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ABSTRACT

In a planetary system with two or more well-spaced, eccentric, inclined planets, secular interactions may lead to
chaos. The innermost planet may gradually become very eccentric and/or inclined as a result of the secular degrees
of freedom drifting toward equipartition of angular momentum deficit. Secular chaos is known to be responsible for
the eventual destabilization of Mercury in our own solar system. Here we focus on systems with three giant planets.
We characterize the secular chaos and demonstrate the criterion for it to occur, but leave a detailed understanding of
secular chaos to a companion paper. After an extended period of eccentricity diffusion, the inner planet’s pericenter
can approach the star to within a few stellar radii. Strong tidal interactions and ensuing tidal dissipation extract
orbital energy from the planet and pull it inward, creating a hot Jupiter. In contrast to other proposed channels for the
production of hot Jupiters, such a scenario (which we term “secular migration”) explains a range of observations:
the pile-up of hot Jupiters at 3 day orbital periods, the fact that hot Jupiters are in general less massive than other
radial velocity planets, that they may have misaligned inclinations with respect to stellar spin, and that they have few
easily detectable companions (but may have giant companions in distant orbits). Secular migration can also explain
close-in planets as low in mass as Neptune; and an aborted secular migration can explain the “warm Jupiters” at
intermediate distances. In addition, the frequency of hot Jupiters formed via secular migration increases with stellar
age. We further suggest that secular chaos may be responsible for the observed eccentricities of giant planets at
larger distances and that these planets could exhibit significant spin–orbit misalignment.
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1. INTRODUCTION

While around 10% of Sun-like stars surveyed harbor
Jovian-mass planets, only ∼1% are orbited by so-called hot
Jupiters with periods shortward of ∼10 days (see reviews by
Marcy et al. 2005; Udry & Santos 2007). There appears to be
a pile-up of hot Jupiters around 3 day orbital periods. This ex-
cess is genuine and has been confirmed by both radial velocity
(RV) and transit surveys (Gaudi et al. 2005; Butler et al. 2006;
Cumming et al. 2008; Fressin et al. 2007). Outward of hot
Jupiters, there appears a deficit of gas giants with periods of
10–100 days (the “period valley;” Udry et al. 2003; Wittenmyer
et al. 2010).

According to current theories of planet formation, hot Jupiters
could not have formed in situ, given the large stellar tidal field,
high gas temperature, and low disk mass to be found so close to
the star. Instead, hot Jupiters most likely formed beyond a few
AU and then migrated inward. Candidate migration scenarios
that have been proposed include protoplanetary disks, Kozai mi-
gration by binary or planetary companions, and scattering with
other planets in the system. While each of these mechanisms
may have contributed to the hot Jupiter population to some de-
gree, the question remains as to which is the dominant one. The
dominant mechanism has to explain a variety of observed corre-
lations. In Section 2, we review some of these correlations and
provide a critical assessment of the above three mechanisms.

In this work, we propose a fourth channel for producing hot
Jupiters, namely, planet migration by secular chaos. Secular
chaos may arise in planetary systems that are well spaced and
are dominated by long-range secular interactions. A system
of two non-coplanar planets can be chaotic, but only if their
eccentricities and inclinations are of order unity (Libert &

Henrard 2005; Migaszewski & Goździewski 2009; Naoz et al.
2011). So, in this paper we focus on systems with three planets.
The criterion for secular chaos is less stringent, and the character
of secular chaos is more diffusive, differing from that of the two-
planet case. This diffusive type of secular chaos promotes energy
equipartition between different secular degrees of freedom.
The physics behind secular chaos is analyzed in detail in a
companion paper (Lithwick & Wu 2011), where we show that
Mercury, the innermost planet in our solar system, experiences
a similar type of secular chaos. Mercury may consequently
be removed from the solar system (Laskar 2008; Batygin &
Laughlin 2008; Laskar & Gastineau 2009).

Secular chaos tends to remove angular momentum in the
innermost planet gradually, causing its pericenter to approach
the star. Tidal dissipation may then remove orbital energy from
this planet, turning it into a hot Jupiter. Hot Saturns or hot
Neptunes may also be produced similarly. Such a migration
mechanism, which we term “secular migration,” can reproduce
a range of observations. It also predicts that in systems with hot
planets, there are other giant planets roaming at larger distances.

2. HOT JUPITERS: OBSERVATIONS AND THEORIES

2.1. Observations

There is a sharp inner cutoff to the 3 day pile-up of hot
Jupiters. They appear to avoid the region inward of twice the
Roche radius (Ford & Rasio 2006), where the Roche radius is
the distance within which a planet would be tidally shredded.
New data spanning two orders of magnitude in planetary masses
(and including planet radius measurements) have strengthened
this claim. There are only five known exceptions lying inward
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of twice the Roche radius, and the rest mostly lie between twice
and four times the Roche radius.

Hot Jupiters appear to be less massive than more distant
planets (Pätzold & Rauer 2002; Zucker & Mazeh 2002).
For planets discovered with the RV method, close-in planets
have projected masses (M sin i) less than twice Jupiter’s mass,
excluding planets in multiple star systems. But numerous planets
farther out have M sin i > 2 MJ (Udry & Santos 2007, Figure 5).

Many hot Jupiters have orbits that are misaligned with the
spin of their host stars. The angle between the orbit normal of
a transiting planet and the spin axis of its host star (the stellar
obliquity) can be probed with the Rossiter–McLaughlin (R-M)
effect (e.g., Winn et al. 2005). Planets were presumably born
in a disk aligned with the stellar spin. Therefore, measurements
of the present stellar obliquity provide a stringent constraint on
the migration scenario. Analysis of the first 11 systems with
R-M measurements found that the majority were consistent
with perfect alignment, while a small minority were highly
misaligned (Fabrycky & Winn 2009). However, later analysis
that included more systems (26 in total) found that most are
misaligned, and many of these are even in retrograde orbits
(Triaud et al. 2010). The reason for this discrepancy is currently
unclear.

Hot Jupiters also tend to have few companions, at least
out to a few AU. From RV surveys, ∼30% of planets are in
multiple planet systems (including ones with RV trends; Butler
et al. 2006), while only five hot Jupiters are (HD 187123b,
HIP 14810b, ups Andb, HAT-P-13b, and HD 217107b; Wright
et al. 2009; Hebrard et al. 2010a); i.e., fewer than 10% of hot
Jupiters are known to have companions within a couple AU.
This relative deficit also shows up in the transit sample, where
most attempts at detecting transit timing variations caused by
close companions (Holman & Murray 2005; Agol et al. 2005)
have been unsuccessful (e.g., Rabus et al. 2009; Csizmadia et al.
2010; Hrudková et al. 2010), except for, perhaps, Maciejewski
et al. (2010, 2011) and Fukui et al. (2011).

2.2. Migration Theories

The successful migration scenario has to explain these and
other observed correlations. There are two categories of mi-
gration scenarios. One is for the planet to migrate within a
gaseous disk (disk migration). The other is to generate high ec-
centricity in the planet, bringing it sufficiently close to the star
that tidal dissipation circularizes and shrinks its orbit into that
of a hot Jupiter. The latter category includes Kozai migration,
planet–planet scattering, as well as the secular chaos that we
propose in this work.

We first examine disk migration, a theory that pre-dated the
discovery of hot Jupiters (Lin & Papaloizou 1986). It asserts
that the viscous protoplanetary disk carries the planet inward
(Chambers 2009; Rice et al. 2008). The presence of mean-
motion resonance (MMR) pairs among observed planets seems
to support this scenario. However, to produce the observed pile-
up of hot Jupiters at around 3 day orbital periods, the inward
migration has to be halted. As discussed by Lin et al. (1996),
this could be achieved if the disks are truncated by the stellar
magnetosphere at a radius that corresponds to twice the planet’s
orbital period. Disks are likely truncated at the corotation radius,
where the orbital period of the disk material equals the spin
period of the star. The observed distribution of rotation periods
of pre-main-sequence stars appears to be bimodal (Herbst &
Mundt 2005) with the location of the long-period peaks varying
from 4 to 8 days for different clusters. This could be consistent

with the period distribution of hot Jupiters. It is also plausible
that hot Jupiters that have thus migrated would tend to be lower
in mass, although that has yet to be shown. A difficulty with this
scenario is that it should produce planets whose orbit normals are
aligned with the stellar spin axis (for an opposing view, however,
see Lai et al. 2011). In addition, it remains to be argued why
hot Jupiters rarely have close companions (within a few AU) if
they migrated inward due to powerful disks. There is no natural
explanation in this scenario for the avoidance of twice the Roche
radius.

We now turn our attention to planet–planet scattering. First
proposed by Rasio & Ford (1996), it asserts that close encounters
between planets can induce extreme eccentricity in one of the
planets (Ford et al. 2001; Papaloizou & Terquem 2001; Ford &
Rasio 2008), which may then be tidally circularized to form a
hot Jupiter. Such a theory reproduces the observed eccentricity
distribution of (non-hot) extra-solar planets that have e � 0.2
(Chatterjee et al. 2008; Jurić & Tremaine 2008), as well as
the observed close-packed nature of pairs (Raymond et al.
2009). It may also account for the high inclinations of hot
Jupiters. However, it is unclear if the initial condition of a
compact and highly unstable planetary system as required by
this theory is applicable to planets emerging from a gaseous
disk (Matsumura et al. 2010). Also, Chatterjee et al. (2008) find
that the inner planets tend to be the most massive ones, contrary
to the observed correlations. Furthermore, since scatterings are
sudden, it is difficult for tides, a slow process, to halt scattered
planets (Nagasawa et al. 2008). This theory also predicts readily
detectable outer planets that are responsible for scattering and
producing the observed hot Jupiters. They are, however, not
observed.

Lastly, we comment on Kozai migration. First proposed by
Wu & Murray (2003), it asserts that a highly inclined companion
star can induce Kozai oscillations (Kozai 1962; Eggleton &
Kiseleva-Eggleton 2001) in the planet, gradually exciting the
planet to a high enough eccentricity that it approaches the
central star, whereupon tidal dissipation circularizes it into a
hot Jupiter. While it succeeds in producing hot Jupiters that are
highly inclined with respect to stellar spin, including ones that
are retrograde in projection (Triaud et al. 2010), and is likely
responsible in a number of specific cases (such as HD 80606b
Naef et al. 2001; Laughlin et al. 2009; Pont et al. 2009; Winn
et al. 2009; Hebrard et al. 2010b), it does not preferentially yield
low-mass hot Jupiters4 and its effectiveness may be hampered by
the presence of other planets in the system (Wu & Murray 2003).
Furthermore, population studies establish that only ∼10% of
hot Jupiters can be explained by Kozai migration due to binary
companions (Wu et al. 2007; Fabrycky & Tremaine 2007).

Mechanisms that rely on eccentricity excitation, such as Kozai
migration or planet-planet scattering, naturally produce hot
Jupiters that tend to avoid the region inside twice the Roche
radius (Ford & Rasio 2006). However, only Kozai migration
can naturally explain the 3 day pile-up, as the eccentricity rise
in this case is gradual and planets are accumulated at the right
location. The secular chaos mechanism described in this paper
also leads to gradual eccentricity excitation and can therefore
inherit much of the success of the Kozai mechanism.

The noteworthy simulations of Nagasawa et al. (2008) com-
bine planet scattering with Kozai oscillations. Starting from very

4 Kozai migration can readily make massive planets migrate inward and
perhaps can account for the presence of massive hot Jupiters found in binary
systems (Zucker & Mazeh 2002).
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Table 1
Initial Conditions for the Example System

Pl. Mass (MJ) a (AU) e Inc. (deg) ω (deg) Ω (deg)

1 0.5 1 0.066 4.5 π 0
2 1.0 6 0.188 19.9 0.38π π

3 1.5 16 0.334 7.9 π 0

compact systems of three equal-mass planets, their planets fre-
quently scatter one another onto highly inclined orbits, which
in some cases trigger Kozai oscillations. Their particular setup
yields hot Jupiters ∼30% of the time, with orbital inclinations
that are roughly isotropic. The production of hot Jupiters by
inter-planet Kozai oscillations has also been studied in Naoz
et al. (2011). Such a mechanism appears promising if eccentric-
ities and inclinations can reach order-unity values.

2.3. Secular Interactions

Secular interactions are a simplified version of interplanetary
interactions, where one can account for the forces between two
planets by calculating the torque between two mass wires. The
latter are made by spreading the mass of a planet along its
orbit, weighted by the amount of time it spends at that segment.
This describes the dynamics adequately as long as the planets
have no close encounters and do not lie near MMRs. Secular
interactions allow planets to exchange angular momentum but
not energy. So, planets’ semimajor axes are unchanged. The
long-term evolution of the inner solar system, for instance, is
primarily secular in nature (Laskar 1989).

Under certain circumstances, secular interactions can gradu-
ally raise the eccentricity of the inner planet to near unity, even
when the initial eccentricity are as low as that expected of plan-
ets emerging out of dissipative gaseous protoplanetary disks.
This is the work of chaos.

When planet eccentricities and inclinations are small, secular
dynamics is fully described by a linear summation of secu-
lar eigenmodes that are independently oscillating, abiding by
the so-called Laplace–Lagrange theory (see, e.g., Murray &
Dermott 2000). The multi-periodic variations in the eccentricity
of the Earth are largely caused by the interference between the
eigenmodes. These have been claimed to drive climate changes
(Milankovitch 1941).

When eccentricities and inclinations rise, linear eigenmodes
no longer describe the dynamics adequately. Nonlinear effects
can occur. One example is the appearance of nonlinear secular
resonances, including new fixed points and separatrices that are
not present in the linear system (Michtchenko & Malhotra 2004;
Michtchenko et al. 2006; Migaszewski & Goździewski 2009).
A second is the chaotic motion associated with the overlap of
neighboring resonances (Sidlichovsky 1990; Michtchenko et al.
2006; Lithwick & Wu 2011).

For a system of two planets, strong nonlinearity and chaos
requires eccentricities and/or inclinations of order unity. If the
two planets are coplanar, energy and angular momentum conser-
vation constrain the motion to be regular and quasi-periodic. But
if the planets are sufficiently inclined, the Kozai resonance can
be triggered, leading to instability and/or chaos. This requires
mutual inclinations �40◦ if the initial eccentricities are very
large and �40◦ for more modest eccentricities (Michtchenko
et al. 2006; Naoz et al. 2011). For instance, for the inner two
planets listed in Table 1 to interact to produce e1 > 0.98, a
mutual inclination of >85◦ is necessary.

For a system of three or more planets, however, the threshold
for chaos is much reduced. Moreover, the nature of the secular
chaos is different. In the two-planet case, chaotic systems are
quickly unstable on the secular timescale, ∼10 Myr for typical
parameters (Michtchenko et al. 2006; Naoz et al. 2011). By
contrast, in the multi-planet case a multitude of resonances can
overlap. This leads to a gentler type of chaos, with the orbital
elements gradually diffusing over many secular times, while the
values of the eccentricities and inclinations remain modest. An
example of the latter type of behavior is the inner solar system,
where chaos is prevalent even at eccentricity/inclination levels
of a few percent, and the timescale of the evolution is �Gyr
(Laskar 1989; Lithwick & Wu 2011).

In the following, we investigate a planetary system with
three mildly eccentric and inclined planets to demonstrate the
appearance of this new type of secular chaos—new, that is, in
the context of extra-solar planetary systems.

3. SECULAR CHAOS: A WORKED EXAMPLE

3.1. Numerical Example

Initial conditions. Parameters for the example system we
investigate are listed in Table 1. The inclinations are measured
relative to the system’s invariable plane.

For the semimajor axes, we space the planets sufficiently far
apart and away from any major MMRs (orbital period ratios
are 1:14.7:64). The choice for the masses is somewhat arbitrary,
except for our choice that the innermost planet be the least
massive, which facilitates its excitation.

The somewhat odd-looking choices for the other orbital ele-
ments place most of the secular energy (i.e., angular momentum
deficit) in the outer planets, or more specifically in the secu-
lar eigenmodes associated with those planets (more detail in
Section 4). We find that the occurrence of secular chaos is not
particularly sensitive to our choices for these values, as long as
the system has sufficient amount of angular momentum deficit
(AMD; Section 4).

Numerics. This simulation was performed using the SWIFT
symplectic integrator (Levison & Duncan 1994), supplemented
with routines that model tidal dissipation in the planet and in
the star, precessions due to general relativistic (GR) effects, and
precessions due to rotational and tidal bulges on both the inner
planet and the star. Details are presented in the Appendix. These
effects are essential for determining the final positions of the hot
Jupiters.

Numerical precision at extremely high eccentricities is of
concern. So, we adopt a time step that is 1/100 of the inner
planet’s orbital period (1 yr) for most of the integration, but
switch it to a value 100 times shorter whenever the periastron of
the inner planet reaches inward of 0.1 AU from the star. We find
that such a change of time step, even though it breaks the time
symmetry of the symplectic integrator, is required to maintain
satisfactory energy and angular momentum conservation. The
fractional energy error, integrated over an episode of extremely
high eccentricities (which typically lasts ∼104 yr), remains
below 10−4 as long as e1 < 0.98, sufficiently small for our
problem at hand.

The angular momentum error is much smaller.
Results (Figures 1 and 2). Our fiducial three-planet system is

chaotic due to secular interactions. The random exchanges of
angular momentum (but not energy) among planets induce large
fluctuations in their eccentricities and inclinations. The orbit
of the inner planet, starting from initial values of e1 = 0.07
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Figure 1. Formation of a hot Jupiter in our fiducial system (SWIFT integration with tides and GR). Left: radial excursions of the three planets (semimajor axis,
periapse, and apoapse) are shown as functions of time, with the various radii relevant for hot Jupiters marked by arrows; right: planet inclinations measured relative to
the system’s invariable plane. All planets initially have mildly eccentric and inclined orbits, but over a period of 300 Myr, so much of the angular momentum in the
innermost planet can be removed that its eccentricity and inclination can diffusively reach order-unity values. Planet interactions leave all semimajor axes unchanged, a
tell-tale sign that secular interactions dominate the dynamics. At ∼300 Myr, the pericenter of the inner planet reaches inward of a few stellar radii and tidal interaction
with the central star kicks in (details in Figure 2). Precessions by general relativity, by tidal and rotational quadruples, as well as tidal dissipation, prevent the pericenter
from reaching inward of the Roche radius. As a result, the final hot Jupiter has a period of ∼3 days.

(A color version of this figure is available in the online journal.)

Figure 2. Same as that in Figure 1 but expanding the time axis around 300 Myr to highlight the process of tidal circularization. Secular chaos raises the inner planet’s
eccentricity diffusively to a maximum value of 0.985, and decreases its periapse to a1 ∗ (1 − e1) ∼ 0.015 AU—as determined by a balance between secular forcing
and close-range forces. When this occurs (at time 294 Myr), tidal dissipation in the inner planet removes orbital energy while conserving orbital angular momentum.
This brings the planet from an initial orbit of a1 = 1 AU to an orbit of a1 ≈ (1–0.9852) × 1 AU ∼ 0.027 AU. It is then dynamically decoupled from the outer two
planets. Since the total angular momentum deficit (AMD) in the system is absorbed by the inner planet (and subsequently removed by tidal dissipation), the outer two
planets lose AMD, and hence become more circular and coplanar after the hot Jupiter has formed. The inclination of the final inner orbit relative to the invariable plane
is ∼70◦ (right panel). The evolution is highly chaotic, and a slight modification of the initial conditions changes the evolution dramatically (see Figure 5).

(A color version of this figure is available in the online journal.)

and i1 = 4◦, by 300 Myr has diffused to e1 = 0.985 and
i1 = 70◦. It has lost almost all of its initial angular momentum
to the outer planets; equivalently, it has stolen some of the outer
planets’ AMD.

We find that the orbital elements of the inner planet undergo
a random walk to most of the phase space allowed by the
total energy and angular momentum. However, there are a few
forbidden regions. The most important one is the region of very
high eccentricity. The inner planet prudently avoids the Roche
zone. This occurs because when the pericenter of the inner
planet (a1(1 − e1)) approaches the star to within a few stellar
radii, finite-size effects (quadrupole precessions associated with
the tidal and rotational deformations on the planet and the star,
respectively), as well as general relativity, combine to suppress
the secular forcing. Were it not for these additional precessional
effects, the inner planet could be driven to tidal disruption and
merger with the central star. But as it is, the inner planet stays
within e1 � 0.985 or a1(1 − e1) � 0.017 AU in our system. We
explain this in the following.

Due to secular interactions with other planets, the inner
planet’s longitude of pericenter precesses at the rate

d�

dt
|sec ≈ Mp

M∗
α3n1, (1)

where Mp is the mass of the perturbing planet and α =
a1/ap is the ratio of the semimajor axes. This is disturbed
by the prograde precession induced by the close-range forces.
Comparing the orbit-averaged rates (Sterne 1939; Shakura
1985; Wu & Goldreich 2002) for the four types of quadrupole
precessions and for GR, for the following parameters: a Jupiter-
like planet with a spin period of 3 days, orbiting at a = 1 AU
around a Sun-like star that is spinning with a period of 10 days,
we conclude that the tidal bulge raised by the star on the planet
dominates the precession at high eccentricities with the GR
effect following not far behind. The orbit-averaged precession
due to the tidal quadrupole on the planet is

d�

dt
|tide = 7.5k2n1

(
1 + 3e2

1/2 + e4
1/8

)
(
1 − e2

1

)5

M∗
M1

(
R1

a1

)5

, (2)

4



The Astrophysical Journal, 735:109 (12pp), 2011 July 10 Wu & Lithwick

where k2 is the tidal Love number of the planet, taken to be
k2 = 0.26, and n1, e1, a1, and R1 are the planet’s mean-motion,
eccentricity, semimajor axis, and radius, respectively. Since this
rate rises steeply as the planet approaches the star, we expect
that the secular driving is arrested when the planet’s pericenter
reaches inward of

a1(1 − e1) ∼ 0.015 AU

(
M1

MJ

)−1/5 (
Mp

MJ

)−1/5 (
M∗
M�

)2/5

×
(

α

1/6

)−3/5 (
R1

RJ

)
. (3)

This stalling radius is independent of the planet’s initial position
(a1), and weakly dependent on the planetary and stellar masses,
as well as on the planet spacing in the system (i.e., the value of α).
It does, however, scale with the size of the planet linearly. Since
Jupiter-like planets have a fairly uniform radius, the stalling
distance spans a narrow range for a wide range of system
parameters.

When the orbit of such a planet is tidally circularized, the
final semimajor axis is moved to twice its stalling radius,
a′

1 
 2 × 0.015 ∼ 0.03 AU.5 This explains why the hot Jupiters
are piled up at the distance they are observed today (Figure 2).

The strength of the dissipative tide can also have an effect on
the final orbit. Even if the above precessional effects are absent,
the progression of the inner planet toward the star will be halted
by the dissipative tide, albeit at a somewhat closer distance.

4. ANALYSIS

For secularly interacting systems, there is an important
conserved quantity, the AMD (e.g., Laskar 1997)

AMD ≡
N∑

k=1

Λk

(
1 −

√
1 − e2

k cos ik

)
, (4)

where N is the number of planets, Λk the circular angular
momentum of planet k, Λk = mkM�

mk+M�

√
G(M� + mk)ak , and ik

is its inclination relative to the invariable plane (normal to the
total angular momentum). Since the total angular momentum
is conserved, and secular interactions do not modify the orbital
energies (ak constant), the AMD is conserved during secular
interactions. For circular, coplanar systems, the AMD is zero,
and the AMD increases with increasing e’s and i’s.

Here, we analyze our numerical results to illustrate the con-
dition for hot Jupiter formation. We find that a sufficient amount
of AMD is required. First, the value of AMD limits the maxi-
mum eccentricity and inclination an individual planet can attain
(Section 4.1). Second, only when AMD is large enough can it
be shared among different secular eigenmodes (equipartition),
ultimately driving the inner planet to extreme orbits. We call this
sharing process “secular chaos.” We illustrate the deep analogy
between AMD and kinetic energy in a thermodynamical sys-
tem in Section 4.2, and analyze the diffusive and chaotic nature
of the energy sharing process in Sections 4.3 and 4.4. We also
briefly look at the issue of AMD generation by MMRs in the
system (Section 4.5).

5 Angular momentum (∝
√

a(1 − e2)) is roughly conserved during tidal
dissipation. So, the post-circularized a′

1 is related to the pre-circularized a1 via
a′

1 = a1(1 − e2
1) 
 2a1(1 − e1).

4.1. Maximum Eccentricity and Inclination

To be propelled into the hot Jupiter status, the inner planet
has to reach so close to the star that tidal dissipation operates.
Let this be roughly a1(1 − e1) � 0.05 AU. If all AMD can be
transferred to the inner planet, this condition translates into

AMD � Λ1

[
1 −

( a1

0.1 AU

)−1/2
cos i1

]
. (5)

So, a planet that is closer to the star and lower in mass needs
less AMD to become a hot Jupiter. From now on we measure
AMD in units of the circular angular momentum of the inner
planet (Λ1 = 1). The above condition translates into

AMD � 1 − 0.3 cos i1 (6)

for a1 = 1 AU. So, to produce a coplanar hot Jupiter (i1 = 0),
AMD > 0.7, while a retrograde hot Jupiter would require
AMD > 1.0. Fortunately, this is not difficult to satisfy. Our
example system has AMD = 1.17 even though the eccentricities
are modest—comparable to or lower than those in observed
systems. The outer planets can carry a great deal of AMD even
at low values of eccentricity/inclination. Retrograde hot Jupiters
can potentially be produced.

4.2. AMD and Kinetic Energy

The AMD is for a secularly interacting system what kinetic
energy (or temperature) is for a thermodynamical system. This
analogy runs deep as we shall show here.

We introduce the complex Poincaré variables zk and ζk (see,
e.g., Laskar 1997; Murray & Dermott 2000),

zk =
√

2

√
1 −

√
1 − e2

k exp(i�k),

ζk =
√

2

√√
1 − e2

k(1 − cos ik) exp(iΩk), (7)

where �k is the longitude of periapse and Ωk is the longitude
of the ascending node. At low eccentricities and inclinations,
zk ≈ ek exp(i�k) and ζk ≈ ik exp(iΩk). The AMD may then be
recast as (Laskar 1997)

AMD =
N∑

k=1

Λk

2
(|zk|2 + |ζk|2). (8)

The resemblance of AMD to kinetic energy becomes obvious
in this form: while the “inertial mass” for each planet corre-
sponds to its circular angular momentum Λk , the (zk, ζk) pair
corresponds to its “velocity.”

When AMD is zero, the system will remain coplanar and
circular and stable forever. At low AMD, secular interactions
lead to periodic exchanges of angular momentum between
planets. This, however, is not related to the equipartition process.
The dynamics can be decomposed into that of linear secular
eigenmodes and the periodic variations in orbital elements
are caused by the interference between these modes (the so-
called Laplace–Lagrange theory). Each linear mode oscillates
at its characteristic eigenfrequency with constant amplitude
and phase. Let the eigenvectors be z̃kα and ζ̃kα . They are
orthonormal after each component is pre-multiplied by

√
Λk/2,

i.e.,
∑

k
Λk

2 z̃kαz̃kβ = ∑
k

Λk

2 ζ̃kαζ̃kβ = δαβ , where δαβ is the
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Figure 3. Diffusive behavior for the system in Figure 1, demonstrated using eigenmode energies (really, AMDs) and spectral entropy. The curves in the left panel
are, from top to bottom, total AMD, AMD in eccentricity modes, AMD in inclination modes, and AMD in the eccentricity mode associated with the inner planet, all
plotted as their ratio to the total AMD (which is conserved to better than a percent before tidal dissipation sets in). For clarity, the last three are plotted as running
overages (over 2 × 104 yr). The first eccentricity mode gains AMD from other modes, and there is AMD exchange between eccentricity and inclination modes. The
right-hand panel shows the exponential of the spectral entropy, exp(S), as expressed in Equation (10). The process of AMD equipartition raises exp(S) from 2 (two
modes dominating the AMD) to ∼5 (all modes share comparable AMD, marked by the dotted curve). When tidal dissipation sets in, the total AMD decreases, leading
to a drop in the entropy. If we turn off the dissipation and integrate the system further, we observe that the spectral entropy fluctuates, but it seldom departs from the
equipartition value for an extended period.

(A color version of this figure is available in the online journal.)

Kronecker delta; the overall phase of each eigenvector is chosen
so that all components are real. Projecting the complex orbital
elements onto these eigenvectors, zk = ∑N

α=1 aαz̃kα, ζk =∑2N−1
α=N+1 aαζ̃kα ,6 we can re-express AMD as

AMD =
2N−1∑
α=1

|aα|2. (9)

Each eigenmode resembles one degree of freedom in a ther-
modynamical system, and the AMD resembles the total energy.
In the linear solution, if one mode is initially assigned all the
AMD, it will retain it forever. As a result, each planetary orbit
moves within a certain bound as given by the initial condition.

As AMD rises, energy transfer (or really, AMD transfer) be-
comes non-periodic and chaotic. Orbital elements are allowed
to wander as in a random-walk diffusion. This may ultimately
lead to AMD equipartition between different secular modes
(different degrees of freedom in the system), as well as approx-
imate AMD equipartition between different planets.7 The least
massive or the closest planet has the smallest inertia. AMD
equipartition implies that such a planet can reach very high ec-
centricity and/or inclination, providing the condition for hot
Jupiter formation.

4.3. Diffusion of AMD Observed

Diffusion of energy in a weakly nonlinear system is an
extensively studied subject, starting from the famous Fermi–
Pasta–Ulam problem (E. Fermi et al. 1955, unpublished). In
the following, we present evidence for AMD diffusion in our
example system and illustrate the criterion for AMD diffusion.

One line of evidence comes from the amplitudes of the
secular eigenmodes.8 The initial conditions chosen in Table 1
correspond to deliberately depositing almost all AMD into the
secular modes associated with the outer planets and little in the

6 There is a trivial inclination mode with zero frequency, which corresponds
to the overall tilt of the reference plane. Here, we take the reference plane to be
the invariable plane, so the amplitude of this mode is zero.
7 Equipartition of AMD among planets is only approximately correct. As an
example, the four terrestrial planets in the solar system have similar AMD
today. They have likely undergone extensive chaotic diffusion in the past.
8 Here, we decompose using the linear eigenvectors even though they are
invalid at large amplitudes. A more rigorous approach may be to decompose
using nonlinear eigenvectors, as is done in Laskar (2008). But our approach
suffices for the purpose of illustrating AMD diffusion.

Table 2
Frequencies and Amplitudes (Initial and Final) of the Five Linear

Secular Eigenmodes

Mode Frequency Amplitude (|aα |)
(arcsec yr–1) t = 0 2.9 × 108 yr

e1 4.83 0.03 0.63
e2 8.30 0.31 0.21
e3 2.04 0.83 0.51
i1 −4.61 0.14 0.24
i2 −10.57 0.62 0.64

eccentricity mode associated with the inner planet. There are
three advantages to this. First, AMD transfer between modes
occurs on secular or longer timescales. So, for the first tens of
millions of years, all three planets have small e’s and i’s, as
appropriate for planets emerging from a protoplanetary disk.
Second, by initializing the inner eccentricity mode with low
amplitude, we are farthest away from our preferred end state,
when this mode acquires enough AMD to place the inner planet
on a e ∼ 1 orbit and a tidal encounter with the star. Third, by
concentrating AMD into only a few modes, we can best observe
the approach toward equipartition.

Table 2 and Figure 3 show that after 294 Myr of evolution
(right before tidal dissipation sets in), the AMD of mode 1 has
grown diffusively by a factor of ∼202 ∼ 400, while the total
AMD = ∑

α |aα|2 remains constant. The normalization of |aα|
in Table 2 is such that the circular angular momentum for the
innermost planet (at 1 AU) has the numerical value of one. AMD
equipartition is reached in ∼2.5 × 108 yr.

A second way to quantify diffusion is by tracing the “spectral
entropy” (Livi et al. 1985; Goedde et al. 1992)

S ≡ −
2N−1∑
α=1

Eα ln Eα, (10)

where Eα = |aα|2/∑
α |aα|2 is the fractional energy (AMD) in

mode α. This entropy increases from its minimum value of 0
(when one mode has all the AMD) to the maximum value of
ln Nmod = ln(2Npl − 1) = ln 5 as the system diffuses toward
energy equipartition. Spectral entropy is analogous to entropy
in a thermodynamical system.

Figure 3 shows that for our example system, AMD is
gradually shared among different eccentricity and inclination

6



The Astrophysical Journal, 735:109 (12pp), 2011 July 10 Wu & Lithwick

Figure 4. Probability distribution of the inner planet’s eccentricity, dN/de1, in
the “example” system of Figure 1, in a system with twice-lower eccentricities
and inclinations (“twice-lower”), and in a system that has the same eccentricities
but is coplanar (“coplanar”). The first case is integrated for 300 Myr (stopped
short when the planet reaches the zone of tidal circularization), while the latter
two are integrated for 1.5 Gyr. The maximum eccentricity allowable in each
case (see Figure 7) is marked by the arrows. Diffusion in the latter two cases
is partially inhibited. The dashed line is a Rice distribution with mean 0.2 and
variance 0.25. The example system is expected to approach the Rice distribution
after a long time.

modes, and the spectral entropy rises toward ln 5 over a 108

year timescale.
A third way to observe diffusion is to plot the probability

distribution function of e1, following Laskar (2008), as shown
in Figure 4. For our example system, e1 is broadly distributed
from 0 to 1, with its distribution roughly described by a Rice
function (Laskar 2008),

f (e) = e

σ 2
exp

(−(e2 + ν2)

2σ 2

)
I0

( eν

σ 2

)
, (11)

where I0 is the modified Bessel function of the first kind with
order 0. This is the expected distribution for |z| if z = x+iy with
x and y being two independent Gaussian variables with mean ν
and variance σ .

What is required for AMD diffusion to occur? We find that
there must be a sufficient amount of AMD in the system. For
instance, when integrating the example system, but with all
secular mode amplitudes reduced by a factor of two (total AMD
reduced to 1.17/4 = 0.29, the “twice-lower” curve in Figure 4),
or when flattening all orbits into coplanar ones (AMD = 0.72,
the “coplanar” curve in Figure 4), we find that AMD diffusion is
largely suppressed. While AMD allows e1 to reach 0.58 (“twice-
lower”) and 0.955 (“coplanar”), diffusion is only able to bring
e1 to 0.15 and 0.58, respectively. Motion is either largely quasi-
periodic or weakly chaotic. This is in contrast to the example
case where the inner planet explores phase space and reaches
its maximum eccentricities and inclinations.

Why does the amount of AMD make a difference? The
interested readers are referred to Lithwick & Wu (2011) for
detailed quantitative analysis. Here we only comment that to
allow AMD diffusion, chaos is essential, and chaos is driven
by the overlap of resonances (Chirikov 1979). The resonances
of relevance are high order secular resonances. Their widths
increase sharply with mode amplitude. A lowering of the mode
amplitudes by a mere factor of two can shrink the resonance
width by a large factor. This qualitatively explains why the
twice-lower case is not chaotic. In a coplanar system, all
resonances that involve the inclination modes are ineffective,
and with fewer resonances to drive chaos, their dynamics
become much more regular.

4.4. Chaotic Processes Leading to Hot Jupiters

Given the chaotic nature of the dynamics, the final state of
the system depends sensitively on initial conditions. In our
example case, we obtain a hot Jupiter with a1 = 0.027 AU
and an inclination of 70◦ at the end of the 300 Myr integration
(Figure 2). In another case, modified from the previous one in
energy and angular momentum by about 0.1% at time 293 Myr
(just before the onset of tidal dissipation), we find that the
inner planet narrowly avoids being tidally circularized into a hot
Jupiter straightaway and is able to return its AMD to the outer
planets. The eventual hot Jupiter thus formed has a1 = 0.04 AU
and an inclination of 25◦ (Figure 5). Our other experiments show
that in some cases the tidal dissipation process is gradual and
occurs over many episodes of high eccentricities. There could be
an extended period during which the planet destined to become
a hot Jupiter is temporarily parked at an intermediate distance
(e.g., a1 = 0.1 AU) with large eccentricities and inclinations.
They may help to explain the presence of “warm Jupiters.”

Figure 5. Evolution of a system that is slightly modified from that in Figure 2 by 0.1% in total orbital energy and angular momentum, at time t = 2.93 × 108 yr.
The subsequent trajectory differs. The inner planet in this case suffers some tidal dissipation at t = 294 Myr and migrates to a1 = 0.75 AU. However, it avoids being
turned into a hot Jupiter right away and returns its AMD to the outer planets (left panel). Secular chaos continues to operate until the inner planet is turned into a hot
Jupiter with a1 = 0.04 AU and an inclination of 25◦. This demonstrates the sensitive dependence on initial conditions.

(A color version of this figure is available in the online journal.)
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With a tidal quality factor for the planet of Qp = 105, the
example case sees most of the orbital binding energy deposited
inside the planet within a couple Myr, with an averaged (over
1 Myr timescale) heating rate of 5 × 1029erg s−1, ∼15 times
higher than the self-luminosity of a Teff = 1000 K Jovian planet.
The total tidal energy deposited is ∼1.5 × 1044erg, again about
15 times larger than the gravitational binding energy of the
planet. This has the potential of disrupting the planet unless the
heat is deposited into regions of short thermal time. However, if
the tidal dissipation process is more gradual, the mode of heat
deposition can be drastically different, potentially impacting the
final sizes of hot Jupiters.

4.5. Effects of Mean-motion Resonances

MMRs, not to be confused with secular resonances, can also
affect secular chaos. This is true even if the MMRs are of
high order. Because MMRs can change the semimajor axes,
the dynamical system has more degrees of freedom and can
explore different parts of the phase space, potentially enhancing
diffusion. We experiment by placing the outer two planets near
the 2:1 MMR (6 AU and 9.52 AU). We find that diffusion
proceeds quickly even with an AMD as low as 0.29, a value that
corresponds to our twice-lower system (which shows regular
behavior). But when we move the outer planet outward by a mere
0.5 AU, the system behaves regularly again. This confirms that,
at least in this case, MMRs can be responsible for facilitating
AMD equipartition.

In addition, even for systems which are not initially next to any
lower order MMRs (such as our example case), as eccentricity
and inclination rise to order-unity values, low order MMRs are
activated. For the case shown in Figure 1, the semimajor axis
of the inner planet undergoes increasingly large variations at
late stages of the evolution,9 perhaps indicating MMRs at
work. Accompanying this is the non-conservation of AMD. Are
MMRs a significant source of AMD? If so, they could allow the
inner planet to reach a higher eccentricity than allowed by the
initial AMD of the system. This intriguing possibility deserves
to be explored.

Another possible connection between secular chaos and
MMRs exists. In systems which are initially more compact than
our example system, but not compact enough to have immediate
close encounters, secular chaos increases the eccentricity of
inner planets, allowing MMRs to function at later stages, leading
finally to planet scattering well after the protoplanetary disks
have dissipated.

5. PREDICTIONS FOR HOT JUPITERS

We have demonstrated that secular chaos can produce hot
Jupiters. The remaining central issue is how prevalent this
mechanism is. Is it prevalent enough to explain the observed
frequency of hot Jupiters?

Unfortunately, since we do not know the initial configurations
of planetary systems, it is difficult to predict the frequency of hot
Jupiter production by secular chaos. We also face the problem
that a systematic survey of the relevant parameter spaces is
numerically expensive, at least using our current technique of
N-body integration. So in the following, we discuss qualitative
predictions based on our present understanding of secular chaos.

9 The changes are on the percent level and are somewhat difficult to discern
in that plot.

5.1. General Predictions

The predictions are ranked roughly in decreasing order of
certainty.

1. A pile-up of hot Jupiters around 3 day orbital periods.
The characteristic stalling at 3 day orbital periods that we

observe in our simulations is explained by a combination
of tidal precession and tidal dissipation (both due to tides
on the planet). Precessions by other close-range forces
(GR, rotational quadrupole) are less important. The tidal
precession stalls the rise of the eccentricity to about a few
times the Roche radii, and tidal dissipation finishes the
job by circularizing the highly eccentric orbit to that of
a hot Jupiter. The location of the pile-up remains largely
unchanged even if the rate of tidal dissipation is orders
of magnitude weaker. We stress that this prediction is not
unique to secular chaos, but also applies to Kozai migration,
or any other mechanism where eccentricity is slowly raised.
By contrast, in planet scattering the eccentricity changes are
sudden, and hence a 3 day pile-up would not be expected.

2. Hot Jupiters are lower in mass compared to other giant
planets.

This prediction stems from AMD conservation. To be-
come a hot Jupiter, the inner planet has to reach an eccen-
tricity so high that a1(1 − e1) � 0.05 AU. For a given
amount of AMD, a lower mass inner planet can reach
a higher eccentricity. Observationally, compared to giant
planets at larger distances, there is a clear deficit of massive
hot Jupiters (Zucker & Mazeh 2002; Udry & Santos 2007).
If hot Jupiters migrated from the population to larger dis-
tances, the relevant migration mechanism would need to
prefer low-mass planets. Kozai migration, in contrast, has
no mass preferences (Wu et al. 2007).

3. Hot Jupiters have no companions within a few AU, but have
companions roaming at larger distances.

On the one hand, the high-eccentricity episode the inner
planet undergoes before it is tidally captured implies that
hot Jupiters have no companions within a few AU. This
agrees with observations where hot Jupiters appear to be
strikingly alone (Wright et al. 2009), and where attempts
at measuring transit timing variations have repeatedly
turned up empty-handed. On the other hand, secular chaos
requires driving by other giant planets. They should be
roaming at large distances (outside a few AU) and remain
to be detected—some may have already shown up as RV
residuals in hot Jupiter systems (Fischer et al. 2001; Wright
et al. 2009). There is also the intriguing possibility that one
of the companions is a binary star.

4. Frequency of hot Jupiters should rise with stellar age.
Being a diffusive process, secular chaos operates on

timescales comparable to or longer than the secular pre-
cession timescale. The latter, for our fiducial system, is of
order M∗/M2P

2
2 /P1 ∼ 105 yr. As such, we expect stars

that are within a few tens of million years after their disk
dispersal to have a lower hot Jupiter fraction than stars that
are a few Gyr old. This prediction should be quantified by
extensive numerical simulations that start with reasonably
realistic planetary configurations.

5. Orbits of hot Jupiters could be strongly misaligned with
stellar spin.

We will discuss the planet inclination in Section 5.2.

If secular chaos is responsible for producing hot Jupiters, this
has a number of implications for planetary systems at large.
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Figure 6. Eccentricity distribution of Jovian planets that have pericenter between
0.1 and 10 AU and projected masses above 0.1 MJ . (the solid histogram). The
lower limit of 0.1 AU is selected to preclude planets that have undergone
significant tidal circularization. The dotted line is the Rayleigh distribution with
σ = 0.25. The sub-population of more massive planets with M sin i > 4 MJ

are represented by the dashed histogram. It appears that more massive planets
have a hotter distribution.

1. A large number of planetary systems should have three or
more giant planets on (mildly) eccentric, inclined orbits.

Only systems that have sufficient AMD can make hot
Jupiters. Hot Jupiters may be the tip of the iceberg in terms
of their system AMD values. If so, then most giant planets
we know of should reside in systems with three or more
giant planets. There should still be residual AMD in the
outer planets.

2. Warm Jupiters could arise from secular chaos and their
orbits could be misaligned with respect to the stellar spin.

We call giant planets at a few tenths of an AU “warm
Jupiters,” for the reason that they are at intermediate
locations between hot Jupiters (∼10−2 AU) and cold
Jupiters (∼a couple AU).

Among those that fail to make hot Jupiters, there may be
warm Jupiters—planets which have suffered some degree
of tidal dissipation but have yet to be tidally captured into
hot Jupiters. These planets are temporarily intercepted from
their inward spiral by interactions with outer planets that can
inject into their orbits a fresh boost of angular momentum.
Eventually, these planets would be dragged in to become hot
Jupiters, but while they are in their temporary parking space,
their orbits could have high inclinations as well as high
eccentricities. Observationally, there is a “period valley” at
these distances, indicating that perhaps the warm Jupiter
phase is relatively short lived. Measurements of spin–orbit
angle for these planets will be useful constraints.

3. Even for systems where the inner planets cannot reach high
enough eccentricity to be captured into hot Jupiters, secular
chaos may have observable consequences.

Starting from mildly eccentric, inclined orbits, inner
planets in planetary systems may gradually extract AMD
from outer planets. The long-term eccentricity and inclina-
tion distributions for these planets approach the Rice distri-
bution (Figure 4). This reduces to a Rayleigh distribution
when the centroid is much smaller than the variance. Fig-
ure 6 shows the observed eccentricity distribution of Jovian
planets: it may be represented by a Rayleigh distribution
with variance 0.25. If future R-M measurements provide us

with a similar distribution for the orbital inclinations, this
will be strong proof in favor of secular chaos.

If secular chaos is largely responsible for the observed
planet eccentricities, one expects that, for the same amount
of AMD available in the system, lighter planets in general
reach higher eccentricities. However, data (Figure 6) show
an inverse correlation—more massive (M sin i > 4 MJ )
planets have a hotter eccentricity distribution. This may
be interpreted as being due to pollution from systems
undergoing Kozai cycles induced by stellar companions,
which are capable of exciting eccentricities even in very
massive planets. This interpretation requires that massive
planets occur preferentially in binary systems.

4. Secular chaos can stabilize planetary systems.
In our simulation (Figure 1), the tidally captured hot

Jupiter removes AMD from the system, stabilizing the
outer planetary systems as a result. This could be a generic
process in organizing planetary systems on long timescales.

5. Can secular chaos explain hot Neptunes or hot Earths?
If the inner planet has a lower mass, it experiences a

weaker near-range precession due to its smaller tidal and J2
moments. Equation (3) predicts that a Neptune-like planet
(M = MN = 1/17 MJ and R = RN = 0.36 RJ ), driven to
chaos by secular forcing of giant planets at a few AU, could
be stalled at periapse distance ∼0.009 AU, and hence it
would be circularized at ∼0.018 AU ∼ 4 R�. This distance
would be approximately doubled if it is forced by other
Neptune-mass planets, while a more inflated planet would
also be stalled at a greater distance. Hot Neptunes thus
produced will tend to have a broader pile-up than hot
Jupiters, because the masses of the perturbers can extend
over a large range. Such a mechanism could explain some
of the observed hot Neptunes—for instance, the HD 125612
system where a hot Neptune is accompanied by two Jupiter-
like planets at much larger distances (Lo Curto et al. 2010).

Bouchy et al. (2009) noted that ∼70% of low mass close-
in planets (with M sin i < 0.1 MJ ) have detected planetary
companions. This differs from the hot Jupiter case. It likely
relates to the lower requirement for the planetary spacing
when the inner planet is less massive.

An Earth-like planet, on the other hand, will not be stalled
at large enough distances to avoid Roche lobe overflow.
Secular chaos is an unlikely agent for making hot earths,
especially considering that the tidal damping time for an
Earth-like planet at 0.03 AU exceeds a Hubble time.

5.2. Stellar Obliquity

The final inclination of the inner planet deserves an in-depth
discussion.

Fabrycky & Winn (2009) found that a majority of transiting
planets have their orbits aligned with the stellar spin. However,
that majority was quickly weakened by a slew of misaligned
systems (Triaud et al. 2010). The current situation is best
summarized in Morton & Johnson (2011), and a correlation
between stellar obliquity and stellar spectral type has been noted
(Winn et al. 2010).

Our example system (Figure 1) produces a hot Jupiter with an
orbit inclined by 70◦ from the invariable plane of the planetary
system, while its near-identical twin yields a hot Jupiter with an
inclination of 25◦ (Figure 5). Secular chaos could in principle
drive the inner planet to inclinations between 0◦ and 180◦
relative to the invariable plane (Figure 7), given the amount
of AMD in this system. To demonstrate this, we turn off tidal
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Figure 7. Eccentricity–inclination phase space that is traversed by the same
system as Figure 1 over a total of 400 Myr, in the absence of tidal dissipation.
The thick red curve bounds the region within which the inner planet can
explore, as dictated by energy and angular momentum conservation (assuming
constant ai, so this is determined by the initial AMD). Secular chaos transports
the inner planet to very high eccentricities (bounded at the right by near-
range precessions) and to retrograde orbits. If tidal dissipation were turned
on, it would operate rightward of the vertical line at e = 0.95 (pericenter
distance of a1(1 − e1) = 0.05 AU). The right panel shows the distribution of
inclinations whenever e1 > 0.95. This can be regarded as an approximation
to the distribution of final inclinations. For this system, retrograde orbits are
achieved a few percent of the time.

(A color version of this figure is available in the online journal.)

dissipation in our example integration and evolve the fiducial
system for 400 Myr. The eccentricity and inclination phase space
traversed by the inner planet is presented in Figure 7. Within the
constraint of AMD conservation, the planet is able to diffusively
reach high eccentricity, with both prograde and retrograde
orbits. The final inclination for the hot Jupiter then depends
on chance.

In Figure 7, we also display the distribution of inclinations
whenever 1 − e1 � 0.05, as a proxy for the final inclinations
of hot Jupiters. We find that retrograde orbits represent a few
percent of the total for a given value of the AMD in the system.
The preponderance of prograde orbits is related to the prograde
initial condition.

This result is specific to our example system and is relative to
the invariable plane. The invariable plane does not necessarily
coincide with the stellar equatorial plane—the relative angle is
only 7◦ in the solar system, but it can be large elsewhere.10

6. SUMMARY

Hot Jupiters, while representing only a small fraction of all
known extra-solar planets, demand special attention. They are
most at odds with planet formation theory; they are detected
disproportionately in RV and transit surveys; and they are most
accessible to characterization. Their rarity may indicate that
their formation requires extreme circumstances. However, they

10 Here, we have assumed that the stellar spin is aligned with the invariable
normal when calculating precession due to the stellar rotational bulge.

may teach us much about the general conditions of planetary
systems.

Hot Jupiters are piled up around 3 day orbital periods, with
rapid cutoffs both inward and outward of this distance; they
tend to be less massive than more distant planets; many of
them have orbits that are misaligned relative to the stellar spin;
and they are remarkably anti-social as they have few detected
companions.

In this work, we show that most of these characteristics can be
explained if hot Jupiters are produced by secular chaos. These
planets, originally located at �1 AU, acquire AMD from planets
that are farther out in the system. The outer planets can be mildly
eccentric and/or inclined, but the same AMD produces much
greater eccentricities and inclinations when it is transported to
an inner planet, especially if the inner planet is less massive
than the outer ones. The extremely high eccentricity allows the
inner planet to reach inward of a few stellar radii and be tidally
ensnared by the central star into a hot Jupiter.11 We find that
the criterion for hot Jupiter production is a sufficient amount
of AMD.

Only five hot Jupiters have known planetary companions,
and these companions are typically eccentric and may have
contributed to secular chaos. We note that the hot Jupiter (at
0.06 AU) in the Ups And system, where two other massive
planets orbit at 0.8 and 2.5 AU, with eccentricities of 0.2
and 0.3, respectively, may well be produced by the secular
chaos presented here.12 This possibility is further boosted by
the recent finding that the two outer planets’ inclinations are
misaligned by ∼30◦ from each other (McArthur et al. 2010).
Similarly, the retrograde hot Jupiter in WASP-8b (Queloz et al.
2011) is in a stellar system including an M-star companion at
∼600 AU. Moreover, the RV trend indicates a companion at
distance >1 AU that is more massive than 2 MJ . This could
also be a hot Jupiter produced by secular chaos, with the M-star
acting as the third planet.

Hot Neptunes may also be formed via secular migration.
However, hot Earths are different. It is not that Earth-like planets
could not undergo secular chaos, but that once they do, they
cannot be stalled at a safe enough distance to avoid being
swallowed by the central star.

Secular chaos has also been found to be responsible for
instability in the inner solar system (Laskar 2008; Lithwick
& Wu 2011). We speculate that secular chaos may be a
frequent phenomenon in planetary systems. It may help
to excite inner planets to higher eccentricities or inclina-
tions. If these planets are removed, the remaining plane-
tary systems may be stabilized for a time comparable to the
system age.

The success of this theory depends on two unknown factors.
One is the amount of initial AMD in the system. The other is the
typical configuration of planetary systems when emerging out of
the protoplanetary disk. It also needs to be demonstrated solidly
that secular chaos can lead to a large fraction of retrograde
hot Jupiters. Observationally, if not only hot planets but also
warm or cold planets can be shown to have significant orbital
inclinations relative to the spin of their host stars, this would
boost the case for the ubiquity of secular chaos. Future R-M

11 Kozai migration is another process that may give rise to large eccentricity to
Jovian planets. Such planets may be similarly captured into hot Jupiters. Since
Kozai oscillation is also a secular forcing, we propose to name both secular
chaos and Kozai migration generically as “secular migration.”
12 The companions are detectable in this case because this is a scaled-down
version of the systems we investigated. The inner planet may initially be at
a ∼ 0.2 AU, as opposed to a = 1 AU as in Figure 1.
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measurements should be extended to transiting planets at large
distances.
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APPENDIX

The standard SWIFT package distribution does not contain
a treatment for the GR precession, or precession due to tidal
and rotational bulges. These dominate over secular precession
by other planets when the inner planet reaches very close to
the host star. Together with tidal dissipation, these effects de-
termine the final orbit of the planet, as well as the timescale for
tidal circularization. Below is our implementation of all these
processes in the SWIFT code. Since non-Keplerian accelera-
tions in the symplectic SWIFT integrator are incorporated as
velocity kicks between Keplerian drifts, we need expressions
for the perturbative accelerations.

To first order in (v/c)2, the GR effect can be written as a
perturbation to the Newtonian gravitational potential as

ΦGR = −GM∗L2

c2m2
pr3

, (A1)

where r is the radial distance between the star and the planet,
and L = mp

√
GM∗a(1 − e2) is the orbital angular momentum.

The purely radial force associated with this potential,

aGR = −∇ΦGR = −3G2M2
∗a(1 − e2)

c2r4
r̂, (A2)

gives rise to a precession of the eccentricity vector. We confirm
that such a numerical procedure yields the following orbit-
averaged precession rate for the longitude of the pericenter
(Einstein 1916)

�̇GR = 3GM∗n
c2a(1 − e2)

. (A3)

For the tidal effects, we first consider the rotational bulge and
the tidal bulge on the star. The following expressions are from
Sterne (1939), differing only in notation. Let the stellar spin
rate be ω∗, radius R∗. The centrifugal potential due to the stellar
spin, and the quadrupole tidal potential due to the planet acting
on a point at distance D away from the stellar center, is

Φacting = +
1

3
ω2

∗D
2P2(cos θ ′) − Gmp

r

(
D

r

)2

P2(cos θ ). (A4)

Here, the Legendre function P2(x) = 1/2 (3x2 − 1), and the
connecting angles are defined as cos θ = D̂ · r̂, cos θ ′ = D̂ · ω̂∗,
where r is the vector connecting the two bodies. The global
distortion of the star under the above potential casts a response
potential in its surrounding (measured at position D)

Φreponse = k2∗R5
∗

D3

[
ω2

∗
3

P2(cos θ ′) − Gmp

r3
P2(cos θ )

]
, (A5)

where k2 is the Love number and is taken to be 0.029 for the star
(polytrope n = 3) and 0.52 for the planet (polytrope n = 1).13

The barycentric acceleration that the reduced particle feels is
therefore

a = −mp

μ
∇Φresponse, (A6)

where the reduced mass μ = m∗mp/(m∗ + mp).
We trace the planetary motion in the frame of the invariable

plane and we assume that the stellar spin coincides with the
normal of the invariable plane. So, at the heliocentric position
of the planet (x, y, z), cos θ = 1 and cos θ ′ = z2/r2, where
r2 = x2 + y2 + z2. Here, the z2 term in the potential gives rise to
spin–orbit coupling and the orbit normal of the planet precesses
around the spin direction.

The bulges on the planet are treated similarly, except we
assume that the planet spin is aligned with the orbit normal, so
cos θ ′ = 0.

The above close-range accelerations are expressed for the
barycentric movement. However, one should correct for the fact
that the kick asked by the SWIFT code is the heliocentric value.

The dissipative part of the tidal effect is handled in a way
that differs from the standard treatment of Lee & Peale (2003).
We use the weak friction prescription for the equilibrium tidal
bulge, and calculate the effect of dissipation in both the star
and the planet. The tidal bulge raised on either body produces a
potential given by the second term in Equation (A5). Due to finite
dissipation inside the body, there is a delay between the response
and the forcing. We can assume either a constant time lag (τ )
or a constant phase lag (ε). In the latter case, we can introduce
a tidal Q factor (Goldreich & Soter 1966), which is related to
the phase lag and the time lag as ε = 1/Q and τ = 1

Q
2π
ωtide

,
respectively. Here, ωtide is the tidal forcing frequency. For the
eccentricity tide, ωtide is simply 2n. The acceleration associated
with the delayed tidal bulge raised on body M (with radius R)
by body m at distance r is (Hut 1981)

− Gm2

μr2

(
R

r

)5

k2

[(
3 + 9

ṙ

r
τ

)
r̂ − (ω − θ̇ )τ θ̂

]
, (A7)

where ω is the rotational velocity and θ̇ the instantaneous orbital
angular velocity. In particular, ṙ = nae sin f/

√
1 − e2 for a

Keplerian ellipse. The first half of the radial term contributes to
orbital precession (dealt with above) but no energy dissipation
(as it is anti-symmetric within a Keplerian ellipse and cancels
out over an orbit). We ignore the angular force that transfers
angular momentum—the spin angular momentum of the planet
is much smaller than its orbital angular momentum and so we
assume that the planet is quickly synchronized with the orbit,
while we assume that the tidal Q factor associated with the star
is so large that there is no angular momentum being transported
between the orbit and the stellar spin. So, we are left with only
the second half of the radial force. This is easily implemented
in the SWIFT package. We adopt values of Qp = 105 and
Q∗ = 1010 for our work. Thus, tidal dissipation is dominated
by that inside the planet.
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