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ABSTRACT

Motivated by suggestions that binaries with almost equal-mass components (“twins”) play an important role in the
formation of double neutron stars and may be rather abundant among binaries, we study the stability of synchronized
close and contact binaries with identical components in circular orbits. In particular, we investigate the dependency
of the innermost stable circular orbit on the core mass, and we study the coalescence of the binary that occurs
at smaller separations. For twin binaries composed of convective main-sequence stars, subgiants, or giants with
low-mass cores (M. < 0.15M, where M is the mass of a component), a secular instability is reached during the
contact phase, accompanied by a dynamical mass transfer instability at the same or at a slightly smaller orbital
separation. Binaries that come inside this instability limit transfer mass gradually from one component to the other
and then coalesce quickly as mass is lost through the outer Lagrangian points. For twin giant binaries with moderate
to massive cores (M, 2 0.15M), we find that stable contact configurations exist at all separations down to the Roche
limit, when mass shedding through the outer Lagrangian points triggers a coalescence of the envelopes and leaves
the cores orbiting in a central tight binary. In addition to the formation of binary neutron stars, we also discuss the
implications of our results for the production of planetary nebulae with double degenerate central binaries.
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1. INTRODUCTION AND MOTIVATION
1.1. Formation of Binary Neutron Stars

The evolutionary history and formation of close binaries with
two neutron stars similar to the Hulse—Taylor pulsar B1913+16
(Hulse & Taylor 1975) and the double pulsar J0737—3039
(Burgay et al. 2003) is a topic of intense current interest. Most
recent studies of the known double neutron stars focus on the
stages going back to the time of the second supernova explosion
and the formation of the youngest of the two neutron stars (Dewi
& van den Heuvel 2004; Willems & Kalogera 2004; Willems
et al. 2004; Piran & Shaviv 2005; Stairs et al. 2006; Wang et al.
2006; Wong et al. 2010, and references therein). Although these
studies provide very interesting constraints on the properties
of the stellar progenitor of the second neutron star, they do
not probe the earlier evolutionary history. That part remains
uncertain and more difficult to constrain empirically based on
the measured properties of observed systems.

Since the discovery of the Hulse-Taylor binary, the origin
of double neutron stars has been naturally connected to the
evolution of massive binaries, with stellar components that are
massive enough to form two neutron stars at the end of their
lifetime. Over the years, a qualitative consensus of understand-
ing for the formation of double neutron stars developed (see,
e.g., Bhattacharya & van den Heuvel 1991): massive binaries
experience a phase of stable mass transfer when the primary
overflows its Roche lobe revealing its helium core; this core
ends its lifetime in a supernova, forming the first neutron star in
the system; the binary becomes a high-mass X-ray binary until
the massive secondary fills its Roche lobe and the binary enters a
dynamically unstable phase of mass transfer leading to inspiral
in a common envelope that engulfs the neutron star; during this

phase the neutron star is thought to be spun up through recy-
cling and, if the binary avoids a merger in the inspiral, the helium
core of the secondary is revealed after the envelope ejection; this
core explodes in a supernova, forming the second neutron star in
the system, and the double neutron star further evolves through
orbital contraction and gravitational-wave emission. Variations
of this evolutionary sequence have been shown to be realized
by theoretical binary population studies (e.g., Belczynski et al.
2002).

Brown (1995) argued that the inspiral of the neutron star dur-
ing the common envelope phase in the standard model is prob-
lematic: the neutron star is expected to experience hypercritical
accretion (Chevalier 1993) at rates many orders of magnitude
above the photon Eddington limit through a neutrino-cooled ac-
cretion flow (see also Fryer et al. 1996). Such a rapid accretion
phase along with the adoption of a low maximum neutron star
mass (~1.5 My derived for a soft equation of state for neu-
tron star matter with kaon condensation) led Brown to conclude
that all neutron stars in common envelope phases will accrete
enough matter to collapse into a black hole. Consequently, he ar-
gued that the “standard” evolutionary sequence described above
aborts the formation of double neutron stars and instead leads
to the formation of binaries with low-mass black holes and neu-
tron star companions. We note, however, that even with the
same treatment of hypercritical accretion, a maximum neutron
star mass of ~2 M, (corresponding to a more regular stiff equa-
tion of state) does prevent a good fraction of neutron stars from
being transformed into low-mass black holes (Belczynski et al.
2002).

Brown (1995) also noted how the masses measured in
known double neutron stars are very close to being equal
(Nice et al. 1996; Thorsett & Chakrabarty 1999; Stairs et al.
2002; Weisberg & Taylor 2005; Jacoby et al. 2006; Kramer
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et al. 2006, and references therein). Motivated by these two
points, he proposed a different formation channel for double
neutron stars. Brown suggested that double neutron stars form
from massive binaries with component masses that are within
~4% of one another. Consequently, the red giant phases of
the two components coincide in time and when mass transfer
ensues from the primary, both components have deep convective
envelopes and well-developed helium cores, so that a double-
core phase develops, where the two helium cores orbit within
the combined envelopes of the two massive stars. Provided that
there is enough orbital energy, the common envelope is ejected
before the two cores merge, and a tight binary with two helium
cores is formed. These two cores differ very little in mass and
reach core collapse one very soon after the other (~10° yr based
on helium-star models; Habets 1986; Pols 1994), forming a
close double neutron star.

The advantages of this hypothesized evolutionary channel are
(1) a neutron star never experiences common envelope spiral-in
and hypercritical accretion and (2) the two stellar components
have so similar masses that they naturally form neutron stars of
almost equal mass as observed (Bethe & Brown 1998; Bethe
et al. 2007). On the other hand, this channel (1) requires that
mass transfer between the red giant progenitors will indeed
lead to the inspiral of the two cores in a common envelope
and (2) requires fine-tuning the conditions for recycling the
first neutron star, as this spin-up must occur during the very
short interval between the two supernovae through the stellar
wind or possibly during the brief Roche lobe overflow from
the lower-mass helium star (Dewi et al. 2006). A potential
additional disadvantage is that this channel is very restrictive
in that it requires progenitors that are at most only ~4% apart in
mass: however, in their study of protobinary stars, Krumholz &
Thompson (2007) find that for a wide range of initial conditions
Roche lobe overflow tends to equalize the masses of the binary
components.

The double neutron star formation channel suggested by
Brown (1995) has attracted renewed attention because of the
reported abundance of “twins,” massive binaries with mass
ratios very close to unity (within 5%) by Pinsonneault & Stanek
(2006). Specifically, they analyze data for 21 detached eclipsing
binaries in the Small Magellanic Cloud and find that the data
are consistent with a flat mass function containing 55% of
the systems and “twins” with mass ratios greater than 0.95
containing the remaining 45% of the population. However, it is
important to note that there are severe selection effects against
the discovery of binaries with small-mass ratios (typically <0.5;
Hogeveen 1992a, 1992b, 1992c); therefore, the contribution of
twins may not be as significant as implied by the most recent
observations. Quantitative modeling of the associated selection
effects is required to derive more reliable statistical conclusions.

Apart from uncertainties with the initial properties of the
binary population, a number of physical processes related to
these formation channels make it hard to assess their relative
contribution to double neutron star formation. The physics of
common envelopes and hypercritical accretion, as well as of
neutron star equations of state and their maximum mass, is not
well understood (but see Lee et al. 2007). Also, the development
of a dynamical instability and subsequent common envelope
phase with the inspiral of the two cores is assumed, but has not
been investigated before in any detail. In this study, we attempt
to better understand one of the aspects related to the formation
channel suggested by Brown (1995): the fate of mass transfer
between two stars of almost equal mass.
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1.2. Binaries and Planetary Nebulae

Although our primary motivation is to investigate a formation
channel for binary neutron stars, our results are relevant to
other scenarios as well. For example, through common envelope
evolution, binaries could transform quite naturally into planetary
nebulae (PNs) with a central close binary. The influence of
binaries on the production and morphology of PNs has received
increased attention in recent years (e.g., Miszalski et al. 2009;
Jones et al. 2010), and observations to date have identified
approximately 40 close binaries in the centers of PNs: see
De Marco (2009) for a summary of both the relevant theory
and observations. As lifetimes of PNs are less than only 10°
years, an embedded central binary has undergone no significant
evolution since the common envelope phase that presumably
formed it.

About a quarter of the known close binary systems within
PNs are thought to be double degenerates, that is, binaries in
which the components are pre-white dwarfs (also known as
extreme horizontal branch stars, hot subdwarfs, or subdwarf B
and O stars) or white dwarfs. Such double degenerate binaries,
with or without PNs, are particularly interesting. As possible
progenitors for Type Ia supernovae, they are the desired targets
of the ESO SN Ia Progenitor Survey (see Geier et al. 2011 and
references therein).

Interestingly, three of the five well-studied double degenerate
binaries within PNs (see Hillwig 2011 and references therein)
may contain nearly equal mass components and therefore are
possibly the progeny of twin binaries. In particular, models
of a double hot subdwarf binary with ¢ ~ 1 are consistent
with photometric and spectroscopic observations of the central
stars in NGC 6026 (Hillwig et al. 2010) and in Abell 41
(Bruch et al. 2001; Shimanskii et al. 2008). Similarly, recent
observations of the central star in Hen 2-428 reveal it also to
be a double degenerate binary, with the effective temperature of
the components being within a few thousand Kelvin (Santander-
Garcia et al. 2011), suggesting a mass ratio near ¢ = 1. As
we investigate in this paper, the coalescence of a twin giant
binary could lead to the formation of double degenerate core
surrounded by a circumbinary envelope, a type of proto-PN.

1.3. Theoretical Work on Close Binaries

Most of the classical theoretical work on close binaries was
done in the limit of a self-gravitating incompressible fluid (see
Chandrasekhar 1969 and references therein). An essential result
found in the incompressible case is that the hydrostatic equilib-
rium solutions for sufficiently close binaries can become glob-
ally unstable (Chandrasekhar 1975; Tassoul 1975). The classical
analytic studies for binaries were extended to polytropes in the
work of Lai et al. (1993a, 1993b, 1994a, 1994b, 1994¢). In their
approach, the stars are modeled as self-gravitating compressible
ellipsoids, and an energy variational principle is used to con-
struct approximate equilibrium configurations and study their
stability. These treatments, along with complementary numer-
ical hydrodynamic calculations (Rasio & Shapiro 1992, 1994,
1995), demonstrate that dynamical instabilities persist in the
compressible regime and can cause a binary to coalesce to form
a rapidly rotating spheroidal object. Such a dynamical instabil-
ity can trigger a merger in just a few orbital periods (Rasio &
Shapiro 1992) or an episode of mass transfer that lasts many
orbits (Motl et al. 2002; D’Souza et al. 2006; Frank 2008; Dan
et al. 2009; Lorén-Aguilar et al. 2009).
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The evolution of a close binary system can also be affected
by another type of global instability. It has been referred to
by various names, such as the secular instability (Lai et al.
1993a, 1993b, 1994a, 1994b, 1994c), tidal instability (Counsel-
man 1973; Hut 1980), gravogyro instability (Hachisu & Eriguchi
1984), and Darwin instability (Levine et al. 1993). Its physical
origin is easy to understand (Lai et al. 1993a, 1994b; Rasio
1994; Webbink 2006). There exists a minimum value of the to-
tal angular momentum J for a synchronized close binary. This
is simply because the spin angular momentum, which increases
as the separation r decreases for a synchronized system, can
become comparable to the orbital angular momentum for suffi-
ciently small 7. A system that reaches the minimum of J cannot
evolve further by angular momentum loss and remain synchro-
nized. Instead, the combined action of tidal forces and viscous
dissipation will drive the system out of synchronization and
cause rapid orbital decay as angular momentum is continually
transferred from the orbit to the spins. The orbital decay then
proceeds on a timescale comparable to the synchronization time
of a stable binary.

In this paper, we pay particular attention to the onset of orbital
instabilities, including those characterized by mass transfer, as
well as the subsequent inspiral of the cores. We extend previous
hydrodynamic studies of close binary systems to cases that
involve identical giants, that is, to twin stars with dense stellar
cores and extended envelopes. So that our results can be scaled
to stars of any size or mass, we approximate each star as a
condensed polytrope, namely, as a point mass surrounded by a
uniform specific entropy fluid of adiabatic index I' = 5/3. Such
a model is appropriate for a fully convective monatomic ideal
gas surrounding a compact core. We consider fractional core
masses m, that cover the entire range of theoretical possibilities.
Zero core mass models correspond to normal (or “complete”)
n = 1.5 polytropes, which are most appropriate for low-mass
main-sequence stars and non-relativistic white dwarfs. At the
other extreme, when m, = 1, there is no mass in the gaseous
envelope, and the binary is simply that of two point masses.
By varying the core mass between these extremes, we are able
to study in a systematic way the full parameter space of twin
binaries and determine under what conditions mass transfer
develops or an innermost stable circular orbit exists.

For typical compositions, the subgiant phase begins when
the core mass grows to ~10% of the total mass, the so-called
Schonberg—Chandrasekhar limit (Schonberg & Chandrasekhar
1942). By the time the star reaches the base of the red giant
branch, the core mass has increased by a few more percent of the
total mass. Roughly speaking then, our models with m. < 0.1,
0.1 <Sm, <0.13,and m, 2 0.13 correspond to main sequence,
subgiant, and giant stars, respectively. The assumption that the
stellar envelope has constant specific entropy makes our models
most relevant to stars that are fully convective (as with low-mass
main-sequence stars) or that have deep convective envelopes (as
in many red giants).

The use of condensed polytropes as a model of red giants
has a rich history, including seminal work by Chandrasekhar
(1939), Osterbrock (1953), and Hirm & Schwarzschild (1955).
Mass transfer in close binary systems has been modeled with
the help of condensed polytropes as well: the response of
the donor due to mass loss is considered, with its resulting
contraction, or expansion, compared against that of its Roche
lobe (Paczyiniski & Sienkiewicz 1972; Hjellming & Webbink
1987). If at the onset of mass transfer the star contracts less
rapidly than its Roche lobe (or expands more rapidly than
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it), then the mass exchange is dynamically unstable, and the
binary will evolve rapidly toward a new, often qualitatively
different, equilibrium. Hjellming & Webbink (1987) find that
equal-mass condensed polytrope contact binaries with fractional
core masses m. < 0.46 experience stable mass transfer. More
recently, Krumholz & Thompson (2007) have used condensed
polytropes to study the formation of twin star systems.

Although essential for a qualitative understanding of mass
transfer, such treatments of close binaries do, however, make
several simplifying approximations: most importantly, (1) the
dynamics of the orbit and size of the Roche lobe are treated in
the point-mass approximation, (2) the response of the binary
components to mass loss or gain is modeled as if each star were
spherical and in isolation, and (3) mass that overflows a Roche
lobe is considered to leave that star. These approximations are
quite reasonable for semidetached binaries, but their validity
can be questioned for contact binaries. In such cases, a common
envelope persists in equilibrium outside of the Roche lobes (the
inner Lagrangian surface) so that the pressure and density on the
Roche lobes are non-zero: mass that overflows a Roche lobe is
not necessarily transferred to the other star but rather can persist
in equilibrium inside the outer Lagrangian surface. A primary
goal of this paper is therefore to relax the approximations of
previous works by using accurate hydrodynamical calculations
to study contact binary systems.

Our paper is organized as follows. In Section 2 we review
our numerical method and general conventions. In Section 3 we
present our results for the equilibrium and stability properties of
twin binary systems. The dynamical evolution to complete coa-
lescence is followed for several unstable systems. Implications
of our results are discussed in Section 4.

2. NUMERICAL METHODS AND ASSUMPTIONS
2.1. The SPH Code

To generate our models, we use a modified version of
the smoothed particle hydrodynamics (SPH) code originally
developed by Rasio (1991) that has been updated to include the
variational equations of motion derived in Gaburov et al. (2010).
SPH is a Lagrangian particle method, meaning that the fluid is
represented by a finite number of fluid elements or “particles.”
Associated with each particle i are, for example, its position
r;, velocity v;, and mass m;. Each particle also carries a purely
numerical smoothing length %; that determines the local spatial
resolution and is used in the calculation of fluid properties such
as acceleration and density. Details of our SPH code, such as
the particular form of the artificial viscosity I1; and smoothing
kernel W;; implemented, are described in Gaburov et al. (2010).
See Rasio & Lombardi (1999) and Rosswog (2009) for reviews
of SPH.

Because the gas in our initial stellar models is of constant
specific entropy, we find it convenient to integrate the so-
called entropic variable A; of each particle i. The entropic
variable is simply the proportionality constant in the polytropic
equation of state p = Ap', where p is pressure and p is
density. The entropic variable is so named because of its
close connection to entropy: both quantities are conserved
in reversible processes and strictly increase otherwise. We
therefore use dA;/dt = 0 in the relaxations of our single
star models and in the calculations of our binary equilibrium
sequences. For our dynamical calculations of merger scenarios
(see Sections 2.4 and 3.2), we evolve A; according to the
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Figure 1. Solid curves show the quasi-analytic radial profiles of the pressure p
and density p for m, = 0,0.125, and 0.5 condensed polytropes; for comparison,
the dashed and dotted curves represent red giants, as modeled by the TWIN
stellar evolution code, with initial masses respectively of 10 and 25 M. For
the condensed polytropes, curves associated with larger m, are higher on
the left edge of the figure and lower on the right edge. Units are such that
G=M=R=1

discretized SPH version of the first law of thermodynamics:

a4, T -1

T Fzmjnij (vi —v;)- ViWi;(hy). (1)

J

To calculate the gravitational accelerations and potentials, we
use direct summation on NVIDIA graphics cards, softening with
the usual SPH kernel as in Hernquist & Katz (1989). The use
of such a softening with finite extent (as opposed, for example,
to Plummer softening) increases the accuracy and stability of
our SPH models, consistent with the studies of Athanassoula
et al. (2000) and Dehnen (2001). The gravity of core points in
our models is similarly softened, applying a constant smoothing
length comparable to the minimum smoothing length in the
system.

2.2. Single Star Models

In this section we present our procedure for modeling the
stars that are used in the binary simulations of Section 3.
Hydrodynamically, a subgiant or giant can be treated as a two-
component system: a high-density, degenerate core, surrounded
by an extended envelope. The very large density contrast
between the core and the envelope, along with the small core
radius, justifies the use of a single point mass to represent the
core. Because the giants we wish to model mostly have deep
convective envelopes with an equation of state dominated by
monatomic ideal gas pressure, we treat their gas as a constant
specific entropy fluid with an adiabatic index I' = 5/3.

Specifically, our stellar models are the so-called condensed
polytropes, namely, constant specific entropy fluid surrounding
apoint-mass core (Chandrasekhar 1939; Hiarm & Schwarzschild
1955), which we parameterize by the core mass m,.. Each of the
condensed polytropes in our family of models has total mass
M = 1 and radius R = 1. The unit system is completed by
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Table 1
Parent Star Characteristics

me Eo

() 2

0 45.4808
0.05 39.9250
0.1 35.2403
0.125 33.1661
0.15 31.2407
0.175 29.4461
0.2 27.7673
0.25 24.7072
0.3 21.9782
0.4 17.2861
0.5 13.3582
0.6 9.9904
0.7 7.0496
0.8 4.4443
0.9 2.1092
0.99 0.1984

choosing Newton’s gravitational constant G = 1. Condensed
polytrope models have the advantage not only of reproducibility
but also of scalability to any stellar mass and radius: although
our focus here is on stars massive enough ultimately to yield a
neutron star, the same calculations are also valid for low-mass
systems. In the limiting scenarios of m, = 0 and m, = 1, we
recover the well-studied cases of an n = 3/2 polytrope and a
point mass, respectively.

Figure 1 shows the pressure and density profiles as a function
of radius for condensed polytropes with core masses 0, 0.125,
and 0.5. For comparison, we also display the profiles of red
giant stars computed using the TWIN stellar evolution code
(Eggleton 1971; Glebbeek, Pols, & Hurley 2008) from the
MUSE/AMUSE software environment® (Portegies Zwart et al.
2009): we evolve 10 and 25 M stars with initial helium
abundance Y = 0.28 and metallicity Z = 0.02 until they obtain
core masses of approximately m. = 0.16 and 0.27, respectively.
This corresponds to our initially 10 M, star being at the very tip
of the red giant branch and the initially 25 M star being on the
upper part of the branch. The profiles of the simple condensed
polytrope models follow the same general trend as those of the
red giants, indicating that our simple models can indeed help
provide an understanding of real red giant binaries.

Table 1 presents the models used in this paper. Column 1
gives the core mass m,, while Column 2 lists the corresponding
Eop value: this is the parameter E in the original notation
of Osterbrock (1953), as well as in the notation of Hirm &
Schwarzschild (1955) and Hjellming & Webbink (1987). (We
prefer to reserve the variable E for energy.) The value of Eg
controls the shape of the density profile: to lowest order near the
surface (r &~ R), p(r) ~ (2/5)*Eo(1 —r/R)*M /(47 R?). In
practice, we adjust Eq to achieve the desired core mass m,.

We begin by making an SPH model of a single star in isolation.
Unless stated otherwise, we use N = 19,938 SPH particles
initially placed on a hexagonal close packed lattice with a lattice
spacing constant a; = 0.0542, with particles extending out to a
radius that is between one and two smoothing lengths less than
the full stellar radius. We model the stellar core as a point mass
that interacts gravitationally, but not hydrodynamically, with the
rest of the system, as suggested by Rasio & Shapiro (1991)

5 http://amusecode.org/
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Figure 2. Properties of the model with core mass m. = 0.25 as a function of
radius, after relaxation for 500 time units. The frames in the left column compare
calculated pressure p and density p profiles of the star (dashed curves) against
particle data from our SPH model (dots). The right column provides additional
SPH particle data: individual SPH particle mass m, smoothing length &, number
of neighbors Ny, and radial component of the hydrodynamic acceleration anydro
(upper data) and gravitational acceleration g (lower data).

and others. The gravitational influence of these core points
are softened according to the SPH kernel with 2 = 0.0498.
Particle masses are first apportioned according to the desired
density profile and then slightly rescaled before relaxation
begins to ensure that the correct total mass M = 1 is precisely
achieved. The entropic variable A; of each SPH particle is set
to the desired polytropic constant K, which is determined from
the mass-radius relation for n = 3/2 condensed polytropes
(Osterbrock 1953):

R = @&n) PG KE M3, )

After the initial parameters of the particles have been as-
signed, we relax the SPH fluid into hydrostatic equilibrium. This
relaxation is effected by including an artificial viscosity contri-
bution in the acceleration equation (with = 1 and 8 = 2 in
Equation (A19) of Gaburov et al. 2010), while still keeping A;
constant for all particles. In this way, the entropy of the system
is preserved while the system approaches equilibrium. The total
energy typically decreases by less than a percent in the process,
indicating that our initial assignment of particle properties was
indeed very close to an equilibrium state.

This approach allows us to model the desired profiles very
accurately. An example is presented in Figure 2, where we plot
desired profiles and SPH particle data for our relaxed m, = 0.25
star. Although the core and surface of the star of course cannot
be resolved on the length scale of a smoothing length (typically
0.05 to 0.08 length units), the thermodynamic profiles of the SPH
model nicely reproduce the quasi-analytic curves. Indeed, the
SPH data in the left column of Figure 2 are difficult to distinguish
from the desired pressure and density profiles throughout most
of the star. We also note that the hydrodynamic and gravitational
accelerations are very nearly equal in magnitude and opposite
in direction, as necessary for hydrostatic equilibrium.
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2.3. Binary Equilibrium Configurations
2.3.1. SPH Calculations

The ability of our code to model close and contact binary
systems for thousands of orbits or longer is presented in Gaburov
et al. (2010). Here we present our methods for modeling
equilibrium sequences of twin binaries, that is, binaries that
consist of two identical stars in synchronized orbit. First, we
place identical relaxed stellar models along the x-axis with their
centers of mass separated by r. While the relaxation of the
binary takes place, the entropic variable particle values are held
constant. The center of mass of the entire system is fixed at the
origin. In addition, the positions of the particles are continuously
adjusted (by a simple uniform translation along the binary axis),
so that the separation between the centers of mass equals the
desired separation .

The orbit is chosen to occur in the xy plane. The angular
velocity €, defining the corotating frame is updated at every
time step so that the centrifugal and inertial accelerations
acting on the fluid cancel. In particular, we wish to find
configurations in which Qgrb(xii+y,-§/) = —(0,,; X+, ;§), where
the velocity derivatives on the right-hand side are components of
acceleration in the inertial frame. By taking the dot product with
m;(x;X + y;¥) and then summing over all particles, we obtain

o = Do imi(xi0y i + yivy;) 3)
o > mi(xF +37)

We also include a drag force that opposes the velocity and
provides a contribution to the acceleration of —v; /#.c1.x. We use
telax = 3, approximately the fundamental period of oscillation
for our parent models. We do not include any artificial viscosity
contribution when finding binary equilibrium configurations.

In order to find equilibrium configurations for a precisely
equal-mass binary, even for configurations unstable to mass
transfer, we enforce a symmetry in particle properties: for each
particle i in star 1, there is a partner particle j in star 2 at

xj = —x; andy; = —y; with velocity components vy ; = —vy ;,
v, j = —V,; and with acceleration components v, ; = —Uy,
vy, j = —0,;. All other properties are identical for any such pair
of particles.

The separation r between the centers of mass can be allowed
to drift slowly so that an equilibrium sequence is constructed:
the so-called scanning run. In practice, we start runs that will
scan over separations by holding the centers of mass fixed at
an initial separation r(0) for 40 time units, allowing the system
to approach a tidally bulged equilibrium configuration. At an
additional amount of time ¢, the separation is set according to
r(t) = r(0) [r(fscan)/r(0)]/5« . This form for r(z) allows the
change in r to occur at a decreasing rate as the stars approach
and interact more strongly, although the exact form is not critical
to our results. We typically use o, = 300, r(0) = 3.3, and
7 (tscan) = 2.1.

2.3.2. Data Reduction Methods

Once an SPH binary calculation has completed, we analyze
the system at various separations along the sequence. To this end,
a useful quantity to consider is the effective potential, calculated
as

1
@, (x,y,2) = D(x, y,2) — Eggrb@z +y%), 4

where @ is the gravitational potential, the coordinate y measures
perpendicular to the binary axis in the orbital plane, and z



THE ASTROPHYSICAL JOURNAL, 737:49 (16pp), 2011 August 20

measures parallel to the rotation axis. Along the binary axis
(y = z = 0), the effective potential has a local maximum @ at
x = 0 (the inner Lagrangian point) and global maxima @'
at |x| = x, (the outer Lagrangian points). There are two minima
at |x| = x,, corresponding to the cores of the two components.®
In equilibrium, the fluid will fill up the effective potential well to
some maximum, constant level ®*. Borrowing the terminology
from models of W UMa binaries (Rucinski 1992 and references
therein), we follow Rasio & Shapiro (1995) and define the
degree of contact 1 as

q)gs) _ q)g)

Clearly, we have n < 0 for detached configurations: that is,
none of the fluid has a large enough effective potential energy
to exceed the effective potential energy barrier at the inner
Lagrangian point. For 0 < n < 1, the effective potential of
the fluid near x = 0 does exceed the barrier, and the system
is classified as a contact binary. For n > 1, the envelopes
overflow beyond the outer Lagrangian surface, and no dynamical
equilibrium configuration can be achieved; that is, the system
has exceeded the Roche limit. Calculations in which we slowly
scan to smaller separations can therefore determine position
of the first contact (n = 0), the secular stability limit (at the
minimum energy and angular momentum along the sequence),
and the Roche limit (n = 1).

It is important to realize that the equilibrium sequence
of a twin binary passes smoothly from detached to contact
configurations as the separation r decreases. This is in contrast to
all binary equilibrium sequences with mass ratio g # 1, which
terminate at a Roche limit corresponding to the onset of mass
transfer through the inner Lagrangian point (that is, once one
of the binary components overflows its Roche lobe). For twin
binaries, however, the Roche limit, which we still define as the
last equilibrium configuration along a sequence with decreasing
r, corresponds to the onset of mass shedding through the outer
Lagrangian points: as an example, note that several particles
have been shed to the far left and far right of the » = 2.22 frame
in Figure 3.

We estimate ®) from our SPH models by finding the
maximum effective potential of the points along the x-axis that
are within one smoothing length of the center of an SPH particle.
Thus, even if the centers of all SPH particles are within the
outer Lagrangian surface, we may still consider the system as
having reached the Roche limit when some smoothing kernels
extend substantially beyond the outer Lagrangian surface. Such
an estimate accounts for the fact that an SPH particle is not
a point mass but instead represents a parcel of fluid with a
density profile described by the smoothing kernel. Our means of
estimating @ allow our critical separation results to converge
quickly to a steady value as the resolution is increased up to the
resolution presented in this paper (see Section 3.1).

2.4. Dynamical Calculations

We generate initial conditions for our dynamical runs by
taking a configuration at the desired separation r from a scanning
run and then relaxing for an additional 200 time units. If a
particle escapes past an outer Lagrangian point during this time
interval, then we end the relaxation stage and begin following

6 Note that in general r # 2x,, because we define the binary separation r as
the distance between the centers of mass of the two components.
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Figure 3. Sequence of binary equilibrium configurations for two identical
condensed polytropes of core mass m, = 0.1. Projections onto the orbital
plane (the xy plane) are shown at six different binary separations for those
SPH particles with |z| < 0.06. The thick solid curves represent two surfaces of
constant effective potential ®, (see Equation (4)): namely, the inner and outer
Lagrangian surfaces passing through the points L1 and L2. Shown beneath each
configuration are corresponding projections onto the (x, ®,) plane for the same
particles. The dashed curves give the variation of @, along the binary axis
(y = z = 0). Contact configurations are obtained when the binary separation
r < 2.71 (in units where an isolated binary component has radius R = 1). For
r < 2.24, mass shedding through the outer Lagrangian points occurs, and no
equilibrium configuration exists.

the dynamics immediately. During dynamical calculations, we
include no drag force and move the particles according to
their velocities in the usual way (for details, see Gaburov
et al. 2010). Particles are again treated independently so that
mass transfer events can be followed; that is, unlike the scans
described in Section 2.3, no symmetry constraints are applied
to particle motion. Artificial viscosity is implemented in both
the acceleration and the entropy equations. To minimize the
spurious effects of artificial viscosity (Lombardi et al. 1999),
our dynamical calculations are done in a rotating frame, with
the angular velocity Q. calculated once at the beginning of the
dynamical evolution and thereafter held constant when applying
Coriolis and centrifugal forces.

3. RESULTS

Using the methods described above, we construct twin binary
sequences for 16 different core masses m, listed in Table 1 and
covering the range from 0 to 0.99. In Section 3.1, we create an
equilibrium sequence for each core mass by slowly scanning
over the binary separation, thereby identifying the separations
of first contact, of the secular instability (if it exists), and of the
Roche limit. In Section 3.2, separate dynamical calculations of
various initial separation r then allow us to test the dynamical
stability of the contact configurations and to follow any mass
transfer and the merger in unstable systems.

3.1. Equilibrium Sequences

Representative snapshots along the m. = 0.1 equilibrium
sequence are presented in Figure 3. The structure of these
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Figure 4. Variation of critical effective potentials along the equilibrium sequence
presented in Figure 3. Values of the effective potential at the outer Lagrangian
surface (solid curve o), the inner Lagrangian surface (solid curve i), and the fluid
surface (long dashed curve s) are shown as a function of binary separation r in
the top frame. The degree of contact n (Equation (5)) is shown in the bottom
frame as the long dashed curve. The short dashed curves give the positions of
first contact (n = 0) and of the Roche limit (n = 1).

solutions is shown both in projection onto the orbital plane (the
xy plane) and in terms of the effective potential ®@,. The thick
solid curves in Figure 3 are the surfaces of constant effective
potential @, that mark the inner and outer Lagrangian surfaces.
For fixed x, ®, is minimum on the binary axis (y = z = 0), and
this minimum value is given as a dashed curve in Figure 3. In
hydrostatic equilibrium, the fluid fills up to a constant level @)
that is independent of x.

Referring to Figure 3 we see that at the initial separation
in our scan, r = 3.30, the system is tidally bulged and the
binary is detached: the fluid does not extend out to the inner
Lagrangian surface (also known as the Roche lobe). At a
separation r = 2.71, the binary stars fill the inner Lagrangian
surface and make first contact through the L1 point, located at
the origin. Once the separation decreases to r = 2.42, the binary
reaches the secular instability limit, as marked by a minimum
in the energy E and angular momentum J along this equilibrium
sequence (see below). The critical separation r = 2.37 at
which mass transfer commences is identified with dynamical
calculations described in Section 3.2; in this and other scans
through equilibrium configurations, however, we suppress the
mass transfer by enforcing symmetry in particle properties (see
Section 2.3.1). At a separation r = 2.24, the fluid extends out to
the outer Lagrangian surface, marking the Roche limit. At even
smaller separations, for example at the separation r = 2.22
shown in the figure, no equilibrium configurations exist and the
stars shed mass through the outer Lagrangian surface near the
L2 point. The variation of critical effective potentials and the
degree of contact n along this m, = 0.1 equilibrium sequence
is illustrated in Figure 4. For future reference, we note the
approximately linear dependence of 7 on the separation r.

From Figure 5, we note that as m, increases toward 1, our
results approach the Keplerian solution of two orbiting point
masses. As expected, deviations from the point-mass result
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Figure 5. Variation of the system energy E (relative to the total self-energy E
of the binary components at infinity), angular momentum J, and orbital period
P along the equilibrium sequence for twin binaries with m, = 0, 0.1, 0.25, 0.5,
and 1. In the E and J frames, higher curves correspond to smaller core mass,

while in the P frame higher curves correspond to larger core mass. The orbital

period P is normalized to the analytic point-mass result Pgepler = 2127 p3/2,

The curves are from SPH scans of the equilibrium sequence, except for the
m. = 1 curve which is the analytic result for two point masses. The m, = 0
and 0.1 curves exhibit a minimum in E and J, marking the position of the
secular instability limit. The curves from the SPH scans terminate at the Roche
limit, where mass shedding through the outer Lagrangian point commences.
Critical points along our SPH scans are presented in Tables 2—4. The individual
data points (open circles) in this figure result from relaxing for an additional
200 time units at the given separation r. The agreement between these points and
their corresponding scan helps to confirm that our scans are indeed producing
equilibrium sequences.

increase as a given binary becomes more deeply in contact or as
we consider a binary associated with a smaller core mass. From
the bottom frame of Figure 5, we note that smaller core masses
(corresponding to stars with less centrally concentrated density
profiles) have a smaller orbital period at any given separation.
For m. < 1, tidal interactions between the two stars make the
effective potential stronger than 1/r and shorten the rotation
period compared to a point-mass system. For m, = 0.1, for
example, the deviation of the orbital period from the point-mass
result is approximately 1% at first contact, 2% at the secular
instability limit, and 3% at the Roche limit.

As in Rasio & Shapiro (1995), we determine the secular
stability limit along the equilibrium sequence by locating where
both the total energy E and total angular momentum J are
minimum in curves such as those of Figure 5. Our numerical
results provide an accurate determination of this point for a
close binary system, as the separate minima in £ and J coincide
to high numerical accuracy. This is in accord with the general
property that dE = Q. dJ along any sequence of uniformly
rotating fluid equilibria (Ostriker & Gunn 1969).

For the m. = 0 binary, secular instability occurs soon after
contact along this sequence and therefore stable, long-lived
equilibrium configurations can exist only in shallow contact,
n < 0.2. In contrast, the sequences with non-zero core masses
permit much deeper contact before the secular instability is
reached. For example, a binary with core masses of 0.125 does
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Figure 6. Critical separation r, energy £ — E, angular momentum J, and
orbital period P at first contact (squares), secular instability (triangles), and
the Roche limit (circles) vs. total particle number N for several m, = 0.1
equilibrium scans. Note the convergence of results for N 2> 10*. Most of the
binary calculations in this paper employ N ~ 4 x 10* particles.

Table 2
First Contact along the Equilibrium Sequences of Twin Binaries®

me r P E—-Ey J

0.000 2.75 20.1 —0.154 1.33
0.050 2.73 19.8 —0.159 1.31
0.100 2.72 19.7 —0.162 1.29
0.125 2.72 19.8 —0.163 1.29
0.150 2.71 19.7 —0.165 1.28
0.175 2.69 19.5 —0.167 1.27
0.200 2.69 19.5 —0.168 1.27
0.250 2.69 19.5 —0.170 1.25
0.300 2.70 19.6 —0.171 1.25
0.400 2.68 19.4 —0.175 1.23
0.500 2.66 19.3 —0.178 1.21
0.600 2.67 19.3 —0.180 1.20
0.700 2.66 19.2 —0.183 1.18
0.800 2.67 19.4 —0.184 1.17
0.900 2.67 19.4 —0.186 1.16
0.990 2.70 19.7 —0.185 1.16

Note. ? Units are defined such that G = M = R = 1, m, is the core mass of each
component, r is the binary separation, 7 is the degree of contact (Equation (5)),
P is the orbital period, and E — E, and J are the orbital energy and angular
momentum, respectively; the energy E is the total equilibrium energy at
infinite separation (that is, twice the energy of a single component in isolation).

Table 3
Secular Instability along the Equilibrium Sequences of Twin Binaries®
me r n P E—Ey J
0.000 2.67 0.17 19.1 —0.155 1.33
0.050 2.55 0.40 17.7 —0.161 1.30
0.100 2.42 0.64 16.4 —0.167 1.28
0.125 2.29 0.86 15.1 —0.171 1.26
0.150 222 1.0 14.3 —0.175 1.25

Note. ® In twin binary sequences with core masses m, = 0.15, the Roche limit
is reached before the secular limit. Units and column headings are as in Table 2,
footnote a; the degree of contact n is defined by Equation (5).
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Figure 7. Separation at first contact (squares), the onset of secular instability
(stars), and the Roche limit (circles) vs. core mass m.. The data points are
determined from SPH scans of equilibrium sequences, as reported in Tables 2—4.
The lines are simply to help guide the eye.

Table 4
Roche Limit* along the Equilibrium Sequences of Twin Binaries®

me r P E—-Ey J

0.000 2.34 15.2 —0.135 1.38
0.050 2.28 14.7 —0.153 1.32
0.100 2.24 14.5 —0.166 1.28
0.125 222 14.3 —0.171 1.27
0.150 2.21 14.3 —0.175 1.25
0.175 2.20 14.2 —0.179 1.24
0.200 2.19 14.1 —0.183 1.22
0.250 2.17 14.0 —0.189 1.20
0.300 2.16 139 —0.195 1.18
0.400 2.14 13.8 —0.204 1.15
0.500 2.13 13.7 -0.212 1.12
0.600 2.12 13.6 -0.219 1.10
0.700 2.12 13.6 —0.224 1.08
0.800 2.10 13.5 —0.231 1.05
0.900 2.10 135 —0.235 1.04
0.990 2.12 13.7 —0.236 1.03

Notes.* Defined as the equilibrium configuration with the minimum binary
separation.
b Unit and column definitions are identical to those in Table 2, footnote a.

not reach the secular instability until nearly n = 0.9. For core
masses m, 2, 0.15, the stars will reach the Roche limit before the
secular instability limit. Tables 2, 3, and 4 respectively present
system properties at first contact (n = 0), the secular instability
limit (where E and J are minima), and at the Roche limit (n = 1)
for our sequences of various core mass m,.. Additional runs at
varying resolution indicate that the results in our tables have
converged to within ~1% (e.g., see Figure 6).

These results for critical separations are summarized in
Figure 7. Due to tidal effects, the volume of each star is typically
1%—2% larger at first contact than it is for that star in isolation.
The separation rg, at first contact is only weakly dependent on
m,, being within 2% of 2.7 for any core mass. For comparison,
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we note that the standard simple treatment of twin binaries
would imply a first contact separation of 1/0.3799 = 2.63,
where the factor 0.3799 comes from numerical integration
of Roche lobe volumes around identical point masses (e.g.,
Eggleton 1983) and any change in the volumes of the stars due
to tidal effects is neglected. We see therefore that finite size
effects act to increase the separation of first contact.

All three of the critical separations considered (first contact,
secular instability, and Roche limit) tend to decrease as the core
mass increases. It is straightforward to find fitted formulae for
the critical separations that are accurate to within ~1% for any
core mass m,: for first contact

rie & 2.66 +0.08(1 — m,)* (6)
and for the secular instability limit
Fsec 2 2.69 — 3m,. @)

We note that the 1 — m, in Equation (6) equals the envelope
mass (in units where the total stellar mass M = 1). We give our
fit for the Roche limit separations in the next subsection, where
we can determine these data with slightly better accuracy. We
have not fit for the slight increase in the first contact data as the
core mass is increased from m, = 0.9 to 0.99, as this feature is a
numerical artifact due to our m, = 0.99 single star equilibrium
model settling to a radius a few percent larger than 1.

The critical core mass m. ~ 0.15, for which the secular insta-
bility and Roche limits coincide, can be determined graphically
from Figure 7 by extrapolating the line connecting the secular
instability data down to the Roche limit curve. This intersec-
tion is important because it implies that all of our equal-mass
binaries with m, 2 0.15 can stably exist in deep contact, at sepa-
rations all the way down to the Roche limit. Thus, essentially all
twin red giant binaries will coalesce only due to mass shedding
through the outer Lagrangian points. In contrast, twin binaries
with m. < 0.15, corresponding primarily to main-sequence
stars and subgiants, reach the secular instability limit at a larger
separation than that of the Roche limit. As we will see in the next
subsection, the secular instability limit is usually accompanied
by dynamical mass transfer at the same or a slightly smaller
separation. Therefore, main sequence and subgiant twin bina-
ries, as contrasted to most red giant twins, will start coalescing
(1) when in more shallow contact and (2) through mass transfer
across the inner Lagrangian point.

3.2. Dynamical Integrations

We now study the stability of binary configurations with fully
dynamical SPH integrations (see Section 2.4 for details of the
setup). Figure 8 summarizes the results of nearly 100 dynamical
simulations with various m,. and initial » values.” We find the
Roche limit to be very nearly at the separations determined
from the equilibrium scans, and the additional relaxation that
we perform before beginning a dynamical calculation allows
us to determine these separations even more accurately. In
addition, we find that most systems that are secularly unstable
are also dynamically unstable to mass transfer and then merger,
as discussed below.

The time evolution of the separation of m. = 0.05 twin
binaries is illustrated in Figure 9 for several different initial
separations. This figure also indicates the secular instability

7 Visualizations of selected simulations are available at
http://webpub.allegheny.edu/employee/j/jalombar/movies/.
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Figure 8. Results of dynamical integrations: stable binaries (open squares), dy-
namically unstable binaries (asterisks), and configurations with no equilibrium
(filled squares). The curves represent the critical separations as determined by
scanning runs, as in Figure 7. The agreement between the results of the equilib-
rium sequences and dynamical calculations is excellent.

limit 7. = 2.547, as determined by the energy and angular
momentum minima in the equilibrium sequence of these binaries
(see Section 3.1). Systems with separations r 2 r, are clearly
dynamically stable, while those with r < ry.. are dynamically
unstable. That is, the secular and dynamical stability limits
coincide or very nearly coincide, at least at this core mass.

The bottom plot of Figure 9 shows the dynamical evolution
of two cases that straddle the instability limit. For the r = 2.56
case, an epicyclic period of 350 time units is clearly evident,
much larger than the orbital period of 17.9 time units. The large
difference in these periods is an indication of how close the
system is to an instability limit (Rasio & Shapiro 1994). Indeed,
if r were precisely at the dynamical stability limit, the period of
small epicyclic oscillations would formally be infinite.

Figure 10 presents projected particle positions (top) and
column density plots (bottom) at six different times in the
m. = 0.05, r = 2.54 dynamical calculation, a case just inside
the instability limit. Colors in the particle plot are used to
indicate from which component the particles originated. The
coordinate system used here rotates counterclockwise with a
period of 17.64 time units, which equals the orbital period of
this binary at early times, before significant mass transfer has
occurred. The instability initially manifests itself in the form
of a narrow arm of gas that begins in the outer layers of one
star, gradually flows across the neck surrounding the inner
Lagrangian point, and then creeps around the other star (see
the + = 746 and 771 particle plot frames). The mass transfer
drives the binary components closer, triggering the excretion
of mass through the outer Lagrangian points (+ = 771) and
accelerating the inspiral of the two cores. By ¢ = 784, the mass
transferred from one star has completely engulfed the other. At
later times, the merger product approaches a rapidly rotating,
axisymmetric configuration centered on the two cores orbiting
in a tight binary (see the t = 792 and 961 frames).
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Figure 9. Top plot: separation r vs. time in several different dynamical SPH
calculations for the core mass m. = 0.05 twin binaries. The initial separations
are r = 2.64, 2.62, 2.56, 2.54, 2.40, 2.30, and 2.28. Bottom plot: zoomed in
view of the r = 2.56 and 2.54 cases, which straddle the instability limit. In
both plots, the horizontal dotted line represents the secular instability limit at
r = 2.547, as identified by an equilibrium scan.

Figure 11 shows the evolution of binary separation for
m. = 0.2 cases. Recall from Section 3.1 that there is no secular
instability limit at this core mass. Instead, stable equilibrium
models exist all the way to the Roche limit. A binary at an
initial separation » = 2.22 (or larger) orbits stably. In contrast,
a binary at r = 2.20 gradually loses mass through the outer
Lagrangian points, triggering a stage of rapid coalescence. The
period of mass loss persists for several orbital periods: each of
the oscillations superposed on the decreasing r = 2.20 curve in
the bottom plot of Figure 11 corresponds to one orbital period.
These dynamical calculations indicate that the Roche limit for
am, = 0.2 twin binary indeed occurs near r = 2.2, in excellent
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agreement with the r = 2.19 critical value estimated from the
equilibrium scan.

Figure 12 presents both particle positions and column den-
sity plots at six different times in the m, = 0.2, r = 2.20
dynamical calculation, a case just inside the Roche limit. The
coordinate system used here rotates counterclockwise with a
period of 14.22 time units, which equals the orbital period of
this binary at early times. Gas is excreted almost immediately,
with each parcel of gas carrying a specific angular momen-
tum essentially equal to that of the outer Lagrangian points. In
contrast to mergers with m,. < 0.15, the excreted gas orig-
inates equally from both binary components and flows past
the outer Lagrangian points symmetrically. As the outer La-
grangian points are the outermost positions at which gas can
be in static equilibrium, they are also the positions of largest
possible specific angular momentum in rigidly rotating equi-
librium twin binaries. Consequently, the mass loss necessar-
ily decreases the average angular momentum per unit mass of
the gas remaining within the outer Lagrangian surface, caus-
ing the binary components, along with their cores, to inspiral:
see the appendix of Webbink (1976) for arigorous analysis of the
angular momentum budget during mass excretion. As the com-
ponents get closer, the excretion rate increases, and in addition
the resulting arms become more tightly wound (compare the
t = 202 frame to later ones). By r = 233, the central regions of
the binary components have effectively merged. At later times,
the merger product approaches a rapidly rotating, axisymmetric
configuration (see Figure 13).

Figure 14 shows energies versus time for the m, = 0.2,
r = 2.20 calculation. The kinetic energy T gradually increases
as the binary components inspiral, until the cores approach
closely at ¢+ =~ 230. The ensuing shocks cause the gas to
expand, causing an overall decrease in the internal energy U
and increase in the gravitational potential energy W. The rapid
variations in 7 and W at late times are due to the eccentric orbit
of the central double core. The total energy E is well conserved
in this simulation, varying by only 0.4% from its minimum
to maximum values over the entire time interval shown in
Figure 14. Energy conservation in other runs is typically at
least this good and often even much better. In our simulations,
most of the small non-conservation in energy occurs at late times
once the core particles have entered a tight orbit.

In all our merger simulations of twin binaries with fractional
core masses of 0.15 or larger, each star loses mass through an
outer Lagrangian point. Most of this mass ultimately ends up in
a circumbinary envelope gravitationally bound to the central
binary of cores. The mass ejected varies from ~0.5% (for
m. = 0.15) up to ~7% (for m. = 0.8) of the total system
mass. A trend evident from the simulations is that more massive
cores ultimately remain more widely separated, after inspiraling,
than less massive cores. The top frame of Figure 15 provides a
closer look at how the separation of the cores evolves in several
dynamical simulations that begin just inside the Roche limit. For
very large fractional core masses (m. 2 0.9), the gas is simply
not massive enough to affect significantly the dynamics of the
cores: although they inspiral, they stay separated at distances on
the order of the initial stellar radius. For moderately large core
masses (0.5 < m,. < 0.9), the cores inspiral to a fraction of
a stellar radius, although the process halts at separations large
enough still to be resolved by our simulations. For core masses
in the range 0.15 < m. < 0.5, which corresponds to most red
giants in nature, the cores rapidly inspiral to separations less than
0.1. Although our code has no mechanism for merging the cores,
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Figure 10. Top frames: projection of SPH particles onto the orbital plane at six different times in the merger of a m. = 0.05 binary with initial separation r = 2.54.
Particles are colored according to the star in which they originated. Bottom frames: column density plots at the same six moments, with the asterisks representing the

positions of the compact cores.
(A color version of this figure is available in the online journal.)

we do not expect such an effect to be relevant here: the size of a
core relative to the stellar radius is typically only ~10~* or less
for a giant, so that a tremendous amount of angular momentum
would have to be removed from the double core before they
could merge.

The bottom frame of Figure 15 concerns fractional core
masses less than 0.15, namely those cases that reach the secular
instability limit before the Roche limit. The cores in these merger
simulations inspiral to a separation <0.01, considerably less
than the spatial resolution. Whether or not the cores would
merge in such circumstances will likely depend on the details of
the parent star structure, with simulations that resolve the cores
necessary to address the issue fully. We find that less than 0.5%
of the system mass is ejected whenever the merger is triggered
by mass transfer.

Figure 16 helps to quantify the entropy evolution during
mergers by plotting the mass-average (In A) over time for several
cases. We note that, for our polytropic equation of state and
gas of uniform composition, the specific entropy of a parcel
of gas is proportional to In A plus a constant. From the curves
of Figure 16, we see that the change in entropy per unit mass
tends to be larger, and develops on a longer timescale, for cases
involving larger core masses. We also note that the entropy is
still gradually increasing even at the end of our simulations,

11

due to the influence of the central binary embedded within the
system.

Like the critical separations for first contact and secular
instability, the Roche limit separation tends to decrease as
the core mass increases. A fitted formula consistent with our
dynamical integrations to within ~1% for any core mass m, is

®)

Because the degree of contact n varies nearly linearly with
separation r (for two examples, see Figure 5 of this paper
and Figure 2 of Rasio & Shapiro 1995), this formula, along
with others from Section 3.1, allows us also to estimate the
degree of contact n at the secular instability limit: g, =~
(rfc - rsec)/(rfc - rRoche)~

FRoche = 2.11 4+ 0.25(1 — m.)*.

4. DISCUSSION AND FUTURE WORK
4.1. Summary of Main Results

We have determined equilibrium sequences and performed
dynamical calculations of twin binaries, focusing primarily on
configurations in which the stars are in contact. Our equilibrium
sequences of Section 3.1 allow us to determine the binary
separation at first contact and at the innermost stable circular



THE ASTROPHYSICAL JOURNAL, 737:49 (16pp), 2011 August 20

orbit as a function of the fractional core mass m,.. Form, < 0.15,
the innermost stable orbit occurs at the secular instability limit
(marked by a minimum in energy and angular momentum
along the equilibrium sequence); for m. 2 0.15, the innermost
stable orbit occurs at the Roche limit (defined as the minimum
separation for which an equilibrium configuration exists). Our
dynamical calculations of Section 3.2 confirm these critical
separations and also reveal how the components inspiral once a
binary passes the innermost stable orbit.

Figure 17 summarizes graphically our most basic results.
Recall that the separation r on the vertical axis is scaled
to the unperturbed stellar radius R, while the core mass m,
on the horizontal mass is scaled to the stellar mass M. Thus, as
the components in a twin binary expand and gradually increase
their core masses due to stellar evolution, the corresponding
position in the parameter space of Figure 17 will shift down
and slightly to the right. When this position drops below the
top curve, which marks first contact, the binary enters the stable
contact phase. When the position drops into either the unstable
or no equilibrium portions of parameter space, the components
merge.

The curves shown in Figure 17 are given by Equations (6)—(8);
population modelers can use these fitted formulae in treatments
of twin binaries. Consider, for example, such a binary with
a given orbital separation a. The stellar evolution of each
component gives the time dependence of the stellar radius R,
the stellar mass M, and the core mass M.. The dimensionless
separation r = a/R and the fractional core mass m. = M./M
are thus known functions of time, and the evolutionary track can
be placed in the theoretical » versus m. diagram (Figure 17) to
determine the final fate of the system.

We note that the volume of parameter space where real
binaries would ultimately end up in the stable contact region,
without crossing the instability limit or the Roche limit, is
small. Such a situation would require a fine tuning of the initial
semimajor axis a. For example, a star with an initial mass
of 8 My will expand to R =~ 370R; and reach a fractional
core mass of m, =~ 0.2 as it ascends the asymptotic giant
branch, according to calculations by the TWIN stellar evolution
code. For this core mass, ri. =~ 2.7 and rroche ~ 2.2. Thus,
a twin binary composed of such stars will remain detached if
a 2 reR ~ 1000 Ry and will ultimately surpass the Roche
limitifa < rroche R = 800 R. Only if 800 R < a < 1000 Rg
will the binary reach the contact phase without the cores also
inspiraling to form a tight binary.

The dynamic simulations of Section 3.2 always start from a
symmetric equilibrium configuration, with the binary compo-
nents being hydrostatic in the corotating frame. In our simula-
tions with core masses of m, = 0.125 and less, we find a dynam-
ical instability to exist at or slightly inside the secular instability
limit. This dynamical instability is a global instability of the
equilibrium state, triggered by small numerical noise and char-
acterized by a growing asymmetric mode. Binaries that come
inside this instability limit first transfer mass gradually from one
component to the other and eventually coalesce quickly as mass
is lost through the outer Lagrangian points. The cores are left in
a tight binary surrounded by a circumbinary envelope.

4.2. Comparison with Other Works

The merger of our small core mass twin binaries proceeds
in a fashion qualitatively similar to that of the Q1.3 model of
D’Souza et al. (2006). In that model, the binary is composed of
purely polytropic components (m, = 0) with mass ratio (donor

12

LOMBARDI ET AL.

25 —

300 400
t
22 —
& L 4
2.15 — —
2.1 —
Il ‘ Il Il ‘ Il Il ‘ Il Il ‘ Il
0 100 200 300 400 500

t

Figure 11. As in Figure 9, but for twin binaries with core mass m. = 0.2. At
this core mass, there is no secular instability limit; instead, the system becomes
unstable only once it reaches the Roche limit at » & 2.2. The initial separations
shown in the top plot are r = 2.60, 2.40, 2.22, 2.20, while a zoomed in view of
the r = 2.22 and 2.20 curves are shown in the bottom plot.

to accretor) ¢ = 1.3. In both our simulations and theirs, the
dynamical instability manifests itself as a gradually developing
mass transfer flow, followed by excretion of gas through the
outer Lagrangian points and merger of the stellar envelopes.
One important difference, however, is that the instability in our
m. = 0 case does not develop until the stars have reached a
degree of contact n =~ 0.17, whereas the instability is present
in the Q1.3 model while the binary is still semidetached. This
difference highlights the stabilizing influence of the common
envelope in twin binaries, even though the instability still exists
even forg = 1.
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Figure 12. As in Figure 10, but for the m, = 0.2 dynamical calculation starting at r = 2.20, just inside the Roche limit.

(A color version of this figure is available in the online journal.)

We can directly compare our results for the limiting case
m. = 0 with those of Rasio & Shapiro (1995). The agreement in
the first contact, secular instability, and Roche limit separations
is excellent (better than 1%). The computational resources of
the time, however, limited Rasio & Shapiro (1995) to follow
up to only ~3 orbits, so that they were unable to identify weak
mass transfer events, that is, events that develop gradually over
many dynamical timescales (Paczyinski & Sienkiewicz 1972).
As aresult, they determined the dynamical instability limit to be
atr &~ 2.45, well inside the secular instability limit. In contrast,
by following the dynamical evolution of m, = 0 twin binaries
for up to ~100 orbits, we find that the dynamical instability
limit actually coincides, or nearly coincides, with the secular
instability limit at r ~ 2.67.

4.3. Relevance to Binary Neutron Stars

We find that twin binaries with m. 2 0.15 exist stably at
separations all the way down to the Roche limit, where mass
is then excreted symmetrically through the outer Lagrangian
points. This excretion carries away angular momentum and
causes the stars, along with their cores, to inspiral on a dynamical
timescale. For core masses m, < 0.9, the cores inspiral to a
final separation that is a fraction of the stellar radius. Indeed for
m. < 0.5, which corresponds to most giant stars in nature, the
final separation of the cores is less than one-tenth the stellar
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radius. Thus, we are left with two cores in a tight binary
surrounded by the combined gaseous envelopes of the original
binary, the precursor for double neutron stars proposed in the
Brown (1995) scenario.

As the gravitational forces of the cores are softened at
distances less than ~0.1, our dynamic simulations that lead
to cores in a tight binary can provide only an upper limit on
the separation at the end of their inspiral. Our simulations of
the m, = 0.15 case, for example, place this upper limit at
~0.03 times the stellar radius (see Figure 15). Thus, a binary
composed of twin M = 10 Mgy, R = 200Ry, M, = 1.5 Mgy
red giants would have their cores spiral to a separation of
less than 0.03R ~ 6Rp. The gradual transfer of energy to
the circumbinary envelope could easily further decrease the
separation of the cores by a factor of ~2. As gravitational
radiation alone can bring two 1.5 M, point masses separated
by up to ~5R in contact in less than a Hubble time, such
systems could have evolved to become arbitrarily tight by the
present time. We therefore believe that such double cores are
indeed excellent candidates for binary neutron star progenitors,
as proposed in the Brown scenario.

4.4. Relevance to Planetary Nebulae

Given the relatively short timescale covered by hydrodynamic
simulations such as ours, the circumbinary envelopes at the
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(A color version of this figure is available in the online journal.)
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Figure 14. Energies vs. time ¢ for the simulation presented in Figure 12. From
the bottom curve to the top one, we show gravitational energy W, total energy
E, kinetic energy 7, and internal energy U.

end of our dynamical simulations are still optically thick.
Nevertheless, it is natural to think of the final states of our
merger calculations as a type of proto-PNs, specifically, as
the immediate precursors of PNs with equal-mass central
binaries. Future work could use the end state of hydrodynamic
calculations as initial conditions in models of PN evolution, with
particular attention paid to any transition to the optically thin
regime (revealing the central binary) and to the morphology of
the gas distribution.
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Figure 15. Separation r. between the cores as a function of time ¢ for binaries
that begin just inside the Roche limit (top frame) and those that begin just inside
the secular limit (bottom frame). Each curve is labeled by the fractional core
mass m,. The horizontal dashed line indicates the minimum separation for which
the gravitational interaction of the two cores is unsoftened in our simulations.

To examine whether the dynamical calculations of this paper
yield final states that are consistent with the observations of the
g ~ 1 double degenerate binaries, we consider a twin binary
with 3 M components. We use the TWIN stellar evolution code
to evolve each star in isolation. The calculation shows that the
star expands to only R =~ 30 R, as it ascends the giant branch
and to nearly 500 R, on the asymptotic giant branch. Therefore,
for any reasonable distribution of initial orbital separations, twin
binaries made of such stars would much more often come into
contact while on the asymptotic giant branch than when on the
red giant branch, consistent with the fact that most or all of
the well-observed double degenerate stars in PNs seem to have
masses too large to be He white dwarfs.
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Figure 16. Measure of entropy evolution due to shock heating during several
mergers. The natural logarithm of the entropic variable A is averaged by mass
over the gas of the system and plotted vs. a shifted time coordinate At, chosen
such that the inflection point in each curve (when the entropy is increasing most
rapidly) occurs at Ar = 0. Each curve is labeled by the fractional core mass
me: as m, increases, so do both the initial and final values of (In A). For each
core mass, we present our simulation of largest initial separation that results
in a merger, corresponding in Figure 8 to the uppermost asterisk (for a given
m. < 0.15) or filled square (for a given m. > 0.15). Note that the initial value
of the entropic variable A equals the K in Equation (2), as calculated from the
appropriate Eg in Table 1. The entropic variable A is in units of GM'/3R.

For the sake of discussion, consider such a twin binary that
reaches the Roche limit when R = 200 Ry. According to
the stellar evolution calculation, an isolated star at that time
would have a carbon-oxygen core of mass M, = 0.57 M and,
accounting for stellar winds, a total mass M = 2.8 M. At this
fractional core mass m, = 0.57/2.8 = 0.20, the dimensionless
Roche separation (from the results of this paper) is rroche ~ 2.2,
and thus the initial semimajor axis of this binary would have
been a = rroche R & 440 Ry. From the m,. = 0.2 curve in the
top frame of Figure 15, we see we can place an upper limit
of ~0.05R = 10 Ry on the final separation of the two cores,
which, from Kepler’s third law, corresponds to an upper limit
on the orbital period of 3 days. If instead R = 100 R, at the
time of merger, then a similar calculation gives a core mass
M. = 0.53 My and an upper limit on the orbital period of
0.9 days.

For comparison, the central binaries in NGC 6026, Abell 41,
and Hen 2-428 have comparable masses to these core masses and
orbital periods in roughly the 0.2 to 0.5 day range. We conclude
that the results of our dynamical simulations, when applied to
intermediate mass twin binaries, are consistent with observed
characteristics of double degenerate central binaries in PNs.
In future simulations, a reduced gravitational softening between
the two cores could allow for an even more precise determination
of their final orbital separation. In this way, observed orbital
parameters of degenerate binaries in PNs could be more readily
connected to the properties of the parent stars from which they
may have originated.
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Figure 17. Parameter space of twin binaries. Here and throughout the paper,
the core mass m, and binary separation r are given in units of the total mass and
radius, respectively, of an isolated binary component. The top curve, separating
detached and contact binaries, marks configurations of the first contact. The
middle curve, spanning 0 < m, < 0.15, is the secular instability limit that
separates stable and unstable contact binaries: in this work, we find that most
secularly unstable systems are also dynamically unstable to mass transfer across
the inner Lagrangian point. The bottom curve, separating contact binaries from
configurations with no equilibrium, represents the Roche limit. Binaries that are
unstable or that cannot exist in equilibrium have their components inspiral and
merge, a process we follow with dynamical calculations.

4.5. Additional Comparisons and Future Work

For core masses m,. 2 0.15, we find that a twin binary can
exist stably in deep contact, at separations all the way down to the
Roche limit. In contrast, the semi-analytic condensed polytrope
models of Hjellming & Webbink (1987) predict instead that
twin binaries will experience sustained mass transfer once the
components come in contact, provided only that m. < 0.458 (a
range that includes the vast majority of giant stars). The primary
oversimplification in the semi-analytic treatment appears to be
the approximation that mass outside of the Roche lobe cannot
help to contain the star within it. Our numerical calculations,
however, model the common envelope that exists outside of
the Roche lobe and that acts to suppress mass transfer. In
addition, our fully three-dimensional calculations remove the
point-mass and spherical-structure approximations implicit to
the semi-analytic method.

The models of Hjellming & Webbink (1987) seem best suited
to semidetached binaries, where there is no common envelope to
complicate the dynamics of the mass flow. A comparison of such
cases with our results is not possible, as our work is limited to
binaries with identical components. Natural future work would
include relaxing this constraint so that binaries with mass ratio
q # 1 can be studied and compared with semi-analytic models.
Of particular interest to the binary neutron star problem would
be cases in which the mass ratio deviated from one by only a
few percent or less.

The modeling of giants as I' = 5/3 condensed polytropes is
a common simplifying approximation, one that here allows our
results to be scaled to binaries of any mass and length scales.
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We note, however, that radiation pressure can be the dominant
contributor to the equation of state at some ages and at some
locations within the envelopes of massive giants (M 2 14 M,
according to calculations with the TWIN stellar evolution code).
For such cases, our treatment of the envelope as a constant
entropy, I' = 5/3 gas can be legitimately questioned. While
the effects of employing more realistic stellar models would be
worthwhile to study in future work, we do not expect our results
to change qualitatively. Regardless of the equation of state, gas
that flows past the outer Lagrangian points will still necessarily
carry away a specific angular momentum larger than the system
average, forcing the remaining gas to configurations of smaller
angular momentum per unit mass. We conclude that the inspiral
of cores should be a common outcome whenever a real twin
binary exceeds the Roche limit.
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