decrease in
the amplitude of the SMF due to the fact that the contribution
from satellite galaxies has decreased. Similar arguments apply to
Bcut. From Figure 7 we can anticipate that if the SMF were only
used to constrain this model, degeneracies would occur between
Bsat, Bcut, and M1. Fortunately, the satellite parameters have a
significant effect on both the clustering and the g–g lensing so
this degeneracy should be broken when all three probes are used
in conjunction.

In Figure 9, we highlight the effects of four particular
parameters on the SMF: β, γ , δ, and σlog M∗ . The β parameter
affects the low-mass slope of the SMF so that a larger value
of β corresponds to a steeper low-mass slope in the SMF.
The γ parameter (we recall that this controls the transition
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Figure 7. Effect of varying each of the 10 parameters in turn by 2σ around the best-fit model from Paper II for 0.48 < z < 0.74, where σ is the fitted error on the para-
meter in question. In the left panels, we show how the predicted w(θ ) signal varies for log10(M∗) > 11.1 (a high stellar mass threshold). In the mid-
dle panels, we show how the predicted ΔΣ signal varies for 11.29 < log10(M∗) < 12 (a high stellar mass bin) and the right panels show the pre-
dicted variations for SMF down to log10(M∗) = 9.3. To highlight the effects of the parameter variation, in all three cases we have plotted the model minus
the fiducial best-fit model divided by the fiducial best-fit model. The data point with an error bar represents the typical error bar for each observable for a COSMOS-like
survey.

(A color version of this figure is available in the online journal.)
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Figure 8. Same as Figure 7 but the left panels now show w(θ ) for log10(M∗) > 9.3 (a low stellar mass threshold) and the middle panels now show ΔΣ for
9.8 < log10(M∗) < 10.3 (a low stellar mass bin). The right panels (depicting the SMF) are identical to Figure 7.

(A color version of this figure is available in the online journal.)

region of the SHMR as can be seen from Figure 1) has an
interesting effect since it regulates a “plateau” feature in the
SMF at log10(M∗) ∼ 10.5. In fact, this feature in the SMF has

been noticed already and discussed in detail, for example, in
Drory et al. (2009). In Drory et al. (2009), this feature was
described as a “dip” because at these scales, the SMF is below
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Figure 9. Effects of β, δ, γ , and σlog M∗ on the shape of the observed SMF. Left upper panel: β determines the low-mass slope of the SMF. Right upper panel: δ affects
the knee and the high-mass slope of the SMF. Left lower panel: γ affects the knee of the SMF but γ also affects the “plateau” feature that has been observed in the
SMF at 10 < log10(M∗) < 10.5 (see discussion and references in Drory et al. 2009). Right lower panel: σlog M∗ affects the high-mass slope of the SMF but also affects
the “plateau” feature. A larger value of σlog M∗ leads to an inflated observed SMF at the high-mass end. This effect is also commonly referred to as Eddington bias.

(A color version of this figure is available in the online journal.)

the best-fit Schechter function. However, we note that “dip”
is a somewhat misleading name for this feature since it could
also be taken to mean that dN/d log10(M∗) does not decrease
monotonically with M∗. A close inspection of our SMFs in
Paper II shows that there is no evidence in the data for an actual
“dip” in dN/d log10(M∗). Instead, the data are more consistent
with a flattening of dN/d log10(M∗) around log10(M∗) ∼ 10.5.
Therefore, we would like to suggest that this feature should be
described as a “plateau” in the SMF rather than a “dip.”

In Figure 10 we show the link between the dark matter
halo mass function, the SHMR, and the SMF. In this figure,
we have used the fact that dN/d log10 M∗ = dN/d log10 Mh ×
(d log10 Mh/d log10 M∗) so that the various functions can be
linked “by eye” by drawing a box between the four different
panels. We have illustrated how to link the various functions
with the dashed lines in Figure 10 at the scale of the pivot stellar
mass. Figure 10 shows that the “plateau” feature is caused by
the transition that occurs in the SHMR at Mh ∼ 1012 M� from
a low-mass power-law regime to a sub-exponential function at
higher stellar mass.

Finally, the scatter in stellar mass at fixed halo mass has a
noticeable effect on the SMF at the high-mass end, which is
also commonly referred to as Eddington bias. A larger value
of σlog M∗ will lead to an inflated observed SMF at large stellar
masses.

5.2. Effect of Parameters on G–G Lensing

The g–g lensing signal is dominated by the central one-halo
term roughly on scales below 0.3 Mpc and by the satellite one-

halo term roughly on scales above 0.3 Mpc and below a few Mpc
(see Figure 6). Thus, the effects of the four parameters that
regulate the satellite occupation function (Bsat, Bcut, βsat, βcut)
have a strong scale-dependent effect on the g–g lensing signal.
For example, Bsat controls the power-law amplitude of 〈Nsat〉.
A smaller value of Bsat will reduce the ratio Msat/f

−1
shmr

(Mt1∗ )
and will therefore increase the number of satellites in a sample.
This will lead to an increase in the g–g lensing signal from
0.3 to 1 Mpc due to the increased amplitude of the one-halo
satellite term. Similarly, a smaller value of βsat will also reduce
the ratio Msat/f

−1
shmr

(Mt1∗ ) and consequently will increase
the one-halo satellite term. This effect is more pronounced
in Figure 8, which illustrates a low stellar mass sample,
compared to Figure 7, which illustrates a high stellar mass
sample.

Another parameter worth discussing here is σlog M∗ . Figure 7
demonstrates that σlog M∗ has a stronger effect on the lensing
signal for high stellar mass samples compared to low stellar
mass samples. As discussed in Section 2.2, this is simply
due to the fact that the data are binned according to M∗.
The observables are therefore sensitive to the scatter in halo
mass at fixed stellar mass, σlog Mh

. At fixed σlog M∗ , σlog Mh
will

increase with M∗. As a result, the effects of scatter are more
prominent in g–g lensing measurements for high stellar mass
samples.

5.3. Effect of Parameters on Clustering

To first order, the SMF and the clustering of galaxies are
tethered; more massive halos are both more clustered and less
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This figure shows, for example, that the location of the pivot stellar mass is coincident with the location of the “plateau” feature in the SMF.

(A color version of this figure is available in the online journal.)
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(A color version of this figure is available in the online journal.)

abundant. This is also true of galaxies because rare, massive
galaxies live in such halos. If the amplitude of the SMF
increases, the clustering as a function of stellar mass decreases.
This is especially true at masses above the knee in the SMF.
From Figure 9, increasing δ or σlog M∗ increases the abundance
of high-mass galaxies. Given that the number of halos is fixed,
this can only mean that massive galaxies are occupying less
massive, less clustered halos.

There are several parameters that have a direct influence on
the clustering of galaxies without changing the SMF apprecia-
bly. The parameters Bsat and βsat are the most important in this
regard. They control the “shoulder” in the HOD, defined con-

ceptually as the increase in halo mass, relative to f −1
shmr

(Mt1∗ ),
before satellites begin to enter the sample. Quantitatively,
this is expressed as the ratio Msat/f

−1
shmr

(Mt1∗ ), as shown in
Equation (12). Reducing this ratio increases the number of
satellite galaxies in a sample, which in turn increases the large-
scale bias of a sample and significantly enhances the clustering
within the one-halo term. The parameters Bcut and βcut have a
more subtle effect on clustering. If the cutoff mass, defined by
Equation (14), is below f −1

shmr
(Mt1∗ ), then Mcut has no effect on

clustering. But as Mcut increases, satellite galaxies are removed
from low-mass halos. If the density of satellites is held fixed,
increasing Mcut redistributes satellites into more massive halos.
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Figure 12. Correlation coefficient matrix for galaxy clustering for 0.22 < z < 0.48 and for several stellar mass thresholds.

(A color version of this figure is available in the online journal.)

Figure 13. Illustration of the effects of sample variance on the g–g lensing signals for a COSMOS-like survey. The light gray region represents the 2σ variation
between mocks and the dark gray region represents the 1σ variation between mocks. Sample variance mainly affects the one-halo satellite term of the g–g lensing
signal. For example, the large variance that can be seen in the bottom right panel (8.7 < log10(M∗) < 9.2) from 100 kpc to 1 Mpc is due to the one-halo satellite term.
This can be explained by the fact that, for a given stellar mass sample, the parent halos of satellite galaxies are more rare at fixed volume than the halos of central
galaxies.

This will increase the large-scale bias and change the shape of
the one-halo term such that the correlation function deviates
from a pure power-law form (see the Appendix in Zheng et al.
2009).

6. MOCK CATALOGS, SAMPLE VARIANCE,
AND COVARIANCE

In this section, we construct mock catalogs in order to inves-
tigate the effects of sample variance and covariance associated
with measurements of g–g lensing, clustering, and the SMF.
Sample variance occurs due to the finite nature of the volume
encompassed by any given survey. Because of limited volume,
any given survey may yield a biased measurement of the number
density of galaxies and halos compared to the full universe. The
error bars on all three observables must therefore reflect this
additional source of error. Also, the data points in all three ob-
servables will be correlated to some degree. Consider the SMF
for example. A region of space with high matter density will
have an increased abundance of galaxies of nearly all masses.
For w(θ ), because it is a projection of ξgg(r)—which is itself
a correlated quantity—multiple physical scales will contribute

to each bin in θ . For ΔΣ, we will show that the data points are
correlated on scales where satellite galaxies contribute to the
lensing signal.

To investigate both the sample variance and the covariance
associated with all three observables, we use numerical simula-
tions to construct a series of mock catalogs for a COSMOS-like
survey. Since the volume of COSMOS is relatively small, the ef-
fects of variance and covariance will be quite apparent (whereas
the effects would decrease if we simulated a larger fiducial sur-
vey) and so COSMOS is well suited for our purpose. In addition,
we will also use these mock catalogs in Paper II to analyze the
actual COSMOS data.

COSMOS-like mocks are created from a single simulation
(named “Consuelo”) 420 h−1 Mpc on a side, resolved with
14003 particles, and a particle mass of 1.87×109 h−1 M�.8

This simulation can robustly resolve halos with masses above
∼1011 h−1 M� and is part of the LasDamas suite9 (C. McBride
et al. in preparation). We create mocks for three redshift

8 In this paragraph, numbers are quoted for H0 = 100 h km s−1 Mpc−1.
9 Details regarding this simulation can be found at
http://lss.phy.vanderbilt.edu/lasdamas/simulations.html.
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Figure 14. Correlation coefficient matrix for g–g lensing for 0.22 < z < 0.48 and for several bins in stellar mass.

(A color version of this figure is available in the online journal.)

Figure 15. Mean and dispersion of the angular clustering of galaxies as a function of stellar mass threshold in our mock COSMOS simulations. The results shown
here are for 0.48 < z < 0.74. The filled circles in each panel show w(θ ) for a single mock with �10 times the area as COSMOS itself. The difference between the
large-area mock and the mean of the COSMOS mocks is due to the IC. The bottom right panel shows the ratio of w(θ ) for the large-area mock divided by the mean of
the COSMOS mocks. The solid curve is a fitting function to account for the IC. For the 0.22 < z < 0.48, the effect of the IC is stronger, while for 0.74 < z < 1.0
there is sufficient volume such that the IC is unity on all scales measured.

(A color version of this figure is available in the online journal.)

intervals: z1 = [0.22, 0.48], z2 = [0.48, 0.74], and z3 =
[0.74, 1]. For each redshift interval, we construct a series of
mocks created from random lines of sight through the simulation
volume that have the same area as COSMOS and the same
comoving length for the given redshift slice. This yields 405
independent mocks for the z1 bin, 172 mocks for the z2 bin,
and 109 mocks for the z3 bin. For each redshift bin, mocks are

created from the simulation output at the median redshift of the
bin.

Halos within the simulation are identified with the friends-
of-friends halo finder (Davis et al. 1985) with a linking length
of b = 0.2. For each redshift interval, halos are populated with
our best-fit model from Paper II. We use the mock-to-mock
variance and covariance to estimate a covariance matrix for

17



The Astrophysical Journal, 738:45 (20pp), 2011 September 1 Leauthaud et al.

the SMF, for w(θ ) (using a series of stellar mass thresholds),
and for ΔΣ (using a series of stellar mass bins). Although the
data points between the different quantities will be correlated to
some degree (as well as the bins in w(θ ) and ΔΣ), we ignore
that covariance as we do not have enough simulation volume
to estimate the uber-covariance matrix of all [N] data points in
each redshift bin.

Figure 11 shows the correlation coefficient matrix for the
SMF in three redshift bins for a COSMOS-like survey. The
first-order effect of sample variance on the SMF is to correlate
all of the data points so that globally, the SMF will shift
up and down for different realizations of a COSMOS-like
survey.

Figure 12 shows the correlation coefficient matrix for the
galaxy clustering for 0.22 < z < 0.48 and for three stellar
mass thresholds: log10(M∗) > 9.3, log10(M∗) > 10.3, and
log10(M∗) > 11.1. The data are more correlated at larger scales
where galaxy pairs come from the two-halo term. As shown
earlier, clustering at these scales is proportional to the matter
clustering ξm(r). Patches of the universe that exist in an over-
or under-density tend to have higher or lower clustering in their
matter. This will be reflected in the clustering of the halos and
thus the two-halo term for the galaxies. In the one-halo term,
Poisson fluctuations of the number of satellites become more
important and the data are less correlated at these scales. Overall,
as the density of the galaxy sample becomes smaller, shot noise
will dominate on all scales. This can be seen in the progression
from left to right in the examples in Figure 12.

Figure 13 illustrates the effect of sample variance on g–g
lensing signals for various stellar mass bins and for 0.22 <
z < 0.48. Figure 14 shows the associated correlation coefficient
matrices. The key point to note here is that the sample variance
for g–g lensing is dominated by the one-halo satellite term
on scales of about 100 kpc to 1 Mpc. The impact of this
term becomes more apparent in galaxy samples with lower
stellar masses as the contribution from the one-halo central term
decreases. The fact that the one-halo satellite term has a large
sample variance compared to the one-halo central term can be
understood as follows. Consider a sample of galaxies in a given
stellar mass bin. The galaxies that are satellites in this sample
will tend to live in more massive halos than the galaxies that are
centrals (this can be seen in Figure 4 for example). Since more
massive halos are more rare than less massive halos at fixed
survey volume, this explains the large one-halo satellite sample
variance.

Finally, we also use mock catalogs to estimate the effects of
the integral constraint (IC; Groth & Peebles 1977) on clustering
measurements for a small area survey. Due to spatial fluctuations
in the number density of galaxies, the mean correlation function
measured from an ensemble of samples will be smaller than
the correlation function measured from a single contiguous
sample of the same volume as the sum of the ensemble sample.
This attenuation of w(θ ) becomes relevant on angular scales
significant with respect to the sample size. For large surveys
like the SDSS, the IC is not an issue on scales of interest. For
a pencil-beam survey like COSMOS, however, the IC must be
taken into account when modeling the clustering. We estimate
the IC correction to our w(θ ) measurements through the use of
the mock galaxy distributions described previously. The results
are shown in Figure 15. For COSMOS, our fitting functions for
the IC correction are

fIC = exp(log10(θ )/3.4)2.5, (38)

and

fIC = exp(log10(θ )/3.2)4.1, (39)

for 0.22 < z < 0.48 and 0.48 < z < 0.74, respectively, and
where θ is expressed in arcseconds. For 0.74 < z < 1 there is
sufficient volume such that fIC = 1. We note that these fitting
functions are only valid for θ < 103 arcseconds.

7. SUMMARY AND CONCLUSIONS

The goal of this paper is to develop the theoretical framework
necessary to combine measurements of galaxy–galaxy lensing,
galaxy clustering, and the galaxy SMF into a single and more
robust probe of the galaxy–dark matter connection. We have
achieved this goal by introducing several key modifications to
the standard HOD framework. To begin with, we have modified
the standard HOD model so as to fit all three probes simul-
taneously and independently of the selected binning scheme.
Next, since we are interested in the galaxy–dark matter connec-
tion, we have also modified the HOD model so as to specif-
ically include the SHMR. In a companion paper (Leauthaud
et al. 2011b) we demonstrate that the model presented here pro-
vides an excellent fit to galaxy–galaxy lensing, galaxy cluster-
ing, and SMFs measured in the COSMOS survey from z = 0.2
to z = 1.0.

Nonetheless, while the promise of combined dark matter
probes in studying galaxy formation, gravity, and cosmology
is clear, we must ensure that our parametric description of the
SHMR is sophisticated enough to capture its possible behavior.
There are a number of questions that remain to be answered
in order to achieve this goal. For example, is P (M∗|Mh) well
described by a log-normal distribution and is the scatter in
P (M∗|Mh) constant or does it vary with halo mass? Do the
parameters that describe P (M∗|Mh) vary with redshift and
galaxy type? Can we marginalize over uncertainties related
to the shapes and concentrations of dark matter halos? What
exactly do we learn from various probe combinations? The
challenges are steep, but with increasing large data sets such as
the Dark Energy Survey, the Large Synoptic Survey Telescope,
the HyperSuprime Cam survey, and EUCLID, refined and
sophisticated models can be built and constrained by the data.
Although the model presented in this paper is sophisticated
enough to describe COSMOS data, it is clear that further
refinements will be necessary given the statistical precision of
upcoming surveys. Improving models such as the one presented
in this paper by using insights provided, for example, by semi-
analytic models of galaxy formation and dark matter N-body
simulations, is clearly a worthy pursuit.
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APPENDIX

FURTHER DETAILS ON THE ORIGIN OF EQUATION (34)

We consider it useful to provide some more details on the
origin of Equation (34) and in particular on the link between the
NFW profile and F ′

c and F ′
s . This might be useful for those who

are not familiar with the notations of galaxy clustering studies.
To begin with, consider a central galaxy that is associated with
an NFW dark matter halo at redshift zL and with halo mass M.
The NFW profile, ρnfw, is given by

ρnfw(r, zL)

ρcrit
= δ

(r/Rs) (1 + r/Rs)2 , (A1)

where δ is a characteristic (dimensionless) density and Rs is
the NFW scale radius. The relation between δ and the NFW
concentration parameter c is

δ = Δ
3

× c3

ln(1 + c) − c/(1 + c)
, (A2)

where Δ is a chosen overdensity (for example, Δ is often set
to 200). The NFW radius is denoted by Rh and is equal to
Rh = c × Rs . The projected surface mass density of this lens,
Σ, is computed by taking the integral of ρnfw over the line of
sight:

Σco(rp,co, zL|M) =
∫

ρnfw

(√
r2

p,co + r2
||,co, zL

)
dr||,co. (A3)

Analytical expressions for the projection of ρnfw to Σ can
be found in Wright & Brainerd (2000) for example.

Instead of a single galaxy, now consider an ensemble of
central galaxies characterized by the central occupation function
〈Ncen〉. We note nc such that

nc ≡
∫

〈Ncen〉 dn

dM
dM. (A4)

The probability that a galaxy in this selection lives in a halo
of mass M is

P (M) = 〈Ncen〉 1

nc

dn

dM
× dM. (A5)

The average surface mass density of the galaxy ensemble is

Σco(rp,co, zL) =
∫ ∫

Σco(rp,co, zL|M)P (M)dMdr||,co

=
∫ ∫

ρnfw

(√
r2

p,co + r2
||,co, zL

)
× 〈Ncen〉 1

nc

dn

dM
dMdr||,co. (A6)

Let us now define F ′
c such that

ρnfw(r, zL) = 1

4πr2
× M × 1

2Rh

× F ′
c

(
r

2Rh

)
. (A7)

Combining Equations (A6) and (A7), we obtain

Σco(rp,co, zL) = 1

4πr2nc

∫ ∫
dn

dM

M

ρ

1

2Rh

ntotF
′
c

×
⎛⎝

√
r2

p,co + r2
||,co

2Rh

⎞⎠ dMdr||,co. (A8)

Finally, Equation (34) is obtained by considering a galaxy
sample that contains both central and satellite galaxies. In this
case, ng is defined as

ng ≡
∫

(〈Ncen〉 + 〈Nsat〉) dn

dM
dM. (A9)

F ′
s is defined in a similar fashion to Equation (A7) but ρnfw

is replaced with the convolution of the NFW profile with itself.
Analytic expressions for the convolution of the truncated NFW
profile with itself can be found in the Appendix of Sheth et al.
(2001).
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Yepes, G., & Gottlöber, S. 2010, ApJ, 724, 878
Tinker, J. L., Weinberg, D. H., Zheng, Z., & Zehavi, I. 2005, ApJ, 631, 41
Tinker, J. L., et al. 2010, ApJ, 724, 878
Vale, A., & Ostriker, J. P. 2004, MNRAS, 353, 189
Vale, A., & Ostriker, J. P. 2006, MNRAS, 371, 1173
Vale, A., & Ostriker, J. P. 2008, MNRAS, 383, 355
van den Bosch, F. C., Mo, H. J., & Yang, X. 2003a, MNRAS, 345, 923

van den Bosch, F. C., Norberg, P., Mo, H. J., & Yang, X. 2004, MNRAS, 352,
1302

van den Bosch, F. C., Yang, X., & Mo, H. J. 2003b, MNRAS, 340, 771
van den Bosch, F. C., et al. 2007, MNRAS, 376, 841
Wake, D. A., et al. 2011, ApJ, 728, 46
White, M., et al. 2011, ApJ, 728, 126
Wilson, G., Kaiser, N., Luppino, G. A., & Cowie, L. L. 2001, ApJ, 555, 572
Wright, C. O., & Brainerd, T. G. 2000, ApJ, 534, 34
Yang, X., Mo, H. J., & van den Bosch, F. C. 2003, MNRAS, 339, 1057
Yang, X., Mo, H. J., & van den Bosch, F. C. 2009, ApJ, 695, 900
Yoo, J., Tinker, J. L., Weinberg, D. H., Zheng, Z., Katz, N., & Davé, R. 2006, ApJ,
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