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ABSTRACT

We outline our methods for obtaining high-precision mass profiles, combining independent weak-lensing distortion,
magnification, and strong-lensing measurements. For massive clusters, the strong- and weak-lensing regimes
contribute equal logarithmic coverage of the radial profile. The utility of high-quality data is limited by the cosmic
noise from large-scale structure along the line of sight. This noise is overcome when stacking clusters, as too are
the effects of cluster asphericity and substructure, permitting a stringent test of theoretical models. We derive a
mean radial mass profile of four similar mass clusters of high-quality Hubble Space Telescope and Subaru images,
in the range R = 40–2800 kpc h−1, where the inner radial boundary is sufficiently large to avoid smoothing from
miscentering effects. The stacked mass profile is detected at 58σ significance over the entire radial range, with the
contribution from the cosmic noise included. We show that the projected mass profile has a continuously steepening
gradient out to beyond the virial radius, in remarkably good agreement with the standard Navarro–Frenk–White
form predicted for the family of cold dark matter (CDM) dominated halos in gravitational equilibrium. The central
slope is constrained to lie in the range, −d ln ρ/d ln r = 0.89+0.27

−0.39. The mean concentration is cvir = 7.68+0.42
−0.40

(at Mvir = 1.54+0.11
−0.10 × 1015 M� h−1), which is high for relaxed, high-mass clusters, but consistent with ΛCDM

when a sizable projection bias estimated from N-body simulations is considered. This possible tension will be
more definitively explored with new cluster surveys, such as CLASH, LoCuSS, Subaru Hyper Suprime-Cam, and
XXM-XXL, to construct the cvir–Mvir relation over a wider mass range.

Key words: cosmology: observations – dark matter – galaxies: clusters: general – gravitational lensing: strong –
gravitational lensing: weak
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1. INTRODUCTION

Clusters of galaxies represent the largest gravitationally
bound objects in the universe, which contain a wealth of
astrophysical and cosmological information, related to the
nature of dark matter, primordial density perturbations, and
the emergence of structure over cosmic time. Observational
constraints on the properties and evolution of clusters provide
independent and fundamental tests of any viable cosmology,
structure formation scenario, and possible modifications of the
laws of gravity, complementing large-scale cosmic microwave
background and galaxy clustering measurements (e.g., Komatsu
et al. 2011; Percival et al. 2010).

A key ingredient of cluster-based cosmological tests is the
mass and internal mass distribution of clusters. In this con-
text, the current cosmological paradigm of structure formation,
the standard Λ cold (i.e., non-relativistic) dark matter (ΛCDM)
model, provides observationally testable predictions for CDM-
dominated halos over a large dynamical range in density and
radius. Unlike galaxies where substantial baryonic cooling is
present, massive clusters are not expected to be significantly af-
fected by gas cooling (e.g., Blumenthal et al. 1986; Broadhurst
& Barkana 2008). This is because the majority of baryons
(∼80%) in massive clusters comprise a hot, X-ray-emitting dif-
fuse intracluster medium (ICM), in which the high temperature

∗ Based in part on data collected at the Subaru Telescope, which is operated
by the National Astronomical Society of Japan.

and low density prevent efficient cooling and gas contraction,
and hence the gas pressure roughly traces the gravitational po-
tential produced by the dominant dark matter (see Kawaharada
et al. 2010; Molnar et al. 2010). The ICM represents only a mi-
nor fraction of the total mass near the centers of clusters (Lemze
et al. 2008; Umetsu et al. 2009). Consequently, for clusters in
a state of quasi equilibrium, the form of their total mass pro-
files reflects closely the distribution of dark matter (Mead et al.
2010).

High-resolution N-body simulations of collisionless CDM
exhibit an approximately “universal” form for the spherically
averaged density profile of virialized dark-matter halos (Navarro
et al. 1997, hereafter Navarro–Frenk–White (NFW)), with some
intrinsic variance in the mass assembly histories of individual
halos (Jing & Suto 2000; Tasitsiomi et al. 2004; Navarro
et al. 2010). The predicted logarithmic gradient γ3D(r) ≡
−d ln ρ/d ln r of the NFW form flattens progressively toward
the center of mass, with a central cusp slope flatter than a
purely isothermal structure (γ3D = 2) interior to the inner
characteristic radius rs(�300 kpc h−1 for cluster-sized halos),
providing a distinctive prediction for the empirical form of CDM
halos in gravitational equilibrium. A useful index of the degree
of concentration is cvir = rvir/rs , which compares the virial
radius rvir to the characteristic radius rs of the NFW profile.
This empirical NFW profile is characterized by the total mass
within the virial radius, Mvir, and the halo concentration cvir.
Theoretical progress has been made in the understanding of the
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form of this profile in terms of the dynamical structure using
both numerical and analytical approaches (Taylor & Navarro
2001; Lapi & Cavaliere 2009; Navarro et al. 2010), though we
must currently rely on the quality of N-body simulations when
making comparisons with CDM-based predictions for cluster
mass profiles.

In the context of standard hierarchical clustering models, the
halo concentration should decline with increasing halo mass as
dark-matter halos that are more massive collapse later when the
mean background density of the universe is correspondingly
lower (Bullock et al. 2001; Zhao et al. 2003; Neto et al. 2007).
This prediction for the halo mass–concentration relation and
its evolution has been established thoroughly with detailed
simulations (e.g., Navarro et al. 1997; Bullock et al. 2001; Neto
et al. 2007; Duffy et al. 2008; Klypin et al. 2010), although
sizable scatter around the mean relation is present due partly to
variations in formation epoch of halos (Wechsler et al. 2002;
Neto et al. 2007; Zhao et al. 2009). Massive clusters are of
particular interest in this context because they are predicted
to have a relatively shallow mass profile with a pronounced
radial curvature. Gravitational lensing of background galaxies
offers a robust way of directly obtaining the mass distribution
of galaxy clusters (see Bartelmann & Schneider 2001; Umetsu
2010, and references therein) without requiring any assumptions
on the dynamical and physical state of the system (Clowe et al.
2006; Okabe & Umetsu 2008). A detailed examination of this
fundamental prediction has been the focus of our preceding
work (Broadhurst et al. 2005a, 2008; Medezinski et al. 2007;
Umetsu & Broadhurst 2008; Umetsu et al. 2009, 2010, 2011;
Lemze et al. 2009).

Systematic cluster lensing surveys are in progress to obtain
mass profiles of representative clusters over a wide range of ra-
dius by combining high-quality strong- and weak-lensing data.
Deep multicolor images of massive cluster cores from Advanced
Camera for Surveys (ACS) observations with the Hubble Space
Telescope (HST) allow us to identify many sets of multiple
images spanning a wide range of redshifts for detailed strong-
lens modeling (e.g., Broadhurst et al. 2005b; Zitrin et al. 2009,
2010, 2011a, 2011c, 2011d). The wide-field prime-focus cam-
eras of Subaru and Canada–France–Hawaii Telescope (CFHT)
have been routinely producing data of sufficient quality to ob-
tain accurate measurements of the weak-lensing signal, provid-
ing model-independent cluster mass profiles out to beyond the
virial radius (e.g., Broadhurst et al. 2005a, 2008; Limousin et al.
2007; Umetsu & Broadhurst 2008; Umetsu et al. 2009, 2010,
2011; Coe et al. 2010). Our earlier work has demonstrated that
without adequate color information, the weak-lensing signal can
be heavily diluted particularly toward the cluster center by the
presence of unlensed cluster members, leading to biased cluster
mass profile measurements with underestimated concentrations
and internal inconsistency, with the weak-lensing-based profile
underpredicting the observed Einstein radius (Broadhurst et al.
2005a; Umetsu & Broadhurst 2008; Medezinski et al. 2010).

Careful lensing work on individual clusters has shown that
full mass profiles constructed from combined strong- and weak-
lensing measurements show a continuous steepening radial trend
consistent with the predicted form for the family of collisionless
CDM halos (Gavazzi et al. 2003; Broadhurst et al. 2005a,
2008; Umetsu & Broadhurst 2008; Umetsu et al. 2010, 2011).
Intriguingly these initial results from combined strong- and
weak-lensing measurements reveal a relatively high degree of
halo concentration in lensing clusters (e.g., Gavazzi et al. 2003;
Kneib et al. 2003; Broadhurst et al. 2008; Oguri et al. 2009;

Zitrin et al. 2011d), lying well above the mass–concentration
relation for cluster-sized halos predicted by the ΛCDM model,
despite careful attempts to correct for potential projection and
selection biases inherent to lensing (Hennawi et al. 2007;
Meneghetti et al. 2010b). This apparent overconcentration
of lensing clusters is also indicated by the generally large
Einstein radii determined from strong-lensing data (Broadhurst
& Barkana 2008; Meneghetti et al. 2010a; Zitrin et al. 2011a).

In this paper, we explore in greater depth the utility of high-
quality lensing data for obtaining highest-precision cluster mass
profiles by combining all possible lensing information available
in the cluster regime. This extends our recent weak-lensing
work by Umetsu et al. (2011), where a Bayesian method was
developed for a direct reconstruction of the projected cluster
mass profile from complementary weak-lensing distortion and
magnification effects (Umetsu & Broadhurst 2008), the combi-
nation of which can be used to unambiguously determine the
absolute mass normalization. For a massive cluster acting as a
super-critical lens, the strong- and weak-lensing regimes con-
tribute equal logarithmic coverage of the radial profile (Umetsu
et al. 2011), so that here we concentrate on those clusters for
which we have high-quality data in both these regimes. The
high quality of our data is such that we have now become sig-
nificantly limited by the cosmic noise from large-scale structure
behind the cluster center, where magnified sources lie at greater
distances. This noise is correlated between radial bins, and so
can be overcome by stacking clusters, along independent sight
lines. Stacking also helps average over the effects of cluster as-
phericity and substructure (Mandelbaum et al. 2006; Johnston
et al. 2007; Okabe et al. 2010; Umetsu et al. 2011), allowing
a tighter comparison of the averaged profile with theoretical
models. Our aim here is to develop and apply comprehensive
methods to a sample of four similarly high-mass lensing clusters
(A1689, A1703, A370, and Cl0024+17), for which we have pre-
viously identified multiply lensed images and measured weak
magnification and distortion effects from deep HST and Subaru
observations (Broadhurst et al. 2005b; Umetsu & Broadhurst
2008; Umetsu et al. 2010, 2011; Zitrin et al. 2010; Medezinski
et al. 2010, 2011).

The paper is organized as follows. In Section 2, we
briefly summarize the basis of cluster gravitational lensing. In
Section 3, we outline our comprehensive methods for obtaining
projected cluster mass profiles from weak-lensing distortion,
magnification, and strong-lensing measurements. In Section 4,
we apply our methodology to deep HST and Subaru observations
of four massive clusters to derive a mean radial mass profile over
the entire radial range, demonstrating how stacking the weak-
and strong-lensing signals improves upon the statistical preci-
sion of the mass profile determination; we then examine the
radial dependence of the stacked cluster mass profile. Finally,
we discuss our results and conclusions in Section 5. Through-
out this paper, we adopt a concordance ΛCDM cosmology with
Ωm = 0.3, ΩΛ = 0.7, and h ≡ H0/(100 km s−1 Mpc−1) = 0.7,
unless otherwise noted.

2. BASIS OF CLUSTER LENSING

The gravitational deflection of light rays by a cluster can be
described by the thin lens equation, which relates the angular
position of a lensed image θ to the angular position of the
intrinsic source β as

β = θ − ∇ψ, (1)
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where α ≡ ∇ψ(θ ) is the deflection field and ψ(θ) is the effec-
tive lensing potential, which is defined by the two-dimensional
Poisson equation as �ψ(θ) = 2κ(θ) with the lensing con-
vergence κ given as a source term. This equation can be
readily inverted to yield: ψ(θ) = 2

∫
d2θ ′ �−1(θ, θ ′)κ(θ ′) =

(1/π )
∫
d2θ ′ ln |θ − θ ′|κ(θ ′), so that the deflection field is ex-

pressed in terms of κ as

α(θ ) = 1

π

∫
d2θ ′ θ − θ ′

|θ − θ ′|2 κ(θ ′). (2)

For gravitational lensing in the cluster regime (e.g., Umetsu
2010), κ is expressed as κ(θ) = Σ−1

critΣ(θ ), namely, the projected
mass density Σ(θ ) in units of the critical surface mass density
for gravitational lensing, defined as

Σcrit = c2

4πGDl

β−1; β(zs) ≡ max

[
0,

Dls(zs)

Ds(zs)

]
, (3)

where Ds, Dl, and Dls are the proper angular-diameter distances
from the observer to the source, from the observer to the lens, and
from the lens to the source, respectively, and β = Dls/Ds is the
angular-diameter distance ratio associated with the population
of background sources.

The deformation of the image for a background source can
be described by the Jacobian matrix Aαβ ≡ (∂β/∂θ )αβ = δαβ −
ψ,αβ (α, β = 1, 2) of the lens mapping, where δαβ is Kronecker’s
delta.7 The real, symmetric Jacobian Aαβ can be decomposed as
Aαβ = (1−κ)δαβ −Γαβ , where Γαβ (θ) ≡ (∂α∂β −δαβ∇2/2)ψ(θ )
is the trace-free, symmetric shear matrix,

Γαβ =
(

+γ1 γ2

γ2 −γ1

)
, (4)

with γα being the components of spin-2 complex gravitational
shear γ := γ1 + iγ2. In the strict weak-lensing limit where
κ, |γ | 
 1, Γαβ induces a quadrupole anisotropy of the
background image, which can be observed from ellipticities
of background galaxy images. Given an arbitrary circular loop
of radius ϑ on the sky, the average tangential shear γ+(ϑ) around
the loop satisfies the following identity (e.g., Kaiser 1995):

γ+(ϑ) = κ̄(<ϑ) − κ(ϑ), (5)

where κ(ϑ) is the azimuthal average of κ(θ) around the loop,
and κ̄(< ϑ) is the average convergence within the loop.

The local area distortion due to gravitational lensing, or
magnification, is given by the inverse Jacobian determinant

μ = 1

|detA| = 1

|(1 − κ)2 − |γ |2| , (6)

which can influence the observed surface density of background
sources, expanding the area of sky, and enhancing the observed
flux of background sources (Broadhurst et al. 1995). The former
effect reduces the effective observing area in the source plane,
decreasing the number of background sources per solid angle; on
the other hand, the latter effect amplifies the flux of background

7 Throughout the paper, we assume in our weak-lensing analysis that the
angular size of background galaxy images is sufficiently small compared to the
scale over which the underlying lensing fields vary, so that the higher-order
weak-lensing effects, such as flexion, can be safely neglected (see, e.g.,
Goldberg & Bacon 2005; Okura et al. 2007, 2008).

sources, increasing the number of sources above the limiting
flux. The net effect is known as magnification bias and depends
on the intrinsic slope of the luminosity function of background
sources.

In general, the observable quantity for quadrupole weak
lensing is not the gravitational shear γ but the complex reduced
shear

g(θ) = γ (θ )

1 − κ(θ)
(7)

in the subcritical regime where detA > 0 (or 1/g∗ in the
negative parity region with detA < 0). The spin-2 reduced shear
g is invariant under the following global linear transformation:

κ(θ) → λκ(θ) + 1 − λ, γ (θ) → λγ (θ) (8)

with an arbitrary scalar constant λ �= 0 (Schneider & Seitz
1995). This transformation is equivalent to scaling the Jacobian
matrixA(θ) with λ,A(θ) → λA(θ), and hence leaves the critical
curves detA(θ) = 0 invariant. Furthermore, the curve κ(θ) = 1,
on which the gravitational distortions disappear, is left invariant
under the transformation (Equation (8)).

This mass-sheet degeneracy can be unambiguously broken by
measuring the magnification effects, because the magnification
μ transforms under the invariance transformation (Equation (8))
as

μ(θ ) → λ2μ(θ ). (9)

In practice, the lens magnification μ can be measured from
characteristic variations in the number density of background
galaxies due to magnification bias (Broadhurst et al. 1995;
Umetsu et al. 2011) as

nμ(θ) = n0μ(θ )2.5s−1, (10)

where n0 = dN0(<mcut)/dΩ is the unlensed number density
of background sources for a given magnitude cutoff mcut,
approximated locally as a power-law cut with slope s =
d log10 N0(<m)/dm (s > 0). In the strict weak-lensing limit, the
magnification bias is δnμ/n0 ≈ (5s − 2)κ . For red background
galaxies, the intrinsic count slope s at faint magnitudes is
relatively flat, s ∼ 0.1, so that a net count depletion results
(Broadhurst et al. 2005a; Umetsu & Broadhurst 2008; Umetsu
et al. 2010, 2011). On the other hand, the faint blue background
population tends to have a steeper intrinsic count slope close to
the lensing invariant slope (s = 0.4). Alternatively, the constant
λ can be determined such that the mean κ averaged over the
outermost cluster region vanishes, if a sufficiently wide sky
coverage is available.8

3. CLUSTER LENSING METHODOLOGY

In this section, we outline our methods for obtaining cluster
mass profiles in a continuous radial coverage from the central
region to beyond the virial radius, by combining independent
weak-lensing distortion, magnification, and strong-lensing mea-
surements.

8 Or, one may constrain the constant λ such that the enclosed mass within a
certain aperture is consistent with cluster mass estimates from some other
observations (e.g., Umetsu & Futamase 2000).
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3.1. Cluster Weak Lensing

The relation between observable distortion (g) and underly-
ing convergence (κ) is nonlocal, and the convergence derived
from distortion data alone suffers from a mass-sheet degeneracy
(Section 2). However, by combining the complementary distor-
tion (g) and magnification (μ) measurements the convergence
can be obtained unambiguously with the correct mass normal-
ization.

We construct a discrete convergence profile in the weak-
lensing regime from observable lens distortion and magni-
fication profiles, g+(θ ) = γ+(θ )/[1 − κ(θ )] and nμ(θ ) =
n0μ(θ )2.5s−1 (see Section 3 and Appendix B of Umetsu et al.
2011, for details of weak-lensing profile measurements), follow-
ing the Bayesian prescription given by Umetsu et al. (2011). The
Bayesian approach allows for a full parameter-space extraction
of model and calibration parameters. A proper Bayesian statis-
tical analysis is of particular importance to explore the entire
parameter space and investigate the parameter degeneracies,
arising in part from the mass-sheet degeneracy.

In the Bayesian framework, we sample from the posterior
probability density function (PDF) of the underlying signal s
given the data d, P (s|d). Expectation values of any statistic of
the signal s shall converge to the expectation values of the a
posteriori marginalized PDF, P (s|d). The covariance matrix
C of s is obtained from the resulting posterior sample. In
our problem, the signal s is a vector containing the discrete
convergence profile, κi ≡ κ(θi) with i = 1, 2, . . . , Nwl in the
weak-lensing regime (θi > θEin), and the average convergence
within the inner radial boundary θwl

min of the weak-lensing data,
κmin ≡ κ(< θwl

min), so that s = {κmin, κi}Nwl

i=1, being specified by
(Nwl + 1) parameters. The Bayes’ theorem states that

P (s|d) ∝ P (s)P (d|s), (11)

where L(s) ≡ P (d|s) is the likelihood of the data given the
model (s), and P (s) is the prior probability distribution for
the model parameters. The L(s) function for combined weak-
lensing observations is given as a product of the two separate
likelihoods, Lwl = LgLμ, where Lg and Lμ are the likelihood
functions for distortion and magnification, respectively, as given
in Umetsu et al. (2011). The log-likelihood for combined weak-
lensing distortion and magnification observations, {g+,i}Nwl

i=1 and
{nμ,i}Nwl

i=1, is given as

−2 lnLwl =
Nwl∑
i=1

[g+,i − ĝ+,i(s)]2

σ 2
+,i

+
Nwl∑
i=1

[nμ,i − n̂μ,i(s)]2

σ 2
μ,i

,

(12)
where (ĝ+,i , n̂μ,i) are the theoretical predictions for the
corresponding observations; the errors σ+,i for g+,i (i =
1, 2, . . . , Nwl), due primarily to the variance of the intrinsic
source ellipticity distribution, can be conservatively estimated
from the data using bootstrap techniques; the errors σμ,i for nμ,i

(i = 1, 2, . . . , Nwl) include both contributions from Poisson er-
rors in the counts and contamination due to intrinsic clustering
of red background galaxies (Umetsu et al. 2011).

For each parameter of the model s, we consider a simple
flat prior with a lower bound of s = 0, that is, κmin > 0 and
κi > 0. Additionally, we account for the calibration uncertainty
in the observational parameters, such as the normalization and
slope parameters (n0, s) of the background counts and the
relative lensing depth due to population-to-population variations

between the background samples used for the magnification and
distortion measurements (see Umetsu et al. 2011).

3.2. Cluster Strong Lensing

We apply our well-tested approach to strong-lens modeling,
which has previously uncovered large numbers of multiply
lensed galaxies in ACS images of many clusters, such as A1689
at z = 0.183 (Broadhurst et al. 2005b), Cl0024+17 at z = 0.395
(Zitrin et al. 2009), 12 high-z MACS clusters (Zitrin et al.
2011a), MS 1358+62 at z = 0.33 (Zitrin et al. 2011c), and
A383 at z = 0.188 (Zitrin et al. 2011d). Briefly, the basic
assumption adopted is that mass approximately traces light, so
that the photometry of the red cluster member galaxies is used
as the starting point for our model. Cluster member galaxies
are identified as lying close to the cluster sequence by HST
multiband photometry.

In the strong-lensing regime, we approximate the large-
scale distribution of cluster mass by assigning a power-law
mass profile to each cluster galaxy, the sum of which is then
smoothed. The degree of smoothing (S) and the index of the
power law (q) are the most fundamental parameters determining
the cluster mass profile dominated by dark matter. A worthwhile
improvement in fitting the location of the lensed images is
generally found by expanding to first order the gravitational
potential of this smooth component, equivalent to a coherent
external shear Γex

αβ (α, β = 1, 2) describing the overall matter
ellipticity. The direction φex of the spin-2 external shear Γex

αβ

and its amplitude |γex| are free parameters, allowing for some
flexibility in the relation between the distribution of dark matter
and the distribution of galaxies, which cannot be expected to
trace each other in detail.

The total deflection field α(θ) = ∑
j αj (θ ) = (Σ−1

crit/π )
∫
d2θ ′

(θ − θ ′)/|θ − θ ′|2 ∑
j Σj (θ ′) consists of the galaxy component

αgal(θ), scaled by a factor K, the smooth cluster dark-matter
component αDM(θ), scaled by (1 − K), and the external-shear
component αex(θ)

α(θ) = Kαgal(θ) + (1 − K)αDM(θ) + αex(θ), (13)

where αex,α(θ ) = (Γex)αβ Δθβ with Δθ being the displacement
vector of the angular position θ with respect to a fiducial
reference position. The overall normalization N of the model
and the relative scaling K of the smooth dark-matter component
versus the galaxy contribution bring the total number of free
parameters in the model to 6. This approach to strong lensing
is sufficient to accurately predict the locations and internal
structure of multiple images, since in practice the number of
multiple images uncovered readily exceeds the number of free
parameters, so that the fit is fully constrained.

We use this preliminary model to delens the more obvious
lensed galaxies back to the source plane by subtracting the
derived deflection field. We then relens the source plane in order
to predict the detailed appearance and location of additional
counter images, which may then be identified in the data by
morphology, internal structure, and color. The best-fit strong-
lensing model is assessed by minimizing the χ2 value in the
image plane:

χ2
sl =

∑
i

[θ i − θ̂ i(q, S,N ,K, Γex)]2

σ 2
i

, (14)

where i runs over all lensed images, θ̂ i(q, S,N , Γex) is the
position given by the model, θ i is the observed image position,
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and σi is the positional measurement error. For each model
parameter, we estimate the 1σ uncertainty by Δχ2 ≡ χ2 −
χ2

min = 1 in the six-parameter space. The uncertainties for the
Σ(θ ) field and the Σ(θ ) profile are estimated by propagating the
errors on the strong-lens model parameters, (q, S,N ,K, Γex).

3.3. Combining Weak and Strong Lensing

We derive a full-radial mass profile on an individual cluster
basis by combining independent weak- and strong-lensing
data, which can be compared for consistency in the region of
overlap. In order to obtain meaningful radial profiles, one must
carefully define the center of the cluster. It is often assumed
that the cluster mass centroid coincides with the position of
the brightest cluster galaxy (BCG), whereas the BCGs can
be offset from the mass centroids of the corresponding dark-
matter halos (Johnston et al. 2007; Oguri et al. 2010; Oguri
& Takada 2011). Umetsu et al. (2011) adopted the location of
the BCG as the cluster center in their one-dimensional profile
analysis of five massive clusters. A small offset of typically
�20 kpc h−1 ≡ doff is found by Umetsu et al. (2011) between the
BCG and the dark-matter center of mass recovered from strong-
lens modeling (Section 3.2). In the following, we will adopt the
BCG position as the cluster center, and limit our analysis to
radii greater than Rmin ≡ 2doff = 40 kpc h−1, beyond which the
cluster miscentering effects on the Σ profile are negligible (see
Section 10 of Johnston et al. 2007).

Having defined the cluster center, we can construct a joint
discrete mass profile Σ = {Σ(Ri)}Ni=1 as a function of the
projected radius R = Dlθ by combining the weak- and strong-
lensing κ profiles: Σ(Ri) = w−1

i κ(θi) (i = 1, 2, . . . , N),
where wi is the lensing efficiency function, or the inverse
critical surface mass density, wi ≡ (Σcrit,i)−1 = (4πG/c2)Dlβi ,
Note, the i dependence arises because strong- and weak-lensing
profiles with different depths are combined together. To simplify
the analysis, we exclude the strong-lensing data points in the
region of overlap (typically, θEin � θ � 2θEin) as well as the
central weak-lensing bin κmin, when defining the joint Σ profile.

The formulation thus far allows us to derive covariance
matrices Cstat

ij of statistical measurement errors for individual
cluster κ profiles. Here, we take into account the effect of
uncorrelated large-scale structure projected along the line of
sight on the error covariance matrix C lss

ij as C = Cstat + C lss,
where Clss is given as (Schneider et al. 1998; Hoekstra 2003;
Dalal et al. 2005; Hoekstra et al. 2011; Oguri & Takada 2011)

C lss
ij =

∫
l dl

2π
Cκκ (l) Ĵ0(lθi)Ĵ0(lθj ). (15)

Here, Cκκ (l) is the weak-lensing power spectrum as a function
of angular multipole l evaluated for a given source population
and a cosmology, and Ĵ0(lθi) is the Bessel function of the first
kind and order zero averaged over the ith annulus between θi,1
and θi,2(>θi,1), given as

Ĵ0(lθi) = 2

(lθi,2)2 − (lθi,1)2
[lθi,2J1(lθi,2) − lθi,1J1(lθi,1)]. (16)

We will assume the concordance ΛCDM cosmological model
of Komatsu et al. (2011) and use the fitting formula of Peacock
& Dodds (1996) to compute the nonlinear mass power spectrum
that enters in Equation (15).

3.4. Stacked Lensing Analysis

The utility of high-quality data is ultimately limited by
the cosmic noise from large-scale structure along the line of
sight, producing covariance between radial bins, particularly
behind the cluster center, where magnified sources lie at greater
distances. This noise is correlated between radial bins, but
can be overcome by stacking an ensemble of clusters along
independent lines of sight. Stacking also helps average over
the effects of cluster asphericity and substructure inherent in
projected lensing measurements. The statistical precision can
be greatly improved by stacking together a number of clusters,
especially on small angular scales (see Okabe et al. 2010),
allowing a tighter comparison of the averaged profile with
theoretical models.

With the full mass profiles of individual clusters from com-
bined weak and strong lensing (Section 3.3), we can stack the
clusters to produce an averaged radial mass profile. Here, we
re-evaluate the mass profiles of the individual clusters in M log-
arithmically spaced radial bins in the range R = [Rmin, Rmax]
following the prescription given in Umetsu et al. (2011). Since
the noise in different clusters is uncorrelated, the mass profiles
of individual clusters can be co-added according to (Umetsu
et al. 2011)

〈Σ〉 =
(∑

n

Wn

)−1 (∑
n

WnΣn

)
, (17)

where the index n runs over all clusters, Σn is a vector containing
the discrete surface mass density profile for the nth cluster, and
Wn is the window matrix defined as

(Wn)ij ≡ (
C−1

n

)
ij

(wn)i(wn)j (18)

with (Cn)ij and (wn)i (i = 1, 2, . . . ,M) being the full co-
variance matrix and the lensing efficiency function for the nth
cluster, respectively. The error covariance matrix for the stacked
mass profile 〈Σ〉 is obtained as

C =
(∑

n

Wn

)−1

. (19)

4. APPLICATIONS: HUBBLE AND SUBARU
OBSERVATIONS OF FOUR HIGH-MASS CLUSTERS

4.1. Cluster Sample and Lensing Data

Following the methodology outlined in Section 3, we an-
alyze our consistent weak- and strong-lensing measurements
presented in Umetsu et al. (2011) to examine the underly-
ing projected mass profile Σ(R) of a sample of four well-
studied high-mass clusters (M � 1015 M�) at intermediate
redshifts, A1689 (z = 0.183), A1703 (z = 0.281), A370
(z = 0.375), and Cl0024+17 (z = 0.395).9 The massive clus-
ters we have analyzed are well-known strong-lensing clusters,
displaying prominent strong-lensing features and large Einstein
radii of θEin � 30′′ (e.g., for a fiducial source redshift zs ∼ 2;
Broadhurst & Barkana 2008; Oguri & Blandford 2009; Zitrin

9 Careful examination of lensing, X-ray, and dynamical data strongly
suggests that Cl0024+17 is the results of a high-speed, line-of-sight collision
of two massive clusters viewed approximately 2–3 Gyr after impact when the
gravitational potential has had time to relax in the center, but before the gas has
recovered (see Umetsu et al. 2010, and references therein).
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Table 1
Cluster Sample and Lensing Data

Cluster Redshift Einstein Radius Strong Lensing Weak Lensing S/N
z θein Rsl

min, R
sl
max Nsl Rwl

min, R
wl
max Nwl

(′′) (kpc h−1) (kpc h−1)

A1689 0.183 53 ± 3′′(zs = 3.04) 40, 125 12 129, 2325 11 35
A1703 0.281 31 ± 3′′(zs = 2.627) 40, 177 14 179, 2859 10 29
A370 0.375 37 ± 3′′(zs = 2) 40, 149 15 152, 3469 14 29
Cl0024+17 0.395 30 ± 3′′(zs = 1.675) 40, 126 14 134, 3359 12 26

Note. For each cluster a joint mass profile is defined in N ≡ N sl + Nwl discrete radial bins over the
radial range of R = [Rsl

min, R
wl
max].

et al. 2011b). Table 1 gives a summary of the basic properties
of the clusters in our sample.

For these clusters, the central mass distributions (R �
200 kpc h−1) have been recovered in detail by our strong-
lensing analysis (Broadhurst et al. 2005b; Zitrin et al. 2009,
2010; Umetsu et al. 2011) based on many sets of multiply
lensed images identified previously in very deep multicolor
imaging with HST/ACS (e.g., Broadhurst et al. 2005b; Limousin
et al. 2008; Richard et al. 2009, 2010; Zitrin et al. 2009,
2010). Umetsu et al. (2011) developed and applied a Bayesian
method to derive model-independent projected mass profiles
for five high-mass clusters (including RXJ1347-11 in addition
to the four clusters) from Subaru weak-lensing distortion and
magnification measurements, the combination of which can
unambiguously break the mass-sheet degeneracy inherent in
any mass inversion method based solely on shape distortion
data. It was shown that for the four clusters of the present sample
our independent strong- and weak-lensing mass profiles are in
full agreement in the region of overlap (R ∼ 150 kpc h−1), and
together can be well described by, within the noise, a generalized
form of the NFW profile for CDM-dominated equilibrium halos.
This motivates us to reexamine in detail the form of the radial
mass profile for these clusters.

4.2. Results

Our weak- and strong-lensing data together cover a wide
range of radius ranging typically from R ∼ 10 kpc h−1 to
2000–3500 kpc h−1 (Umetsu et al. 2011), depending on the
cluster redshift as limited by the field of view of Subaru/
Suprime-Cam (34′ × 27′). Table 1 lists for each cluster the
radial ranges R = [Rsl

min, R
sl
max] and [Rwl

min, R
wl
max] of strong- and

weak-lensing measurements, respectively, used to define a joint
discrete mass profile Σ = {Σ(Ri)}Ni=1, given in a total of N radial
bins spanning from Rmin = Rsl

min to Rmax = Rwl
max. In Table 1, we

also quote values of the total signal-to-noise ratio (S/N) in our
joint cluster mass profiles (Σ) obtained using the full covariance
matrix C. We find that ignoring the cosmic noise contribution
(Equation (15)) will underestimate the errors by ∼30%–40%.
To evaluate Clss for strong-lensing observations, we projected
the matter power spectrum out to a fiducial depth of zs = 2,
which is a typical source redshift of strongly lensed arcs in
clusters at intermediate redshifts. We used the estimated mean
source redshifts given in Table 3 of Umetsu et al. (2011) for
weak lensing.

We show in the top panel of Figure 1 the resulting averaged
radial mass profile 〈Σ(R)〉 in M = 15 logarithmically spaced
bins with its statistical 1σ uncertainty (given as the square root
of the diagonal part of the full covariance matrix C), obtained by
stacking the four clusters using Equations (17) and (19). Note,

Figure 1. Top: the average projected mass profile Σ(R) (filled squares) with
its statistical 1σ uncertainty as a function of the projected radius R, which is
obtained by stacking individual full mass profiles (thin gray lines) of four high-
mass clusters (A1689, A1703, A370, and Cl0024+17 with Mvir > 1015 M�
at 〈zl〉 = 0.32) derived from Hubble strong-lensing (R � 150 kpc h−1) and
Subaru weak-lensing (R � 150 kpc h−1) measurements. The stacked mass
profile exhibits clear continuous steepening over a wide range of radii, from
R = 40 kpc h−1 to 2800 kpc h−1 ≈ 1.4rvir, which is well described by a single
NFW profile (solid line). The dashed line shows the contribution to the variance
from uncorrelated large-scale structure projected along the line of sight. Bottom:
the logarithmic slope of the stacked mass profile (open squares with error bars),
d ln〈Σ〉/d ln R, is shown as a function of projected radius along with the NFW
model (solid line) shown in the top panel. The projected logarithmic slope shows
a clear continuous steepening with increasing radius, consistent with the NFW
model.

(A color version of this figure is available in the online journal.)

no scaling has been applied to match the mass normalizations
between the four clusters, which span a relatively narrow range
in mass, 1.3 � Mvir/(1015 M� h−1) � 2.3 (see Table 6 of
Umetsu et al. 2011). For our sample, we find a sensitivity-
weighted average cluster redshift of 〈zl〉 � 0.32, which is
fairly close to the simple average of zl = 0.31 due to the
narrow redshift coverage of our cluster sample. The stacked
mass profile exhibits a smooth radial trend with a clear radial
curvature over a wide range of radius from R = 40 kpc h−1 to
2800 kpc h−1 ≈ 1.4rvir, and is detected at a high significance
level of 58σ , with the contribution from cosmic covariance
included. Here, the maximum radius for the stacking analysis
represents approximately the average maximum radius 〈Rmax〉
covered by our data. Also shown in Figure 1 is the cosmic
noise contribution, which increases toward the cluster center.
A noticeable increase of the stacked cosmic noise is seen
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at R � 150 kpc h−1, within which the averaged profile is
dominated by strong-lensing measurements with greater depth.
In the bottom panel of Figure 1, we plot the logarithmic density
slope γ2D(R) ≡ −d ln 〈Σ〉/d ln R of the stacked mass profile.
The logarithmic gradient of the average profile shows a clear
continuous steepening with increasing radius in projection.

To quantify and characterize the averaged cluster mass
distribution, we compare the 〈Σ〉 profile with the physically
and observationally motivated NFW model. Here, we consider
a generalized parameterization of the NFW model (hereafter
gNFW) of the form (Zhao 1996; Jing & Suto 2000)

ρ(r) = ρs

(r/rs)α(1 + r/rs)3−α
, (20)

where ρs is the characteristic density, rs is the characteristic
scale radius, and α represents the inner slope of the density
profile. This reduces to the NFW model for α = 1. We introduce
the radius r−2 at which the logarithmic slope of the density is
isothermal, i.e., γ3D = 2. For the gNFW profile, r−2 = (2−α)rs ,
and thus the corresponding concentration parameter reduces to
c−2 ≡ rvir/r−2 = cvir/(2 − α). We specify the gNFW model
with the central cusp slope, α, the halo virial mass, Mvir, and
the concentration, c−2 = cvir/(2 − α). We employ the radial
dependence of the gNFW lensing profiles given by Keeton
(2001).

First, when the central cusp slope is fixed to α = 1 (NFW),
the best-fit model for the averaged 〈Σ〉 profile is obtained as
Mvir = 1.54+0.11

−0.10 × 1015 M� h−1 and c−2 = cvir = 7.68+0.42
−0.40

with the minimized χ2 value (χ2
min) of 5.8 for 13 degrees

of freedom (dof), corresponding to a Q-value goodness-of-
fit of Q = 0.952. This model yields an Einstein radius of
θEin = 39.′′9+4.4

−4.1 for a fiducial source at zs = 3. The resulting
best-fit NFW parameters from the stacked analysis are consistent
with the respective sample-weighted means of the individual
NFW model fits obtained by Umetsu et al. (2011, Table 6):
〈Mvir〉 = 1.44 ± 0.11 × 1015 M� h−1 and 〈cvir〉 = 7.76 ± 0.79.
Next, when α is allowed to vary, a gNFW fit to 〈Σ〉 gives Mvir =
1.50+0.14

−0.13 × 1015 M� h−1, c−2 = 7.91+0.72
−0.75, and α = 0.89+0.27

−0.39

with χ2
min/dof = 5.7/12 and Q = 0.931 (θEin = 38.′′4+12.2

−10.2 at
zs = 3), being consistent with a simple NFW model with α = 1.
Thus, the addition of the α parameter does not improve the fit
substantially, as shown by the quoted χ2 and Q-values (see
also Zitrin et al. 2011d). The two-dimensional marginalized
constraints (68.3%, 95.4%, and 99.7% confidence levels) on
(Mvir, α) and (c−2, α) are shown in Figure 2. Finally, a force fit
to the singular isothermal sphere (SIS) model (ρ ∝ r−2) yields
a poor fit with χ2

min/dof = 78.5/14, so that the SIS model is
strongly disfavored at 62σ significance from a likelihood-ratio
test, based on the difference between χ2 values of the best-fit
NFW and SIS models: Δχ2 ≡ χ2

SIS,min − χ2
NFW,min = 72.6 for 1

dof.

5. DISCUSSION AND CONCLUSIONS

We have developed a method for improving the statistical
precision of cluster mass profiles, combining independent weak-
lensing distortion, magnification, and strong-lensing measure-
ments. This extends recent weak-lensing work by Umetsu et al.
(2011) to include the central strong-lensing information in a
stacking analysis, for full-radial coverage. Our methods take
into account the cosmic covariance from uncorrelated large-
scale structure projected along the line of sight (Hoekstra 2003;
Hoekstra et al. 2011), as well as the effect of different cluster

Figure 2. Constraint on the gNFW model parameters, namely, the central cusp
slope α, the halo virial mass Mvir, and the halo concentration c−2 = cvir/(2−α),
when all of them are allowed to vary, derived from the averaged radial mass
profile of A1689, A1703, A370, and Cl0024+17 shown in Figure 1. The left and
right panels show the two-dimensional marginalized constraints on (Mvir, α)
and (c−2, α), respectively. In each panel of the figure, the contours show the
68.3%, 95.4%, and 99.7% confidence levels, and the cross indicates the best-fit
model parameters.

(A color version of this figure is available in the online journal.)

redshifts, so that error propagation in terms of lensing efficiency
of individual clusters can be properly averaged.

We have applied our method to a sample of four simi-
larly high-mass lensing clusters (A1689, A1703, A370, and
Cl0024+17), for which we have previously identified multiply
lensed images and measured weak magnification and distortion
effects from deep HST and Subaru observations (Broadhurst
et al. 2005b; Umetsu & Broadhurst 2008; Umetsu et al. 2010,
2011; Zitrin et al. 2010; Medezinski et al. 2010, 2011). For
our sample of massive clusters, the strong- and weak-lensing
regimes contribute equal logarithmic coverage of the radial pro-
file and can be compared for consistency in the region of over-
lap. We have formed an averaged radial mass profile 〈Σ(R)〉
from stacking the clusters (Figure 1), which shows a progres-
sive steepening with increasing radius from R = 40 kpc h−1 to
2800 kpc h−1. The inner radial boundary is chosen to be suffi-
ciently large to avoid smoothing from cluster miscentering ef-
fects (Johnston et al. 2007), where the typical offset between the
BCG and the dark-matter center is estimated as d � 20 kpc h−1

for our sample from our detailed strong-lens modeling (see
Section 3.3). The stacked full mass profile is detected at a high
significance level of 58σ over the entire radial range. It is found
here that ignoring the cosmic noise contribution will underes-
timate the errors by ∼30%–40%. This is due to the correlation
of this noise between radial bins and can only be reduced by
averaging over independent lines of sight, with uncorrelated
line-of-sight structures, i.e., by averaging over well-separated
clusters.

Our stacked projected mass profile with a continuously
steepening radial trend is very accurately described by the NFW
form predicted for the family of CDM-dominated halos, whereas
it strongly disfavors the SIS model at 62σ significance. In the
context of an assumed gNFW profile, the central cusp slope is
constrained as α = 0.89+0.27

−0.39 (at r � 0.02rvir; see Figures 1
and 2), being consistent with, but slightly shallower than, the
simple NFW form with α = 1. Our results are in agreement with
recent high-resolution simulations, which find asymptotic inner
slopes somewhat shallower than unity, γ3D(r → 0) � 0.9, for
galaxy- and cluster-sized ΛCDM halos (e.g., Merritt et al. 2006;
Graham et al. 2006; Navarro et al. 2010). Note NFW define this
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profile for halos which they identify as in virial equilibrium,
in terms of the simulated CDM particles (see Section 2.2.2 of
Navarro et al. 1997). The clusters we have selected for our
stacked analysis are, in terms of their lensing properties, very
well behaved with at most only ∼10% perturbations in mass
visible locally in the two-dimensional mass distribution, and
otherwise very symmetric over most of the radius (Broadhurst
et al. 2005a, 2005b, 2008; Umetsu et al. 2010). Detailed
hydrodynamical simulations show that equilibrium is relatively
rapidly achieved in only a few sound crossing times after a
major merger, though some dynamical and gas disruption may
continue for over a Gyr. This is not important in terms of the
central relaxation time of the dark matter (Ricker & Sarazin
2001; Umetsu et al. 2010).

An accurate measurement of the cluster mass profile enables
us to constrain dark-matter models. Recently, Woo & Chiueh
(2009) examined in detail an extremely light bosonic dark matter
(ELBDM) model (m ∼ 1022 eV) as an alternative to CDM in
the context of nonlinear cosmic structure formation. ELBDM
with a de-Broglie wavelength of astronomical length scales, if it
exists, may well be in a ground-state Bose–Einstein condensate
and hence well described by a coherent wave function, which
may naturally account for the perceived lack of small galaxies
relative to the ΛCDM model (Klypin et al. 1999; Peebles &
Nusser 2010). Woo & Chiueh (2009) showed that, irrespective
of whether halos form through accretion or merger, ELBDM
halos can form steepening density profiles of the form similar to
the standard CDM, but with perhaps a steeper central cusp slope
of γ3D � 1.4 and a shallower outer slope of γ3D � 2.5. During a
merger between condensates interesting large-scale interference
occurs which will differ markedly from standard collisionless
CDM, and it will be important to explore this class of dark matter
further via more extensive and detailed simulations for testing
against accurate lensing profiles of both relaxed and merging
clusters.

The mean concentration for the four massive lensing clusters
considered here is found to be cvir = 7.68+0.42

−0.40 (at a mean virial
mass Mvir = 1.54+0.11

−0.10 × 1015 M� h−1), which is apparently
higher than the standard ΛCDM predictions evaluated at the
mean redshift 〈zl〉 = 0.32 of our sample: cvir = 4.5+1.3

−1.0 (the
errors quoted represent a 1σ lognormal scatter of σ [log10 cvir] =
0.11) for relaxed clusters derived by Duffy et al. (2008) from N-
body simulations based on the Wilkinson Microwave Anisotropy
Probe (WMAP) five-year data and cvir ≈ 4.4 by Klypin et al.
(2010) from the recent Bolshoi ΛCDM N-body simulation.
More recent results with greater mass resolution based on four
large N-body simulations (Bolshoi, MultiDark, Millennium-I
and II) exhibit a complex mass and redshift dependence of
the median concentration, namely, a flattening and upturn of
concentration at very high mass and redshift (Prada et al.
2011). Accordingly, their concentrations derived for cluster-
sized halos (i.e., rare objects corresponding to high-σ peaks
in the primordial density field) are substantially higher than
previous results based on smaller simulations. Interestingly, they
find a concentration of cvir ∼ 7 for their most-massive relaxed
halos with Mvir ≈ 1015 M� h−1 at z = 0 (Figure 15 of Prada
et al. 2011). A comparison between our results and the ΛCDM
predictions (Duffy et al. 2008; Klypin et al. 2010; Prada et al.
2011) is given in Figure 3.

An accurate characterization of the observed sample is cru-
cial for any cluster-based cosmological tests. In the extreme
case, those clusters identified by the presence of a giant arc rep-
resent the most lensing-biased population. Calculations of the

Figure 3. Joint constraints on the mass and concentration parameters (Mvir, cvir)
for a sample of four high-mass lensing clusters (A1689, A1703, A370, and
Cl0024+17) derived from their stacked full mass profile 〈Σ(R)〉 (Figure 1),
compared to ΛCDM predictions (Duffy et al. 2008; Klypin et al. 2010;
Prada et al. 2011) in the cvir–Mvir plane. The cross shows the best-fit NFW
parameters, and the contours show the 68%, 95%, and 99.7% confidence levels
(Δχ2 = 2.3, 6.17, and 11.8). The N-body predictions of Duffy et al. (2008),
Klypin et al. (2010), and Prada et al. (2011) are shown as solid curves, with 1σ

lognormal scatter (taken from Duffy et al. 2008) indicated by the shaded area.
Also shown are the levels of selection and projection bias for a strong-lensing
cluster population derived from N-body (34%; dotted line) and semianalytical
(50%; dashed line) simulations, where the prediction by Duffy et al. (2008) is
taken as the reference of the comparison.

(A color version of this figure is available in the online journal.)

enhancement of the projected mass and hence boosted Einstein
radii (say, θEin > 20′′) find a statistical bias of ∼34% derived
from N-body simulations of the ΛCDM model (Hennawi et al.
2007). Semianalytical simulations incorporating idealized tri-
axial halos yield a ∼50% bias correction (Oguri & Blandford
2009). Applying a conservative 50% bias correction, we find a
discrepancy of about 1.8σ with respect to the ΛCDM predic-
tions by the Duffy et al. (2008) model for relaxed clusters (see
Figure 3). If this large bias (∼50%) is coupled to a sizable in-
trinsic scatter in concentration, estimated for the full halo pop-
ulation to be σ [log10 cvir] = 0.11–0.15, then our measurements
can come into line with standard ΛCDM.

The results presented here are very favorable in terms of
the standard explanation for dark matter, as collisionless and
non-relativistic, interacting only via gravity, with a very precise
match between our composite mean mass profile, and that of
the general form of the mass profile advocated for massive
halos in virial equilibrium. The relatively high concentration
we obtain for the averaged profile is consistent with previous
lensing work which similarly detected a concentration excess
in the lensing-based measurements for many individual relaxed
strong-lensing clusters (e.g., Gavazzi et al. 2003; Kneib et al.
2003; Comerford & Natarajan 2007; Broadhurst et al. 2008;
Oguri et al. 2009). This possibly interesting tension between
cluster lensing observations and ΛCDM models can be more
definitively addressed with full-lensing data for new cluster
surveys, such as CLASH,10 LoCuSS, Subaru Hyper Suprime-
Cam, and XMM-XXL (Pierre et al. 2011), to meaningfully
examine the cvir–Mvir relation over a wider mass and redshift

10 Cluster Lensing And Supernova Survey with Hubble (PI.: M. Postman),
http://www.stsci.edu/∼postman/CLASH/
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range when applied to sizable samples of relaxed clusters. It is
highly desirable to cover the full profile by combining accurate
weak- and strong-lensing measurements, requiring several sets
of multiple images over a wide range of source redshift, to
obtain a meaningful model-independent inner profile and to add
weak lensing with sufficient color information to exclude the
otherwise sizable dilution effect on the weak-lensing signal
from foreground and cluster members. The CLASH survey
is in particular designed to generate such useful data free of
systematics in both the weak and strong regime, with first
results for the substantial smaller mass cluster A383 with
Mvir = 5.37+0.70

−0.63 × 1014 M� h−1 (Zitrin et al. 2011d) showing
similar behavior (cvir = 8.77+0.44

−0.42).
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