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ABSTRACT

We investigate the following by two-dimensional axisymmetric relativistic hydrodynamical simulations: (1) jet
propagations through an envelope of a rapidly rotating and collapsing massive star, which is supposed to be a
progenitor of long-duration gamma-ray bursts (GRBs); (2) breakouts and subsequent expansions into stellar winds;
and (3) the accompanying photospheric emissions. We find that if the envelope rotates uniformly almost at the mass
shedding limit, its outer part eventually stops contracting when the centrifugal force becomes large enough. Then
another shock wave is formed, propagates outward, and breaks out of the envelope into the stellar wind. Whether
the jet or the centrifugal bounce-induced shock breaks out earlier depends on the timing of jet injection. If the shock
breakout occurs earlier, owing to a later injection, the jet propagation and subsequent photospheric emissions are
affected substantially. We pay particular attention to observational consequences of the difference in the timing of
jet injection. We calculate optical depths to find the location of photospheres, extracting densities, and temperatures
at appropriate retarded times from the hydrodynamical data. We show that the luminosity and observed temperature
of the photospheric emissions are both much lower than those reported in previous studies. Although luminosities
are still high enough for GRBs, the observed temperatures are lower than the energy at the spectral peak expected
by the Yonetoku relation. This may imply that energy exchanges between photons and matter are terminated deeper
inside or that some non-thermal processes are operating to boost photon energies.
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1. INTRODUCTION

There is mounting observational evidence that links
gamma-ray bursts (GRBs) to the death of massive stars (Woosley
& Bloom 2006), and it is widely believed that GRBs are asso-
ciated with the formation of a black hole or a magnetar via
the collapse of rapidly rotating massive stars (Woosley 1993;
Paczynski 1998; MacFadyen & Woosley 1999). Although we
do not know exactly how a large amount of energy is generated,
the most promising scenario is that a relativistic jet is launched
from the central engine by neutrino annihilation or magnetohy-
drodynamical processes, propagates through a progenitor star
and stellar wind (MacFadyen & Woosley 1999), and then dis-
sipates its kinetic energy by shocks or relativistic turbulences
(Piran 2004; Pe’er 2008; Lazzati et al. 2009; Lazar et al. 2009;
Kumar & Narayan 2009), producing the prompt emissions of
GRBs or X-ray flashes.

A large number of numerical works have been devoted so
far to the understanding of relativistic jet propagations in the
stellar envelope (Aloy et al. 2000; Zhang et al. 2003, 2004;
Mizuta et al. 2006; Mizuta & Aloy 2009; Morsony et al.
2007; Tominaga et al. 2007; Lazzati et al. 2009; Mizuta et al.
2010b). These simulations have demonstrated that the jet is
confined by the pressure of a hot cocoon as it penetrates
through the stellar envelope. The Kelvin–Helmholtz instabil-
ity, which occurs between the cocoon and the jet, produces
rich internal structures (Lazzati & Begelman 2005; Morsony
et al. 2007). More recently, Lazzati et al. (2009) and Mizuta
et al. (2010b) computed the jet propagation beyond the stel-
lar surface and observed that these internal structures in the

jet and cocoon leave their traces until later times. They also
claimed that the hot jet produces very bright and highly ef-
ficient photospheric emissions in the prompt phase of GRBs.
These very efficient photospheric emissions may solve the ef-
ficiency problem of the prompt emission (Ioka et al. 2007).
Interestingly, thermal emissions were indeed recently iden-
tified for some long GRBs (Abdo et al. 2009; Ryde et al.
2010; Guiriec et al. 2010). The photospheric emissions from
the relativistic jet are hence attracting much attention from the
GRB society these days (Pe’er 2008; Toma et al. 2010; Ioka
2010).

It should be noted that the previous numerical studies on
the jet propagation ignored the infall of the stellar envelope.
According to the collapsar model, on which this paper is
based, the gravitational core collapse sets in just like ordinary
supernovae when the density reaches ρ ∼ 109.5 g cm−3 or the
temperature exceeds T ∼ 5 × 109 K and electron captures
or endothermic photodissociations of nuclei reduce pressure
(see, e.g., Kotake et al. 2006). A shock wave produced by core
bounce stalls in the core and a large amount of matter accretes
on a timescale of seconds onto a proto-neutron star at first and
into a black hole later. The so-called prompt shock wave either
remains stagnated near the black hole or is swallowed into it.
The core collapse produces a rarefaction wave at the boundary
of the core and envelope, which then propagates outward
through the envelope and induces the infall of the envelope when
it arrives. Thus, neglecting the envelope motion in studying
the jet propagation is justified only when the jet is launched
very early on, possibly soon after the black hole is formed
(MacFadyen et al. 2001; Zhang et al. 2003), and the infall of
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the envelope is not yet substantial. If the jet launch is delayed
somehow, on the other hand, the profile of the envelope will be
modified and the jet propagation will be affected. The stellar
envelope may also eventually cease to infall. In fact, the outer
portion of the stellar envelope is likely to have an angular
momentum large enough to terminate the infall by centrifugal
forces (Woosley & Heger 2006). Indeed, Lindner et al. (2010)
observed in their long-term simulations of rotational collapse
of massive stars that a shock wave is generated by centrifugal
forces and the outer portion of the stellar envelope is eventually
expelled. Since we do not know exactly when the jet is launched,
it is important to study the influence of envelope dynamics on
the jet propagation and subsequent prompt emissions.

Motivated by these facts, we numerically investigate the
relativistic jet propagations through a non-stationary envelope,
moving either inward or outward, of a rapidly rotating massive
star, varying the timing of jet injection. We assume that the
prompt shock wave of the core bounce origin has already been
swallowed into the black hole and what is supposed to occur
in the core after bounce, such as neutrino heating and various
hydrodynamical instabilities, does not affect the dynamics of
the envelope. We do not specify the mechanism of the jet
launch from the central engine, which is under controversy at
present, and inject the jet with appropriate properties from the
computational inner boundary by hand, following the common
practice in this field. Our focus is on the jet propagations in the
non-stationary envelope and its influences on the subsequent
photospheric emissions. This paper is organized as follows. In
Section 2, we describe the models and numerical procedures.
We present our main results in Section 3. We conclude the paper
with the summary of our findings in Section 4.

2. METHODS

As mentioned above, in this paper we compute the jet
propagations through the envelope of a rotating massive star
into a stellar wind, taking into account the core-collapse-
induced motions of the envelope under the assumption that
the prompt shock wave is soon sucked into the black hole
and various processes in the core such as neutrino heating
of accreting matter and hydrodynamical instabilities do not
affect the dynamics of the envelope. In order to simulate
the infall of the envelope induced by the rarefaction wave
that is generated by core collapse, we take rather involved
multiple steps. More specifically, we (1) construct massive
star envelope models in rotational equilibrium; (2) put quasi-
steady winds on top of them; (3) simulate rotational collapse
of the envelope, generating a rarefaction wave by artificially
reducing the pressure gradient at the inner boundary; (4)
compute subsequent jet propagations in the envelope; and (5)
calculate photospheric emissions as a postprocess. We employ
the so-called HSCF scheme in the first step and perform two-
dimensional (2D) relativistic hydrodynamical simulations in the
third and fourth steps. In the following, we explain what is done
at each step in more detail in order to facilitate the reader’s
understanding of our results in the next section.

2.1. A Massive Star Envelope in Rotational Equilibrium

The first step is a preparation of the initial model for
dynamical simulations in the later phases. In this subsection,
we construct a 2D axisymmetric model of a rotating massive
star envelope in dynamical equilibrium. We employ the method
developed by Hachisu (1986) and Kiuchi et al. (2010). It should

be noted here that currently the most elaborate stellar evolution
models are still unable to fully implement rotational equilibrium
and neglect the non-spherical deformation of rotating stars. In
this study, however, the rotational equilibrium is crucial, since
the infall of the envelope commences only after the rarefaction
wave generated at the boundary of the core and envelope arrives.
If the initial model is not in dynamic equilibrium, however, even
outer parts of the envelope begin to move immediately after the
simulation is started and, more often than not, false shock waves
are produced as a consequence.

Our envelope model is constructed so as to mimic the
16TI model by Woosley & Heger (2006), which is currently
supposed to be one of the most promising GRB progenitor
models. Since the outer envelope of 16TI is almost radiation
dominated, we employ a polytropic equation of state (EOS)
with the adiabatic index of γ = 4/3. We impose a rigid rotation
as an approximation to the outer envelope of 16TI. Figure 1
shows the density profiles on the rotational axis and equator for
our model together with the one for 16TI. Also displayed in
the figure is the density distribution in the meridian section for
our model. Our model agrees fairly well with 16TI except in
the innermost portion, where the rotation is not rigid in 16TI.
This discrepancy is not very important for the investigation in
this study, since that part is sucked into the inner boundary
much earlier than the jet injection. Our envelope model has a
total mass of M � 14 M� and a specific angular momentum of
jsp � 1.5×1019 cm2 s−1 at the stellar surface, which is close to
the mass shedding limit. The rotation velocities of our model are
slightly lower than those of 16TI in general. The specific angular
momentum distribution on the equatorial plane as a function of
enclosed mass is shown in Figure 2. Here the enclosed mass
is defined as a mass within a certain radius. Also presented
in this figure is the specific angular momenta at the innermost
stable circular orbit (ISCO) for Schwarzschild black holes as
a function of their masses. The two curves intersect with each
other at the enclosed mass of ∼8 M�. Envelope matter that has a
larger enclosed mass than this value cannot fall down to the black
hole and is halted somewhere outside the ISCO by centrifugal
forces. As a matter of fact, we find a centrifugal bounce and
the formation and subsequent propagation of a shock wave (see
Section 2.4).

2.2. Special Relativistic Hydrodynamic Code

Before proceeding to subsequent steps, we describe the
numerical methods employed for the hydrodynamic simulations
done in Steps 2–4. We employ a 2D axisymmetric, special
relativistic hydrodynamics code. Equatorial symmetry is also
assumed in this paper. The basic equations we solve in this
study are given as follows in the geometrical units G = c = 1,
where G and c are the gravitational constant and speed of light:

∂tρ∗ + ∂j (ρ∗vj ) = 0, (1)

∂tSr + ∂j

(
r2 sin θ T j

r

) =
r2 sin θ{−T 00 ψ,r + r T θθ + r sin2 θ T φφ}, (2)

∂tSθ + ∂j

(
r2 sin θ T

j

θ

) =
r2 sin θ{−T 00ψ,θ + r2 sin θ cos θ T φφ}, (3)

∂tSφ + ∂j

(
r2 sin θ T

j

φ

) = 0, (4)
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Figure 1. Density profiles on the rotational axis (z-axis) and equator (x-axis) for the envelope model in this paper and model 16TI by Woosley & Heger (2006, left
panel), and the density contour (log scale) in the meridian section of the same envelope model (right panel).

(A color version of this figure is available in the online journal.)

Figure 2. Profile of specific angular momentum on the equatorial plane for the
envelope model in this paper as a function of included mass (green line). The
red line shows the specific angular momenta at the innermost stable circular
orbit (ISCO) for Schwarzschild black holes as a function of their masses.

(A color version of this figure is available in the online journal.)

∂tτ + ∂j (r2 sin θ T 0j − ρ∗vj ) = −r2 sin θ T 0iψ,i , (5)

∂t (ρ∗A) + ∂j (ρ∗Avj ) = 0, (6)

Δψ = 4πρ0

{
2h(ut )2 − h + 2

p

ρ0

}
, (7)

where the subscript j runs over r and θ , and A, T μν , uμ, and ψ
denote the mean molecular weight, energy–momentum tensor
of ideal fluid, four-velocity of matter, and gravitational potential,
respectively, and

ρ∗ ≡ r2 sin θρ0u
t , (8)

Si ≡ r2 sin θT 0
i , (9)

τ ≡ r2 sin θT 00 − ρ∗. (10)

The above equations are derived from the Einstein equations
and energy–momentum conservation equations by the weak-
field approximation, ignoring the time derivative of gravitational
potential and space derivatives of three-dimensional space
metric. Since our computational domains do not contain the
origin, the gravity of the central object is added as a point mass
at the center. The time evolution of the mass of the central object
is taken into account by integrating the mass flux crossing the
inner boundary of the computational domain.

We solve the Poisson equation for the gravitational po-
tential, Equation (7), by MICCG and the hydrodynamical
equations, Equations (1)–(6), by the central scheme (Kurganov
& Tadmor 2000; Nagakura & Yamada 2008). In the latter, using
the piecewise parabolic method (PPM) interpolation method
and the total variation diminishing (TVD) Runge–Kutta time
integration, we achieve second-order accuracy in both space
and time.

The EOSs employed in this paper are the following. For Steps
2 and 3, that is, the construction of the stellar wind and the
computation of the envelope collapse, the EOS by Blinnikov
et al. (1996) is used, in which the temperature and mean
molecular weight are introduced to avoid inconsistency with
Step 1, where they are also accounted for. On the other hand,
the so-called γ -law EOS, p = (γ − 1)ρ0ε, with p, γ = 4/3,
ρ0, and ε being the pressure, adiabatic index, rest-mass density,
and specific internal energy, respectively, is adopted for the
jet simulations in Step 4 for simplicity. Since we find that the
envelope is radiation dominated at the time of jet launch, this is
a good approximation.

It is a consensus that high-resolution simulations are nec-
essary for the investigation of interactions between the jet
and stellar envelope in the jet-drilling phase, since the
Kelvin–Helmholtz instability and turbulent motions inevitably
take place. When the velocity of the jet head is smaller than the
local sound speed at the hot spot, which is indeed the case for
the jet propagations in the stellar envelope, a back flow is bent
and pinches the jet path (Mizuta et al. 2010a). In order to treat
these effects adequately, we employ an adaptive mesh refine-
ment (AMR) technique, in which the forward shock is searched
at each time step and the number of mesh points in its vicinity
is increased in each coordinate direction.

In the Appendix, we show the results of several numer-
ical tests meant to validate our hydrodynamics code used
in this paper. We also demonstrate that the rotational mas-
sive stellar envelope, which is constructed by the HSCF
scheme at Step 1, does not change the configurations in a dy-
namic simulation, which is clear evidence that both codes are
reliable.

2.3. A Quasi-steady Wind

Massive stars experience mass losses in general, and the
GRB progenitors are not exceptions (Campana et al. 2006;
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Soderberg et al. 2008). We hence take into account the stellar
wind in our initial model (Step 2). It is noted, however, that
theoretical understanding of the driving mechanism of stellar
winds and mass losses of massive stars is far from satisfactory,
and addressing these issues is much beyond the scope of this
paper. We are, therefore, satisfied with the construction of quasi-
steady winds without specifying its driving mechanism. What
is important here is that the wind thus obtained does not change
its configuration very much before the jet reaches it.

We first construct a spherically symmetric, steady wind
configuration, neglecting rotation. For this purpose, we perform
a one-dimensional (1D) hydrodynamic simulation, using the
code described above, in the region from the stellar surface up
to the distance of 1013 cm. The initial configuration is rather
arbitrary. Fixing the density, pressure, and velocity (or mass
loss rate) at the inner boundary, we run a long-term simulation
until the wind has settled to a steady state. The values of the
density and pressure are chosen so that they will be continuous
when the wind is appended to the envelope model constructed
in Step 1. Rotation is then added so that the specific angular
momentum should be constant along each radial ray. The values
of the specific angular momentum at the inner boundary are
chosen in such a way that they should be continuous from
the envelope to the wind. The wind obtained in this way is
not exactly steady anymore. Although rotational, steady wind
configurations could be obtained in a similar way, it turns out
that the wind configuration does not change much during the jet
propagation through the envelope and wind if rotation is added
this way. We hence do not pursue further elaboration in this
paper.

By changing the inner boundary condition, we can construct
various wind models, both dense and tenuous. In this paper,
however, we adopt only an optically thin model to elucidate
the effects of envelope motions on the jet dynamics. Other
wind models and their influences on jet propagation will be
investigated in the sequel to this paper (H. Nagakura 2011,
in preparation). The photosphere of the present wind model
is located at the stellar surface and the mass loss rate is
Ṁ ∼ 10−6 M� yr−1. Figure 3 shows the profiles of our wind
model. The density and pressure distributions nearly obey power
laws with the power-law indices being approximately −2.14
and −2.82, respectively. The outflow in the wind becomes
supersonic at r ∼ 7.5 × 1010 cm and its velocity asymptotically
approaches vr

asym ∼ 2 × 108 cm s−1.

2.4. Collapse of the Massive Star Envelope

Using the envelope and wind configurations obtained above as
an initial condition, we perform 2D axisymmetric simulations
of the envelope collapse (Step 3). The computational domain
covers at first a region of 5×106 cm < r < 2×1012 cm, which
includes the entire envelope and the core region except the black
hole and its close vicinity, as well as the inner part of the wind.
The inner boundary is shifted outward later (see below). The
radial grid consisting of 224 points is not uniform, with the grid
width changing with the density scale height. The angular grid
covers a quadrant of the meridian section and is uniform with
60 points.

In reality, as we mentioned earlier, the gravitational collapse
of the envelope is initiated by the arrival of the rarefaction
wave that is generated at the core/envelope boundary by core
collapse and propagates outward. To mimic this, we reduce the
radial gradients of all quantities to zero at the inner boundary
and artificially induce the infall there. Then a rarefaction wave

Figure 3. Profiles of density (top panel), pressure (middle panel), and radial
velocity as well as sound velocity (bottom panel) for the wind model employed
in this paper. The red lines in the top and middle panels show power laws
for comparison. As shown in the bottom panel, although the radial velocity is
initially subsonic, it passes a sonic surface, which is located at r ∼ 7.5×1010 cm.

(A color version of this figure is available in the online journal.)

is produced at the inner boundary and propagates outward,
inducing infall at points it reaches. It is stressed that we
confirmed by the test computation presented in Appendix A.6
that if we do not reduce the radial gradients of quantities at the
inner boundary, the envelope remains intact even after many
time steps.

As shown in the next section, the contraction of the envelope
is eventually terminated by centrifugal forces, producing a shock
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wave that propagates outward and eventually breaks out of
the stellar envelope. We increase the number of radial grid
points to 1000 at the time of the shock breakout and shift the
inner boundary outward to 5 × 108 cm simultaneously. All
the quantities are linearly interpolated to the new mesh points.
The change of the inner boundary leads to the increase of the
mass of the central object, which is properly taken into account,
whereas we discard the angular momentum and energy between
the old and new inner boundaries only for simplicity.

It should be noted that our numerical code does not take into
account general relativity and detailed microphysics such as
photodissociations of nuclei and neutrino cooling. The neglect
of these effects tends to overestimate the strength of the shock
wave of the centrifugal bounce origin. In fact, it was pointed
out by Lindner et al. (2010) and Milosavljevic et al. (2010) that
the nuclear photodissociations may completely sap the shock
wave. We will defer the investigation of this issue to a future
work, in which we will implement a nuclear network in our
hydrodynamics code. We must repeat that we assume in this
paper that the prompt shock wave of the core bounce origin is
swallowed into the central black hole and what occurs inside
it does not affect the dynamics of the envelope. In order to see
if this assumption is correct or not, it is necessary to perform
detailed simulations of core collapse in full general relativity,
which is a major undertaking and will also be a future work.

2.5. Jet Injection and Propagations through the
Stellar Envelope and Wind

In the next step (Step 4), which is the main part of this
paper, we numerically study the jet propagations that are in
motion through the stellar envelope and wind, as obtained
in the previous step. Following common practice, we inject
a relativistic jet from the inner boundary, not specifying the
driving mechanism, at two different times after the envelope
collapse takes place: 20 s for model M20s and 50 s for model
M50s. The injection parameters are identical for both models:
the jet is hot (p/ρ0c

2 = 20, where c is the speed of light) and
relativistic with a Lorentz factor of five; the half-opening angle
is 9◦; the power of the jet is constant in time, and the injection
continues for tdur = 30 s with the total injected energy being
1053 erg. Then the terminal Lorentz factor is estimated by

Γterm ≡ hinΓin = (1 + εin + pin/(ρinc
2))Γin

∼ γ /(γ − 1) × pin/(ρinc
2) × Γin

= 4{pin/(ρinc
2)}Γin, (11)

where hin, pin, ρin, and Γin are the specific enthalpy, pressure,
rest-mass density, and Lorentz factor at the injection, respec-
tively; the adiabatic index is denoted by γ and is set to be 4/3.
The choice of the injection parameters in this paper corresponds
to Γterm ∼ 400.

The computational domain for these simulations ranges from
r = 109 cm up to r = 1018 cm. Note that this broad range
is mandatory for the identification of the locations of the
photosphere until tobs ∼ 100 s, since the forward shock in
the jet is highly relativistic with a Lorenz factor of Γ > 100.
The total number of radial grid points is 11,000. The grid is
nonuniform, with the grid width being smallest (Δr = 108 cm)
at the inner boundary and increasing geometrically by ∼0.1%
per zone up to 1013 cm and by ∼1.35% in the region further
out. The number of angular grid points, 60, is the same
as in the previous step. We remap the data obtained in the
previous step to the new grid by the same linear interpolation

as employed in Step 3. The shift of the inner boundary requires
an adjustment of the mass of central objects, with the mass
between 5 × 106 (5 × 108) cm < r < 109 cm being added
to the central point mass for model M20s (M50s). The density,
pressure, and velocity in the region of 1013 cm to 1018 cm are
extrapolated from the inner region in the following manner: The
density and pressure are extended by the power laws that fit their
distributions in the inner region; the radial velocity is assumed to
be constant in the extended region, since it has already reached
the asymptotic velocity (see the bottom panel of Figure 3); and
the θ component of velocity is set to be 0, whereas the azimuthal
component is determined so that the specific angular momentum
is constant along each radial ray just as in Step 2.

During the jet propagation through the stellar envelope, we
employ an AMR technique. In our code, there are only two
levels of meshes deployed in which the resolution of the second
level can be varied. Here the mesh of the second level is
nine times finer than the first level mesh, with the smallest
radial and angular resolutions being Δr = 1.1 × 107 cm and
Δθ = 0.◦16, respectively. After the jet breakout, on the other
hand, the jet head expands nearly freely and soon becomes
highly relativistic. As a result, the back flow tends to be
suppressed and the jet morphology does not change much during
this phase. We hence employ only three times finer a mesh for
the second level after the jet head reaches R = 1011 cm. The
resolution in this study is not as high as in the previous study
(Lazzati et al. 2009). One of the main reasons for this is the
fact that we are dealing with a much greater spatial extent.
This is necessary, as already mentioned, in order to identify
the locations of the photosphere. As a result, however, rapid
variations in the photospheric emissions are sacrificed to some
extent by numerical dissipations, and our discussions on this
issue are restricted to a qualitative level.

2.6. Photospheric Emissions

As a final step (Step 5), we calculate, as a postprocess, the
photospheric emissions based on the data obtained in Step 4. We
define the photosphere to be the surface that has a unit optical
depth from infinity with respect to the Thomson scattering. The
optical depth is given by

τ (tobs, r) =
∫ ∞

r

ne(t
∗, s) σT Γ(t∗, s)(1 − β(t∗, s) cos θv(t∗, s))ds, (12)

where s is the distance along the line of sight, ne is the num-
ber density of electrons in the comoving frame, σT is the cross
section of the Thompson scattering, β is the matter velocity
normalized by the speed of light c, Γ is the corresponding bulk
Lorentz factor, and θv is the angle between the line of sight
and the matter velocity (Abramowicz et al. 1991). It should be
stressed that the time retardation expressed by t∗ = tobs − s/c
in the above equation cannot be ignored for relativistic flows. In
this paper, we evaluate Equation (12) as is, retrieving the data
for appropriate times from the results of the hydrodynamic sim-
ulations. Thanks to the wide spatial range of our hydrodynamic
simulations, photons observed at tobs � 100 s have passed the
forward shock by the end of simulations, a fact which is impor-
tant for the identification of the locations of the photosphere.

The observed isotropic luminosity of photospheric emissions
is then given by

L = 4π

∫
D4I cos θph dS. (13)
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Figure 4. Time evolution of the density profile on the equator during the envelope collapse (top panel) and the density contours in the meridian section at the time of
the breakout of the shock wave produced by centrifugal bounce (bottom left panel) and ∼10 s later (bottom right panel).

(A color version of this figure is available in the online journal.)

Here, dS is the areal element of the photosphere (measured in the
laboratory frame),D = [Γ(1−β cos θv)]−1 is the Doppler factor,
θph is the angle between the line of sight and the normal vector of
the photosphere, I = σSB T 4/π is the radiation intensity with
σSB, and T is both the Stefan–Boltzmann’s constant and the
temperature in the comoving frame. We ignore cosmological
redshift in this study.

3. RESULTS

3.1. Envelope Collapse

The top panel of Figure 4 shows the temporal evolution of
the density profile on the equator obtained in Step 3, that is,
the computation of envelope collapse. The infall starts at the
inner boundary, generating a rarefaction wave that propagates
outward. Only after this rarefaction wave arrives do other parts
of the envelope begin to move inward. The contraction is initially
almost spherical. As time passes and more distant portions
of the envelope start to infall, however, the centrifugal force
becomes non-negligible, since the specific angular momentum is
an increasing function of radius. The centrifugal force eventually
becomes large enough to halt the infall of matter, and a shock

wave is generated. This happens at t ∼ 18 s in our model. A
similar but slightly later bounce by the centrifugal force was
also reported by Lindner et al. (2010). The reason we found
the earlier formation of the shock wave is that we put the inner
boundary at a much smaller radius than Lindner et al. (2010).
Indeed, the inner boundary of our model is initially located at
∼3 times the Schwarzschild radius, which is 10 times smaller
than that adopted in Lindner et al. (2010). It should be noted
that, as we have already mentioned, the shock wave is expected
to be produced near the ISCO in reality and more accurate
computation of its formation requires implementation of general
relativity as well as microphysics such as neutrino transports and
photodisintegrations of nuclei, which may sap the shock wave.

The shock wave propagates more vigorously along the
equator than along the rotational axis and reaches the stellar
surface on the equator at t ∼ 31 s (see the bottom left panel
of Figure 4). Then the shock wave breaks out of the stellar
surface and runs further through the wind (see the bottom right
panel of Figure 4). If the jet is launched earlier than the shock
formation, the shock dynamics just described will be modified
by the jet propagation. If the opposite is true, that is, the jet
launch is later than the shock formation, the jet dynamics will
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be affected by the shock propagation. In particular, if the jet
launch is sufficiently delayed, the jet propagation in the wind
and, as a result, the photospheric emissions, will be severely
changed. Model M20s is meant for the former case, whereas
the latter case corresponds to model M50s. Incidentally, the
shock breakout in the latter case may account for the so-called
precursor that is observed for some long GRBs. In fact, the
typical time lag between the precursor and the prompt emission
is several tens of seconds (Lazzati 2005), which is similar to
what we find in our model. In this scenario, the high-energy
emissions in the precursor are supposed to be similar to those
in the shock breakout of ordinary supernovae (Falk 1978; Klein
& Chevalier 1978; Matzner & McKee 1999; Waxman et al.
2007; Soderberg et al. 2008). More quantitative arguments for
the precursor emissions from these shock waves are currently
being undertaken (H. Nagakura et al. 2011, in preparation).

Incidentally, we assume in this paper that it is not the
centrifugal-bounce-originated shock wave but something else
that is responsible for the jet launch. We hence treat the
centrifugal bounce and the jet launch as independent events
and rather freely vary the time of jet injection with respect to
the centrifugal bounce. In reality, they may be correlated with
each other one way or another. As we have already mentioned,
the focus in this paper is the consequences that the possible time
lag between these two events may have. The origin of the lag is
intimately related to the mechanism of the jet launch. Although
it is very interesting in its own right, the issue is far beyond the
scope of this paper.

3.2. Jet Propagations in the Stellar Envelope and Wind

As expected, the hydrodynamics of the early injection model
M20s (see the left column of Figure 5) is similar to those found
in the previous studies (Lazzati et al. 2009; Mizuta et al. 2010b),
since the envelope bounce by the centrifugal force occurs almost
at the same time as the jet launch and the outer envelope structure
has not been changed very much from the initial one. The jet
is strongly collimated by a hot cocoon, i.e., the shocked jet
and envelope matter, until the jet breaks out of the progenitor
surface. Then the shocked jet matter starts to expand laterally
from the vicinity of rotation axis and the internal energy is
gradually converted to kinetic energy. As a result, the hot,
shocked jet matter acquires a high Lorentz factor and produces
very bright photospheric emissions (see the next subsection).
Since the jet injection is terminated at t = 30 s in this model, a
rarefaction wave is generated at that point and starts to chase the
jet head; only the matter between the jet head and rarefaction
wave contributes to subsequent radiations.

For model M50s, in which the jet is launched much later than
the envelope bounce, the jet dynamics are very different from
the one for the early injection case (see the right column of
Figure 5). The jet propagates through the envelope, which is not
contracting but expanding owing to the shock wave produced
at the centrifugal bounce of envelope. We find that the distance
between the terminal (reverse) and forward shocks is shorter
than for model M20s and the terminal shock remains in existence
much longer for model M50s. The forward shock region in the
jet is also found to be remarkably different after the breakout
between the two models. Since the shock wave breaks out of
the star before the relativistic jet reaches the stellar surface, the
stellar wind is modified substantially by the shocked envelope
matter (SEM). As a consequence, the jet propagation is hindered
by the thick SEM even after it passes the position of the original
stellar surface. The forward shock velocity becomes slower until

a much later time when the jet passes completely through the
SEM, producing a denser shell behind the forward shock (see
the second panel in the right column of Figure 5). This has
important ramifications for the photospheric emissions later on.

3.3. Photospheric Emissions

In Figure 6, we display the light curves together with the
evolutions of photospheric radii and observed temperatures
(DT ) for both models. The observer is assumed to be located
on the rotational axis (on-axis observer), and the photospheric
radius in the figure is the value on the axis although we do
calculate the positions of photosphere for off-axis rays. For
model M20s, the luminosity peaks in an early phase (tobs �
10 s) and rather high luminosities are sustained for the next
30 s, whereas a strong peak is observed at a later time (tobs ∼
25 s) for model M50s. As already mentioned, this difference
arises from the large difference in the envelope structures prior
to the jet breakout. Since a larger amount of matter is swept
up by the jet in model M50s, it takes the photosphere longer
to leave the forward shock region and move inward to a region
with higher observed temperatures, producing bright radiations.
This qualitative difference in the light curves may be utilized to
observationally extract information on the timing of jet launch
at the central engine.

As an explanation of the GRB prompt emissions, the pho-
tospheric emissions in our models have sufficiently high lu-
minosities. The peak energy, however, is lower by roughly an
order of magnitude than the value expected from the Yone-
toku relation (Yonetoku et al. 2004). This tendency is the main
drawback of the photospheric emission model. Note, however,
that the shocked jet matter may be scattering dominant and en-
ergy exchanges between photons and matter may be terminated
deeper inside. If this is the case, the observed temperatures will
be higher and the luminosity will also be reduced. The study
of these effects is currently in progress (H. Ito et al. 2011, in
preparation). It is also conceivable that some non-thermal pro-
cesses are operating to produce high energy photons. Further
exploration of these issues will require detailed computations of
radiation transport and will also be a future work.

4. SUMMARY

We have numerically investigated the propagations through
a rapidly rotating massive star envelope of relativistic jets
that are launched at different times, taking into account the
motions of the envelope induced by core collapse. Then, we
have calculated the photospheric emissions by postprocessing.
The main findings in this paper are summarized as follows.

1. In the envelope collapse, we have seen the generation of a
shock wave by the centrifugal force around t ∼ 20 s for the
progenitor rotating uniformly at the mass shedding limit.
In ∼10 s, the shock wave breaks out of the star if the jet
launch is sufficiently delayed.

2. If the shock wave produced by the centrifugal force breaks
out of the star earlier than the jet does, it changes the enve-
lope and wind structures drastically and the jet propagation
thereafter is also significantly affected. In fact, in that case,
since the forward shock in the jet sweeps up a larger amount
of matter, a dense shell is produced behind it.

3. The light curve of photospheric emissions is qualitatively
different if the jet is launched later and propagates in the
shock-modified envelope and wind. In the case of earlier
launch, peak luminosity is attained at a relatively early time
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Figure 5. Density contours (upper four panels) and time evolutions of the Lorentz factors on the rotational axis (lower four panels) for model M20s (left column) and
model M50s (right column). The time, t, is measured from the instant at which the jet is injected.

(A color version of this figure is available in the online journal.)
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Figure 6. Light curves of photospheric emissions (top panels), evolutions of the observed temperature (middle panels) and of the photospheric radius (bottom panels)
as a function of the observed time for model M20s (left column) and model M50s (right column). See the text for details.

(A color version of this figure is available in the online journal.)

(tobs ∼ 10 s), whereas it takes longer (tobs ∼ 25 s) to observe
the peak for the delayed launch case owing to the previously
mentioned dense shell.

4. The photospheric emissions obtained in this study with
time retardation taken into account appropriately have
high luminosities suitable for the GRB prompt emissions.
However, the peak energy tends to be lower than expected
from the Yonetoku relation. If the shocked jet matter
is scattering dominated, photons will cease to exchange
energy with matter deeper inside, where the temperature is
higher. It is also possible that some non-thermal processes
boost the photon energy.

The light curves of our results are different from those
given in previous papers (Lazzati et al. 2009; Mizuta et al.
2010a). Since the focus in this paper is to investigate possible

consequences that the difference in the timing of jet launch may
have for the prompt emissions, we have not made detailed com-
parisons with these previous studies. There are, however, several
conceivable causes for the differences: (1) better estimation of
the location and temperature of photosphere thanks to the wider
computational domain; (2) the effect of envelope collapse being
taken into account; and (3) the differences in the jet-injection pa-
rameters, progenitor models, and numerical resolutions. These
issues will be addressed in our forthcoming paper.
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APPENDIX

CODE TESTS

In this appendix, we carry out a series of tests in order to
validate our special relativistic hydrodynamics code, which em-
ploys the PPM reconstruction and TVD Runge–Kutta integra-
tion with second-order accuracy in both space and time. We
adopt a Harten–Lax–van Lee (HLL)-type numerical flux and
the Courant–Friedrichs–Lewy (CFL) number is set to be 0.5.
Included in the following are: (1) 1D special relativistic shock
tube problems, (2) the same as (1) but with tangential veloc-
ities, and (3) a 2D Riemann problem. The 1D problems are
compared with the exact solutions, and we utilize the results
given in previous papers for the 2D problem. We also solve
(4) 1D and (5) 2D isentropic flows to quantitatively obtain the
convergence rate. For these test runs (1)–(5), the γ -law EOS is
adopted with the adiabatic index of γ = 5/3. We also run (6)
a dynamic simulation of the rotating stellar envelope, which is
obtained by the HSCF method (see Section 2.1) and confirm
that the stellar envelope sustains the initial profile for an ex-
tended time. In order to check the accuracy of our AMR part,
we compute (7) a non-relativistic, spherical point explosion,
which can be compared with the Sedov–Taylor analytical so-
lution; (8) a pulse propagating adiabatically through meshes of
different refinement levels; and (9) an axisymmetric, relativistic
jet propagation in a uniform matter. These tests demonstrate that
our numerical code has enough accuracy for the purpose of the
current study. Throughout this appendix, we adopt geometrical
units G = c = 1 unless otherwise stated.

A.1. 1D Relativistic Shock Tube Problems without
Tangential Velocities

The shock tube problem is one of the common tests for
hydrodynamic codes. It is a special Riemann problem in gas
dynamics. One of the advantages of this test is the fact that
we know exact solutions even in special relativity (Pons et al.
2000). We can check how well the code reproduces the profile of
a rarefaction wave and captures several discontinuities such as
contact surface and shock wave. In this test, we set the number
of grid points to 400 and the parameters employed for two runs
are as follows:

Case 1. Left state: (ρ, v, p)L = (10, 0, 13.3),
Right state: (ρ, v, p)R = (1, 0, 10−6)

Case 2. Left state: (ρ, v, p)L = (1, 0, 103),
Right state: (ρ, v, p)R = (1, 0, 10−2).

Figure 7 shows the results at t = 0.4 together with the exact
solutions. As is obvious, the overall profiles are reproduced
well. Although the contact surface and shock wave are somewhat
smeared out, our results are quite similar to those of other groups
(see, e.g., Del Zanna & Bucciantini 2002).

A.2. 1D Relativistic Shock Tube Problems with
Tangential Velocities

Here we show the results of relativistic shock tube problems
with tangential velocities. In the special relativistic shock tube

problems, the velocity components tangential to a discontinuity
play a non-trivial role, unlike in the non-relativistic counterpart,
because the Lorentz factor depends on the absolute value of
the velocity and it is numerically harder to resolve the flow
profiles in special relativity as reported by Pons et al. (2000)
and Rezzolla & Zanotti (2002). In these tests, we adopt the
same initial condition as in Case 2 of the previous subsection
except for the non-vanishing tangential velocities, which are
identical to those in Mizuta et al. (2006).

Figure 8 shows the results of these tests. We vary the tan-
gential velocity vy from 0 to 0.99 on both sides. It is clear
that both the contact surface and shock wave are substan-
tially deviated from the exact solutions as the tangential ve-
locity becomes large. We perform test runs for (vL

y , vR
y ) =

(0.9, 0.9) with higher spatial resolutions (the number of grid
points changes from 800 to 6400) and display the results in
Figure 9. Although the deviations of the numerical results
from the exact solution are still noticeable even in these high-
resolution runs, we can confirm the convergence of the numer-
ical results to the exact solution. Again the performance of our
code is similar to others (see, e.g., Mizuta et al. 2006; Zhang &
MacFadyen 2006).

A.3. A 2D Riemann Problem

This test is meant to check the performance of our code
in multi-dimensional settings. The computational domain is
initially divided into four sections that have different states. The
solution consists of multiple shock waves, contact surfaces, and
a rarefaction wave interacting with each other. The parameters
we adopt in this test are the same as in Del Zanna & Bucciantini
(2002), Mizuta et al. (2006), and Morsony et al. (2007):

(ρ, vx, vy, p) = (0.1, 0.00, , 0.00, 0.01)

for 0.5 � x � 1, 0.5 � y � 1

(ρ, vx, vy, p) = (0.1, 0.99, , 0.00, 1.00)

for 0 � x � 0.5, 0.5 � y � 1

(ρ, vx, vy, p) = (0.5, 0.00, , 0.00, 1.00)

for 0 � x � 0.5, 0 � y � 0.5

(ρ, vx, vy, p) = (0.1, 0.00, , 0.99, 1.00)

for 0.5 � x � 1, 0 � y � 0.5.

We use a uniform mesh with 400 × 400 grid points. Figure 10
shows a contour in the logarithm scale of the rest-mass density
obtained in this simulation. There is no exact solution available.
The results appear very similar to the ones presented in previous
studies.

A.4. A 1D Isentropic Flow

All the above tests involve discontinuities such as the shock
wave. As a result, the code affords only a first-order accuracy
because the numerical error is dominated by these structures.
Note that this is necessary to ensure numerical robustness. In
order to see the performance of our code for smooth flows,
we carry out numerical simulations of 1D and 2D (see the next
subsection) isentropic flows. The exact solutions are obtained by
the characteristic method. Hence, the test offers an opportunity
to quantitatively assess the accuracy of our code.
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Figure 7. Numerical results (dots) for the 1D relativistic shock tube problems without tangential velocities. The rest-mass density (ρ), pressure p, and velocity vx are
shown. The exact solutions (solid lines) are also displayed for comparison. The left (right) panel corresponds to case 1 (case 2) at t = 0.4 (t = 0.35).

Figure 8. Numerical results (dots) for the 1D relativistic shock tube problems with tangential velocities. A uniform mesh with 400 grid points is employed. The exact
solutions (solid lines) are also displayed for comparison. We change vR

y from left to right as vR
y = 0, 0.9, 0.99 and vL

y from top to bottom as vL
y = 0, 0.9, 0.99. The

density, pressure, and x-component of velocity are shown. See Figure 15 in Mizuta et al. (2006) for comparison.

The initial conditions for this test are the same as those
employed in the previous studies (Zhang & MacFadyen 2006;
Morsony et al. 2007), and the density profile is given by

ρ0(x) = ρref{1 + αf (x)}, (A1)

where ρref is the density of a reference state and

f (x) =
{

((x/L)2 − 1)4 : |x| < L
0 : otherwise, (A2)

with α and L being the amplitude and width of a pulse,
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Figure 9. Numerical results (dots) for the same problem as in the previous figure (vL
y , vR

y ) = (0.9, 0.9) with different resolutions. These are meant to check the
numerical convergence. The exact solutions (solid lines) are displayed for comparison. The left panels show the rest-mass density and pressure, whereas the middle
(right) panels display the x-component (y-component) of velocity. From top to bottom, the numbers of grid points are 800, 1600, 3200, and 6400, respectively.

respectively. Since the flow is isentropic, we employ a polytropic
EOS (p = Kρ

γ

0 ) with the polytropic constant of K = 100 and the
adiabatic index of γ = 5/3. The velocity of the reference state
is set to be 0, while the velocity distribution inside the pulse is
chosen so that the left-going Riemann invariant should be
constant. With this setup, the wave propagates in one direction.
The special relativistic Riemann invariants are given by

J± = 1

2
ln

(
1 + v

1 − v

)
± 1√

Γ − 1
ln

( √
Γ − 1 + cs√
Γ − 1 − cs

)
, (A3)

where cs denotes the sound velocity. The equations of charac-

teristics C± are expressed as(
dx

dt

)
C±

= v ± cs

1 ± vcs

. (A4)

Since the J− and entropy are constant over the whole region, the
pulse evolution is determined by the J+, which is carried along
the characteristic C+ until right-traveling characteristics collide
with each other and a shock wave forms. Although the shape of
the pulse is initially symmetric, it is skewed owing to different
characteristic velocities. Note also that the post-pulse state is
the reference state.

Our computational domain is the same as in previous studies
(Zhang & MacFadyen 2006; Morsony et al. 2007): (−0.35 �
x � 1); the reference state has ρref = 1, pref = 100, and
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Figure 10. Contour plot of rest-mass density in the logarithmic scale at t = 0.4 for the 2D Riemann problem.

Table 1
Numerical Errors for Different Resolutions in the 1D Isentropic-flow Problem

Number of Grid Points L1 Error (%) Convergence Rate (α)

100 0.58 · · ·
200 0.17 1.83
400 3.67E-2 2.17
800 7.96E-3 2.20
1600 1.80E-3 2.14
3200 4.11E-4 2.13
6400 9.60E-5 2.10

Notes. The errors of density are evaluated at t = 0.8. In the rightmost column,
the powers in the expression L1 ∝ N−α , where N denotes the number of grids,
are given.

vref = 0; the amplitude of the pulse is α = 1.0; and the width
is L = 0.3. The simulation is run until t = 0.8. A comparison
of numerical and exact solutions is displayed in Figure 11. We
also calculate the L1-norm errors in density for different spatial
resolutions, where L1 ≡ Σj Δxj |ρ0j − ρ0(xj )|, with ρ0j and
ρ0(xj ) being the numerical and exact solutions, respectively. In
Table 1, we summarize the results of the convergence check
for this problem. It is thus confirmed that our code indeed
has a second-order convergence for smooth flows (see also
Figure 12).

A.5. A 2D Isentropic Flow

We also perform a 2D computation of the isentropic flow to
assess the convergence rate of our code in a multi-dimensional
context. The initial condition for this test is the same as that
in Zhang & MacFadyen (2006) and Morsony et al. (2007). The
computational region is a 2D Cartesian box with 0.0 � x � 3.75
and 0.0 � y � 5.0. The periodic boundary condition is adopted
for all four sides of the box. The reference state is set to
ρref = 1, pref = 100, and vref = 0. The polytropic EOS with
the polytropic constant of K = 100 and the adiabatic index
of γ = 5/3 is employed just as in the 1D case. Periodic

pulses are prepared initially in such a way that they have a
spatial period of S = 3.0 in the direction given by a unit
vector, k = (4/5, 3/5), and are uniform in the perpendicular
direction. The projected spatial periods in the x- and y-directions
are 3.75 and 5.0, respectively, which is consistent with the
size of our computational domain. The initial density profile
is given by ρ0(d) (Equations (A1) and (A2)), in which d is the
distance from the center of the nearest pulse and expressed as
d = mod(k · r + S/2, S) − S/2 with mod(a, b) being a function
defined as mod(a, b) ≡ a − �a/b × b, where �a/b denotes
the integer part of a/b. The amplitude of the pulse is chosen to
be α = 1.0 and the width is set to be L = 0.9. The velocity
distribution in the pulse is determined as in the 1D case in
the previous subsection so that J− defined for this oblique 1D
problem should be constant. The simulation is run up to t = 2.4.

Figure 13 shows the numerical result as a density contour
at t = 2.4. In this figure, we display the case in which the
numbers of grid points are set to be 96 and 128 in the x- and
y-directions, respectively. As in the 1D counterpart, the pulse
becomes asymmetric with the right side of the pulse becoming
narrower than the left side. We also run some simulations
with different numerical resolutions and confirm again that the
convergence is approximately of second order (see Table 2 and
Figure 14). Note that the error, δρ0, is defined as an L1 norm in
2D to be

δρ0 ≡ ΔxΔyΣj,k|ρ0jk − ρ0(xj,k)|
ΔxΔyΣj,kρ0(xj,k)

, (A5)

where ρ0jk and ρ0(xj,k) are the numerical and exact solu-
tions, respectively, for density at the mesh point having an
address (j, k).

A.6. Dynamic Simulations of Rotational Equilibrium

In order to check the consistency of the dynamic code with
the code of the HSCF method employed to construct the rota-
tional equilibrium, we run long-term simulations for the stellar
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Figure 11. Initial (t = 0) and simulated (t = 0.8) density (top panel), pressure
(middle panel), and velocity (bottom panel) profiles for the 1D isentropic flow
together with the exact solution (solid lines). A uniform mesh with 400 grid
points is employed.

envelope in rotational equilibrium, which is obtained by the
HSCF method (see Section 2.1). The initial configuration will
not change in time if it is indeed in dynamic equilibrium. The
test will hence simultaneously validate both the hydrodynamics
code with the weak gravitational field approximation and the
HSCF code. The computations are essentially the same as those
done in Step 3 in the main body except for a different treatment
of the boundary condition. All the quantities are fixed at the
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(A color version of this figure is available in the online journal.)

 0.001

 0.01

 0.1

 1

 100  1000

δ
ρ 0

 (
%

)

number of grid points

Figure 14. Density errors δρ0 for the 2D isentropic flow as a function of the
number of grid points.

14



The Astrophysical Journal, 731:80 (18pp), 2011 April 20 Nagakura et al.

Figure 15. Density profiles along the rotational axis at t = 100 s after the long-
term dynamic simulations of the envelope in rotational equilibrium. Two spatial
resolutions are employed with the top panel showing the result for 230 radial
grid points (green line) together with the initial profile (red line), whereas the
bottom panel corresponds to the result for 460 points.

(A color version of this figure is available in the online journal.)

boundaries to the values provided by the HSCF calculations,
unlike in Step 3, where the radial gradients of the quantities
are artificially reduced to zero. In this subsection, we adopt
cgs units. The computational domain covers a radial extent of
108 cm < r < 2×1010 cm. The simulations are continued until
t = 100 s, which is much longer than the dynamic timescale in
the inner region, where it is the shortest. Two spatial resolutions
are tried to see the numerical convergence: the normal resolution
with 230 radial points and the higher resolution with 460 points.
Just as in Step 3, the grid width is determined by the scale height:
Δrin = 7.9×106 cm and Δrout = 2.0×108 cm for the innermost
and outermost grids, respectively, for the normal resolution, and
they are two times finer for the high-resolution case. The angular
grid is uniform and has 60 points in 0◦ < θ < 90◦.

Figure 15 shows the density profiles along the rotational axis
at the end of the simulations. The red lines are the profile
obtained by the HSCF method and the green ones are numerical
results. Deviations, which are inevitably induced by the mapping
of the initial data as well as the difference in the finite-difference
methods, are very small and it is indeed remarkable that the
initial configuration is maintained for such a long time. This
is clear evidence that both the hydrodynamics code and HSCF
code are reliable. It should also be noted that these deviations
are even smaller for the high-resolution case (see the bottom
panel of Figure 15).

A.7. Sedov–Taylor Problems

In order to validate our AMR implementation, we solve the
Sedov–Taylor problem. Although our code is special relativistic,
we use it in the non-relativistic regime here. It is also noted that,
although the Sedov–Taylor problem is 1D, a 2D grid is employed
for the computation since our AMR code used in this paper is
specialized for the jet simulation and based on the axisymmetric,
2D grid.

In this simulation, the computational domain, 3 × 108 cm <
r < 1.8×1010 cm, is covered by a uniform mesh with 100 radial
grid points (Δr = 1.8 × 108 cm) (this section is also adopted
in cgs units). The internal energy of E = 1.60 × 1048 erg is
deposited initially in the central region of r < 6.6 × 108 cm.
The uniform density is set to be ρ = 1 g cm−3. We put a
tiny specific internal energy (ε = 10−8 × c2 erg g−1) uniformly
except for the central region mentioned above for numerical
reasons. We adopt the γ -law EOS with γ = 4/3. We impose
the free-boundary condition both for the inner and outer bound-
aries. Although all θ derivatives vanish initially, they may evolve
with time by numerical errors, and we set 60 uniform angular
grid points for 0◦ � θ � 90◦. We impose axisymmetry and
equatorial symmetry on the z-axis and equatorial plane, respec-
tively. We vary the resolution of the second level mesh to check
the numerical convergence. The computations are terminated
at t = 20 s.

Figure 16 shows the numerical results (green dots) on the
z-axis together with the analytical solutions (red lines). From
left to right, different resolutions are employed for the second
level mesh: three times, five times, and seven times finer in
each coordinate direction than the first level mesh for the left,
middle, and right columns, respectively. From top to bottom,
the profiles of density, pressure, and radial velocity on the
z-axis are displayed, respectively. Note that the horizontal
axis is a radius normalized by the radius of the shock front,
Rsh = 1.4 × 1010 cm. As is evident in this figure, our AMR
code successfully reproduces the analytical solution with an
increasing sharpness of the discontinuity as the second level
mesh becomes finer.

A.8. A Pulse Propagating through Meshes of
Different Refinement Levels

In the AMR, there is a jump in resolution at the boundary
between meshes of different refinement levels, which may
produce unphysical waves. In order to make sure that the effect
of the mesh boundary is negligible, we compute a pulse passing
through the boundary adiabatically.

The initial pulse profile is the same as that employed in
Appendix A.4. Since the present AMR code is based on the
spherical grid, as mentioned earlier, we need in principle to
reformulate the problem to accommodate a spherical wave.
We can avoid this issue, however, by the so-called thin shell
approximation, in which the radial range of the computational
domain is taken to be much smaller than the radius itself and
the coordinate curvature can be safely ignored. This convenient
approximation has been widely used for plane-symmetric test
problems on the spherical grid by Yamada (see, e.g., Yamada
1997). Here, we take r� = 104 and Δr� = 1.35 for the
representative radius and thickness of the shell, respectively. The
initial density profile is given by ρ0(r − r�) in Equation (A1).
We assume that all θ derivatives vanish initially. We employ a
uniform angular mesh with 10 grid points in 0◦ � θ � 0.◦5. We
impose axisymmetry on the z-axis and adopt the free-boundary
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Figure 16. Computed profiles of density (top panels), pressure (middle panels), and radial velocity (bottom panels) together with the exact solution (red lines) for the
Sedov–Taylor problem. The AMR resolution becomes higher from left to right.

(A color version of this figure is available in the online journal.)

condition at θ = 0.◦5. The radial extent of the computational
domain is −0.35 + r� � r � 1 + r� and is covered by a
uniform mesh with 210 radial grid points. For the inner region of
−0.35 + r� � r � 0.3 + r�, we deploy a second level mesh that
is three times finer than the first level mesh in each coordinate
direction.

Figure 17 shows the numerical evolution of the pulse. No
artificial waves are discernible when the pulse passes over
the boundary (r = 0.3 + r�) between the meshes of different
refinement levels (cf. Figure 11). Although the post-pulse state
is not identical to the reference state, the difference (mainly
caused by the grid curvature) is negligible (only ∼1%).

In the above run, the pulse is initially located in the region
covered by the mesh of a higher refinement level and moves to
the region of a lower refinement level. We also run a simulation
in the opposite case, i.e., the pulse is initially put in the region
of a lower refinement level (or the outer region) and moves
to the inner region, which is covered by the mesh of a higher
refinement level. This is realized by setting the initial density
profile as ρ0(r − r� −0.7) in Equation (A1) and determining the
velocity distribution so that the Riemann invariant J+ = const
in Equation (A3) should be constant. The reference state and the

amplitude and width of the pulse are unchanged. The numerical
grids are also the same as above.

Figure 18 shows the numerical results for the inward-moving
pulse. Just as in the first case, the pulse passes through the mesh
boundary, producing no discernible artificial wave. As expected,
the pulse profile at the end of computation is a mirror image
of the one for the outward-moving pulse. These test results
demonstrate the good behavior of our AMR code at the mesh
boundary.

A.9. Axisymmetric, Relativistic Jet Propagation
in a Uniform Matter

The last test is meant to investigate the effect of AMR res-
olution on relativistic jet propagations and has been frequently
used in the literature. The computational domain covers the re-
gion 0.01 � r � 0.5 and 0◦ � θ � 90◦. Axisymmetry and
equatorial symmetry are assumed, and a uniform mesh with
150 radial grid points and 60 angular grid points is adopted as
the first level mesh. We perform two simulations with differ-
ent AMR resolutions: the second level meshes are three times
and nine times finer than the first level mesh, respectively. The
relativistic jet is injected from the inner boundary by hand into
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Figure 17. Computed profiles of density (top panel), pressure (middle panel),
and radial velocity (bottom panel) at t = 0, 0.4, and 0.8 for the right-moving
pulse. The mesh boundary is located at r − 104 = 0.3.

the uniform medium. The injection parameters are ρ0b = 0.01,
pb = 1.70 × 10−4, and vb = 0.99. We employ γ -law EOS
with γ = 5/3. The injection parameters give the Mach num-
ber of Mb = 6. The half-opening angle of the jet is chosen as
θhop = 9◦. The reference state has a density and pressure of
ρam = 1.0 and pam = 1.70 × 10−4, respectively. Note that the
ambient pressure is the same as the jet pressure. The simulation
is terminated at t = 2.

Figure 19 shows the density contours at the end of the
computation, t = 2, for the two different AMR resolutions.

Figure 18. Same as Figure 17 but for the left-moving pulse.

The propagation of the forward shock wave and global structure
are not very different between the two cases. It is evident that the
higher resolution captures more complex internal structures. It
is well known that the internal jet structure never converges
as the numerical resolution gets better. This is due to the
Kelvin–Helmholtz instability, for which the growth rate is
greater for shorter wavelengths. Indeed, the internal structures
are very different between the two runs. The obtained numerical
results in this test are qualitatively consistent with others in the
literature (see, e.g., Figure 11 in Zhang & MacFadyen 2006).
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Figure 19. Axisymmetric, relativistic jet propagations in a uniform medium. The density contours at t = 2 are displayed. The left panel shows the result for the case,
in which the second level mesh is three times finer than the first level mesh. The right panel gives the result when a nine times finer second level mesh is employed.

(A color version of this figure is available in the online journal.)

Table 2
Numerical Errors for Different Resolutions in the 2D Isentropic-flow Problem

Number of Grid Points δρ0 (%) Convergence Rate (α)

48 × 64 0.90 · · ·
96 × 128 0.24 1.93

192 × 256 6.17E-2 1.93
384 × 512 1.24E-2 2.32
768 × 1024 2.70E-3 2.20

Notes. The errors of density are evaluated at t = 2.4. See the text for
the definition of δρ0. In the rightmost column, the powers in the expression
δρ0 ∝ N−α , where N denotes the number of grids, are given.
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