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GALAXY CLUSTERS: PROBING THE OVERCONCENTRATION PROBLEM
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ABSTRACT

We have measured the Sunyaev–Zel’dovich (SZ) effect for a sample of 10 strong lensing selected galaxy clusters
using the Sunyaev–Zel’dovich Array (SZA). The SZA is sensitive to structures on spatial scales of a few arcminutes,
while the strong lensing mass modeling constrains the mass at small scales (typically <30′′). Combining the two
provides information about the projected concentrations of the strong lensing clusters. The Einstein radii we
measure are twice as large as expected given the masses inferred from SZ scaling relations. A Monte Carlo
simulation indicates that a sample randomly drawn from the expected distribution would have a larger median
Einstein radius than the observed clusters about 3% of the time. The implied overconcentration has been noted in
previous studies and persists for this sample, even when we take into account that we are selecting large Einstein
radius systems, suggesting that the theoretical models still do not fully describe the observed properties of strong
lensing clusters.
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1. INTRODUCTION

Earlier studies have found that strong lensing galaxy clusters
are more concentrated than simulations predict (e.g., Broadhurst
et al. 2005, 2008b; Oguri et al. 2005; Hennawi et al. 2007).
Early forming halos are more concentrated (e.g., Wechsler
et al. 2002), so this discrepancy could be explained if dark
matter halos form at earlier times than the standard ΛCDM
prediction. Exotic physics such as non-Gaussianity or early
dark energy could cause such an early collapse of dark matter
halos (e.g., Mathis et al. 2004; Fedeli & Bartelmann 2007).
Another explanation for the observed overconcentration could
be that current models do not properly incorporate the effects
of baryons on the core density profiles in clusters (e.g., Rozo
et al. 2008). The discrepancy could also result from inaccuracies
in current cluster models of strong lenses due to extrapolations
of the concentration probability distribution from more easily
simulated, lower mass systems (discussed in Oguri & Blandford
2009).

Broadhurst & Barkana (2008a) recast this overconcentration
problem into a comparison of the cluster mass at small scales
with the cluster mass at large scales. They measured the inner
mass through strong lensing mass modeling and expressed it in

15 Hubble Fellow.
16 Einstein Fellow.

terms of the Einstein radius, θE , which for a circularly symmetric
lens with an arbitrary mass profile satisfies θ2

E ∝ M(<θE)
(Narayan & Bartelmann 1997). They measured the overall
cluster mass through weak lensing. This approach is useful
because it enables a comparison to theoretical predictions
without measuring the concentration of the cluster profile,
which would require knowledge of the shape of the density
profile over a wide range of scales in the cluster, some of
which are not well constrained by the available data. For
a sample of four strong lensing clusters, they found mass
measurements that are discrepant with theoretical predictions
and interpreted this disagreement as a conflict between their
observations and ΛCDM cosmology. However, the sample size
was not large, and they did not fully account for the selection
of large Einstein radius systems from the rather wide expected
distribution of Einstein radii when determining the significance
of the discrepancy.

Other authors have constructed strong lensing models for
larger samples of massive clusters, often selected on the basis
of other mass proxies, such as X-ray luminosity, rather than
as strong lenses. These studies also find that the distribution
of measured Einstein radii is larger than expected, although
the significance of the discrepancy is small (Smith et al. 2005;
Zitrin et al. 2011). Until now, there has not been a similarly
large sample of well-studied, specifically strong lensing selected
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clusters. Because most of the larger samples are either X-ray
selected or a combination of X-ray and strong lensing selected,
it is typically difficult to get spectroscopic redshifts for their
relatively faint arcs, although spectroscopic redshifts are very
useful for constraining the strong lensing mass models. It is
also less clear how these samples compare to a sample of halos
selected from simulations as efficient strong lenses.

Using the Sunyaev–Zel’dovich Array (SZA), we have ob-
served the Sunyaev–Zel’dovich (SZ) effect for a sample of
10 clusters selected from large optically selected cluster cat-
alogs for their strong lensing signatures. We derive mass
measurements from these SZ observations and Einstein radii
measurements from detailed strong lensing mass modeling,
comparing our results with theoretical predictions. A strength
of using intracluster-medium-based mass estimates for strong
lensing clusters is that they have less scatter at fixed mass than
optical richness measurements and different dependencies on
line-of-sight structure than weak lensing measurements (strong
lenses are expected to be preferentially aligned along the line
of sight). This paper is part of a larger program to obtain a vari-
ety of mass estimates for strong lensing clusters (weak lensing,
velocity dispersion, X-ray).

Throughout this work, we assume a flat ΛCDM cosmology
with Ωm = 0.27, ΩΛ = 0.73, and h = 0.73 in order to calculate
the angular diameter distances to the clusters and sources. The
theoretical models are derived adopting the WMAP5 cosmology
as the fiducial cosmological model (Dunkley et al. 2009).

2. DATA AND ANALYSIS

2.1. Sample Selection

We select strong lensing clusters from two programs: the
Sloan Giant Arc Survey (SGAS) and the Red-Sequence Cluster
Survey Giant Arc program (RCS-GA). The selection of strong
lensing clusters for SZA observations was driven by right-
ascension constraints and availability of complementary data
(primarily spectroscopy to facilitate lens modeling).

SGAS is a survey to detect strong lensing by clusters with
the clusters selected via the red-sequence method (Gladders &
Yee 2000) applied to the Sloan Digital Sky Survey (SDSS) DR7
(Abazajian et al. 2009) photometry. Lenses have been selected
in two ways: either by imaging of rich clusters to search for
lensing features (Hennawi et al. 2008) or from clusters and
groups (not necessarily rich) that show evidence for lensing
directly in the SDSS imaging (M. D. Gladders et al. 2011,
in preparation). Candidates were subsequently confirmed by
further imaging. In either case, deeper imaging was obtained
at the Wisconsin–Indiana–Yale NOAO 3.5 m telescope, the
University of Hawaii 88 inch telescope, or the 2.5 m Nordic
Optical Telescopes. SGAS targets in this paper are drawn from
both samples.

The RCS-GA is a program to detect strong lensing around
clusters in the second Red-Sequence Cluster Survey17 (RCS2;
Gilbank et al. 2011). RCS2 clusters are also selected photo-
metrically using the red-sequence method. The survey covers
nearly 1000 deg2, with imaging in g′, r′, z′ filters from the
Canada–France–Hawaii Telescope. The typical 5σ point source
depth is 25.3 mag in the g′ band, 24.8 mag in the r′ band, and
22.5 mag in the z′ band. Strong lensing features were identified
by eye from three-color composite images of clusters directly
from the survey data.

17 http://rcs2.org

Because arc redshifts are important for constraining strong
lensing mass models, we only selected strong lenses with
spectroscopically measured arc redshifts. We supplemented our
sample with two additional clusters from the literature, one from
the first Red-Sequence Cluster Survey (RCS1), RCS1J2319,
and a well-known strong lensing Abell cluster, A1689. Table 1
contains information about the sample.

2.2. SZ Observations and Analysis

The SZA is an eight-element interferometer originally located
at the Owens Valley Radio Observatory in California that is
now incorporated into the Combined Array for Research in
Millimeter-wave Astronomy (CARMA) at a nearby 2200 m
elevation site at Cedar Flat in the Inyo Mountains of California.
All of the observations were conducted at a center frequency
of 31 GHz, for which the SZA has baselines of 350–1300λ,
corresponding to spatial scales18 of 9.′8–2.′6 for sensitivity to the
cluster SZ effect and baselines of 2–7 kλ for the simultaneous
measurement of compact radio sources. Radio sources were
found within 1 arcmin of the target center for 7 out of the
10 targets. The on-source, unflagged observing time for each
cluster ranged from 11 to 57 hr and resulted in rms noise of
0.23–0.08 mJy beam−1 for the short baselines. Muchovej et al.
(2007) provide a detailed description of the SZA instrument,
measurements, and the data reduction pipeline developed by the
SZA collaboration.

We use Markov Chain Monte Carlo (MCMC) analysis soft-
ware (Bonamente et al. 2004) to fit a model for the gas pressure
to the visibility data. The model is based on the Nagai et al.
(2007) simulations with parameters fit to X-ray data. The pres-
sure profile is given by

P (r) ∝ x−γ (1 + xα)−(β−γ )/α, (1)

where x ≡ r/rs , where rs is the scale radius of the profile, and
with parameters α, β, and γ set to 0.9, 5.0, and 0.4, respectively.
Mroczkowski et al. (2009) found that this model fits both SZ
and X-ray data well. For each cluster, we determined the best-
fit parameters for the pressure profile normalization and scale
radius and used these in all subsequent analyses. The fluxes of
compact radio sources were fit along with the cluster parameters.

The observable from the SZ effect is the integrated Compton
y-parameter, Y, which is proportional to the integrated pressure
of the intracluster gas. We calculate a spherically integrated SZ
parameter, Y500,sph, by integrating the pressure profile to r500,
defined as the radius within which the enclosed mass is equal
to 500 times the critical density of the universe. We chose this
radius to use available scaling relations (see Table 1).

Masses are calculated from the integrated Y; we used a
scaling relation based on SZA observations and weak lensing
measurements of clusters in the Local Cluster Substructure
Survey19 (LoCuSS) sample. Details of the LoCuSS sample will
be found in G. P. Smith et al. (2011, in preparation), and details
of the weak lensing analysis are found in Okabe et al. (2010).
The LoCuSS SZ measurements and analysis will be published
in an upcoming paper (D. P. Marrone et al. 2011, in preparation).
The LoCuSS clusters span a similar range in integrated Y (when
scaled by E(z)−2/3, as expected for self-similar scaling) as the
strong lensing clusters, although they lie at lower redshifts. We

18 This refers to the wavelength of the Fourier component measured; the
largest features imaged well in a map are about a factor of two smaller.
19 http://www.sr.bham.ac.uk/locuss
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Table 1
Strong Lensing Cluster Sample

Name Cluster za r500 r500 Ysph M500 Arc za θE θE for (zl ,zs ) = (0.5,2.0) Lensing
(′′) (Mpc) (10−5 Mpc2) ×1014 M� (′′) (′′) Referenceb

A1689 0.18 503 1.5 24.8+6.5
−4.9 10.9+2.1

−1.9 1.100 42.6 40.2 ± 2.0 1
3.000 52.3
4.800 54.4

A1703 0.28 251 1.0 4.6+1.1
−0.8 3.9 ± 0.7 0.880 19.2 32.5 ± 1.9 2

3.380 31.3
A963 0.21 321 1.1 4.4+1.1

−0.8 3.9+0.7
−0.6 0.771 6.7 18.5+2.3

−6.2 3
1.958 16.5

RCS1 J2319 0.90 85 0.6 1.5+0.6
−0.5 2.0 ± 0.4 3.860 12.9 12.8+4.7

−2.0 3
RCS2 J0327 0.56 133 0.8 2.8+0.4

−0.5 2.7 ± 0.4 1.701 21.8 25.3 ± 1.5 4
RCS2 J2327 0.70 155 1.1 12.3 ± 0.7 6.5 ± 0.8 1.415 25.9 34.4+2.8

−2.1 3
2.983 39.6

SDSS J1209 + 26 0.56 161 1.0 7.3+2.6
−1.9 4.9+1.1

−1.0 1.018 8.3 23.0 ± 1.4 3
3.949 27.3

SDSS J1343 + 41 0.42 134 0.7 0.9+0.4
−0.3 1.6 ± 0.4 2.090 15.2 14.1+1.2

−0.9 5
5.200 20.9

SDSS J1531 + 34 0.34 164 0.8 1.1+0.3
−0.2 1.7+0.4

−0.3 1.096 12.3 18.0+2.0
−1.8 3

SDSS J2111−01 0.64 109 0.7 2.3+0.3
−0.4 2.3 ± 0.4 2.861 16.2 14.4+3.5

−6.0 3

Notes.
a Cluster and arc redshift references are Limousin et al. (2007, 2008) and references therein for A1689, A1703, respectively; Smith
et al. (2005) and references therein for A963, Gilbank et al. (2008) for RCS1 J2319, Wuyts et al. (2010) for RCS2 J0327, and
information on RCS2 J2327 will be published in M. D. Gladders et al. (2011, in preparation). All other cluster and arc redshifts are
published in Bayliss et al. (2011).
b Lens model references are: (1) Limousin et al. 2007; (2) Limousin et al. 2008; (3) K. Sharon et al. 2011, in preparation; (4) Wuyts
et al. 2010; (5) Bayliss et al. 2010.

fixed the slope of the scaling relation to the self-similar value of
0.6. Lacking a priori knowledge of the radius r500, we iteratively
solve for r500 and M500 through the scaling relation; for each
iteration we integrate the pressure profile to the r500 from the
previous iteration to calculate Ysph, then calculate M500 from
the scaling relation, calculate r500 according to this M500, and
repeat until this converges, typically after about four steps. See
Table 1 for the resulting r500, Ysph,500, and M500 for each cluster
in this sample.

2.3. Lensing Mass Models

Einstein radii for the clusters in this sample were computed
from strong lensing models that were either derived for this
work or taken from the literature (Table 1). When taken from
the literature, the models were adjusted according to our fiducial
cosmology. All the lensing models that are utilized here were
constructed using the publicly available software lenstool
(Jullo et al. 2007), with MCMC minimization in the source
plane. A detailed description of the lens modeling process will
be published elsewhere (K. Sharon et al. 2011, in preparation).
In short, we consider only clusters with secure spectroscopic
redshifts for both the cluster and at least one source. The red-
shifts and positions of multiply imaged arc systems (sources) are
used as constraints, and when available, cluster velocity disper-
sions and low-uncertainty photometric redshifts of secondary
arcs are used as priors. The clusters are typically modeled with
several mass halos, depending on the complexity that is needed:
a Navarro et al. (1997, NFW) or pseudo-isothermal ellipsoid
mass distribution (PIEMD) to represent the cluster mass; a sec-
ondary PIEMD to represent a group-scale halo or external shear;
and contributions from cluster-member galaxies, represented by
PIEMDs, with parameters that follow their observed values and
scale with luminosity (see Limousin et al. 2007).

The model-inferred Einstein radius is defined as θE = √
A/π ,

where A is the area inside the tangential (outer) critical curve.

For an elliptical critical curve, this is equivalent to the definition
that Oguri & Blandford (2009) used; we have simply generalized
it to more complex lensing models.

To compare the observed Einstein radii for clusters of dif-
ferent redshifts to theoretical predictions, we recompute θE of
each cluster as follows. For each cluster, we derive a lensing
mass reconstruction as explained above, according to the mea-
sured cluster and arc redshifts. We then use the derived mass
distribution, assign to it the fiducial cluster redshift of 0.5 (near
the average cluster redshift of the sample), and compute θE for
a source plane at z = 2.0. The resulting Einstein radii for the
actual cluster and source redshifts as well as for the fiducial ones
are listed in Table 1.

The uncertainties of the model-dependent Einstein radii are
estimated through simulation. For each cluster, we compute θE

in a series of lens models, each one with a set of parameters
drawn from steps in the MCMC that are within [χ2

min, χ2
min + 2].

For most of the clusters, the simulated θE values differ from
that of the best-fit model by less than 5%, although there are
a few notable exceptions. RCS1J2319 and SDSS2111−01 are
only constrained by arcs that lie on one side of the cluster center.
This means that although the critical curves in all the accepted
models are tightly constrained to pass through these arcs, a
variety of critical curve shapes and sizes are allowed by the
data, resulting in larger uncertainties on the θE values (up to
∼40%). In the case of A963, the cluster mass is degenerate with
the position of the cluster centroid, resulting in a similarly large
uncertainty in θE (33%).

As noted above, the location of the critical curve is directly
determined by observations. If we were to use in our analysis
θE as derived for the actual cluster and arc redshifts, the
uncertainties estimated above would be satisfactory. However,
for some clusters the extrapolation of the models to the fiducial
redshift may result in an additional uncertainty. K. Sharon et al.
(2011, in preparation) show that the total projected mass inside
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the critical curve can be measured to within a few percent, even
with a limited number of multiply lensed images—as is the case
with most of the clusters in this sample. However, outside the
range of radii in which arcs are observed, the enclosed mass
becomes uncertain. Assuming that M(<θE) ∝ θ2

E (Narayan &
Bartelmann 1997) and thus ΔM(<θE)/M(<θE) ∝ ΔθE/θE , we
argue that the accuracy with which θE is known is only as good
as the accuracy of the enclosed mass.

We therefore examine each RE with respect to the observed
projected distances of the arcs in each cluster. In all but three
clusters, the fiducial RE is within the radial range covered by
observed arcs. For these clusters we conservatively increase the
relative uncertainty of RE by 5%. For the other three clusters,
A963, SDSS J1343, and SDSS J1531, we increase the relative
uncertainty by 5.5%, 5.5%, and 8.9%, respectively, based on
the relative scatter in mass measurement as a function of radius
from K. Sharon et al. (in preparation).

2.4. Theoretical Predictions

Oguri & Blandford (2009) calculated the expected distribu-
tions of large Einstein radii for triaxial dark matter halos based
on a semi-analytic model. They randomly generated a cata-
log of massive dark matter halos according to a mass function,
assigning each halo a density profile following a triaxial gener-
alization of the NFW profile, with the axis ratio and concentra-
tion parameter randomly assigned according to the probability
distributions determined by N-body simulations of dark mat-
ter halos in Jing & Suto (2002). They projected these triaxial
halos in two dimensions and calculated the resulting projected
convergence and shear maps. Einstein radii were defined as the
geometric mean of the distances from the halo center to the outer
critical curve along the major and minor axes of the projected
two-dimensional density distribution. They produced 300 real-
izations of these mock all-sky catalogs of Einstein radii. For
further details, see Oguri & Blandford (2009).

Based on these models, we generate an average relation
between the Einstein radii and M500 for a large Einstein radius
sample cluster population for the same fiducial lens and source
redshifts that are used to calculate the Einstein radii (0.5 and
2.0, respectively). This effectively is a measure of the projected
concentration, but using the two observables corresponding to
the two different measurements we made for our real sample of
clusters. We have not included the expected redshift evolution
in the concentrations of halos (which goes as c2D ∝ (1 + z)−0.71;
Duffy et al. 2008). However, the evolution is not strong, and
because our fiducial redshift lies near the sample median
redshift, this does not introduce a significant bias.

A strong lensing selected sample tends to have larger Einstein
radii than a sample selected based on other mass observables.
We have included this selection effect in the predictions for
the relation between the Einstein radii and M500 by weighting
the probability distribution of the Einstein radius at a given
mass with the square of θE , which is proportional to the lensing
cross section. We note that the average Einstein radius is not
noticeably affected by including a brightness cut on the arcs
that mimics our selection.

3. RESULTS AND DISCUSSION

3.1. Mass and Einstein Radius

The main result of this paper is shown in Figure 1. This figure
shows M500, as derived from SZ measurements, versus Einstein
radius for this sample of strong lensing selected galaxy clusters.

Figure 1. Einstein radii vs. M500 (as derived from SZ measurements) for strong
lensing clusters. The solid line shows the median of the theoretical halo models
that have been selected to be efficient strong lenses. The dashed lines enclose
68% of such models, and the dotted lines enclose 90%. All of the lensing models
have been scaled to a fiducial lens redshift of 0.5 and a fiducial source redshift
of 2.0. The error bar at the top of the plot shows the median uncertainty in
mass from the uncertainty in the normalization of the scaling relation used to
determine the masses from the SZ observations.

The solid line shows the median of the theoretical halo models
that include lensing selection. The dashed lines enclose 68% of
such models, and the dotted lines enclose 90%. The uncertainties
on the masses are calculated by adding in quadrature the statis-
tical error on the Y measurement as determined by the Markov
chain with the scatter at a given mass in the mass–observable
relation. There is an additional systematic uncertainty on the
iteratively determined masses that results from the uncertainty
in the normalization of the scaling relation used to determine
the masses, represented in Figure 1 by an error bar at the top of
the figure. As expected, clusters with larger Einstein radii tend
to have larger observed masses. The data fall within the theoret-
ically expected distribution, although on average, clusters of a
given mass have Einstein radii twice as large as expected, or al-
ternatively the masses measured from the SZ effect are expected
to be about twice as high as observed.

To better quantify the level of agreement between the data
and the theoretical predictions, we generate a Monte Carlo
simulation, populated by drawing masses from the masses of the
clusters observed (varied by their uncertainties) and calculating
the corresponding Einstein radii according to the theoretically
expected distribution. We modeled this distribution as a four-
part piecewise lognormal distribution for Einstein radius at fixed
mass with the widths set to approximate the 68% and 90%
levels shown in Figure 1. The slope as a function of mass
was set by the median relation. We vary the Einstein radius
measurements by their associated uncertainty, and we include
a cut so that the Einstein radii are all greater than 12.′′5 to
account for any Malmquist bias effects. For each Monte Carlo
realization, we calculate the difference between the Einstein
radii of that realization and the theoretically expected Einstein
radii. A sample with a median difference greater than we observe
was measured for 2.8% of the realizations. While on average our
data do not agree with the models, they do lie within the 90%
region of the models, so we are not extrapolating far beyond
the regions where the models lie. A probability tail to large
Einstein radii that could potentially explain our observations
is not currently captured by this model, which is based on
simulations and includes a prescription for halo triaxialities and
concentrations.
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The uncertainty in the amplitude of the scaling relation used to
calculate mass from the SZ observations results in an uncertainty
in the masses that is correlated across the sample. This affects
the above calculation, such that the probability of selecting from
the Monte Carlo simulation a sample as observed ranges from
2.4% to 4.4% when the scaling relation normalization is varied
by its 1σ statistical uncertainty.

3.2. Potential Systematic Effects

One concern in this analysis is that the properties which make
a cluster a more efficient strong lens could also bias the mass
measurement derived from the SZ effect. Hennawi et al. (2007)
identified strong lenses in simulations and found that strong
lensing clusters are preferentially aligned along the line of sight
compared to the general halo population. This could introduce
a bias in our mass determinations when we fit a spherical model
to the SZ data and then use a scaling relation derived from
halos that are expected to be more randomly oriented. When
we simulate SZA data for projected triaxial models and fit a
pressure model to these data, we find that for clusters for which
the scale radius is smaller than the largest scales to which the
SZA has sensitivity (all strong lensing clusters except for Abell
1689), the spherically integrated Y500 calculated is higher for
an elongated halo aligned along the line of sight than for the
same halo oriented in the plane of the sky. Applying the scaling
relation, which was derived for clusters that were not selected
to be strong lenses, could cause us to overestimate the masses.
Another possibility is that an active merger could enhance a
cluster’s probability for strong lensing (Torri et al. 2004), which
could also inflate the pressure and lead to an overestimate
in the SZ mass derived from the scaling relation. If these
systematic effects are important, then we are underestimating
the discrepancy between the observations and theory, such that
our quoted results would be conservative.

The scaling relation used to measure the mass from the SZ
integrated Y parameter is based on weak lensing measurements
of X-ray selected clusters. Using simulations, Meneghetti et al.
(2010) found that on average X-ray mass measurements are
biased toward low values (by ∼5%–10%), and weak lensing
mass measurements have larger scatter (up to ∼20%) than
X-ray mass measurements. However, because we are basing the
SZ mass measurements not on the assumption of hydrostatic
equilibrium, but on a scaling relation with weak lensing, we
would not expect the same bias Meneghetti et al. (2010) found
in the hydrostatic mass estimates to affect the SZ masses.

Another possibly important systematic effect could result
from our use of the scaling relation based on the LoCuSS sam-
ple if the gas fraction, fgas, for LoCuSS clusters is significantly
different than the typical gas fraction of the clusters in the strong
lensing sample. Hicks et al. (2008) conducted X-ray observa-
tions of a sample of high redshift (0.6 < z < 1.1) optically se-
lected clusters from RCS1 and calculated the hydrostatic masses
and gas fractions as well as the X-ray equivalent of the integrated
Y parameter, YX . They found that the gas fraction at M500 for
high redshift (0.6 < z < 1.0) optically selected galaxy clus-
ters is lower on average than for lower redshift, X-ray-selected
clusters and also lower than theoretical predictions. This affects
the normalization of the scaling relation between the hydrostatic
mass and YX .

To investigate what effect this would have on our analysis, we
convert the Ysph,SZ for the LoCuSS clusters to the equivalent YX
according to the scaling relation from Andersson et al. (2010)
that allows a free slope and no evolution, and we recalculate

the Y – M scaling relation based on the weak lensing masses,
fixing the slope to the self-similar value (which is equivalent
to the slope for the YX – M scaling relation from Hicks et al.
2008). We compare the normalization of this scaling relation
with the normalization of the scaling relation derived for the
optically selected clusters by Hicks et al. (2008). The difference
in normalization is about 0.4 in M at fixed Y, indicating that at
fixed YX , the masses (M500) of clusters in Hicks et al. (2008)
tend to be twice as high as in the LoCuSS sample. If the clusters
in our sample have similarly low gas fractions compared to the
LoCuSS sample, then the mass estimates we derive from the SZ
scaling relation would be biased low. Our sample has a higher
redshift range (0.18 < z < 0.9) than the LoCuSS sample (with
a single cluster, A1689, in common to both samples), although
the median redshift is not as high as in the Hicks et al. (2008)
sample. We do not see any evidence for redshift evolution in
the gas fraction biasing our results; the high redshift clusters
are not more or less massive at a given Einstein radius than the
lower redshift clusters. The lower redshift clusters lie within
the redshift range probed by the LoCuSS sample from which
we derive the scaling relation. Both the high and low redshift
clusters span the Einstein radius and mass range of the complete
sample, i.e., not all of the high redshift clusters are also high
(or low) mass. One of the strong lensing clusters in our sample,
RCS1J2319, is also in the sample studied by Hicks et al. (2008).
They find that the gas fraction for this cluster is indeed low,
and the X-ray derived hydrostatic M500 is about a factor of two
larger than the mass we derive from SZ. X-ray measurements
of fgas for clusters in this sample would best resolve this issue.

A number of clusters in our sample have mass measurements
given in the literature that differ from the masses inferred by the
SZ scaling relation. For example, the weak lensing masses for
A1703, SDSSJ1531, and SDSSJ2111 (scaling from Mvir to M500,
with measurements from Oguri et al. 2009), are systematically
larger than the masses determined from the SZ scaling relation.
Different mass observables are affected differently by properties
such as alignment along the line of sight, and for strong
lensing clusters that are preferentially aligned, larger masses
are expected to be measured by weak lensing compared to SZ
masses. Alternatively, if as discussed above the gas fractions
for the strong lensing clusters were systematically lower than
for the LoCuSS clusters, the masses we infer from the scaling
relation could be underestimated.

3.3. Comparison with Previous Studies

We find that the Einstein radii are twice as large as expected
for clusters of a given mass as inferred by SZ scaling relations,
although the discrepancy has a significance of just 2σ . Previous
studies have found that Einstein radii are larger than expected by
a similar factor. Broadhurst & Barkana (2008a) also find that the
Einstein radii for four clusters, two of which (A1689 and A1703)
are also in our sample, are twice as large as expected. They
interpret the significance of this result to be at 4σ , assuming
each cluster to be an independent measurement and finding
the probability that all four are discrepant with theoretical
expectations by calculating the probability that each cluster
is discrepant with ΛCDM predictions and then multiplying
these probabilities together. Our larger sample of strong lensing
clusters enables us to better model the sample selection effects,
so although the size of the discrepancy between the observed
and predicted Einstein radii is similar between the two studies,
the significance is lower as we calculate it.
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Richard et al. (2009) construct mass models from Hubble
Space Telescope (HST) imaging of 10 low redshift clusters,
adding to 10 other nearby strong lensing clusters from the
literature, all selected as massive, X-ray luminous clusters. They
find that the Einstein radii for their clusters are a factor of ∼2
larger than predicted, but at a significance of 1.7σ , which they
do not claim as a detection of a discrepancy.

Zitrin et al. (2011) conduct a similar study of 12 higher
redshift (z > 0.5) X-ray selected clusters, constructing strong
lensing models based on archival HST data. They find that
the Einstein radii of their sample disagree with theoretical
predictions by a factor of ∼1.4, even after accounting for lensing
selection effects that could boost the lensing signal relative to
samples selected by other methods. However, 8 out of the 12
clusters in their sample do not have spectroscopically measured
redshifts for any of the lensed sources, resulting in considerable
uncertainty in the Einstein radii for those clusters, as detailed
therein.

While a direct comparison of these results is not straight-
forward because each study uses a different set of models and
measures mass at a different radius, it is interesting to note
that other studies using different methods to measure the clus-
ters’ masses also find that the measured Einstein radii tend to
be larger than expected from theory, though sometimes at low
significance.

4. SUMMARY

We measure the SZ effect for a sample of 10 galaxy clusters
that were selected as strong lensing systems. Observations are
conducted at 31 GHz using the SZA, and mass measurements are
derived from these observations through a scaling relation based
on weak lensing masses for the LoCuSS sample of clusters.
Comparing these masses for the strong lensing selected clusters
with their Einstein radii, derived from strong lensing mass
modeling, provides information about their two-dimensional
concentrations.

The data are modestly inconsistent with theoretical predic-
tions, with evidence that the strong lenses tend to have Einstein
radii that are a factor of two higher than their masses (as mea-
sured from SZ) would suggest according to these models. A
Monte Carlo simulation indicates that the probability that a
sample with the median difference from the theoretically ex-
pected Einstein radii is greater than or equal to that observed
is 2.8%. This calculation accounts for the selection of large
Einstein radius systems from the expected distribution of halos,
thus improving upon the work done in a previous study of a
smaller sample of strong lensing selected clusters (Broadhurst
& Barkana 2008a).

We have investigated a number of systematic effects, includ-
ing the possibility that the gas mass fraction of the strong lensing
clusters is systematically lower than that of the LoCuSS clus-
ters from which we derive the scaling relation, which would
bias the SZ masses low. The LoCuSS clusters lie at lower red-
shift than most of the clusters in our sample, but we do not see
any evidence that the high (low) redshift clusters have masses
preferentially biased low (high) compared to the rest of our
sample, indicating that the discrepancy between our observa-
tions and the expectations cannot be explained by simple gas
fraction evolution. More sophisticated theoretical models of the
strong lensing cluster population, perhaps moving toward full
cosmological simulations that sample both the small scales and
large volumes involved, with the addition of baryonic physics,
may be needed to describe these observations.

This study is part of an ongoing program to acquire different
mass proxies for strong lenses, including weak lensing and
dynamical masses. Combining different mass proxies, with
different sensitivities to the projection of line-of-sight structure,
should enable more robust determinations of the distribution of
mass in strong lensing clusters.
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