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ABSTRACT

Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed
theoretical/numerical model. The model assumes that resonant hydromagnetic wave–particle interaction is the
most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and
damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses
conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles
will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate
population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show
agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in
the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra.
The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test
case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.
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1. INTRODUCTION

The idea of diffusive shock acceleration (DSA) at quasi-
parallel shocks (Krymskii 1977; Axford et al. 1977; Bell 1978a,
1978b; Blandford & Ostriker 1978) based on the first-order
Fermi mechanism of acceleration of charged particles by clouds
of Alfvén waves excited on both sides of a shock wave was
successful in explaining the main characteristics of accelerated
particles. Following the work of Skilling (1975) and Bell (1978a,
1978b), Lee (1983; see also Gordon et al. 1999) developed
the quasi-linear model that describes self-consistently the ion
acceleration and the wave excitation at interplanetary shocks.
It was assumed in Lee (1983) and Gordon et al. (1999) that
some flux of protons (seed population) is injected at the shock
front into the upstream plasma, and the dynamics of only this
population due to interaction with waves was studied. As a
result of cyclotron instability (Sagdeev & Shafranov 1961),
Alfvén waves are excited, which scatter some particles toward
the downstream region, creating the conditions for the first-order
Fermi mechanism. Similar to Skilling (1975) and Bell (1978a,
1978b), it was assumed as well that the particle pitch-angle
scattering due to cyclotron interaction is the fastest process,
thus they always have an almost isotropic distribution function.
The pitch-angle-averaged distribution function is a solution of
the so-called convection-diffusion equation with right-hand side
describing the ion source term (see, e.g., Equation (2.1) in
Malkov & O’C Drury 2001). It was assumed that the flux density
of the seed particles in the source term could be found by using
results of the shock observations.

Although DSA-based analytical and numerical models (Lee
1983; Gordon et al. 1999; Zank et al. 2000; Li et al. 2003)
were able to successfully explain many important features of the
acceleration process, for example, power spectra of accelerated
particles, dependence of accelerated particles on the distance
from the shock front, and many others, there are important
questions that stay open for a long time. Some very detailed
analyses of the expectations of DSA models to observations of
solar energetic particle events have been recently presented in

Verkhoglyadova et al. (2009). Particularly, the predictions of the
simpler steady-state models often do not agree with the results
of time-dependent models (Rice et al. 2003; Li et al. 2003) that
include time-dependent effects, such as, for example, balancing
the shock dynamical timescale and the particle acceleration
timescale to estimate maximum energies, the variability of the
propagating shock, the influence of these factors on the self-
excited wave field, and particle escape and propagation (see
review by Zank et al. 2007).

It was discussed long ago that the thermal plasma can
be considered as a source of the accelerated protons, and
there was considerable evidence from observations (see, e.g.,
Tsurutani & Lin 1985) and simulations that shocks can directly
accelerate ambient thermal particles (see reviews by O’C
Drury 1983; Jones & Ellison 1991; and references therein).
Malkov & Völk (1995) have shown that the wave fields
needed for proton acceleration can be excited by a beam of
the downstream tail protons injected into the upstream region.
Since the DSA-based theoretical models did not consider the
thermal plasma dynamics, they could not, in principle, include
this mechanism in the macroscopic acceleration picture and
describe the process of proton acceleration from the thermal
plasma. Another shortcoming of the DSA models: they do not
include the back reaction of the accelerated particles on the
shock wave that can limit the process of acceleration (although
some models include cosmic ray pressure on the shock structure
as, for example, in Florinski et al. 2009). And again, this
shortcoming is connected with limitations of DSA approach that
evaluates only the dynamics of the high energetic tail of proton
distribution. Detailed discussions of DSA-based models can be
found in reviews by, e.g., O’C Drury 1983, Jones & Ellison
1991, Malkov & O’C Drury 2001, and references therein.

A new theoretical/numerical macroscopic model of the
proton acceleration at quasi-parallel shocks that automatically
includes both the thermal plasma injection scenario and mod-
ification of the shock structure due to the reaction of the ac-
celerated protons was proposed in Galinsky & Shevchenko
(2007, hereafter referred to as Paper I). Similar to the
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analytical consideration by Lee (1982) and Gordon et al. (1999),
in Paper I a quasi-linear approach was used to describe the
wave–particle approximation and it was also assumed that res-
onant wave–particle interaction is the fastest process of the
problem.

However, there are important differences between the ap-
proach used in Lee (1982), Gordon et al. (1999), and the one
used in Paper I. First, in Paper I, in contrast to Lee (1982)
and Gordon et al. (1999), plasma protons were not divided into
two classes (1) resonant protons and (2) thermal plasma, and
evolution of the entire gyro-phase-averaged proton distribution
function was analyzed. Stability of the velocity distribution in
the total interval of possible parallel velocities v‖ was investi-
gated for each distance from the shock front at each time step.
Using a quasi-linear approach, the energy exchange between
particles and waves for each interval of resonant parallel veloc-
ities Δv‖ was analyzed and new velocity distribution function
at the interval Δv‖ as well as the corresponding wave power
spectrum was found. As a result, the dynamics of the entire
proton distribution and the wave power spectrum was studied
as a function of time at each distance from the shock front. It
was shown for the first time in Paper I how the problem of the
particles’ acceleration from the thermal distribution can be in a
natural way included in a macroscopic model of acceleration.
Second, the model constructed in Paper I takes into account
the pressure of accelerated protons that can decelerate the up-
stream flow of the solar wind and, thus, modify the shock wave
structure.

Using this model, in Paper I the proton acceleration was
studied in the case of the shock wave propagating parallel
to the ambient magnetic field. Results of the study showed
agreement with DSA models in the prediction of power spectra
for accelerated particles in the upstream region. However, this
study has also revealed the presence of spectral break in the high-
energy part of the particle spectra. It was also found that in the
downstream region close to the shock front, a strong diffusion
over perpendicular energy of particles with small absolute
values of parallel velocity v‖ in the shock reference frame
takes place. These particles were quite likely crossing the shock
interface multiple times and interacting with Alfvén waves at
cyclotron resonance conditions that are different for waves in
upstream and downstream regions. As a result, particles were
not only pitch-angle-scattered but energized as well, mainly
in the perpendicular direction. This process can be used to
explain the observations of diffuse proton population ahead of
Earth’s bow shock and thus provides a critical component of the
injection problem inherent to which most DSA-like models, are
currently being addressed by invoking the shock microstructure,
in particular, by application of the cross-shock potential (Zank
et al. 2001).

It should be mentioned that most DSA-based models silently
ignore a very important problem inherently present in the
quasi-linear treatment of the pitch-angle scattering process—the
resonant gap or lack of waves in resonance with particles having
parallel velocity around VA. This may result in slow or even no
diffusion of particles across a 90◦ angle (see, e.g., Tsurutani et al.
2000). Thus, the formation of isotropic pinch-angle-scattered
particle distribution function (PDF) required for DSA to work
may be impossible or very difficult. The approach presented
here does not rely on the complete isotropicity of PDF and
hence does not have this limitation. Indeed, multiple crossings
of the shock interface are possible even when particles are pitch-
angle-scattered in less than 90◦.
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Figure 1. Oblique shock geometry in de Hoffmann–Teller frame.

(A color version of this figure is available in the online journal.)

In this paper, we will study the proton acceleration at a shock
wave that propagates oblique to the interplanetary magnetic
field.

2. EQUATIONS AND ALGORITHM FOR
NUMERICAL SOLUTION

We consider a planar shock wave moving along the z-axis
from the +z-direction obliquely to the magnetic field with angle
θ between the magnetic field and the z-axis in the upstream
region and will work in the wave front system of reference (a
schematic drawing of the shock geometry is shown in Figure 1).

We assume that initially the shock front at z = z0 divides the
upstream and downstream plasmas with Maxwellian distribu-
tions with parameters that satisfy Rankine–Hugoniot boundary
conditions (see, e.g., Jones & Ellison 1991):

[ρu · n̂]up
d = 0,[

u · n̂
{

γ

γ − 1
P +

1

2
ρu2 +

B2

4π

}
− (B · n̂)(Bu)

4π

]up

d

= 0,

[ρu(u · n̂) + (P + B2/8π )n̂ − (B · n̂)B/4π ]up
d = 0, (1)

[B · n̂]up
d = 0,

[n̂ × (u × B)]up
d = 0.

Here, ρ, u, and P are zero, first, and second moments of the
proton distribution function, n̂ is a unit vector in the direction
of the shock normal (negative z-direction), [f (z)]up

d is the
difference between initial upstream (up) and downstream (d)
values of f (z) at the wave front.

We would like to note that we need Rankine–Hugoniot con-
ditions only at time t = 0, when isotropic particle distribu-
tions without wave fields are assumed both downstream and
upstream, hence no anisotropic pressure terms or wave pressure
contributions are required in Equation (1). Similar to Paper I,
we solve the spatial-temporal problem of plasma–wave dynam-
ics by considering the upstream and downstream plasmas as a
single plasma with inhomogeneous parameters.

As in Lee (1983), Gordon et al. (1999), and in Paper I,
we do not use any external forces and rely only on reso-
nant wave–particle interaction self-consistently included in the
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model to excite Alfvén waves and accelerate particles. We in-
troduce the wave action

W↔(t, z, ωk) = |B↔
k |2/8πωk,

which describes the wave packets propagating parallel (→) and
anti-parallel (←) to the external magnetic field in a medium with
varying parameters that are calculated from the momentum of
the PDF. |Bk|2 is the spectral density of the wave magnetic field.
The resonance conditions for interaction with such waves have
the form

ωk − kv‖ ∓ ωc = 0. (2)

Here, ωk and k are the frequency and wave number of Alfvén
waves, respectively, and ωc is the proton cyclotron frequency.
The ∓signs in Equation (2) describe interactions with waves at
normal and anomalous Doppler resonances, correspondingly.
It should be mentioned that Equation (2) includes both the
noncompressional mode (Alfvén waves) as well as the right-
hand-polarized magnetosonic mode, and the term “Alfvén
wave” is used in this paper for both of these modes.

Cyclotron resonant interaction leads to pitch-angle scattering
of particles, so resonant protons interacting at both possible
resonances (2) with each of the broadband packets’ field
W↔(t, z, ωk) diffuse along the lines (Vedenov et al. 1962;
Rowlands et al. 1966; Kennel & Engelmann 1966)

w↔ = v2
⊥ + (v‖ − v↔

ph )2 = const., (3)

where v→
ph = vA and v←

ph = −vA.
As a result of resonance interaction, a shell-like distribution

of protons f = f (w) is formed in the interval of resonant
velocities vz.

As was discussed above, we will study the dynamics of the
wave excitation and particle acceleration relying on the thermal
plasma as a source of the so-called seed population that excites
waves needed for particle acceleration. Thus, similar to Paper I,
we will analyze the stability of the entire gyro-phase-averaged
proton distribution function. By averaging the proton kinetic
equation over a period of oscillations, we obtain in quasi-
linear approximation the equation for the so-called background
distribution function of protons f (t, z, v‖, v⊥):

∂f

∂t
+ vz

∂f

∂z
= QLf (f,W→,W←). (4)

Equations for wave actions in quasi-linear approximation have
the form

∂W↔

∂t
+

∂

∂z
(v↔

gzW
↔) = QL↔

W (f,W↔). (5)

Here, v↔
gz is the z-component of the group velocity for waves

propagating in parallel and anti-parallel directions.
Right-hand-side terms in Equations (4) and (5) are quasi-

linear operators that in the case of a temporal problem have the
following form in the plasma reference frame:

QLf = 2πe2

m2
pc2

∑
∓

{
L̂

[
v2

⊥
ωkW

→
k

|v‖−∂ω/∂k| L̂f

]∣∣∣∣
v‖=v→

ph (∓ωc+ω)/ω

+ L̂

[
v2

⊥
ωkW

←
k

|v||+∂ω/∂k| L̂f

]∣∣∣∣
v‖=v←

ph (∓ωc+ω)/ω

}
(4′)

QL↔
W = v↔

ph

vA

π2

n0

ω2
c

ωk

W↔
k

∫
v3

⊥L̂f dv⊥

∣∣∣∣
v‖=v↔

ph (∓ωc+ω)/ω

(5′)

L̂ψ = ∂ψ

∂v‖
+

ωk − k||v||
v⊥k||

∂ψ

∂v⊥
.

The sum in Equation (4′) takes into account interactions at
normal and anomalous Doppler resonances. Thus, the quasi-
linear term (4′) in the right-hand side of Equation (4) takes
into account all four possible interactions with MHD waves
propagating in both directions along the magnetic field. The
“−” sign corresponds to normal Doppler resonance and “ + ”
sign corresponds to anomalous resonance for wave packets
propagating parallel (→) and anti-parallel (←) to the magnetic
field. The spatial dependence of waves generated or damped
due to any of these four resonance interactions will probably
be rather complicated, but the above description should allow
predicting not only the wave spectrum but also the wave helicity
as a function of distance from the shock. It should be mentioned
that even in the upstream region the wave polarizations “do not
seem to be confirmed” by the DSA theories (Kennel et al. 1986).

Equations (4) and (5) describe the processes of wave excita-
tion and particle acceleration in the system under consideration.
Since these equations are non-stationary and non-homogeneous
nonlinear equations, we solve them numerically. The region
over z with size L where the processes of wave excitation and
particle acceleration take place stretches in both directions from
the shock front. The size L of the region is chosen to be much
larger than the characteristic scale of the quasi-linear relaxation.
We divide the region L into small intervals with locations

zi, i = 1, 2, 3, . . . Nz (6)

and will solve Equations (4) and (5) at each interval for each
time step. To do this, we introduce the wave spectrum with a
wide band of possible wave numbers:

ki, i = 0, 1, . . . Nk (7)

to assure resonant cyclotron interaction with protons that have
any parallel velocity from the entire possible interval of resonant
velocities v‖ on their distribution function.

Similar to Paper I, scale-separation techniques will be used to
numerically solve Equations (4) and (5) by assuming that char-
acteristic temporal and spatial scales of pitch-angle diffusion
(microscopic scales) are smaller than the time step and size of
each spatial interval (macroscopic scales). This means that the
steady state of the plasma–wave system is developed at each
time step at any given distance from the shock front. The steady
state at some interval of resonant velocities is settled in two
cases: (1) when the pitch-angle-averaged distribution function
is formed L̂f = 0 or (2) when the resonant waves are totally
absorbed Wk = 0 at the interval of resonant velocities being con-
sidered. Thus, at the end of each time step, the right-hand-side
terms in Equations (4) and (5) are equal to zero.

For the purpose of calculating the input from the resonant
particles to the waves and vice versa, we divide the entire
region of possible parallel and perpendicular velocities into
small intervals with grid locations

vi
‖, i = 1, 2, 3, . . . Nv‖ (8)

vi
⊥, i = 1, 2, 3, . . . Nv⊥ . (9)
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To calculate the input from waves to resonant particles and vice
versa, we need to find the free energy available in the particle
distribution for each resonant velocity interval. The amount
of free energy available in nth interval of resonant velocities
v‖ ∈ [vn

‖ −δv‖, vn
‖ +δv‖] is defined by the difference between the

energy contained in the current PDF and the energy contained
in the pitch-angle-scattered PDF, both taken over the resonance
interval. We find the pitch-angle average function at each time
step using conservation of proton number along diffusion lines
(3) (see Paper I):

〈f (t, z, v‖, v⊥)〉↔ =
∫
S↔

n
f (t, z, w↔, α − α′)dα′∫

S↔
n

dα′ , (10)

where the α coordinate is directed along lines w↔ = const.
and S↔

n is the nth interval of resonant velocities for waves
propagating parallel (→) or anti-parallel (←) to the external
magnetic field v‖ ∈ [vn

‖ − δv‖, vn
‖ + δv‖].

The amount of particle free energy for each resonance region
is obtained as a variation of the proton kinetic energy in the final
and initial states in a frame of reference where the bulk of the
plasma is at rest:

ΔF↔
m (t, z) = mp

2

∫
S↔

m

[〈f (t, z, v‖, v⊥)〉↔ − f (t, z, v‖, v⊥)]

× {v2
⊥ + [v‖ − u(t, z)]2}dv, (11)

where u(t, z) is the bulk plasma velocity.
We calculate the balance of energy between waves and

particles for each resonance interval as

ΔE↔
n (t, z) =

∑
k∈{n}

E↔(t, z, ωk) − ΔF↔
n . (12)

Here, ΔE↔
n (t, z) is the change of the wave energy density

in the nth resonance region and {n} represents all harmonics
belonging to the nth resonant interval that can be found from
the resonance condition (2). The first term in the right-hand
side of Equation (12) is the total wave energy density in the nth
resonance region at the previous time step, with the quantity
E↔(t, z, ωk) defined by

E↔(t, z, ωk) = −W↔
k

∂D

∂ωk

ω2
k

k2c2
(13)

D(ωk, k) = k2c2 + ω2
pp

ωk

ωk − ωcp

+ ω2
pe

ωk

ωk + ωce

, (14)

where E↔(t, z, ωk) is the sum of the potential and kinetic energy
densities of the wave with frequency ωk that is defined from the
equation

D(ωk, k) = 0. (14′)

In our case, the potential and kinetic wave energy densities are
equal to each other and E↔(t, z, ωk) = |B↔

k |2/4π .
The algorithm for numerical solutions of Equations (4) and

(5) can be described by the following procedure.

1. In accordance with the assumption that the steady state of
the plasma–wave system is developed at each time step
at any given distance from the shock front, we update the
distribution function as well as the wave spectrum at the
beginning of each time step by integrating Equations (4)
and (5) with zero right-hand sides. We obtain the new

distribution function at every z × v‖ × v⊥ grid location
by using flux conservation and assuming one-dimensional
streaming of plasma in force-free environment. The waves
are updated for every zi by using conservation of their action
in streaming medium with locally varying parameters.

2. The new distribution function is used to find the proton
density, temperature, as well as the local rest frame of
reference for every zi. Using these parameters, we calculate
the pitch-angle diffusion lines (Equation (3)).

3. By using Equation (10), we obtain the pitch-angle-scattered
distribution function in every resonant region v‖ ∈ [vn

‖ −
δv‖, vn

‖ + δv‖].
4. After that, using Equation (11), we check if the energy

of the particles is increased or decreased, that is if the
distribution function is stable or unstable with respect to
wave generation in the current resonance interval.

(a) If it is unstable, we use the pitch-angle-scattered PDF
as a new one for the current resonance interval. We
assign the available energy to the waves in this interval
by using Equation (12) and proceed to the next resonant
interval.

(b) If the PDF is stable but waves are present in the
current resonant region, the waves will interact with
the particles and transfer some or all of their energy.
The new PDF and the new wave level in the resonant re-
gion are found by using the same Equations (10)–(12).

5. Since the levels of the newly found PDF can be different in
adjacent resonant intervals this locally stable PDF does not
yet represent the global wave–particle equilibrium state.
In order to find this global state we use an aggregation
procedure, that is, we combine adjacent resonant intervals
where the PDF has been pitch-angle-scattered and use
Equation (10) to find the common pitch-angle-scattered
PDF. We then repeat the entire procedure (4–5) iteratively
until we arrive at the (quasi)-stationary partitioning of
energy between waves and particles.

In the case when initially there are waves in the
plasma, we should first perform procedure 4(b) by using
Equations (10)–(12) and then proceed after that with the solu-
tion of equations at the first time step using the above described
numerical algorithm for the solution.

We should stress that the state with the (quasi)-stationary
partitioning of energy between waves and particles (mentioned
in item 5) is not a stationary state of the whole system of
Equations (4) and (5). The isolation of this state in our numerical
procedure merely represents the fact that the particle pitch-angle
scattering due to cyclotron interaction is the fastest process,
hence, the partitioning of wave–particle energy looks quasi-
stationary in comparison with all other processes, including
differential streaming of particles.

3. RESULTS OF SOLUTION

To show that protons are accelerated from the thermal core
and that the waves needed for their acceleration are excited
due to cyclotron instability (Sagdeev & Shafranov 1961), we
assume that initially there is no seed population and no waves
in the system.

As was discussed before, we integrate the system of
Equations (4) and (5) for the case of oblique shock. We work in
the shock front reference frame and postulate that the upstream
and downstream plasmas are Maxwellian with temperatures that
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are related by Rankine–Hugoniot boundary conditions (1). The
dimensionless equations that are employed to update the distri-
bution function and the wave spectrum at the beginning of each
time step (procedure 1 of the algorithm) have the form

∂f

∂t
+ vz

∂f

∂z
= 0 (15)

∂W↔

∂t
± cos θ

∂

∂z

(
vA

vA1
W↔

)
= 0. (16)

And the energy balance Equation (12) can be written as

ΔB̃↔2
n (t, z) = B̃↔2

n (t, z)

− πβup

∫
S↔

n

[〈f (t, z, v‖, v⊥)〉↔ − f (t, z, v‖, v⊥)]

× {
v2

⊥ + [v‖ − u(t, z)]2
}
v⊥dv⊥dv‖. (17)

Here, βup = v2
Tup/v

2
Aup, vTup, and vAup are the initial values of the

gas kinetic-to-magnetic pressure ratio, the proton thermal veloc-
ity, and Alfvén speed in the upstream region correspondingly.
ΔB̃↔2

n in Equation (17) represents the change of the dimension-
less wave magnetic energy density in nth resonance region (see
Equation (12)).

In obtaining Equations (15)–(17), we introduced dimension-
less magnetic variance

B̃2
dls = B̃2/B2

0 , (18)

where B̃2 = ∑ |Bk|2
and used a normalized PDF

fdls(t, z, v‖, v⊥) = v3
Tp

nup
f (t, z, v‖, v⊥). (19)

We also introduced dimensionless velocity, length, and time

vdls = v
vTp

, tdls = t

t0
, zdls = z

z0
. (20)

Here, z0 and t0 are macroscopic length and time, respectively,
connected by the relation z0 = vTupt0.

We omitted the subscript “dls” in Equations (15)–(17).
To cover the possible interval of accelerated energies up to

several MeV per nucleon, we choose the value of maximal
velocity of protons as v‖ max = 103. The size of the parallel
velocity interval was chosen as Δv‖ = 0.25.

We used the following grid dimensions in the numerical
solution of Equations (4) and (5):

Nz = 100, Nv‖ = 4000, Nv⊥ = 100, (21)

and the number of harmonics in this study was Nk = 106.
We studied the case of an oblique shock from 1978

November 11 and 12. The particle and wave observations for
this event were described in detail (see Kennel et al. 1984;
Tsurutani et al. 1983). The parameters of the solar wind plasma
measured during the observations were

B0 = 6.85nT , uup = 2.4 × 107cm s−1, nup = 4 cm−3.

All plasma parameters have been chosen to match the observed
values so as to generate a shock wave propagating obliquely

Figure 2. Snapshot of the proton distribution function integrated over the
perpendicular velocity

∫
f (t, z, v‖, v⊥)v⊥dv⊥ typical for spatial/temporal area

in the upstream region close to the shock front. The dashed line is the line v
−β
‖ .

(Looking at this plot one should avoid mistakenly assuming that it contradicts
the first principles. Indeed, the particle number is not conserved—the total area
under the solid line (the late-time distribution) is greater than the area under
the dot-dashed curve. But the figure shows only a small local part of the time-
dependent PDF, hence the particle number is not required to be conserved.)

to the magnetic field at the angle θ = 41◦ with the shock
compression value equal to r = uup/ud = 3.3. No initial wave
activity has been introduced either upstream or downstream of
the shock and waves were self-consistently generated by the
model itself.

One of the main results obtained in this study is the spectrum
of the accelerated protons as a function of the parallel velocity
shown in Figure 2 by using log–log scale. One can see a power-
like spectrum of protons with the exponent close to β = 4.3
that is related to the compression value β = 3r/(r − 1). This
result is in agreement with that of the DSA-based theory (see,
e.g., Gordon et al. 1999). However, solution of quasi-linear
equations in the frame of our model has shown that there is a
break on the spectrum at large parallel velocity.

Since the whole distribution function of protons is analyzed
in our model, we can find out how the initial profiles of density
and velocity change due to the wave excitation and particle
acceleration. Simulation results for the density and velocity
profiles and wave magnetic field amplitude are shown in the
two top panels of Figure 3. For comparison the initial profiles
of the density and velocity are displayed as well by dotted lines
with the front initial position at z = 0.33. One can see that the
shock profiles do not change significantly with time.

The very interesting result obtained in this simulation is the
distribution of the intensity of waves excited in the process
of the proton acceleration (see the bottom panel in Figure 3).
It can be seen clearly that the wave intensity is much higher in
the downstream region with maximal intensity at the shock front
itself. Although waves are mainly excited in the upstream region,
they are convected by streaming plasma (uup � VA) to the shock
front, and greatly amplify the wave intensity at the front and in
the downstream region. The amount of wave field amplification
due to this convection depends on the shock parameters and
may result in the development of a highly nonlinear region
with B̃/B0 � 1. The quasi-linear approach in this case can
give, of course, only qualitatively correct results. We would
like to emphasize that this large-amplitude wave field at the
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Figure 3. Profiles of density, bulk velocity, and wave amplitude (from top to bottom, ordinate units are arbitrary, z is in units of 2 × 106rB , where rB is the proton
gyroradius). In the first two panels, the solid lines show calculated profiles and the dotted lines correspond to the initial shock discontinuity.

Figure 4. Upstream wave spectra near the shock.

(A color version of this figure is available in the online journal.)

shock interface does not necessarily preclude the applicability
of the quasi-linear approach as the quasi-linear treatment is
only indirectly responsible for its development. We should also
emphasize that the energy balance approach used for integration
of Equations (4) and (5) or Equations (15) and (16) is based on
a simple assumption that the wave–particle system relaxes to
the equilibrium state (that is to the state where there are no
energy exchanges between waves and particles). The quasi-
linear formalism is not required for derivation of the energy
balance method. And hence the method can be applied even for
large-amplitude monochromatic wave regimes (similar to the
waves used in the acceleration model by Sugiyama & Terasawa
1999 where quasi-linear approach is not applicable).

The power spectrum of the excited waves in the upstream
region close to the shock front is shown in Figure 4. The spectral

density has a maximum at the frequency around 0.1 ΩH with a
drop of wave power at lower and higher frequencies.

In Figure 5, a set of contour plots of the proton distribution
function in the downstream region in close vicinity of the shock
front is shown. One can see that in addition to pitch-angle
diffusion, the particles in some intervals of the parallel velocity
are energized mainly in the perpendicular direction.

4. DISCUSSION

In this model a quasi-linear approach is used inside each
resonant interval so the points on the parallel velocity grid inside
each resonant interval should be close enough to each other to
reach the overlapping of the trapping regions of neighboring
harmonics and to make the quasi-linear approach applicable.
The condition on the distance over v‖ between two neighboring
points (two neighboring harmonics) has the form

δv‖ < {Ωcpkv⊥}1/2/k, (22)

where Ωcp = eB̃/mc, B̃ = (|Bk|2 δk)1/2 is a root-mean-
square magnetic field of the wave harmonic, v⊥ ≈ vT is the
characteristic perpendicular velocity, δv‖, δk are the distances
between the neighboring harmonics over the parallel velocity
and the wave number, respectively, and |Bk|2 is the spectral
energy density of the electromagnetic fluctuations.

By using cyclotron resonance condition it follows that

δv‖ <

(
e2 |Bk|2
m2c2

v2
T

ωc

)1/3

. (23)

The width of each resonant interval should satisfy the condition

Δv‖ � δv‖. (24)

We checked that conditions (23) and (24) were satisfied in our
study.
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Figure 5. Time sequence of contour plots (v‖ − v⊥) in the downstream region in close vicinity of the shock front (from left to right, then from top to bottom).

Our model does not restrict itself by following only the ener-
getic particles and takes into consideration the thermal particles
as well, so it permits us to find out how the shock is modified
due to the acceleration process. We would like to note that we
consider a collisionless plasma and do not include any nonreso-
nant instabilities in the model. Although nonresonant fire-hose
instability may be responsible for initial shock formation, the
results of numerical simulations suggest (Quest 1988) that it
is not important for containment of already established shocks.
The shock wave can be formed in collisionless plasma only
due to the collective mechanism of dissipation (see Sagdeev
1966). The density and velocity profiles shown in Figure 3
demonstrate the high efficiency of collisionless dissipation by
resonance cyclotron interaction in supporting the initially cre-
ated upstream–downstream asymmetry and in keeping the shock
wave almost intact.

Another interesting feature that the model revealed is the
presence of spectral break in the high-energy part of the particles
power spectrum. The possible explanation of the origin of the
break may lie in the non-stationary nature of the model. We
found that the position of the break depends both on distance
from the shock front and on time elapsed since the acceleration
process has started. As acceleration to higher energies requires
more time it is not clear yet if an asymptotic stationary solution
without the break can be reached in a finite time for any shock
configuration or, on the contrary, if the position of the break will
stabilize at some point in time.

The solution obtained above demonstrated that neither seed
population nor initial waves was needed for the acceleration pro-

Figure 6. Updated distribution function at the beginning of the first time step in
the upstream region close to the shock front.

cess to start. We would like to note once more that all previous
DSA-based macroscopic models needed a seed population for
the description of the acceleration process at the shocks. There
was an understanding that the “seed” population is injected from
the thermal background (see, e.g., O’C Drury 1983; Jones & El-
lison 1991). Malkov & Völk (1995) have revealed that the tail
protons from the downstream thermal distribution penetrating
into the upstream region and exciting waves needed for par-
ticle acceleration are just this seed population. However, this
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v‖

v⊥

vdph vupphShock Frame v‖ = 0

Figure 7. Ions interacting with waves in the upstream region (phase speed v
up
ph)

move along the solid circles. After crossing the shock front to the downstream
region, interaction with downstream waves (phase speed vd

ph) makes them move
along the dashed circles. If ions change the parallel velocity to a negative value
(i.e., directed upstream) as they interact with downstream waves, they can return
to the shock front and escape to the upstream region (Sugiyama & Terasawa
1999).

(A color version of this figure is available in the online journal.)

mechanism, studied in local approximation by Malkov & Völk
(1995), could not be included, in principle, in DSA-based
macroscopic models because they are limited by considera-
tion of energetic particles only. We would like to note that the
Malkov–Völk mechanism is automatically incorporated in our
macroscopic model. In Figure 6, the updated distribution func-
tion of protons (see procedure 1 of the algorithm) in the upstream
region close to the wave front is shown at the beginning of the
first time step. This is just the plasma-beam distribution with the
beam component formed by the tail particles of the downstream
distribution that crossed the shock front. This distribution is
unstable with respect to the excitation of MHD waves that is
needed for the resonant particles to change their velocities. As
a result, some particles can cross the shock front once more and
eventually be accelerated.

Detailed analysis of the proton distribution function in the
downstream region presented in Figure 5 has shown that the pro-
ton energization takes place at the values of the negative parallel
velocities close to the shock speed. As was discussed before,
protons with negative velocities larger than the shock velocity
can escape the downstream region. The energizing mechanism
is similar to the one proposed by Sugiyama & Terasawa (1999)
to explain the acceleration of particles when a monochromatic
Alfvén wave of large amplitude exists at the shock front. In this
mechanism protons with this “boundary” parallel velocity can
cross the shock several times. Due to resonant interaction with
waves excited in upstream and downstream plasmas they move
over diffusion lines that are different since the phase velocities
(Alfvén speed) are different in these plasmas (see Figure 7). As
a result of such a motion, protons are not only pitch-angle-
scattered but energized as well mainly in the perpendicular
direction.

We compared the wave spectrum obtained in this study with
observations and with results of the DSA model (Gordon et al.
1999). To do this we used the following relations between the
frequency and wave number and corresponding power densities
(see Gordon et al. 1999):

2π f = kVsw = kVsw cos 25◦

Pf df = 2B2
k dk,

where the factor of two arises because the frequency f includes
both signs of the wave number k.

In Figure 8, the observed frequency spectrum (Kennel et al.
1986) as well as two spectra—(1) calculated by using our model
and (2) obtained by Gordon et al. (1999)—are shown. It is pos-
sible to say that the wave power density spectrum obtained here
shows more reasonable agreement with observations than DSA
results.

It should be mentioned that we also found qualitative agree-
ment of our model with the results of the first statistical

Figure 8. Upstream wave spectra near the shock. The upper two lines are theoretical predictions of Gordon et al. (1999) and the results of the analysis of ISEE-3 data
from Kennel et al. (1986; 0.1 Hz frequency in spacecraft frame corresponds to 10−1 ω/ΩH in solar wind frame).

(A color version of this figure is available in the online journal.)
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observational study on shock acceleration of particles
(Tsurutani & Lin 1985). Based on the strength or speed of
the shock we were able to identify several distinct signatures of
behavior of accelerated particles in the shock vicinity. Sharp in-
tensity spikes at the shock or slow rise of upstream ion fluxes has
been spotted in different ranges of shock parameters. Of course,
quantitative comparison will require more detailed study across
wide range of shock parameters and will be reported elsewhere.

We would like to note that we limited ourselves in this study
by considering only resonant wave–particle interactions similar
to DSA-based models. Including a nonresonant interaction is a
challenging problem. We defer the discussion of possible effects
of this interaction to a subsequent paper.

Another unsolved problem in the study of shock acceleration
mechanism is the role of nonlinear wave–wave interactions
in the upstream region. We studied a parametric interaction
of Alfvén and acoustic waves that led to the development of
nonlinear structures by using the so-called derivative nonlinear
Schrödinger (DNLS)-type equation (Shevchenko et al. 2002). In
particular, it was shown (Shevchenko et al. 2003) that nonlinear
interaction can lead to the development of short large-amplitude
magnetic structures (SLAMSs) that were observed in the solar
wind by Schwartz et al. (1992). Such nonlinear wave structures
can reflect protons (see, e.g., Claßen & Mann 1998) and thus
add to the energy that goes to downstream heating and wave
excitation. Our approach permits us to include the wave–wave
interaction in the model of the shock acceleration. We will
consider these questions in detail elsewhere.

The authors are grateful to Martin Lee and Gary Zank
for useful critical remarks and suggestions. The NASA grant
NNX09AG95G is acknowledged for support of this study.
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