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ABSTRACT

Star formation rates in the centers of disk galaxies often vastly exceed those at larger radii, whether measured
by the surface density of star formation ΣSFR, by the star formation rate per unit gas mass, ΣSFR/Σ, or even by
total output. In this paper, we investigate the idea that central starbursts are self-regulated systems in which
the momentum flux injected to the interstellar medium (ISM) by star formation balances the gravitational
force confining the ISM gas in the disk. For most starbursts, supernovae are the largest contributor to the
momentum flux, and turbulence provides the main pressure support for the predominantly molecular ISM. If
the momentum feedback per stellar mass formed is p∗/m∗ ∼ 3000 km s−1, the predicted star formation rate is
ΣSFR ∼ 2πGΣ2m∗/p∗ ∼ 0.1 M� kpc−2 yr−1(Σ/100 M� pc−2)2 in regions where gas dominates the vertical gravity.
We compare this prediction with numerical simulations of vertically resolved disks that model star formation
including feedback, finding good agreement for gas surface densities in the range Σ ∼ 102–103 M� pc−2. We
also compare to a compilation of star formation rates and gas contents from local and high-redshift galaxies (both
mergers and normal galaxies), finding good agreement provided that the conversion factor XCO from integrated
CO emission to H2 surface density decreases modestly as Σ and ΣSFR increase. Star formation rates in dense,
turbulent gas are also expected to depend on the gravitational free-fall time at the corresponding mean ISM density
ρ0; if the star formation efficiency per free-fall time is εff(ρ0) ∼ 0.01, the turbulent velocity dispersion driven by
feedback is expected to be vz = 0.4 εff (ρ0)p∗/m∗ ∼ 10 km s−1, relatively independent of Σ or ΣSFR. Turbulence-
regulated starbursts (controlled by kinetic momentum feedback) are part of the larger scheme of self-regulation;
primarily atomic low-Σ outer disks may have star formation regulated by ultraviolet heating feedback, whereas
regions at extremely high Σ may be regulated by feedback of stellar radiation that is reprocessed into trapped
infrared.
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1. INTRODUCTION

Averaged over large scales in disk galaxies, the relationship
between the mean surface density of star formation, ΣSFR, and
the mean gaseous surface density, Σ, is observed to be super-
linear, both in the local universe and at higher redshift (e.g.,
Kennicutt 1998b; Genzel et al. 2010a). This behavior reflects
the increased efficiency (or shorter timescale) of star formation
under conditions of higher mean gas density, which is corre-
lated with higher Σ. Starburst regions within the central ∼kpc of
galaxies, commonly observed as dust-enshrouded LIRGs and
ULIRGs in which the interstellar medium (ISM) is predomi-
nantly molecular (Sanders & Mirabel 1996; Genzel et al. 1998;
Kennicutt 1998a; Solomon & Vanden Bout 2005), represent the
extreme of this behavior, with Σ ∼ 102–104 M� pc−2 and the
star formation (or gas conversion) timescale tSF,gas ≡ Σ/ΣSFR
a factor of 10 or more below tSF,gas in lower-Σ regions of
galaxies. Although earlier observations based on global av-
erages suggested a simple power-law relationship between
Σ and ΣSFR, these global relations have considerable scatter
about the mean. More recently, evidence has emerged that
the star formation regime within galactic centers at very high
Σ � 100 M� pc−2 is distinct from the star formation regime that
prevails in the main disks of galaxies at lower Σ � 100 M� pc−2.
Within the main disk, another change in the star formation
regime appears to occur from “mid-disk” to “outer-disk.” Typ-

ically, both galactic center and mid-disk regions are primarily
molecular, whereas outer disks are primarily atomic. Figure 1
provides a schematic, dividing the disk into different star-
forming regimes.

In main-disk regions where Σ � 100 M� pc−2, high-
resolution observations have found that ΣSFR is proportional to
Σmol, the mean surface density of molecular gas, with a timescale
tSF,mol ≡ Σmol/ΣSFR ≈ 2 Gyr (Bigiel et al. 2008; Blanc et al.
2009). The value Σ ∼ 100 M� pc−2 that defines the upper limit
for “main disks” is characteristic of the surface density ΣGMC of
individual giant molecular clouds (GMCs), as observed in the
Milky Way and Local Group (Blitz et al. 2007; Sheth et al. 2008;
Bolatto et al. 2008). The relation ΣSFR ∝ Σmol for Σ � ΣGMC
is consistent with the idea that spatially isolated GMCs have
an approximately constant specific star formation rate; this rate,
and the value of ΣGMC, may be controlled by internal feedback
processes within GMCs (e.g., Krumholz et al. 2006), although
this is not yet completely understood. Over a typical GMC life-
time of ∼20 Myr (Blitz et al. 2007), ∼1% of the gas must be
converted to stars in order to yield tSF,mol ≈ 2 Gyr within main-
disk regions. Although there are uncertainties arising from lim-
ited resolution and calibration of the CO-to-H2 conversion (see
Section 4), the relationship between Σmol and ΣSFR in galactic
center regions with Σ � 100 M� pc−2 appears considerably
steeper than linear. Presumably, this is because the molecu-
lar gas in galactic center regions with Σ � 100 M� pc−2 is
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Figure 1. Schematic indicating the geography of galactic disk star formation;
ranges for gaseous surface density Σ (in M� pc−2) in the various regions are
approximate. Regulation of star formation in the main disk has recently been
discussed by Ostriker et al. (2010). In this paper, we analyze self-regulation of
star formation in the turbulence-dominated region within the galactic center for
starburst disks.

at higher mean (volume) density than the molecular gas in
main-disk GMCs having “standard” surface density ΣGMC ∼
100 M� pc−2.

Molecular gas dominates mid-disk regions, but is a small
fraction of the total in outer disks, where Σ and the disk’s
stellar density ρ∗ are lower (Wong & Blitz 2002; Blitz &
Rosolowsky 2004, 2006; Leroy et al. 2008). Ostriker et al.
(2010) have recently advanced a theory to explain the star-
forming behavior and balance of phases in the main regions
of disks at Σ � 100 M� pc−2, based on the requirement that
the diffuse H i gas must be in both thermal and dynamical
equilibrium. In this theory, star-forming gravitationally bound
clouds are assumed to have internal pressures much larger than
their surroundings, consistent with local GMC observations.
Thus, they are effectively isolated, and over their lifetimes are
assumed to maintain a mean internal specific star formation rate
consistent with the empirical main-disk value tSF,mol ≈ 2 Gyr.
In equilibrium, individual gravitationally bound clouds form
and disperse at equal rates, with neutral ISM gas cycling
between the diffuse and gravitationally bound components.
In outer-disk regions (typically Σ � 10 M� pc−2, although
this varies with ρ∗), the equilibrium fraction of gas in star-
forming bound clouds is just enough that the heating provided
by the resulting stellar ultraviolet (UV) balances the cooling
of the surrounding diffuse H i; here, ΣSFR ∝ Σ√

ρ∗. In mid-
disk regions (typically 10 M� pc−2 � Σ � 100 M� pc−2),
the ISM becomes predominantly molecular (by mass) because
the heating provided by star formation would be insufficient
to balance cooling in high-density warm atomic gas (which is
compressed by the vertical disk gravity); here, ΣSFR ∝ Σmol ∝ Σ.
The model of Ostriker et al. (2010) assumes that most of the
volume is filled by non-star-forming atomic gas, and thus is
inapplicable to the starburst regime in galactic centers where
Σ � 100 M� pc−2 and gas is mostly molecular.

Where Σ is very high, the conditions throughout the ISM
resemble those in the interior of locally observed GMCs, but
are even more extreme in terms of the mean densities, the
abundance of very high density gas, and the ratio of the turbulent
velocity dispersion vturb to the thermal speed vth (e.g., Scoville
et al. 1991; Downes et al. 1993; Downes & Solomon 1998;
Gao & Solomon 2004). Supersonic turbulence is known to
be a dominant process controlling star formation regulation

within GMCs (Mac Low & Klessen 2004; McKee & Ostriker
2007), so it is expected to be important in starburst regions
as well. Main-disk GMCs are relatively isolated entities, in
the sense that their internal dynamical timescales are short
compared to the orbital, epicyclic, and vertical oscillation times
in the galactic potential (Ω−1, κ−1, and ν−1, respectively). In
galactic center regions, however, the gravitational potential is
deeper, such that Ω, κ , and ν are all substantially higher, with
timescales �10 Myr. Thus, the galactic environment may also
significantly impact the development of star formation.

Turbulence in the ISM both inhibits and encourages star
formation. For regions large compared to the energy (and mo-
mentum) injection scale, turbulence provides an effective pres-
sure that opposes gravity. In the ISM, this helps to regulate the
mean density averaged over the disk thickness ρ̄, and therefore
the large-scale self-gravitational timescale 〈tgrav〉 ∝ ρ̄−1/2 ∝
(H/Σ)1/2. Here, the gas disk semi-thickness H varies with turbu-
lent velocity dispersion as H ∝ σz or σ 2

z depending on whether
stellar or gas gravity dominates the vertical potential gradients.
In either case, larger turbulent velocities raise H and 〈tgrav〉 for
the ISM disk, while larger stellar and gas densities lower H and
〈tgrav〉. On scales smaller than the turbulent injection, supersonic
compression creates local overdense regions ρlocal � ρ̄ that po-
tentially can collapse more rapidly than the larger scale regions
containing them since tgrav,local/〈tgrav〉 ∝ (ρlocal/ρ̄)−1/2 
 1.
However, turbulent rarefactions and shear also destroy over-
densities. Because tgrav,local depends on density, turbulence will
disperse the moderate-density structures before self-gravity can
concentrate them further, while allowing the highest-density re-
gions (amounting to a small fraction of the mass) to collapse
and form stars. Theoretical arguments suggest that the fraction
of mass in turbulent systems that collapses to form stars will
be relatively insensitive to the velocity dispersion (Krumholz &
McKee 2005; see also Section 5), so that the overall star forma-
tion rate is primarily governed by the gravitational time on large
scales, 〈tgrav〉. Since massive stars energize the ISM, raising the
velocity dispersion and 〈tgrav〉, the associated feedback loop may
allow star formation rates to be self-regulated.

In this paper, we investigate the process of self-regulation via
turbulent driving, for application to understanding what controls
star formation rates in starburst disks. For molecule-dominated
regions, cooling times are short, so it is the injection of mo-
mentum, rather than energy, that is essential in defining the
dynamical state of the disk. Thus, we begin in Section 2 by
considering the implications of maintaining force balance in the
vertical direction, which imposes a requirement on the input mo-
mentum flux associated with star formation feedback. We show
that for disks where supernovae dominate the feedback, the star
formation rate is expected to vary as ΣSFR ∝ Σ2. At very high
surface density in optically thick disks, radiation pressure can
exceed the turbulent pressure driven by supernovae, which leads
to ΣSFR ∝ Σ. In Section 3, we compare our prediction for ΣSFR
versus Σ in turbulence-dominated disks to the results of numer-
ical simulations, for which feedback is explicitly implemented
in local vertically resolved models of self-gravitating, rotating
disks. Section 4 compares the prediction for ΣSFR versus Σ to
observations of galaxies in the regime where the turbulence-
dominated model is expected to apply. Both the numerical sim-
ulations and the observations are consistent with the simple
analytic model. In Section 5, we connect to models relating star
formation rates to 〈tgrav〉, and discuss how the mean internal
properties (including velocity dispersion and disk thickness) of
turbulence-dominated, feedback-regulated disks are expected
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to depend on Σ and the parameters that characterize the star
formation feedback. We conclude in Section 6 with a brief sum-
mary and discussion.

2. A SIMPLE MODEL FOR MOMENTUM-CONTROLLED,
SELF-REGULATED DISK STAR FORMATION

Consider a region of a galactic disk with gas surface density Σ,
residing within a bulge of uniform density ρb, such that the gas-
disk gravitational potential is Φg and the bulge potential is Φb.
We assume that the gas disk’s internal structure is similar to that
of a GMC, in that it is highly inhomogeneous (due to supersonic
turbulence) but most of the gas concentrations are transient. The
disk is thus taken to consist primarily of “diffuse” gas, in the
sense that only a small fraction of the mass at any time lies in
bound clumps having gravitational potential large compared to
the mean midplane value in the disk. With an effectively plane-
parallel distribution of mean gas density, the mean gravitational
potential depends only on the distance from the midplane z.
The time-averaged, horizontally averaged vertical momentum
equation (e.g., Boulares & Cox 1990; Piontek & Ostriker 2007;
Koyama & Ostriker 2009b; Ostriker et al. 2010) may then be
vertically integrated, yielding the result that the total momentum
flux through the disk must be equal to the total vertical weight
of the overlying gas.

At the midplane, the weight includes a self-gravitational term,

∫ ∞

0
ρ

dΦg

dz
dz = 1

8πG

∫ ∞

0

d
(

dΦg

dz

)2

dz
dz = πGΣ2

2
, (1)

where we have used ρ = (4πG)−1d2Φg/dz2 and |dΦg/dz|∞ =
2πGΣ for a slab; and a term arising from the external bulge
potential,3

∫ ∞

0
ρ

dΦb

dz
dz = 4πGρb

3

∫ ∞

0
ρz dz ≡ 2πζdGρbΣ2

3ρ0
. (2)

Here, ρ(z) is the mean (area-weighted) density of the gas at
height z and ρ0 is the midplane value. The value of the numerical
coefficient ζd is insensitive to the exact vertical distribution of
the gas, equaling 1/π for a Gaussian (when Φb dominates) and
ln(2)/2 for a sech2 distribution (when Φg dominates); ζd ≈ 0.33
within 5% for these distributions. Note that the self-gravitational
weight is independent of the midplane gas density, whereas the
weight in the external bulge potential is proportional to ρb/ρ0.

The difference in momentum flux between the disk mid-
plane and the height zmax at which ρ → 0 includes ther-
mal and turbulent terms, Pth = ρ0〈v2

th〉 and Pturb = ρ0〈v2
z 〉,

where 〈v2
z 〉 is equal to 1/3 of the total turbulent velocity vari-

ance v2
turb if it is isotropic. The thermal and turbulent terms

can be combined as a single midplane kinetic pressure ρ0σ
2
z ,

where σz is the observed velocity dispersion for a face-on disk.
Note that Pth corresponds to a volume-weighted mean pres-
sure and 〈v2

th〉 corresponds to a mass-weighted average of ther-
mal speeds of different components: if Mtotal = ∑

i Mi and
Vtotal = ∑

i Vi for mass and volume with ρi = Mi/Vi =
Pth,i/v

2
th,i, then Pth ≡ ∑

i ViPth,i/Vtotal = ∑
i Miv

2
th,i/Vtotal =

ρ0
∑

i(Mi/Mtotal)v2
th,i ≡ ρ0〈v2

th〉. For molecule-dominated re-
gions, the rms thermal speed 〈vth〉1/2 � 1 km s−1 if T � 100 K,

3 Note that the expression (2) for a stellar bulge differs from the
corresponding equation for a stellar disk in Ostriker et al. (2010) by a factor
of 1/3.

whereas observed velocity dispersions are at least several
km s−1 so that 〈v2

th〉 
 〈v2
z 〉 ≈ σ 2

z . For convenience, we shall
use vz to denote the rms value 〈v2

z 〉1/2.
The momentum flux difference also contains magnetic terms,

ΔPmag ≡ Δ(B2
x + B2

y − B2
z )/8π , where Δ denotes the difference

between midplane values and values at the surface of the
neutral-gas disk. Numerical simulations of highly supersonic
magnetohydrodynamic turbulence (e.g., Stone et al. 1998; Mac
Low et al. 1998) have shown that the magnetic energy is
typically smaller than the turbulent energy by a factor of ∼2–3,
so that B2

midplane/(8π ) � ρ0〈v2
z 〉; this is also consistent with

observations (Ferrière 2001). Since the magnetic scale height
LB is typically large compared to the semi-thickness H ≡ Σ/ρ0
of the neutral-gas layer in galactic disks (Tüllmann et al. 2000;
Heesen et al. 2009), the ratio ΔPmag/Pmag ∼ H/LB 
 1, so
that the resulting magnetic contribution to the momentum flux
difference will be small (�[H/LB]ρ0〈v2

z 〉). Cosmic rays and
radiation may also contribute to the momentum flux difference,
with respective terms ΔPcr and ΔPrad. Including all terms, the
total momentum flux corresponds to an effective midplane
pressure Peff ≡ Pturb + Pth + ΔPmag + ΔPcr + ΔPrad.

By equating Peff with the total weight (the sum of
Equations (1) and (2)), we obtain

Peff ≡ Pturb + Pth + ΔPmag + ΔPcr + ΔPrad ≡ ρ0σ
2
z (1 + R)

= πGΣ2

2
(1 + χ ) . (3)

Here,

R ≡ ΔPmag + ΔPcr + ΔPrad

ρ0σ 2
z

(4)

characterizes the contribution to vertical support from non-
kinetic compared to kinetic terms. The term χ ≡ 4ζdρb/(3ρ0)
represents the contribution to the gas disk’s weight from
the external bulge potential compared to the gas disk’s self-
gravitational weight. Since the midplane gas density is given
by ρ0 = 4ζdρb/(3χ ), the vertical equilibrium Equation (3) is a
quadratic in χ that can be solved to obtain

χ = 2C(1 + R)

1 + [1 + 4C(1 + R)]1/2 , (5)

where C ≡ 8ζdρbσ
2
z /(3πGΣ2) depends only on large-scale

properties of the system. Note that C1/2 is approximately equal
to the ratio of scale heights for a disk-only potential compared to
a bulge-only potential, so that C 
 1 if the gas disk dominates
vertical gravity and C � 1 if the bulge dominates vertical
gravity.

Equation (5) can also be rearranged to yield C = χ (1 + χ )/
(1 +R); whenR, C 
 1, χ ≈ C. Using ρb = 3Ω2/(4πG), C =
2ζdW2 ≈ 0.7W2 in terms of the quantity W ≡ (σzΩ)/(πGΣ).
The parameter W is the analog of the Toomre (1964) parameter
Q ≡ κσR/(πGΣ) for vertical rather than horizontal oscillation
frequency and velocity dispersion; i.e., W = Qσz/(2σR) for
epicyclic frequency κ = 2Ω. Thus, if Q ∼ 1–2, R 
 1,
and σz/σR � 1, then C � 0.2–0.7 and χ � 0.2–0.5 so that
self-gravity dominates the external (stellar bulge) gravity in
controlling the vertical pressure, and ρ0 � ρb. Alternatively,

Q = σR

σz

(
2

ζd

)1/2 [
χ (1 + χ )

1 + R

]1/2

, (6)
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so that for R 
 1 and χ � 1, Q � 3χ1/2σR/σz. Also, note that
the bulge potential generally dominates orbital motion (even if
the gas potential dominates vertical motion), with a factor of
∼(R/H )C for the stellar versus gas contributions to Ω2.

If star formation is self-regulated via momentum inputs, we
expect the turbulent portion of the vertical momentum flux
through the disk, ρ0〈v2

z 〉, to be comparable to the total vertical
momentum per unit time per unit area that is injected in the
gas by feedback from star formation. For isotropic momentum
p∗ injected per massive star near the midplane, averaging over
spherical shells yields a vertical component injected on each
side of the disk of p∗/4. We shall therefore adopt the relation

Pturb = ρ0
〈
v2

z

〉 = fp

p∗
4m∗

ΣSFR, (7)

where m∗ is the total mass in stars formed per massive star. The
ratio p∗/m∗ is simply the mean radial momentum injected in the
ISM per unit mass of stars formed. We have introduced a factor
fp to parameterize the dependence on the details of turbulent
injection and dissipation. The value of fp is expected to vary
between 1 (for strong dissipation) and 2 (for weak dissipation;
this is the limit for a stream of particles that is injected vertically
and conserves energy as the particles fall back to the midplane).

The kinetic momentum injected in the ISM per massive star
can have contributions from a number of sources, including
expanding H ii regions, stellar winds, and supernovae (e.g.,
Norman & Ferrara 1996; Mac Low & Klessen 2004). If star
clusters are born in sufficiently optically thick regions with
deep gravitational potential wells, radiation pressure also be-
comes important in accelerating the residual gas to high ve-
locities (Murray et al. 2010; Krumholz & Matzner 2009).
Matzner (2002) estimates the momentum injected by an ex-
panding H ii region for a given source of ionizing luminos-
ity and ambient density within a GMC, finding a ratio of
momentum-to-mass p∗/m∗ ∼ 200–300 km s−1 for clouds of
mass ∼105–107 M�. Using the results of Matzner (2002), it can
be shown that p∗/m∗ ∝ M

−4/7
GMCR

3/7
GMCε

−3/7
GMC for MGMC, RGMC, and

εGMC the mass, radius, and integrated star-forming efficiency of
a GMC, so that GMCs with escape speeds (GMGMC/RGMC)1/2 >
9 km s−1 or εGMC > 0.01 would have p∗/m∗ � 200 km s−1.
Radiation pressure is most important when gas is concentrated
near a central stellar cluster and the efficiency is high (see
Appendix A), so that the value of p∗/m∗ will be compara-
ble to the escape speed from the (super)cluster that forms—up
to ∼100 km s−1 for the most extreme clusters (McCrady et al.
2003; Maraston et al. 2004; Overzier et al. 2009).

Although radiation and ionized-gas momentum inputs are
important for destroying individual gravitationally bound GMCs
(thereby limiting star formation), supernovae are likely the
most important feedback mechanism for driving turbulence
in the ISM as a whole (Spitzer 1978). For supernova energy
of 1051 erg and ambient density 103–1 cm−3, the momentum
injection per event is p∗ ≈ (2–5) × 105 M� km s−1 (Chevalier
1974; Cioffi et al. 1988). If multiple supernovae combine to
drive a single expanding shell, stellar winds contribute as well,
but this increases the total energy (and momentum, which is
approximately linear in the input energy) per unit mass by less
than ∼20% (Leitherer et al. 1999). For a Kroupa (2001) initial
mass function (IMF), the total mass in stars per high mass star
(M > 8 M�) is m∗ = 100 M�, so we shall adopt p∗/m∗ =
3000 km s−1 from supernovae as our fiducial numerical value.

Under the assumption that cosmic rays are accelerated by
supernova blast waves and diffuse vertically out of the disk,

the momentum flux contribution from cosmic rays will be
proportional to that from supernovae, with

ΔPcr = H

Lcr

ESNζcr

2vAm∗
ΣSFR. (8)

Here, ζcr is the efficiency of cosmic-ray production per super-
nova of energy ESN, and we have assumed that the cosmic-ray
fluid streams at speed vA. The mean free path of cosmic rays,
Lcr, is likely comparable to the magnetic scale height LB (Yan &
Lazarian 2008). Taking ζcr ∼ 0.1 (Reynolds 2008), vA ∼
10 km s−1, and ESN = 1051 erg, (ESNζcr)/(2vAm∗) =
2500 km s−1; this is comparable to the kinetic input p∗/m∗ from
supernovae. Since the neutral-disk thickness is small compared
to the magnetic scale height, however, H/Lcr ∼ H/LB 
 1
and the vertical support of the neutral disk from cosmic rays is
small compared to that from turbulence given in Equation (7),
ΔPcr/(ρ0〈v2

z 〉) ∼ H/Lcr 
 1, similar to the situation for mag-
netic support ΔPmag/(ρ0〈v2

z 〉) ∼ H/LB 
 1.
Radiation pressure is important to vertical support of the

disk if it is optically thick to reprocessed infrared (IR) radia-
tion (Thompson et al. 2005). Assuming uniformly distributed
sources at the disk midplane, the radiation pressure term is

ΔPrad = κIRΣ
2

Frad

2c
= ε∗cκIRΣ

4
ΣSFR. (9)

Here, κIR is the mean opacity, Frad is the total luminosity per
unit area produced by the disk (half is radiated from each side),
c is the speed of light, and based on a standard Starburst99
model (Leitherer et al. 1999), ε∗ ≡ L∗/(c2Ṁ∗) ≈ 6.2 × 10−4

is the mass-to-radiation energy conversion efficiency by stars
for a Kroupa (2001) IMF in steady state (applicable if the
starburst duration is �107 yr). The radiation pressure term
becomes comparable to the kinetic term driven by supernovae
(Equation (7)) if ε∗cκIRΣ approaches p∗/m∗.

Retaining just the turbulence and radiation pressure terms
in Equation (3), and using Equations (7) and (9), the surface
density of star formation is given by

ΣSFR = 2π

fP

(1 + χ )

1 + τ/τ∗

m∗GΣ2

p∗
. (10)

Here,

τ∗ ≡ fpp∗
ε∗m∗c

= 16fp

(
p∗/m∗

3000 km s−1

)(
ε∗

6.2 × 10−4

)−1

,

(11)
and the optical depth through the disk is

τ ≡ κIRΣ = 0.21

(
κIR

10 cm2 g−1

) (
Σ

100 M� pc−2

)
. (12)

Trapped radiation begins to affect the star formation rate when
τ/τ∗ � 1, for very high gaseous surface densities.4 Note that
in Equation (4), R → τ/τ∗ if radiation dominates over the

4 Streaming radiation, as well as diffusing radiation, injects momentum to the
disk when it is absorbed. The maximum momentum flux that can be injected to
each side of the disk by streaming stellar radiation (including ionizing and
far-UV radiation before it is reprocessed to IR) is the input value, Frad/(2c).
The maximum effect of streaming radiation on self-regulating disk star
formation is obtained by replacing κIRΣ/2 = τ/2 by 1 in Equation (9), so that
τ/τ∗ → 2/τ∗ = 2ε∗m∗c/(fpp∗) in Equation (10). Using the fiducial value of
τ∗ given in Equation (11), the maximum effect of momentum input from
streaming stellar radiation is ∼10% compared to that from supernovae.
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magnetic and cosmic-ray terms and turbulence dominates the
thermal term.

In the turbulence-dominated regime (τ/τ∗ 
 1) for self-
regulated disks, the surface density of star formation is

ΣSFR,turb = 2π (1 + χ )

fP

m∗GΣ2

p∗

= 0.092 M� kpc−2 yr−1 (1 + χ )

fp

(
p∗/m∗

3000 km s−1

)−1

×
(

Σ
100 M� pc−2

)2

. (13)

As noted above, disks that are marginally gravitationally un-
stable (Q � 2) have χ � 0.5. Thus, turbulence-controlled,
self-regulated star formation in galactic centers is expected to
follow a scaling relation ΣSFR ∝ Σ2.

At very high surface densities such that τ/τ∗ � 1 (and
assuming χ 
 1), the star formation rate in the radiation-
pressure-dominated regime is

ΣSFR,rad = 2πGΣ
ε∗cκIR

= 710 M� kpc−2 yr−1

(
ε∗

6.2 × 10−4

)−1

×
(

κIR

10 cm2 g−1

)−1 (
Σ

104 M� pc−2

)
, (14)

which is linear rather than quadratic in the gas surface density.
Equation (13) would apply to galactic center regions experi-

encing all but the most extreme starburst activity, with a tran-
sition to the radiation-dominated regime of Equation (14) at
τ ∼ τ∗, corresponding to a gas surface density

Σtrans,rad = 8 × 103 M� pc−2

(
κIR

10 cm2 g−1

)−1

×
(

p∗/m∗
3000 km s−1

)(
ε∗

6.2 × 10−4

)−1

. (15)

The self-regulated turbulent galactic-center regime of
Equation (13) connects with the “mid-disk” regime, where in-
ternal GMC processes control star formation (see Section 1),
at lower surface densities. Setting Equation (13) equal to
ΣSFR = Σ/tSF,GMC with tSF,GMC comparable to the empirical
mid-disk value tSF,mol ∼ 2 Gyr (Bigiel et al. 2008; Blanc et al.
2009) and assuming χ 
 1, the nominal transition to the mid-
disk regime is at

Σtrans,GMC = 54 M� pc−2fp

(
p∗/m∗

3000 km s−1

)(
tSF,GMC

2 Gyr

)−1

.

(16)
Physically, this transition occurs because at low surface den-
sities, the energy input from star formation is insufficient to
prevent “diffuse” molecular gas from becoming concentrated in
individual gravitationally bound GMCs.

3. COMPARISON OF ΣSFR VERSUS Σ TO
NUMERICAL SIMULATIONS

To initiate a numerical study of star formation under high
surface density conditions, we begin with a very simple com-
putational model, which nevertheless includes sufficient ingre-
dients that we are able to investigate self-regulation of star for-
mation in turbulence-dominated disks. Our simulation domain

represents a local region within a starburst disk, which we re-
solve both vertically and horizontally. The domain is rotating
with the disk, so we include centrifugal and Coriolis forces; we
assume a solid-body rotation curve, so there is no large-scale
rotational shear within the domain. We assume that the gas cools
efficiently to maintain an approximately constant (low) temper-
ature, so we adopt an isothermal equation of state with sound
speed cs = (P/ρ)1/2. For this first study, we neglect magnetic
fields. Thus, the dynamical equations we solve are

∂ρ

∂t
+ ∇ · (ρv) = 0, (17)

∂v
∂t

+ v · ∇v = − 1

ρ
∇P − 2� × v − ∇Φg + gext, (18)

and
∇2Φg = 4πGρ (19)

(e.g., Kim et al. 2002, taking dimensionless shear parameter
q = 0). For a spherical bulge, the vertical gravitational field is
given by gext = −Ω2zẑ.

We integrate the dynamical equations using a version of the
Athena code (Stone et al. 2008), which employs a single-step,
directionally unsplit Godunov scheme (Gardiner & Stone 2005,
2008) to obtain conservative, second-order accurate solutions.
The Poisson equation is solved using the Fourier transform
method of Koyama & Ostriker (2009a), suitable for disk
problems that are treated as having open boundary conditions in
the vertical (ẑ) direction and periodic boundary conditions in the
horizontal directions. The equations above can be solved either
for a three-dimensional domain, or a two-dimensional domain
representing a radial-vertical slice through the disk (e.g., Kim
et al. 2006; Koyama & Ostriker 2009a). Two-dimensional radial-
vertical models, which we adopt here, capture the physics of the
competition between turbulent driving and gravitational settling
in the vertical direction, and allow much more extensive initial
exploration of parameters than is possible for three-dimensional
models (which we intend to pursue next).

Motivated by observations showing a linear relation between
very dense gas and star formation (e.g., Gao & Solomon 2004;
Wu et al. 2005, 2010), we assume that star formation takes
place in gas above a density threshold ρth = μnth at a fixed
efficiency per free-fall time εff( nth); we also assume that the
total mass in stars formed per massive star is m∗ and that
each massive star injects a momentum p∗ into the ISM. Thus,
when n � nth in a given zone containing total mass m, the
probability of a massive star formation event occurring within
a given time step Δt is set to be P = Δt εff( nth)m/[m∗tff(ρ)].
Here, tff(ρ) = [3π/(32Gρ)]1/2 is the gravitational free-fall time
at density ρ. For every zone where a massive star formation
event occurs, we inject a total momentum p∗ into the gas in a
spherical region of radius Rsh surrounding the event. For every
feedback event associated with a massive star, the tally of the
total mass in stars formed is increased by m∗, although we do
not remove any gas from the grid (in order to maintain constant
Σ). The computed surface star formation rate ΣSFR is the mass
in stars formed per unit time within the domain, divided by the
horizontal area.

A description of the detailed numerical methods and the
results of a full parameter survey (varying Σ, Ω, cs , εff( nth),
p∗/m∗, Rsh, nth, domain size Lx, Lz, and numerical resolution),
will be presented separately (R. Shetty & E. C. Ostriker 2011,
in preparation). Here, since we are interested in comparing
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Figure 2. Sample evolution of density structure (logarithmic color scale) in the radial-vertical plane for a numerical model with Σ = 200 M� pc−2. Snapshots are
separated by 5 Myr. The domain size is Lx × Lz = 60 × 120 pc2.

(A color version of this figure is available in the online journal.)

to Equation (13) to test the idea of turbulent self-regulation,
we focus on the dependence of the star formation rate ΣSFR
on the gas surface density Σ. We fix m∗ = 100 M�, p∗ =
3 × 105 M� km s−1, Rsh = 5 pc, cs = 2 km s−1, and set the
angular velocity to Ω = Myr−1(Σ/103 M� pc−2) (so that the
Toomre parameter would be unity for a velocity dispersion of
7 km s−1). Note that the value of cs we use is larger than would
be provided by thermal pressure at temperatures ∼10–100 K;
without magnetic fields (which are neglected in this study),
shocks would become unphysically strong if cs is much lower.
Turbulent energy is still far larger than thermal energy for the
parameter range under consideration, so that the disk thickness
is controlled by feedback-driven turbulence (see Section 5 and
R. Shetty & E. C. Ostriker 2011, in preparation). The models are
integrated for 200 Myr; a quasi-steady state typically requires
only a few tens of Myr to be established, for the parameter
regime Σ � 100 M� pc−2 under investigation.

Figure 2 shows an example of typical density structure
snapshots in the radial-vertical plane, from a model with Σ =
200 M� pc−2, taking nth = 5 × 103 cm−3 and εff( nth) = 0.01.
This density threshold and efficiency factor are chosen based
on observations of Milky Way and extragalactic gas and star
formation (Krumholz & Tan 2007; Evans et al. 2009; Lada
et al. 2010; Heiderman et al. 2010; see also Section 5). As
Figure 2 shows, the structure is highly inhomogeneous due to
the dominance of turbulence, which shocks and compresses the
gas. Effects of recent star formation events are seen as dense
circular regions; these drive expanding shells, which are also
evident. Although structure is irregular and highly dynamic,
gas is preferentially concentrated toward the midplane due to
gravity; this is where star formation events take place, in the
densest gas. All of our models show similar structure and
evolution, with repeated local collapse events and feedback-
driven turbulent excitation. In some of our simulations with
a sufficiently large radial domain, we find that the gas may
collapse into a single condensation that the feedback is unable
to redisperse, because the gravitational potential well is too deep.
As we discuss in Section 5 and the Appendix, in real galaxies
radiation pressure may play a role in dispersing strongly bound
clouds and superclouds. Since radiation is not included in the

current simulations, we consider only models that do not suffer
this kind of global collapse.

In spite of their highly dynamic behavior, our simulations
show that a quasi-steady state is established in which the ver-
tical weight of the gas is approximately balanced by turbulent
pressure, which itself is driven by momentum injection associ-
ated with massive star formation. For the same model shown
in Figure 2, Figure 3 shows the evolution of the turbulent mo-
mentum flux in the vertical direction ρ0v

2
z and the characteristic

vertical momentum injection rate to each side of the disk from
star formation 0.25(p∗/m∗)ΣSFR, as well as the mean vertical
weight of the gas disk 0.5πGΣ2(1+χ ) (the value of χ ∼ 0.1 for
this model); the respective time-averaged values of these quan-
tities are 357, 209, and 305 M� km s−1 pc−2 Myr−1. From
Equation (7), fp ∼ 1.7, consistent with the expectation that
the turbulent pressure is comparable to the momentum injection
rate per unit area from star formation. Note that the difference
between the mean momentum flux and the mean weight is due
to a combination of stochastic effects and non-plane-parallel
variations in the gravitational potential. Our other models show
similar temporal behavior for the various momentum flux terms.

Figure 4 shows the time-averaged values of ΣSFR measured
from a set of simulations with Σ = 100, 200, 400, 800 M� pc−2.
For all models we set nth = 5 × 103 cm−3; we show cases
with εff( nth) = 0.005, 0.01, and 0.05. The numerical results
are consistent with the prediction given in Equation (13) for
momentum-controlled, self-regulated disk star formation. We
note that both turbulence and small-scale self-gravity are crucial
in determining the star formation rate in these simulations. For
all of the models, our adopted nth exceeds the midplane value
of the density for a purely thermally supported slab (with the
adopted value cs = 2 km s−1), so no star formation would
take place without localized gravitational collapse. On the other
hand, if we had not imposed a high threshold density and had
simply assumed a star formation rate equal to εffΣ/ tff(nmidplane)
for our adopted cs and εff = 0.01 (see Section 5), we would have
obtained the same scaling with surface density ΣSFR ∝ Σ2 as
found with our simulations (and as predicted by Equation (13)),
but a much larger coefficient: ΣSFR = εff4GΣ2/(

√
3 cs). For

the value cs = 2 km s−1 used in the present simulations, this
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Figure 3. Comparison of characteristic input vertical momentum flux from
star formation 0.25(p∗/m∗)ΣSFR (squares), turbulent pressure in the vertical
direction ρ0v

2
z (triangles), and vertical weight of the gas disk 0.5πGΣ2(1 + χ )

(plusses) for the same model as shown in Figure 2. Each quantity is computed
averaging over temporal bins of 20 Myr.

(A color version of this figure is available in the online journal.)

would yield a factor of ∼6 larger ΣSFR than Equation (13);
lower cs would yield even larger ΣSFR. Thus, a simulation that
did not include turbulent feedback but allowed gas to cool to
low temperature (small cs) could significantly overestimate the
star formation rate. Turbulence driven by star formation keeps
the volume-averaged midplane value of the density lower than
that of a thermally supported disk, but self-gravitating collapse
of shocked, highly overdense local regions still occurs, leading
to further (self-regulated) star formation.

4. COMPARISON OF ΣSFR VERSUS Σ TO OBSERVATIONS

The dependence of ΣSFR on Σ predicted by the simple model of
Section 2 can be compared to observations. Genzel et al. (2010a)
have recently investigated the relationship between molecular
gas and star formation in a large sample compiled from both
local-universe and high-redshift galaxies. The compilation in-
cludes local ULIRGs as well as normal and merging galaxies at
z ∼ 1–3. Gaseous surface densities in this (and other) data sets
are based on observations of CO emission, so it is necessary
to convert the integrated line emission, ICO, to a value of Σ.
This conversion is accomplished using a factor α ≡ ΣH2/ICO or
XCO ≡ NH2/ICO, where ΣH2 = Σ/1.4 is the surface density of
molecular hydrogen in M� pc−2 (the factor 1.4 accounts for he-
lium in the total surface density), NH2 is the molecular hydrogen
column density in cm−2, and ICO is in units of K km s−1 so that
XCO = 6.3 × 1019 α in units cm−2/( K km s−1) if α has units
M� pc−2/( K km s−1). In Milky Way and Local Group GMCs,
values of α ≈ 2–5 (for the CO J=1−0 transition) have been
inferred based on a variety of empirical techniques (e.g., Blitz
et al. 2007), whereas there is evidence that α is significantly
lower in ULIRGs and other extreme star-forming systems (e.g.,
Solomon & Vanden Bout 2005).

For surface densities Σ � 100 M� pc−2 in galaxies, CO emis-
sion can be understood as arising primarily from collections of
gravitationally bound GMCs with limited variation in individ-

Figure 4. Results of mean measured star formation rate ΣSFR from a set
of simulations with a range of gas surface density Σ in comparison with
the prediction given in Equation (13) (solid line). For the numerical results,
triangles have εff (nth) = 0.005, squares have εff (nth) = 0.01, and circles have
εff (nth) = 0.05.

ual properties such as total column density and kinetic temper-
ature (Solomon et al. 1987; Bolatto et al. 2008; Heyer et al.
2009), such that there is an approximately constant conversion
factor α. The standard value of XCO = 2 × 1020 based on CO
emission in the Milky Way (Strong & Mattox 1996; Dame et al.
2001) corresponds to α = 3.2. Shetty et al. (2011) have applied
radiative transfer to numerical simulations of turbulent clouds,
confirming that mean ratio of NH2/ICO is comparable to stan-
dard empirically estimated values XCO = 2 × 1020, provided
that AV is neither very low nor very high.

For galactic center regions with high surface densities, how-
ever, the molecular gas may respond to the overall gravita-
tional potential in the disk rather than being bound in individual
GMCs (raising the velocity dispersion), and may be systemati-
cally warmer for higher ΣSFR. These effects would increase the
integrated CO emission ICO for a given Σ, implying a smaller
XCO or α is needed (Solomon et al. 1997). Since the depen-
dence of ΣSFR on Σ is nonlinear, gas surface densities may also
be overestimated in some cases if the gas is not spatially re-
solved and the characteristic radius of the IR-emitting starburst
is adopted as a surrogate (this spatial mismatch is known to
be an issue for high-redshift galaxies; see, e.g., Bothwell et al.
2010). In addition, lack of spatial resolution combined with
galactic inclination can broaden observed CO line widths (due
to rotation and to radial and/or azimuthal streaming within a
beam) beyond the true turbulent velocity width in a local patch
of the disk; without detailed modeling, it is not clear how this
would affect the conversion between ICO and NH2. For ULIRGs
with typical Σ ∼ 103 M� pc−2, empirically estimated values
are α � 1 (Downes & Solomon 1998).

From a theoretical point of view, the value of α in a self-
regulated starburst system should depend primarily on the
disk’s gas surface density Σ, since this sets ΣSFR and thus
the gas velocity dispersion and the distributions of temperature
and density through star formation feedback. Using numerical
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Figure 5. Solution given by Equation (13) for star formation rate ΣSFR vs. gas
surface density Σ (solid line) in comparison with data compiled in Genzel et al.
(2010a). In the lower panel, Σmol/[M� pc−2] ≡ 1.4αICO/[K km s−1 pc−2] is
computed assuming α = 3.2 for star-forming galaxies (stars) and α = 1 for
merger systems (triangles), following Genzel et al. (2010a). In the upper panel,
a variable value of α is adopted such that α = 3.2 for Σ = 100 M� pc−2 and
α = 1 for Σ = 1000 M� pc−2. Dashed lines show the least-squares fit to the
data, with slopes 1.4 in the lower panel and 1.9 in the upper panel. The value
obtained by Yusef-Zadeh et al. (2009) for the Milky Way center is also shown
(squares in both panels).

simulations for a range of disk properties combined with detailed
radiative transfer calculations, it will ultimately be possible to
obtain predictions for the dependence of α on local conditions.
Empirically, a systematic trend for α to decrease with increasing
Σ is already evident (e.g., Tacconi et al. 2008). The simplest
possible relation would be for ICO, and therefore α, to depend
on Σ as a power law. For example, if α is fixed to 1 at
Σ = 103 M� pc2 from ULIRG observations, and to 3.2 at
Σ = 102 M� pc2 from the limit of “normal” GMCs, a power-law
assumption yields α = (Σ/1000)−0.52 = (1.4ICO/1000)−0.34.

In Figure 5, we compare the prediction of Equation (13) with
the observed relation between Σ and ΣSFR from the compilation
of Genzel et al. (2010a). Also shown is the surface density
and star formation rate in the Milky Way Galactic center, from
Yusef-Zadeh et al. (2009). For the theoretical result, we have set
χ → 0 in Equation (13) from Equation (5), since C < 0.1 in
the observed sample (except for two cases which have C < 0.5)
if we assume the vertical velocity dispersion is ∼10 km s−1.
In the presentation of Genzel et al. (2010a), a value α = 1
is adopted for merger galaxies (LIRGs and ULIRGs), while a
value α = 3.2 is adopted for other systems. In Figure 5, we
compare to observations using both these standard conversion
factors (lower panel), and using the simple power-law function
for α given above (upper panel).

Evidently, the theoretical prediction of Equation (13) follows
the data over the full range of surface densities if a Σ-dependent
α is used. If α = 1 is used for mergers and α = 3.2 for normal
galaxies, Equation (13) agrees with the data at low Σ, but at high
Σ there is an offset between the two classes of galaxies, with only
the mergers close to the result of Equation (13). Genzel et al.
(2010a) and Daddi et al. (2010) previously noted this offset, and

suggested that a difference in dynamical timescale Ω−1 may be
responsible for the apparent difference in star formation laws.
With α depending on Σ, star formation follows a single relation
for both mergers and normal galaxies in the Σ − ΣSFR plane,
but mergers are preferentially at higher Σ—which is correlated
empirically with higher Ω. Regardless of the value of α, star
formation is observed to be more efficient in merger systems,
based on the ratio LIR/LCO. Given the characteristically larger
values of ICO and Σ for mergers compared to normal galaxies,
this is consistent with theoretical expectations that ΣSFR depends
nonlinearly on Σ—in particular, as ΣSFR ∝ Σ2 based on
Equation (13).

5. DISK PROPERTIES IN THE
TURBULENCE-DOMINATED REGIME

In Section 2, we showed that if turbulence driven by star
formation feedback dominates other forms of pressure, the
equilibrium star formation rate is expected to be proportional
to the weight of the ISM.5 The force balance (or momentum
conservation) argument leads to a relation ΣSFR ∝ Σ2 for
gas-dominated regions in a self-regulated steady state, but it
says nothing about the internal processes or character of the
disk. In order to maintain equilibrium, the disk must internally
adjust itself so that stars are produced at the required rate,
and this internal arrangement must also be consistent with the
detailed dynamics of a self-gravitating, turbulent hydrodynamic
(or hydromagnetic) flow.

In a region of mean gas density ρ̄ (and where ρ∗ 
 ρ̄),
the gravitational free-fall time at the mean density, tff(ρ̄) =
[3π/(32Gρ̄)]1/2, represents a characteristic dynamical time.
The star formation rate can then be expressed as Ṁ∗ ≡
εff (ρ̄)Mgas/ tff(ρ̄), where εff(ρ̄) is an efficiency factor that
depends on the detailed properties of the gas. Although it is
uncertain exactly what controls the rate of localized gas collapse
in highly turbulent systems, evidence from current observations
(Krumholz & Tan 2007; Evans et al. 2009), theory (Krumholz
& McKee 2005; Padoan & Nordlund 2009), and numerical
simulations (Padoan & Nordlund 2009; Rosas-Guevara et al.
2010; Vázquez-Semadeni et al. 2009) suggests that the star
formation efficiency factor is low, εff(ρ̄) ∼ 0.01, for molecular
gas in observed star-forming regions at a range of ρ̄. Krumholz &
McKee (2005) proposed that for turbulence-dominated systems,
εff (ρ̄) is given by the fraction of mass compressed to densities
higher than the mean by a factor ∼M2 for M ≡ vturb/vth the
Mach number. Because the density PDF in turbulent regions
is a lognormal function of M (McKee & Ostriker 2007),
Krumholz & McKee (2005) show that the resulting dependence
of the star-forming efficiency on the Mach number is weak,
εff (ρ̄) ∝ M−0.3. Thus, if localized collapse to make stars is
controlled primarily by turbulence, the overall rate is expected
to be governed primarily by the free-fall time on large scales.

In (self-gravitating) disks, it is convenient to use the mean
midplane density ρ0 = μn0 as a reference value, so that the star
formation rate per unit area can be written as

ΣSFR ≡ εff(ρ0)
Σ

tff(ρ0)
. (20)

5 The star formation rate is also expected to be proportional to the weight of
the ISM if thermal pressure dominates other forms of pressure, in a medium
dominated by diffuse atomic gas and heated by young stars (Ostriker et al.
2010). If, however, radiation pressure dominates both turbulent and thermal
pressure, the star formation rate would be proportional to the vertical
gravitational field rather than the weight (i.e., reduced by a factor
∝ 1/τ ∝ 1/Σ—cf. Equations (13) and (14)).
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For a Gaussian vertical density distribution, ρ̄ = ρ0/
√

2 so
that εff (ρ0) = 0.8 εff (ρ̄). As in Section 2, in adopting the
form of Equation (20), we have implicitly assumed that the gas
collapses only locally—on scales small compared to the Toomre
wavelength (Toomre 1964) λT ≡ GΣ(2π/κ)2—so that angular
momentum and shear do not dominate the dynamics of star
formation. In addition, Equation (20) implicitly assumes that
the free-fall time at the mean midplane gas density is shorter
than the vertical oscillation time in the gravitational field of
the stellar bulge; this will be true if gas self-gravity dominates
vertical potential gradients.

We note that Equation (20) is not expected to apply in
regions of a galactic disk that have a fundamentally multiphase
character, in terms of the mass- and volume- fractions of gas at
different temperatures. In particular, if most of the ISM’s mass
is in clouds that are self-gravitating entities isolated from their
surroundings, the local density within these self-gravitating,
star-forming clouds need not be proportional to the (volume-
weighted) mean midplane density of the disk. Using multiphase
disk simulations, Koyama & Ostriker (2009a) indeed found that
Equation (20) would yield a different (steeper) star formation
law than is obtained by adopting a constant star formation
timescale only in very dense (gravitationally bound) gas.

For outer-disk regions dominated in mass by diffuse atomic
gas, Ostriker et al. (2010) argued that a key factor regulating
star formation is the heating and cooling of the warm, volume-
filling medium. Gas that cannot be maintained in thermal
equilibrium in the diffuse phase cools and drops out to make
gravitationally bound, star-forming clouds. This increases the
heating rate (from stellar UV), and decreases the cooling rate
(since the density is lower), for the remaining diffuse gas. Mass
dropout continues until heating balances cooling. In a state
of simultaneous thermal and dynamical equilibrium, the star
formation rate for an outer-disk region will still vary inversely
with the dynamical time of the dominant gas component,
analogous to Equation (20), but the relevant dynamical time
is not tff(ρ0). In outer-disk regions, the ISM scale height is
generally set by the gravity of stars plus dark matter, rather
than the self-gravity of the gas. As a consequence, the gas
disk’s internal dynamical time tdyn ∼ H/σz (or the timescale
for vertical oscillations ∼2πH/σz) varies as tdyn ∝ (Gρ∗)−1/2

rather than tdyn ∝ tff(ρ0) ∝ (Gρ0)−1/2, yielding an outer-disk
star formation rate ΣSFR ∝ Σ√

ρ∗ (see Equations (22) and (A16)
in Ostriker et al. 2010).

For turbulent, molecular-gas-dominated starburst regions
where Equation (20) is hypothesized to apply, the value of
εff(ρ0) is uncertain, but analysis of observations including
nearby star-forming clouds, and both moderate-density and
high-density extragalactic molecular gas, is consistent with a
range εff (ρ0) ∼ 0.003–0.06 (Krumholz & Tan 2007; Bigiel
et al. 2008; Evans et al. 2009; Blanc et al. 2009). Simulations
of turbulent, star-forming disks can also be used to evaluate
εff(ρ0). The mean midplane density ρ0 can be measured and
used to obtain a mean value of tff(ρ0); if the value of ΣSFR mea-
sured in the simulations is multiplied by the measured tff(ρ0)
and divided by Σ, the result is a numerical evaluation of εff(ρ0).
For the numerical simulations described in Section 3, the models
yield a range εff(ρ0) ∼ 0.004–0.01 (for further discussion, see
R. Shetty & E. C. Ostriker 2010, in preparation). As a fiducial
value, we shall adopt εff(ρ0) = 0.005, but it is important to keep
in mind that further observations and simulations are needed to
determine this value (and any dependence on parameters) more
conclusively.

A disk that is in vertical equilibrium will obey Equation (3);
assuming gas thermal+turbulent pressure exceeds other forms
of support (R 
 1), ρ0 = πGΣ2(1 + χ )/(2σ 2

z ). Substituting
this expression for ρ0 in Equation (20), the star formation rate
can be written as

ΣSFR = 4 εff (ρ0)(1 + χ )1/2

√
3

GΣ2

σz

= 0.051 M� kpc−2 yr−1(1 + χ )1/2

(
εff(ρ0)

0.005

)

×
( σz

10 km s−1

)−1
(

Σ
100 M� pc−2

)2

. (21)

Thus, disks dominated by self-gravity rather than external
gravity (χ 
 1) will have ΣSFR ∝ Σ2 if εff(ρ0) ∼ constant
and the velocity dispersion varies only weakly with Σ—as we
verify below.

We now focus on the case in which turbulence driven
by star formation dominates the vertical support and control
of star formation. In this limit, equating Equation (13) with
Equation (21) for σz → vz yields

vz = 2fP εff(ρ0)p∗√
3πm∗

1

(1 + χ )1/2

= 5.5 km s−1 fp

(1 + χ )1/2

(
εff(ρ0)

0.005

) (
p∗/m∗

3000 km s−1

)
.

(22)

The only dependence of the velocity dispersion on the mean
gaseous surface density Σ is through χ ; if the disk is marginally
unstable (Q � 2), however, χ � 0.5 (see Section 2). In
the supernova-driven, turbulence-dominated limit, the velocity
dispersion is therefore expected to vary only weakly with
Σ for disks that are marginally gravitationally unstable. The
numerical simulations described in Section 3 indeed show a
very weak dependence of vz on Σ, with turbulent velocity
dispersions varying by a factor of two (∼4–9 km s−1) in models
with gas surface density between Σ = 100 M� pc−2 and
Σ = 800 M� pc−2, which have ΣSFR varying by more than
a factor of 100. The main parameter controlling the velocity
dispersion, in disks that cool strongly and therefore have highly
supersonic turbulence, is the specific momentum input rate
associated with star formation, p∗/m∗. In Equation (22), the
fiducial value of p∗/m∗ chosen is that associated with cooled
supernova shells. In addition to the direct momentum input from
radiative blast waves, cosmic rays that are accelerated by blast
waves may drive additional turbulence in escaping from the disk
(e.g., via Parker instabilities), which would raise the value of p∗
and increase vz.

By combining Equations (22) and (5) (for R 
 1), we can
solve for χ and C = χ (1 + χ ) in terms of the star formation
parameters and the gas disk and bulge properties. Defining

A ≡ 2ζd

π

(
4fP εff(ρ0)p∗

3πm∗

)2
ρb

GΣ2
(23)

= 0.11

(
εff(ρ0)

0.005

)2 (
p∗/m∗

3000 km s−1

)2 (
Ω

0.1 Myr−1

)2

×
(

Σ
100 M� pc−2

)−2

(24)
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we obtain the implicit relation χ (1 + χ )2 = A. An approximate
solution good to within 15% over all A is

χ ≈ A
1 + A2/3

. (25)

For A 
 1, χ ≈ C ≈ A, and the Toomre parameter is
Q = 2.5(σR/σz)A1/2.

In the turbulence-dominated limit σz ≈ vz (and for R 
 1),
the mean midplane density ρ0 ≡ n0(1.4mH ) (for mH the
hydrogen mass) and half-thickness H ≡ Σ/(2ρ0) are given by

ρ0 = (1 + χ )π

2

GΣ2

v2
z

= 3π

2
(1 + χ )2

(
πm∗

2fp εff(ρ0)p∗

)2

GΣ2

(26)
so that

n0 = 64 cm−3 (1 + χ )2

f 2
p

(
εff(ρ0)

0.005

)−2 (
p∗/m∗

3000 km s−1

)−2

×
(

Σ
100 M� pc−2

)2

, (27)

and

H = 1

(1 + χ )

v2
z

πGΣ2
= 1

3π

1

(1 + χ )2

(
2fp εff(ρ0)p∗

πm∗

)2 1

GΣ

= 23 pc
f 2

p

(1 + χ )2

(
εff(ρ0)

0.005

)2 (
p∗/m∗

3000 km s−1

)2

×
(

Σ
100 M� pc−2

)−1

. (28)

We have written Equations (13), (22), (26), and (28) in such
a way as to highlight the dependence on the gas surface density.
As Σ increases, and taking A, χ 
 1, the surface density of star
formation increases as ΣSFR ∝ Σ2m∗/p∗, the vertical velocity
dispersion is constant vz ∝ εff(ρ0)p∗/m∗, the mean midplane
gas density increases as ρ0 ∝ Σ2( εff(ρ0)p∗/m∗)−2 and the scale
height decreases as H ∝ Σ−1( εff (ρ0)p∗/m∗)2. Increasing the
specific momentum input p∗/m∗ from star formation decreases
the star formation rate and increases the velocity dispersion
and disk thickness. The absence of any explicit timescale in
Equation (13) is a signature of self-regulation: the star formation
rate must adjust until the turbulence driven by feedback from
young stars provides a pressure that matches the vertical weight
of the gas. If the turbulence level were lower than the equilibrium
value, the mean density would be higher than equilibrium
(ρ ∝ v−2

z ), which would then lead to a shorter dynamical time
tff ∝ ρ−1/2 and consequently (from Equations (20) and (21))
a higher star formation rate, driving the velocity dispersion
upward. Similarly, too high a turbulence level would lead
to lower-than-equilibrium ρ0 and ΣSFR, which would reduce
turbulent driving from star formation and eventually lead to a
lower value of vz.

Although a balance between turbulent driving and dissipation
has not been explicitly used in order to derive the above
results, it is straightforward to see that these considerations
yield equivalent results. The turbulent vertical momentum per
unit time per unit gas mass that is driven by stellar inputs is
∼p∗ΣSFR/(Σm∗). Since the dissipation time for turbulence is
comparable to the flow crossing time over the largest scale
(Stone et al. 1998; Mac Low et al. 1998), which in this case is the

disk thickness H ∼ v2
z /(GΣ), the dissipation rate of momentum

per unit gas mass is ∼v2
z /H ∼ GΣ. Equating driving with

dissipation yields ΣSFR ∼ GΣ2m∗/p∗, which is the same as
Equation (13) up to order-unity dimensionless constants and the
factor fp that has been incorporated to parameterize the details
of the momentum injection and mixing.

In terms of the feedback and disk parameters, the Toomre
parameter for turbulence-dominated disks is

Q = 0.8
1

(1 + χ )1/2

σR

σz

(
εff (ρ0)

0.005

)(
p∗/m∗

3000 km s−1

)

×
(

Ω
0.1 Myr−1

) (
Σ

100 M� pc−2

)−1

. (29)

Thus, for Σ and Ω in the range observed for galactic center
starbursts, the disk will be near the margin of instability. Even if
Q � 2, the intermittency of turbulence implies that some regions
may temporarily become unstable. If a large region of the disk
becomes unstable and begins to contract, a gravitationally bound
supercloud may form.

In a gravitationally bound supercloud, the outward force
Fkin from direct kinetic feedback from star formation varies as
∼Ṁ∗p∗/m∗, whereas the outward force Frad from reprocessed
radiation varies as ∼L∗τ/c ∝ Ṁ∗M/r2, where Ṁ∗, L∗, M, and
r are the supercloud’s star formation rate, luminosity, mass, and
radius. The inward gravitational force Fgrav varies as ∼GM2/r2.
If Ṁ∗ ∝ M/ tff(ρ̄) ∝ r−3/2, then Fkin/Fgrav ∝ r1/2 (decreasing
as a supercloud shrinks), whereas Frad/Fgrav ∝ r−3/2 (increas-
ing as a supercloud shrinks). This suggests that superclouds, if
they become bound, could be destroyed by radiation pressure
feedback but not by kinetic feedback. In sufficiently optically
thick disks, radiation pressure might prevent supercloud forma-
tion; a simple estimate in Appendix B suggests that disks with
gas surface densities up to Σ ∼ (3000/κIR) M� pc−2 may be
susceptible to supercloud formation.

6. SUMMARY AND DISCUSSION

Increasingly high-resolution, multiwavelength observations
of galaxies have refined empirical relations between the gas
content and mean star formation rate in galaxies. The picture
now emerging appears to include at least three regimes: outer-
disks, mid-disks, and galactic centers. The first and last regimes
evidence superlinear mean relations between the surface density
of star formation ΣSFR and the gas surface density Σ, while the
relation is close to linear for mid-disks.

From a theoretical point of view, star formation in all regimes
is likely to be self-regulated in some way. For the outer-
disk regime, Ostriker et al. (2010) have proposed that UV
feedback from massive young stars is particularly important
to self-regulation. In this model, the star formation rate in
outer disks must be such that the heating of diffuse atomic
gas by stellar UV radiation balances cooling, with the cooling
rate set by the gas pressure (and hence responsive to the
vertical gravity of the disk). For the mid-disk regime, gas
resides predominantly in gravitationally bound (but transient)
GMCs with mean densities (and hence star formation rates)
that depend on the amplitude of supersonic turbulence driven
by star formation feedback (possibly by expanding H ii regions,
although this is not well understood). For galactic center regions,
we argue in this paper that the momentum injected to the disk by
massive star formation is crucial to establishing a self-regulated
state. Vertical equilibrium of the disk requires gravity to be
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balanced by an outward momentum flux, consisting primarily
of turbulent pressure (largely driven by supernovae) for most
molecule-dominated central regions. Our analysis suggests that
the galactic-center star formation regime may further subdivide,
with a transition to radiation-dominated momentum flux (or
pressure) only for extremely high Σ, highly opaque disks.

The analysis of Section 2 provides a prediction (see
Equation (10)) for the dependence of ΣSFR on Σ and the den-
sity ρb of the stellar bulge, parameterized by the mean specific
momentum p∗/m∗ injected by star formation to the ISM (pri-
marily from supernovae), by the mean IR opacity κIR (which
determines how much reprocessed starlight is trapped), and
by the mass-to-radiation energy efficiency of star formation
ε∗ (which depends on the IMF). Assuming that gas grav-
ity dominates the vertical potential, self-regulated, turbulence-
dominated disks are expected to have ΣSFR ≈ 2πm∗GΣ2/p∗
(see Equation (13)), whereas radiation-dominated disks are ex-
pected to have ΣSFR ≈ 2πGΣ/(ε∗cκIR) (see Equation (14)).
The turbulence-dominated regime is expected to apply for
Σ ∼ 100–104 M� pc−2, covering most starbursts (although not
the innermost disk regions that merge into active galactic nu-
cleus disks). For the radiation-dominated limit, an equivalent
expression to our result was previously obtained (under some-
what different assumptions) by Thompson et al. (2005, see their
Equation (28)), and they also noted that optically thin disks
are expected to have a steeper dependence of ΣSFR on Σ than
optically thick disks.

In a self-regulated disk, the feedback parameters determine
the star formation rate, independent of the internal structure of
the disk. Thus, the vertically integrated star formation rates
of Equations (13) and (14) depend only on the vertically
integrated disk properties. However, it is natural that the star
formation rate should also connect to the timescale for gas to
become concentrated into high-density clouds, as discussed in
Section 5. For a system in equilibrium where the gas is confined
primarily by its own gravitational potential, this timescale is
the gravitational free-fall time at the mean density; for a disk,
1/ tff (ρ̄) ∝ (GΣ/H )1/2. The mean density (or disk thickness), in
turn, depends on what is balancing gravity—thermal pressure,
turbulent pressure, or radiation pressure. In the turbulence-
dominated, gas-gravity dominated case, H = v2

z /(πGΣ) for
vz the vertical velocity dispersion, which yields 1/ tff (ρ̄) =
4GΣ/(

√
3vz). If εff (ρ0) is the collapse efficiency per free-fall

time at the mean midplane density, the star formation rate is
given by ΣSFR = 2.3 εff (ρ0)GΣ2/vz (see Equation (21)).

Krumholz & McKee (2005) proposed that the lognormal
density distribution in highly turbulent systems will lead to
a star-forming efficiency declining as the −1/3 power of the
turbulent Mach number. Including this scaling for εff(ρ0) would
lead to ΣSFR ∝ Σ2v−1.3

z . Under the assumption that in molecule-
dominated gas ΣSFR = εff(ρ)Σ/ tff(ρ), Krumholz et al. (2009)
proposed a power-law relation between ΣSFR and Σ in galactic
center regions. In obtaining this relation, they assumed that the
Toomre parameter Q ≈ 1, and also that Ω ∝ Σ0.5; together these
would imply that velocity dispersion varies ∝ Σ0.5. Although
we in fact argue that the vertical velocity dispersion vz is rather
insensitive to Σ, inserting vz ∝ Σ0.5 in ΣSFR ∝ Σ2v−1.3

z would
yield ΣSFR ∝ Σ1.3, the result given in Equation (10) of Krumholz
et al. (2009).

In order for the disk to form stars at a rate controlled by
the free-fall time (ΣSFR ≈ 2.3 εff (ρ0)GΣ2/vz), and also for the
momentum feedback from star formation to control vertical
equilibrium of the disk (ΣSFR ≈ 2πm∗GΣ2/p∗), the vertical

velocity dispersion must adjust to vz ≈ 0.4 εff (ρ0)p∗/m∗ (see
Equation (22)). Interestingly, this is independent of the disk
surface density and the star formation rate; our numerical
simulations in fact show that vz is insensitive to the star
formation rate. Other recent numerical simulations have also
indicated that turbulent velocity dispersions vary relatively
weakly with the input star formation rate (Dib et al. 2006;
Shetty & Ostriker 2008; Agertz et al. 2009; Joung et al. 2009).
The relation vz ∼ εff(ρ0)p∗/m∗ can also be understood as
simply a balance between driving turbulent velocities in the
ISM at a rate ∼p∗ εff(ρ0)/[m∗ tff(ρ0)], and dissipating turbulent
velocities at a rate ∼vzvz/H ∼ vz/ tff (ρ0). For εff(ρ0) ∼ 0.01
and p∗/m∗ ∼ 3000 km s−1, the velocity dispersion driven by
star formation feedback is vz ∼ 10 km s−1.

More generally, if the vertical momentum injection rate
per unit ISM gas mass from star formation is ∼(1–2)p∗/
(4m∗tSF,gas), and the corresponding turbulent dissipation rate
is ∼vz/[(1–2)tdyn] for vertical dynamical time tdyn = H/σz,
the expected vertical velocity dispersion is vz ∼ (0.3–1)
(p∗/m∗)tdyn/tSF,gas. This is within a factor of a few of 10 km s−1

if p∗/m∗ ∼ 3000 km s−1 from supernovae and tSF,gas ∼ 100tdyn
(which is true in outer disks as well as starbursts; see below),
regardless of whether the vertical dynamical time is set by gas
self-gravity or by gravity of an external potential (stellar bulge,
stellar disk, or dark matter halo). Velocity dispersions reported
for starburst regions are often much larger than the values we find
(e.g., Downes & Solomon 1998; Genzel et al. 2010b), but it is
difficult observationally to eliminate sub-beam sheared rotation,
radial/azimuthal streaming, and other non-turbulent (and non-
vertical) motions on the relevant scales (∼H 
 100 pc). Ob-
servations of molecular velocity dispersions within the central
kpc of a few nearby, face-on galaxies are ∼10 km s−1 (Combes
& Becquaert 1997); turbulent molecular velocity dispersions
from larger scales are also similar (Wilson et al. 2010).

The momentum-regulated, turbulence-dominated prediction
of Equation (13) for ΣSFR can be compared to the re-
sults of numerical simulations and to observations. We do
this in Sections 3 and 4, respectively. The simulations in-
deed yield a relation consistent with the prediction, ΣSFR ≈
0.1 M� kpc−2 yr−1(Σ/100 M� pc−2)2, adopting a value of the
momentum input per unit stellar mass formed of p∗/m∗ =
3000 km s−1. Velocity dispersions from the simulations are also
comparable to prediction. Further comparisons of the star for-
mation rates and disk properties from the model with the results
of numerical simulations will be presented by R. Shetty & E. C.
Ostriker (2011, in preparation).

A difficulty in comparing to observations is that the molecular
mass must be obtained indirectly through observations of CO
transitions. Although the conversion factor XCO from integrated
CO intensity to hydrogen column density has been well cali-
brated empirically using several different methods for individual
GMCs and main-disk regions which integrate over collections
of GMCs, the value of XCO is much less certain in galactic center
regions. There is evidence that XCO decreases in high-Σ starburst
regions; this may owe to a combination of factors, including
higher CO excitation in the warmer, denser gas, a larger fraction
of the gas that is sufficiently shielded to create CO, and larger
velocity gradients that allow radiation to escape more easily. We
compare to the large sample of observations compiled in Genzel
et al. (2010a). If the conversion factor is assumed to decrease
with increasing integrated CO intensity (as XCO ∝ I−0.3

CO ), the
observed and predicted relations for ΣSFR versus Σ are in ex-
cellent agreement, for the range Σ ∼ 102–104 M� pc−2. If two
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different constant conversion factors are adopted for normal and
merger systems, the former agree with the predicted ΣSFR at low
Σ, and the latter agree at high Σ. To make progress in relat-
ing theory to observations, a top priority is to determine how
XCO varies under the conditions that prevail in galactic center
regions. This will require both empirical calibrations, and ra-
diative transfer models applied to numerical simulations that
resolve the structure of turbulent disks.

Finally, we note that the star formation timescale tSF,gas =
Σ/ΣSFR ≈ p∗/(2πGm∗Σ) in self-regulated, turbulence-
dominated, molecular galactic center disks can also be expressed
as tSF,gas ∼ tdyn/ εff (ρ0) ∼ 100tdyn, for vertical dynamical time
tdyn = H/σz. In Ostriker et al. (2010), we showed6 that in outer
disks, self-regulation via UV heating of atomic gas leads to a
quantitatively similar result, tSF,gas ∼ 200H/σz. The constant
factor ∼200 in the outer-disk formula for tSF,gas is set, however,
by σz and the ratio of heating and cooling rate coefficients for
atomic gas and by the UV production efficiency of the young-
star population, rather than just by the turbulent processes that
set the constant factor ∼1/ εff (ρ0) in the galactic-center for-
mula. Thus, although different physical processes control star
formation in galactic centers and outer disks, the dependence of
ΣSFR on 1/tdyn (and on Ω ∼ Q/tdyn) is similar, both in terms of
the scaling and the coefficient. We believe that this dependence
on 1/tdyn, together with the limited range of Q that disk evolu-
tion yields, is the reason that both whole galaxies and central
starbursts, at a range of redshifts, tend to follow the empirical
relation ΣSFR ∼ 0.02ΣΩ (Kennicutt 1998b; Daddi et al. 2010;
Genzel et al. 2010a).
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rates. We thank the referee for helpful suggestions on the
manuscript. The work of E.C.O. was supported by a fellowship
from the John Simon Guggenheim Foundation and by grant
AST-0908185 from the National Science Foundation. R.S.
acknowledges support from the German Bundesministerium
für Bildung und Forschung via the ASTRONET project STAR
FORMAT (grant 05A09VHA).

APPENDIX A

MOMENTUM INJECTION TO THE ISM FROM
RADIATION-DRIVEN SHELLS AROUND STAR

CLUSTERS

Consider a GMC of mass MGMC which forms stars with
a net efficiency over its lifetime of εGMC ≡ M∗/MGMC,
ejecting the remaining gas mass (1 − εGMC)MGMC. Treating
the stellar component as collected in a single central cluster
of (fixed) radius rcl and luminosity L∗ = εGMCΨMGMC, and
the ejected mass as an expanding spherical shell of (variable)
radius r surrounding it, the total radiation force applied to
the interior of the shell by reprocessed (diffuse) radiation is
Frad = 4πr2(arad/3)T 4

int, where T 4
int = (3/4)τT 4

eff for shell
optical depth τ � 1 and internal and surface (effective)
temperatures Tint and Teff . Equating L∗ with 4πr2(aradc/4)T 4

eff
and using τ = κIR(1 − εGMC)MGMC/(4πr2), Frad = L∗τ/c =
κIR(1−εGMC)εGMCΨM2

GMC/(4πcr2). The gravitational force on
the shell, including that of the central cluster and its own self-
gravity, is −GM2

GMC(1 − ε2
GMC)/(2r2). The net acceleration of

6 See Equation (A16) in Ostriker et al. (2010), note that tcon there is the same
as tSF,gas here.

the shell is therefore

r̈ = GMGMC

r2

[
κIRΨεGMC

4πGc
− (1 + εGMC)

2

]

= (ψεGMC − 1)

2

GMGMC

r2
(A1)

for ψ ≡ ΨκIR/(2πcG) − 1. As pointed out by Murray et al.
(2010), this implies that there is a minimum value of εGMC for
the pressure associated with reprocessed radiation to disrupt the
cloud; the shell can only become unbound if εGMC > ψ−1 ≡
εmin.

Equation (A1) can be integrated to obtain the asymptotic
speed vf = [(ψεGMC − 1)GMGMC/rcl]1/2 of the shell, as-
suming its initial radius is rcl. The resulting ratio of the
momentum in the shell divided by the total mass in stars
formed, representing p∗/m∗ for a radiation-driven shell, is
vf (1 − εGMC)/εGMC. For any given value of ψ , it is straight-
forward to show that the maximum momentum-to-mass ra-
tio is obtained when εGMC = 4εmin[1 + (1 + 8εmin)1/2]−1 ≡
εmax. Using Ψ = 2000 erg s−1 g−1 (Dopita et al. 2006) for
young, luminous clusters that fully sample the Kroupa (2001)
IMF and κIR = 20 cm2 g−1 for warm, dusty shells (Murray
et al. 2010; Semenov et al. 2003), this yields εmin =
0.5, εmax = 0.6, and [p∗/m∗]rad = 0.4(GMGMC/rcl)1/2 =
30 km s−1(MGMC/106 M�)1/2(rcl/ pc)−1/2. This is comparable
to the velocity dispersion of the cluster itself, which even for the
most massive clusters in starbursts does not exceed 100 km s−1

and is typically much lower (McCrady et al. 2003; Maraston
et al. 2004; Overzier et al. 2009).

In addition to diffuse (reprocessed) radiation, streaming
radiation (dominated by UV) from the star cluster also imparts
momentum to the expanding gas cloud (or shell) where it
is first absorbed. The maximum force from this streaming
radiation is L∗/c, such that the maximum contribution to
vf (1−εGMC)/εGMC = p∗/m∗ is

∫
Ψdt/c = ε∗c ∼ 200 km s−1.

Thus, allowing for both reprocessed and direct stellar radiation,
the value of p∗/m∗ from radiation-driven expanding shells is
smaller than the momentum-per-stellar mass injected to the disk
by radiative supernovae shells, ∼3000 km s−1.

APPENDIX B

SUPERCLOUD EVOLUTION

Potentially, large-scale instabilities in the disk can lead to
gaseous supercloud formation. How would a supercloud evolve
if it is able to form? For a spherical, uniform-density cloud
of mass M and radius r that forms stars at a rate Ṁ∗ =
εff (ρ̄)M/ tff(ρ̄), producing a luminosity L∗ = ε∗c2Ṁ∗ and a
supernova rate Ṁ∗/m∗, the ratio of the outward force (due to the
combined momentum input from supernovae and reprocessed
radiation pressure7) to the inward force (due to gravity) is

F+

F−
= 27/2 εff (ρ̄)

3πG1/2M1/2

[
fp

p∗
m∗

r1/2 +
3ε∗cκIRM

4π
r−3/2

]
. (B1)

The contribution to F+/F− from supernovae declines ∝ r1/2 as
r decreases, whereas the contribution to F+/F− from radiation
increases ∝ r−3/2. Thus, radiation forces become increasingly

7 Streaming radiation adds a term < ε∗c ∼ 200 km s−1 to p∗/m∗ that is
small compared to the contribution p∗/m∗ ≈ 3000 km s−1 from supernovae,
and thus may be neglected.
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important as the cloud shrinks; eventually, if F+/F− becomes
>1, inward contraction will be halted. If the star formation
efficiency is sufficient, the cloud will ultimately be destroyed,
with a substantial fraction of its mass once again becoming
unbound (cf. Krumholz & Matzner 2009; Murray et al. 2010;
Krumholz & Dekel 2010; and the discussion in Appendix A).

The masses of clouds that form via gravitational instability
in disks with Q < Qcrit are typically ∼1–10MJ,2D (e.g., Kim
et al. 2002, 2003; Kim & Ostriker 2007), where MJ,2D =
(πH )2Σ = σ 4/(G2Σ) for σ the gas velocity dispersion. Letting
M ≡ mMJ,2D, r ≡ xH , and assuming σ = vz, we can use
Equations (22), (28), (11), and (12) to obtain

F+

F−
= 1.8

m1/2

[
x1/2 +

3π

4

τ

τ∗

m

x3/2

]
, (B2)

where τ is evaluated using the unperturbed disk surface density
Σ, and we have assumed χ 
 1.

For a given m, the force ratio has a minimum at
xmin = 2.7(mτ/τ∗)1/2, where its value is (F+/F−)min =
4.0m−1/4(τ/τ∗)1/4. Taken at face value, this suggests that only
disks with a sufficiently low surface density Σ will form con-
tracting superclouds, since only if τ/τ∗ is sufficiently small can
F+/F− be < 1. With m = 10, F+/F− < 1 for τ/τ∗ < 0.04, cor-
responding to Σ < (3000/κIR) M� pc−2. Note also that xmin < 1
only for Σ < (1000/κIR) M� pc−2. Of course, given the highly
idealized assumptions adopted, the particular value obtained
from this simple estimate should not be taken too seriously.
Physically, however, it is reasonable to expect higher-Σ disks
that are increasingly radiation-pressure supported to be less sub-
ject to gravitational instability, because of their stiff equation of
state: if Prad ∝ L∗ρ/r and L∗ ∝ Mρ1/2, the internal radia-
tion pressure in a supercloud would vary as P ∝ ρ11/6. Poten-
tially, more detailed understanding of large-scale gravitational
instabilities in starburst disks could be obtained via an analysis
similar to that of Thompson (2008), but including sources of
radiation and turbulence.
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