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ABSTRACT

This work presents a new physical model of the star formation rate (SFR), which is verified with an unprecedented set
of large numerical simulations of driven, supersonic, self-gravitating, magneto-hydrodynamic (MHD) turbulence,
where collapsing cores are captured with accreting sink particles. The model depends on the relative importance
of gravitational, turbulent, magnetic, and thermal energies, expressed through the virial parameter, αvir, the rms
sonic Mach number, MS,0, and the ratio of mean gas pressure to mean magnetic pressure, β0. The SFR is predicted
to decrease with increasing αvir (stronger turbulence relative to gravity), to increase with increasing MS,0 (for
constant values of αvir), and to depend weakly on β0 for values typical of star forming regions (MS,0 ≈ 4–20 and
β0 ≈ 1–20). In the unrealistic limit of β0 → ∞, that is, in the complete absence of a magnetic field, the SFR
increases approximately by a factor of three, which shows the importance of magnetic fields in the star formation
process, even when they are relatively weak (super-Alfvénic turbulence). The star-formation simulations used to
test the model result in an approximately constant SFR, after an initial transient phase. The dependence of the SFR
on the virial parameter is shown to agree very well with the theoretical predictions.
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1. INTRODUCTION

A physical theory of the star formation rate (SFR) should
explain why the star formation process is slow, meaning that
it converts only a small fraction of the gas mass into stars
in a free-fall time, τff , both on Galactic scale (Zuckerman &
Palmer 1974; Williams & McKee 1997) and on the scale of
individual clouds (Krumholz & Tan 2007; Evans et al. 2009).
Several authors have proposed that the observed supersonic
turbulence may be responsible for keeping the SFR low by
providing turbulent pressure support against the gravitational
collapse. For example, Bonazzola et al. (1987, 1992) presented
a gravitational instability analysis that includes the effect of
local turbulent pressure support; Krumholz & McKee (2005)
defined the critical density for star formation based on the
local turbulent pressure support of a Bonnor–Ebert sphere; and
Hennebelle & Chabrier (2008) proposed that the Salpeter stellar
initial mass function (IMF) is the result of the local turbulent
pressure support. In all these works, the turbulent pressure is
assumed to scale according to the observed Larson velocity–size
relation (Larson 1981; Heyer & Brunt 2004) or by numerical
simulations.

The concept of turbulent pressure support was intro-
duced in the context of subsonic, small-scale turbulence by
Chandrasekhar (1951). It applies when the two following con-
ditions are satisfied, L � LJ and σv � cS, where L is the length
scale, LJ is the Jeans length, σv is the velocity dispersion, and cS
is the sound speed. In the supersonic turbulence of star-forming
regions, both conditions are violated. As a result, the turbulence
can actually trigger gravitational collapse, causing a large-scale
compression rather than preventing it. The turbulence is respon-
sible for much of the complex and filamentary density structure
observed in molecular clouds, and prestellar cores are likely as-
sembled as the densest regions in this turbulent fragmentation
process (Padoan et al. 2001). However, even though supersonic
turbulence is able to intermittently create dense regions that are
gravitationally unstable, it does so only inefficiently, and its net

effect on the large scale is that of suppressing star formation
when the total turbulent kinetic energy exceeds the total gravi-
tational energy.

Focusing on the competition between supersonic turbulence
and self-gravity, the star formation process can be shown to
depend primarily on the ratio of the turbulent kinetic energy,
EK, and the gravitational energy, EG, of a star-forming region.
This ratio may be measured by the virial parameter introduced
by Bertoldi & McKee (1992)

αvir ∼ 2EK

EG
= 5σ 2

v,1DR

GM
, (1)

where σv,1D is the one-dimensional rms velocity, R and M are the
cloud radius and mass, respectively, and G is the gravitational
constant, and it has been assumed that the cloud is a sphere
with uniform density. If the dynamical time is defined as the
ratio of the cloud radius and the three-dimensional rms velocity,
τdyn = R/σv,3D, and using the standard definition of the free-fall
time, τff,0 = (3π/(32Gρ0))1/2, the virial parameter can also be
expressed as

αvir = 0.7(τff,0/τdyn)2. (2)

Krumholz & McKee (2005) derived a theoretical model where
the SFR is primarily controlled by the virial parameter. In this
model, it is assumed that the gas mass above some critical
density, ρcr, is gravitationally unstable, and the fraction of this
unstable mass is computed assuming the gas density obeys a
lognormal pdf (Nordlund & Padoan 1999). Following Padoan
(1995), the critical density is defined through the comparison
of the Jeans’ length and the sonic scale, λs, which is the scale
where the turbulent velocity differences are of the order of the
speed of sound. The critical density is equivalent to that of the
critical Bonnor–Ebert mass of size λs. The idea of relying on
the density pdf was also exploited in Padoan & Nordlund (2002,
2004) to explain the stellar IMF and the origin of brown dwarfs,
and by Padoan (1995) to model the SFR.
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The model of Krumholz & McKee (2005) was calibrated
and tested using low-resolution SPH simulations by Vázquez-
Semadeni et al. (2003). Because of the important role of
turbulent energy in this model, low-resolution simulations are
inadequate. They do not develop an inertial range of turbulence
and are expected to produce a too large SFR—which they do,
as recognized in a later paper, based on higher-resolution grid
simulations, by some of the same authors (Vázquez-Semadeni
et al. 2005). However, Krumholz & McKee (2005) estimated a
rather low SFR from the simulations of Vázquez-Semadeni et al.
(2003) by fitting only their early evolution. We argue that this is a
transient phase of accelerated SFR and should not be used to test
the model (although it cannot be excluded that real molecular
clouds experience such a phase of accelerated star formation, the
initial transient phase in the simulations is of numerical origin,
due to the sudden inclusion of self-gravity in our case, or to
the memory of artificial initial conditions in Vázquez-Semadeni
et al. 2003, where gravity is included from the beginning). A new
set of larger simulations is needed to properly test the theoretical
model. Because the model by Krumholz & McKee (2005) does
not include the effect of magnetic fields, a new model based on
MHD turbulence should be derived, and this new MHD model
should be tested with large numerical simulations as well.

In this work, we propose such a new MHD model of the SFR,
and we test it with an unprecedented set of large numerical simu-
lations of driven, supersonic, self-gravitating, MHD turbulence,
where collapsing cores are represented by accreting sink parti-
cles. Both the model and the simulations are limited to the case of
an isothermal gas, and the effect of deviations from the isother-
mal behavior is not addressed. To model the process of star
formation, we must include gravitational, turbulent, magnetic,
and thermal energies. Here, we express their relative importance
through the virial parameter, αvir, the rms sonic Mach number,
MS,0, and the mean gas pressure to mean magnetic pressure,
β0, and we derive a model that depends explicitly on all three
non-dimensional parameters. In the non-magnetized limit of
β0 → ∞, our definition of the critical density for star formation
has the same dependence on αvir and MS,0 as in the model of
Krumholz & McKee (2005), but our derivation does not rely on
the concepts of local turbulent pressure support and sonic scale
as in that work. However, even in this non-magnetized case, our
model predicts a different dependence of the SFR on αvir and
MS,0 from the model of Krumholz & McKee (2005), because
we assume that regions exceeding the critical density turn into
stars on a timescale given by their local free-fall time, rather
than the free-fall time of the mean density.

Although the non-magnetized case can be derived from
our MHD model in the limit of β0 → ∞, we structure
the paper by first deriving the critical density in the purely
hydrodynamic (HD) case (Section 2), and then in the general
MHD case (Section 3). Likewise, in Section 4, we first present
a simple model for the density pdf in the HD case, and then
generalize the approach to MHD turbulence. In Section 5, we
derive the model predictions for the SFR and in Section 6,
we present our numerical simulations of HD and MHD self-
gravitating turbulence. The comparison between the model and
the simulations is presented in Section 7, results are discussed
in Section 8, and conclusions are summarized in Section 9.

2. CRITICAL DENSITY IN HYDRODYNAMIC
TURBULENCE

In the HD case, the main source of pressure in the postshock
gas is the thermal pressure, so the shock jump conditions are

given by the balance of thermal pressure and ram pressure:

ρHD c2
S = ρ0(v0/2)2, (3)

where cS is the sound speed, ρ0 and ρHD are the preshock and
postshock gas densities, and v0/2 is the shock velocity. Because
we use this equation to estimate a characteristic postshock
density in the HD case, ρHD, we choose the mean gas density,
ρ0, as the preshock density, and half the rms velocity, v0, as
the shock velocity. Assuming an ensemble of eddies with a
randomly oriented velocity of mean magnitude v0, the average
collision velocity is also v0. However, the shock velocity is
half of that average collision velocity because the postshock
layer is confined by two shocks, each with velocity v0/2. The
characteristic density is then given by

ρHD = ρ0M2
S,0

/
4, (4)

whereMS,0 is the rms sonic Mach number, and the characteristic
thickness, λHD, of the postshock layers is

λHD = (θ L0) 4
/
M2

S,0, (5)

where L0 is the size (e.g., the diameter for a sphere) of the system
and θ L0, with θ � 1, is the turbulence integral scale. Because
the turbulence velocity scaling is approximately v ∝ 
1/2,
this characteristic thickness is practically scale independent (it
would have been the same if derived at any other scale, not
only at the integral scale). The local condition for collapse is
that MHD(ρ) � MBE(ρ), where MBE is the Bonnor–Ebert mass
(Bonnor 1956; Ebert 1957) with external density equal to the
postshock density ρ,

MBE = 1.182 c3
S

/
(G3/2ρ1/2) (6)

and MHD is the mass of a uniform sphere of radius λHD/2,
MHD(ρ) = (4/3)π (λHD/2)3 ρ.

Because the thickness, λHD, is scale independent, the con-
dition for collapse can be used to define a scale-independent
critical density for collapse. The local density depends on the
distribution of local shock velocity and preshock density and
is known to follow a lognormal pdf (Vazquez-Semadeni 1994;
Padoan et al. 1997; Nordlund & Padoan 1999; Ostriker et al.
2001; Li et al. 2004; Kritsuk et al. 2007; Beetz et al. 2008;
Lemaster & Stone 2008; Federrath et al. 2008), so there is a
finite probability that a region exceeds the critical density and
undergoes collapse. We therefore define the critical density for
star formation, ρcr,HD, as the minimum density that satisfies the
local condition for collapse:

MHD(ρcr,HD) = MBE(ρcr,HD) (7)

which yields

ρcr,HD/ρ0 = 0.067 θ−2αvir M2
S,0, (8)

where αvir is the virial parameter defined above in Equation (1)
and can be re-written as

αvir = 5v2
0

/(
πGρ0L

2
0

)
, (9)

assuming the system is a uniform sphere of radius L0/2, mean
gas density ρ0, and three-dimensional rms turbulent velocity v0.

The critical density defined by Equation (8) has the same
dependence on αvir and almost the same dependence on MS,0
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as the critical density derived by Krumholz & McKee (2005).
However, the critical density has been derived here without any
reference to the concepts of turbulent pressure support and sonic
scale. On the contrary, our derivation is based on the idea that the
turbulence is a trigger of local gravitational instabilities through
its dynamical pressure. This physical difference between the
two derivations is reflected by the Mach number dependence.
In Krumholz & McKee (2005), ρcr,HD ∼ M2/p−2

S,0 , where p
is the exponent of the velocity–size relation, v ∝ 
p, which
gives the same dependence on Mach number as in our model,
ρcr,HD ∼ M2

S,0, only for the specific value of p = 1/2. In
supersonic turbulence, however, the scaling exponent is not
necessarily identical to the Burgers value of p = 1/2. Numerical
simulations yield somewhat smaller values based on the second-
order velocity structure functions, or somewhat larger ones
based on the first order (Kritsuk et al. 2007).

The ratio between the characteristic density, ρHD, and the
critical density, ρcr,HD, is independent of MS,0,

ρHD/ρcr,HD = 3.521 θ2α−1
vir , (10)

which anticipates the result that the mass fraction with density
above ρcr,HD (and hence the SFR) must have a rather weak
Mach number dependence (despite the strong dependence of
ρcr,HDon MS,0) and must increase with decreasing αvir (weaker
turbulence relative to gravity).

In numerical simulations, the integral scale of the turbulence
is somewhat smaller than the system size (θ < 1). For example,
in our simulations of supersonic turbulence driven in the range
of wavenumbers 1 � k � 2 (k = 1 corresponds to the box size),
θ ≈ 0.35 (including a correction factor discussed in Wang &
George 2002). We adopt this value of θ when we compare the
models with the simulations in Section 7. If star-forming regions
are driven on very large scales, for example by the expansion
of supernova remnants (Korpi et al. 1999; Kim et al. 2001;
de Avillez & Breitschwerdt 2005; Joung & Mac Low 2006;
Tamburro et al. 2009), the turbulence integral scale could be
much larger than the size of individual star-forming regions.
However, in our model θL0 is the characteristic scale of regions
of compression with velocity of order the flow rms velocity,
v0, with v0 being measured within the region of size L0. We
therefore adopt the same value of θ = 0.35 as estimated in the
simulations. With θ = 0.35, the critical number density is

ncr,HD/n0 = 0.547 αvir M2
S,0. (11)

Adopting characteristic parameters of molecular clouds on a
scale of 10 pc, αvir ≈ 1.6, n0 ≈ 200 cm−3, and MS,0 ≈ 20, we
get a characteristic number density of nHD ≈ 2.0 × 104 cm−3

from Equation (4), reasonable for prestellar cores, and a factor of
3.5 below the critical number density, ncr,HD ≈ 350.1 n0 ≈ 7.0×
104 cm−3. The critical overdensity factor of 350.1 is somewhat
larger than the value of 275 derived from Equation (27) of
Krumholz & McKee (2005), using the same values of αvir and
MS,0 (note that their Mach number is one dimensional, so a
factor of 31/2 smaller than ours) and assuming φx = 1.12
for their numerical coefficient (their best fit to numerical
simulations).

3. CRITICAL DENSITY IN MHD TURBULENCE

We now consider the MHD case. Including both thermal and
magnetic pressures, and using v0/2 for the shock velocity, as in

Equation (3), the pressure balance condition for MHD shocks is

ρMHD
(
c2

S + v2
A

/
2
) = ρ0(v0/2)2, (12)

where vA is the Alfvén velocity in the postshock gas defined by
the postshock magnetic field perpendicular to the direction of
compression. Because the field is amplified only in the direction
perpendicular to the compression, the postshock perpendicular
field is comparable to the total postshock field,3 and we can
write, vA ≈ B/(4 πρ)1/2, where B is the postshock magnetic
field and ρ is the postshock gas density. The characteristic gas
density and thickness of postshock layers are thus given by

ρMHD = ρ0
(
M2

S,0

/
4
)
(1 + β−1)−1, (13)

λMHD = (θ L0)
(
M2

S,0

/
4
)−1

(1 + β−1), (14)

where we have introduced the ratio of gas to magnetic pressure
in the postshock gas, β = 2 c2

S/v
2
A. In the limit of β → ∞,

these expressions reduce to the corresponding HD ones, given
by Equations (4) and (5). The value of λMHD is not scale
independent. Its scale dependence is at the heart of the relation
between the exponent of the Salpeter stellar IMF and the
turbulent velocity power spectrum, in the IMF model of Padoan
& Nordlund (2002). However, we can still define a characteristic
thickness, and hence a characteristic critical density, as in the HD
case, because the average postshock Alfvén velocity, vA (and
the corresponding postshock β), is only very weakly dependent
on density. In numerical simulations of supersonic and super-
Alfvénic turbulence, it is found that, although vA has a very large
scatter for any given density, its mean value is nearly density
independent, corresponding to a mean relation approaching
B ∝ ρ1/2 for a very weak mean magnetic field (Padoan &
Nordlund 1999). In the specific MHD simulation used in this
work, the mean value of vA is almost exactly constant for any
density ρ � 2ρ0 (see Figure 1). Zeeman splitting measurements
of the magnetic field strength in molecular cloud cores are also
consistent with an average value of vA nearly independent of
density (Crutcher 1999).

As in the HD case, we define the critical density as the density
above which a uniform sphere of radius λMHD/2 is gravitation-
ally unstable, assuming that variations in the thickness around
λMHD are not strongly correlated with the density variations. To
account for both thermal and magnetic support, we adopt the
approximation of the critical mass for collapse, Mcr, introduced
by McKee (1989),

Mcr ≈ MBE + Mφ, (15)

where Mφ is the magnetic critical mass for a sphere of radius
R, mean density equal to the postshock density ρ, and constant
mass-to-flux ratio

Mφ = 0.17πR2B/G1/2 = 0.387v3
A

/
(G3/2ρ1/2), (16)

where the numerical coefficient 0.17 is from Tomisaka et al.
(1988; see also Nakano & Nakamura 1978 for the case of an

3 For the magnetic field strength in the postshock gas, we can write
B2

⊥ = B2 − B2
‖ = B2 − B2

0,‖, where the second equality is from the fact that
the component parallel to the direction of the compression is not amplified. If
we take an average, assuming a random orientation of the magnetic field
relative to the direction of compression, we get 〈B2

⊥〉 = 〈B2〉 − B3
0 /3, and

hence 〈B2
⊥〉/〈B2〉 = 1 − (B2

0 /〈B2〉)/3. Thus, on average, the relative error in β

as a result of assuming B = B⊥ is (B2
0 /〈B2〉)/3, which is typically of order

1% or less.
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Figure 1. Mean Alfvén velocity, in units of the sound speed, vs. gas density,
in units of the mean density, for a snapshot of the 10003 MHD turbulence
simulation prior to the inclusion of self-gravity. The Alfvén velocity is
essentially independent of density for densities above the mean. The dotted
line shows the mean value of 0.21, computed for densities larger than twice the
mean.

infinite sheet, and McKee & Ostriker 2007 for a discussion of
ellipsoidal clouds and other geometries). The critical density is
defined by the condition

MMHD(ρcr,MHD) = MBE(ρcr,MHD) + Mφ(ρcr,MHD), (17)

where MMHD(ρ) = (4/3)π (λMHD/2)3ρ. Equation (17) results
in the following expression for the critical density as a function
of the three non-dimensional parameters, αvir, MS,0, and β:

ρcr,MHD

ρ0
= 0.067 θ−2αvir M2

S,0

(
1 + 0.925β− 3

2
) 2

3

(1 + β−1)2
, (18)

which is smaller than ρcr,HD for any value of β, and reduces to
the expression for ρcr,HD given by Equation (8), in the limit of
β → ∞. The relative ratio of characteristic to critical density
in MHD and HD is given by the following function of β:

ρMHD/ρcr,MHD

ρHD/ρcr,HD
= (1 + β−1)(

1 + 0.925β− 3
2
) 2

3

. (19)

This ratio is slightly larger than unity for any value of β (with
a maximum of ≈1.3 at β ≈ 0.86), suggesting that star formation
should be slightly more likely in MHD turbulence than in the
HD case. However, due to the less broad gas density pdf in the
MHD case (see the next section), the net result is instead a lower
SFR in MHD than in HD.

We have verified that the average value of β is nearly
independent of density in the MHD simulation used to generate
the initial condition for the MHD star formation simulations
described in Section 6. In that simulation, the rms sonic
Mach number is MS,0 ≈ 9 and the mean Alfvén velocity
is vA,0 = 0.3 cS, computed with the mean density and mean
magnetic field. However, the rms magnetic field is amplified by
the turbulence, so the actual Alfvén velocity should be computed
as the local absolute value of B divided by the local value of the
density, which gives vA = 〈|B|/(4πρ)1/2〉 = 2.1 cS, if averaged
over all regions with density larger than twice the mean (the
Alfvén velocity introduced in Equation (12) is measured in
the postshock gas, so it should be estimated as an average in
overdense regions). Figure 1 shows the mean Alfvén velocity

as a function of the gas density in the snapshot used as the
initial condition for the MHD star formation simulations (see
Section 6). The Alfvén velocity is almost exactly constant at
densities above the mean.

In numerical simulations of super-Alfvénic turbulence, the
rms magnetic field is the result of the amplification of some
weak initial field by compressions and, possibly, by a turbulent
dynamo. These simulations typically start from an initially
uniform field, B0, which is also the conserved mean magnetic
field. It would be useful to relate our postshock β to the ratio
of gas to magnetic pressure computed with the mean magnetic
field, B0, and the mean gas density, ρ0, β0 = 2 c2

S/v
2
A,0, where

v2
A,0 = B2

0/(4πρ0). An approximate relation for the dependence
of β on β0 and MS,0 can be derived based on flux freezing,
on the simplified MHD shock jump conditions without thermal
pressure (where we assume that the characteristic shock velocity
is v0/2, as in Equations (3) and (12)), and neglecting dynamical
alignment of flow velocity and magnetic field:

β ≈ b β
1/2
0 M−1

S,0. (20)

With the MHD simulation of this work, we derive b = 0.22
when β is computed from the mean-squared value of vA
averaged over the whole computational box (not limited to
overdense regions). We find that Equation (20) is a very good
approximation also for the three 10243 simulations of Kritsuk
et al. (2009a), where MS,0 ≈ 10 and β0 = 0.2, 2, and 20 (it
overestimates β by approximately 20% for β0 = 0.2 and 2.0, and
underestimates it by approximately 2% for β0 = 20). However,
if β is computed from the mean-squared vA averaged above
a certain density, we find that, as we increase the value of that
density threshold, the value of β becomes gradually independent
of β0. For densities larger than 50 times the mean, for example,
all three simulations yield β ≈ 1. This can be understood as
due to the tendency of the strongest density enhancements to
originate from compressions along the magnetic field direction.
This tendency becomes stronger for decreasing values of MA,0,
or, at constant MS,0, for decreasing values of β0, as documented
by the increased alignment of flow velocity and magnetic field
(Kritsuk et al. 2009b).

Given the difficulty of deriving a robust value of the effective
postshock β to be used in the model for the critical density,
we estimate β based on the density pdf, as explained in
the next section. We will derive a value of β = 0.39. The
compilations of OH and CN Zeeman measurements by Troland
& Crutcher (2008) and Falgarone et al. (2008) give an average
value of β = 0.34 and 0.28, respectively, using the line-of-
sight magnetic field strength of their 3σ detections, assuming a
temperature T = 10 and 50 K, respectively, and averaging the
values of β of the individual cores. These estimated values of
β are very close to that derived in the next section based on the
density pdf.

4. GAS DENSITY PDF

We can estimate the gas mass fraction that is turned into stars
by computing the mass fraction above the critical density, as in
Krumholz & McKee (2005). For given values of αvir, MS,0, and
β (or β0), the critical density is fixed, and the mass fraction above
the critical density is determined by the density pdf. In the HD
case, the density pdf is known to be lognormal, with a standard
deviation depending on the rms Mach number. Following the
numerical results of Padoan et al. (1997) for the Mach number
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dependence, the pdf is given by

pHD(x)dx = x−1(
2πσ 2

HD

)1/2 exp

[
−

(
lnx + σ 2

HD/2
)2

2 σ 2
HD

]
dx (21)

and the standard deviation, σ , is given by

σ 2
HD ≈ ln

[
1 +

(
MS,0

2

)2
]

. (22)

Equation (22) for the standard deviation of the logarithm of
the overdensity, lnx, implies a simple expression for the standard
deviation, σx,HD, of the overdensity, x,

σx,HD ≈ MS,0/2. (23)

In the MHD case, the density pdf may deviate from the
lognormal and it may depend on both the sonic and the Alfvénic
Mach numbers. Lemaster & Stone (2008) have shown that the
density pdf in supersonic MHD simulations with a strong field,
corresponding to a mean value of β0 = 0.02, is very similar
to the density pdf in the HD case. Assuming a lognormal pdf,
the averaged results given in their Table 1 correspond to the
relation σx,MHD ≈ C MS,0/2, with C ≈ 0.8 at MS,0 < 4,
and C decreasing with increasing Mach number for MS,0 > 4.
In their largest Mach number run, they find C ≈ 0.66 with
MS,0 ≈ 6.7, not far from the value of C ≈ 0.53 derived below
(see Equation (29)) from our MHD run with an even larger Mach
number, MS,0 ≈ 9. In the absence of a detailed numerical study,
including different values of β0 and large values of MS,0, here
we derive a simple model for the density pdf in the MHD case,
based on arguments inspired by the HD case. We assume that
the pdf can be approximated by a lognormal also in the MHD
case,

pMHD(x)dx = x−1(
2πσ 2

MHD

)1/2 exp

[
−

(
lnx + σ 2

MHD

/
2
)2

2 σ 2
MHD

]
dx

(24)

at least in the super-Alfvénic regime that we think is relevant
for molecular clouds (Padoan & Nordlund 1999; Lunttila et al.
2008, 2009). This may not be a good approximation for the
low-density tail of the pdf, but for the present purpose we
are primarily interested in the high-density tail. To derive an
expression for σMHD, we first show that the dependence of σHD
on MS,0 can be obtained with a simple derivation, and we then
apply the same derivation to the MHD case.

Let us consider a cubic box of size L0 swept by a single
compression of sonic Mach number MS,0 in one direction and
therefore accumulating all the mass in a postshock layer of size
L0 and density and thickness given by Equations (4) and (5),
respectively, with θ = 1. The standard deviation of the density,
σρ , is given by

σ 2
ρ = 1

V

∫
V

(ρ − ρ0)2dV, (25)

where V is the volume, and the integral is over the whole volume.
In our simple model, the density is either zero outside of the
layer, or ρ = ρHD  ρ0 inside the layer. The integral is therefore
approximately equal to ρ2

HD times the volume of the layer, Vlayer,

σ 2
ρ ≈ 1

V

(
ρ2

HDVlayer
) = λHDL2

0

L3
0

ρ2
HD = ρ2

0M2
S,0

/
4, (26)

where we have used Equations (4) and (5) in the last equality.
This result is equivalent to Equation (23) which was derived
from numerical simulations of supersonic turbulence (Padoan
et al. 1997; Nordlund & Padoan 1999), and was recently
confirmed by Brunt et al. (2010), based on extinction maps
of the Taurus molecular cloud. Following the same derivation
in the MHD case, we obtain

σx,MHD ≈ (1 + β−1)−1/2MS,0/2 (27)

corresponding to

σ 2
MHD ≈ ln

[
1 +

(
MS,0

2

)2

(1 + β−1)−1

]
. (28)

As explained at the end of the previous section, we cannot
rely on Equation (20) to derive the effective postshock β from
the values of β0 and MS,0. This is further illustrated by the
fact that the density pdfs in the three 10243 simulations of
Kritsuk et al. (2009a; where MS,0 ≈ 10 and β0 = 0.2, 2, and
20) are almost indistinguishable from each other, for densities
above the peak of the pdfs. This is again interpreted as due to
the growing tendency of large density enhancements to result
from compressions parallel to the magnetic field, as the mean
magnetic field strength increases, or the value of β0 decreases.
Based on our model for the standard deviation of the pdf,
Equation (27), the fact that the pdf does not change with β0
implies that β is independent of β0. We fit this simple pdf
model to the actual density pdf of our MHD run to derive the
corresponding β. The functional form of Equation (28) should
be confirmed by numerical simulations. However, this equation
has been derived under the same assumptions, and using the
same meaning of the postshock β, as in the derivation of the
critical density. This justifies our approach of deriving β by
fitting the density pdf.

Figure 2 compares the HD and MHD model pdfs to the actual
pdfs of the snapshots used as initial conditions for the star
formation simulations. The MHD model provides an excellent
fit to the high-density tail of the pdf, for over five orders of
magnitude in probability. At the highest densities, the HD model
predicts a slightly larger probability than in the HD simulation,
a discrepancy that may be attributed to the limited numerical
resolution, and would likely be reduced if the numerical pdf
were the result of a time average of many snapshots (which
would also improve the fit of the low-density tail of the pdf).
The best fit to the MHD pdf is obtained with β = 0.39. We
therefore adopt this value as the postshock β of our model for
MS,0 ≈ 10 and 0.2 � β0 � 20.

Based on Equation (27), this value of β gives

σx,MHD ≈ 0.53MS,0/2 ≈ 0.53 σx,HD. (29)

We then speculate that β becomes independent of β0, as β0 is
increased, as soon as the postshock magnetic pressure becomes
important, because if it were not important, there would not be
a significant alignment of flow velocity and magnetic field in
regions of compression. Based on the simple approximations
leading to Equation (20), the postshock magnetic pressure
is of the order of the postshock thermal pressure, or larger,
if MA,0 �

√
2 β0. This condition is satisfied by the three

simulations of Kritsuk et al. (2009a).
In summary, we make the ansatz that the critical density

and the standard deviation of the density pdf are given by
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Figure 2. Pdf of gas density for the MHD and HD snapshots used as initial
conditions for the star formation simulations (solid lines). The lognormal models
used in this work are also shown (dotted lines).

Equations (18) and (27), respectively, where β ≈ 0.39 if
MA,0 �

√
2 β0, which covers all reasonable values of magnetic

field strengths and Mach numbers in molecular clouds. If
MA,0 <

√
2 β0, then β → ∞ as β0 → ∞, and both equations

reduce to their corresponding non-magnetized forms, given by
Equations (8) and (23), respectively.

5. STAR FORMATION RATE

In Padoan & Nordlund (2004), we computed the mass fraction
available to form brown dwarfs as the integral of the pdf of gas
density from a critical density to infinity. In that case, the critical
density was defined as the density of a critical Bonnor–Ebert
sphere with a mass of 0.075 M�. Krumholz & McKee (2005)
used the same integral to compute the total mass available for
star formation and defined the critical density based on the
condition of turbulent support of a Bonnor–Ebert sphere. Here
we follow the same procedure, with the critical density defined
by the condition for magnetic and thermal support expressed by
Equation (17).

Assuming that a fraction ε of the mass fraction above the
critical density is turned into stars in a free-fall time of the
critical density, τff,cr = (3π/(32Gρcr,MHD))1/2, the SFR per free-
fall time (the mass fraction turned into stars in a free-fall time)
is given by4

SFRff = ε
τff,0

τff,cr

∫ ∞

xcr

x pMHD(x) dx

= ε
x

1/2
cr

2

(
1 + erf

[
σ 2 − 2 ln (xcr)

23/2 σ

])
(30)

where τff,0 = (3π/(32Gρ0))1/2 is the free-fall time of the mean
density, xcr = ρcr,MHD/ρ0 given by Equation (18), σ = σMHD
given by Equation (28), and the expression is valid also in the
limit of β → ∞.

Krumholz & Tan (2007) have argued that the value of SFRff is
approximately the same in very different star-forming environ-

4 The integral in Equation (30) is solved assuming that the critical density is
not strongly correlated with the local value of the density, or, equivalently, that
the actual postshock thickness is not strongly correlated with the postshock
density.

ments. If so, the choice of expressing the SFR with a time unit
equal to the free-fall time, introduced in Krumholz & McKee
(2005), is useful when comparing with observational estimates
of the SFR. However, if star-forming clouds on all scales were
mostly transient structures, surviving only a few local dynami-
cal times in the turbulent flow that formed them, observational
estimates of the star formation efficiency (SFE; rather than the
SFR) could be compared directly with the predicted SFR per dy-
namical time, SFRdyn = SFRff τdyn/τff,0, where τdyn = R/σv,3D,
and R is the cloud radius. With this definition of the dynamical
time as a crossing time, SFRdyn decreases with increasing αvir

faster than SFRff, SFRdyn ∝ α
−1/2
vir SFRff . Elmegreen (2007) has

criticized the evidence presented by Krumholz & Tan (2007), in
support of his previous suggestion that the process of star for-
mation lasts approximately 1–2 dynamical times on all scales
(Elmegreen 2000). However, he defines the dynamical time as
1/(Gρ)1/2 = 0.54τff,0, assuming that the cloud internal velocity
dispersion is of the order of the virial velocity, which implies
SFRdyn = 0.54 SFRff.

In Krumholz & McKee (2005), the timescale for the collapse
of the mass above the critical density is assumed to be propor-
tional to τff,0, with the constant of proportionality (φt in their
Equation (19)) to be determined by comparison with numerical
simulations. Our choice of a timescale equal to τff,cr is physically
motivated, because structures of density equal to ρcr should col-
lapse on that timescale. Because of our definite and physically
motivated choice of the timescale, the prediction of our model
with ε = 1 should be interpreted as the maximum allowed SFR.
The value of SFRff in the simulations should never be larger
than that. If it is smaller than the maximum rate predicted by
the model, the reduction is absorbed by the efficiency factor
ε, meaning that only a mass fraction ε of the gas with density
above the critical one is found within gravitationally unstable
regions.

In Section 7, we show that the SFR in our HD simulations
achieves this predicted maximum value, for any value of αvir
we have tested (ε = 1, independent of αvir), while in the
MHD simulations only approximately half of the magnetized
gas above the critical density seems to be in collapsing regions
(ε = 0.5, independent of αvir). Because the simulations are
reproduced by the model with ε independent of αvir, the
timescale τff in Krumholz & McKee (2005) is not a good choice,
as it would require their coefficient φt to vary with αvir (the
relation τff,0/τff,cr = x

1/2
cr ∼ α

1/2
vir shows that our model predicts

a shallower dependence of SFRff on αvir than in Krumholz &
McKee 2005).

Figure 3 shows the result of Equation (30) as a function of
the virial parameter, for three values of the sonic Mach number,
MS,0 = 4.5, 9, and 18, in the MHD case, β = 0.39, and in the
HD case (β = ∞). We have assumed a value of θ = 0.35, as
discussed in Section 2. In the HD case (dashed lines), we have
assumed ε = 1, while the curves for the MHD case (solid lines)
are computed for ε = 0.5. This choice of ε is motivated by the
numerical results presented in Section 7.

Due to our timescale choice of τff,cr instead of τff,0, the
SFRff is found to increase with increasing MS,0 (for constant
virial parameter), while in Krumholz & McKee (2005) it
decreases with increasing MS,0, as shown by their Figure 3
and by the power-law approximation, SFRff ∼ M−0.32

S,0 , in their
Equation (30). We will show in Section 7 that the Mach number
dependence of our model is confirmed by the star formation
simulations.
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Figure 3. The star formation rate per free-fall time vs. the virial parameter
according to Equation (30), for the HD case (dashed lines), and the MHD case
with β = 0.39 (solid lines). In both cases, the three lines are for three different
values of the sonic rms Mach number, MS,0 = 4.5, 9, and 18, from bottom
to top. In the MHD case, SFRff has been divided by a factor of two, in order
to separate the MHD curves from the HD ones, and also because the star-
formation simulations show that only half of the mass above the critical density
can collapse in the MHD case, as shown in Section 7.

(A color version of this figure is available in the online journal.)

6. SFR IN SIMULATIONS OF DRIVEN MHD
TURBULENCE

In order to test the SFR model, we have run a set of
simulations of driven supersonic turbulence, on meshes with
5003–10003 computational zones. Using the same methods and
setup as in Padoan & Nordlund (2002, 2004), we adopt periodic
boundary conditions, isothermal equation of state, and random
forcing in Fourier space at wavenumbers 1 � k � 2 (k = 1
corresponds to the computational box size). The simulations are
all based on two initial snapshots of fully developed turbulence,
one for HD and one for MHD. These snapshots are obtained
by running the HD and the MHD simulations from initial
states with uniform initial density and magnetic field, and
random initial velocity field with power only at wavenumbers
1 � k � 2, for approximately five dynamical times, on
meshes with 10003 computational zones, with the driving force
keeping the rms sonic Mach number at the approximate value
of MS,0 = σv,3D/cS ≈ 9. In the case of the HD run with
MS,0 = 4.5 (run HD10 in Table 1), the forcing was reduced
prior to the inclusion of self-gravity until the targeted Mach
number was reached.

In the MHD simulation, the initial magnetic field is such
that the initial value of the ratio of gas to magnetic pressure is
β0 = 22.2. At the time when the gravitational force is included,
the magnetic field has been amplified by the turbulence, and
the value of β is β = 2 c2

S/〈B2/4πρ〉 = 0.33, consistent
with Equation (20) with b = 0.63, using the mean-squared
vA averaged in regions with density larger than twice the mean,
and β = 0.11, consistent with Equation (20) with b = 0.22,
using the mean-squared vA averaged over the whole domain.

The star formation simulations start when the gravitational
force is included. The computational mesh is downsized from
10003 to 5003 zones for the 5003 runs or kept the same for
the 10003 runs. The driving force is still active during the
star formation phase of the simulations, in order to achieve
a stationary value of αvir to correlate with the SFR.

An example of a projected density field from a star formation
simulation is shown in Figure 4. Table 1 gives the values of the
sonic rms Mach number, MS,0, the initial pressure ratio, β0, the
Jeans length in units of the box size, LJ/L0 ≈ 1.94 α

1/2
vir M−1

S,0,
the virial parameter, αvir, and the SFR per free-fall time, SFRff,
for all the 19 simulations used to test the theoretical model.

Our simulations represent an intermediate range of scales.
The forcing represents the inertial forcing from scales larger than
the box size. These larger scale motions have longer turnover
times—and hence longer lifetimes—than the turnover times of
the scales covered by the simulations. They act to maintain the
kinetic energy on smaller scales. Without the corresponding
driving, the motions on the scales covered by the simulations
would decay, which would lead to a lowering of the virial
parameter and a corresponding secular increase in the SFR.
By maintaining the driving we avoid the secular evolution and
obtain a consistent and nearly constant SFR.

The virial parameter defined in Equation (1) is for a sphere
of uniform density. The simulations are carried out in a cu-
bic domain and generate a highly nonlinear density field; real
star-forming regions have irregular shapes and are highly frag-
mented. The virial parameter of the simulations, as well as that
of real molecular clouds, is therefore only an approximation of
the energy ratio. To define the virial parameter of the simula-
tions, we have chosen to use Equation (1), with R = L0/2,
where L0 is the box size, and M is equal to the total mass in the
box, M0. The virial parameter is then αvir = 5 v2

0 L0/(6 GM0),
where v0 is the three-dimensional rms velocity in the box.

A collapsing region is captured by the creation of an accreting
sink particle if the density exceeds a certain density threshold
(8000 times the mean density in both 5003 and 10003 runs). We
have verified that the largest density reached by non-collapsing
regions is always much smaller than that value, so only a
collapsing region can create a sink particle. No other conditions
need to be satisfied to identify genuine collapsing regions.
Once a particle is created its subsequent motion is followed,
allowing for influences from the gravitational potential and
from accretion. When calculating the gravitational potential, the
masses of the stars are added back into a fiducial density field,
using narrow Gaussian profiles (1/e radius 1.15 grid zones)
to represent the sink particles. The Poisson equation for the
gravitational potential is solved using parallelized fast Fourier
transforms with Gaussian softening (1/e radius 2

√
2 grid zones).

Further accretion (defined as density exceeding the density
threshold) is collected onto the nearest sink particle if the dis-
tance is less than four grid zones. Sink particles are not merged,
and thus maintain their identity even if they become trapped
in the same potential well (the softening of the gravitational
potential ensures that no singularity occurs).

In Figures 5 and 6, we show the SFE versus time in the HD
and MHD simulations, respectively. The SFE is defined as the
mass in sink particles divided by the total initial mass. The time
is given in units of the free-fall time of each simulation, so the
slope of the plots corresponds to the SFRff. The plots only show
the SFE from the time when the first sink particle is created,
which is some time after the gravity is turned on. The time to
the formation of the first sink particles is longer for simulations
with larger αvir, which cannot be appreciated in Figures 5
and 6.

Even after the first sink particle is created, there is still an
initial transient phase with increasing SFR. This transient phase
usually lasts until SFE ≈ 0.03. The SFRff is therefore estimated
as the slope of a least-square fit to the SFE in the interval
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Figure 4. Logarithm of projected density from a snapshot of an exploratory
10003 run with β0 = 22.2, MS,0 = 18, and αvir = 0.9, at a time when
approximately 10% of the mass has been converted into stars. Bright dots show
the positions of the stars (sink particles), while black dots are for brown dwarfs
(some of which are still accreting and may later grow to stellar masses).

0.03 � SFE � 0.2. The SFR based on this interval of the
SFE is quite robust with respect to changes in the treatment of
sink particles (threshold density, accretion radius, gravitational
softening, etc.); even changes that affect the number of sink
particles significantly do not change the measured SFR much.

All runs were continued until SFE � 0.4, and some until SFE
≈ 0.8. However, we prefer to fit the SFR only up to SFE = 0.2,
because larger values are rarely found in star-forming regions,
and because the simulations should not be trusted past that
point (the stellar content may start to affect the gas motion, and
the gravitational interactions in close encounters between sink
particles are not accurately computed with an N-body code).

Figures 5 and 6 show that SFRff decreases monotonically
with increasing αvir (αvir = 0.22–2.04 for the plots from top
to bottom). It is well defined because the SFE plots are almost
straight lines (constant instantaneous SFR) for almost all the
simulations, except for a tendency of some of the MHD runs to
slightly increase their SFR also at relatively high values of SFE.
The MHD run with the highest virial parameter, αvir = 2.04
(MHD7 in Table 1), has the lowest SFR and shows a rather
episodic SFE evolution. However, its mean SFRff in the range
0.03 � SFE � 0.2 is well defined.

7. MODELS VERSUS NUMERICAL RESULTS

Figure 7 compares the SFR model with the numerical results.
It shows SFRff versus αvir for all the simulations listed in Table 1,
and for the HD (dashed and dotted lines) and MHD (solid line)
models. The model prediction corresponds to Equation (30),
with ε = 1.0 in the HD case, and ε = 0.5, in the MHD case.

The HD simulations follow almost exactly the theoretical
prediction with ε = 1, suggesting that all the gas with density
above the critical value collapses in a timescale of order τff,cr, as
assumed in the model. The dependence of SFRff on αvir is too
shallow to be consistent with the parameterization in Krumholz

Table 1
Non-dimensional Parameters of the Simulations Used to Measure the Star

Formation Rate

Run N MS,0 β0 LJ/L0 αvir SFRff

HD1 5003 9.0 ∞ 0.10 0.22 1.01
HD2 5003 9.0 ∞ 0.12 0.34 0.86
HD3 5003 9.0 ∞ 0.15 0.48 0.86
HD4 5003 9.0 ∞ 0.18 0.67 0.75
HD5 5003 9.0 ∞ 0.21 0.95 0.68
HD6 5003 9.0 ∞ 0.25 1.33 0.51
HD7 5003 9.0 ∞ 0.31 2.04 0.29
HD8 10003 9.0 ∞ 0.21 0.95 0.71
HD9 10003 9.0 ∞ 0.31 2.04 0.41
HD10 5003 4.5 ∞ 0.18 0.67 0.54
MHD1 5003 9.0 22.2 0.10 0.22 0.43
MHD2 5003 9.0 22.2 0.12 0.34 0.42
MHD3 5003 9.0 22.2 0.15 0.48 0.39
MHD4 5003 9.0 22.2 0.18 0.67 0.31
MHD5 5003 9.0 22.2 0.21 0.95 0.19
MHD6 5003 9.0 22.2 0.25 1.33 0.15
MHD7 5003 9.0 22.2 0.31 2.04 0.05
MHD8 10003 9.0 22.2 0.21 0.95 0.20
MHD9 10003 9.0 22.2 0.31 2.04 0.15

& McKee (2005), where the timescale is φtτff,0, unless φt is
allowed to change with the virial parameter, φt ∝ α

1/2
vir .

Of the 5003 HD runs, only the one with the highest αvir
(HD7) deviates significantly (≈50%) from the theoretical pre-
diction. However, the corresponding higher resolution run yields
a higher value of SFRff , nearly identical to the theoretical predic-
tion. At αvir = 0.95, instead, the 5003 run is already converged
to the SFR of the corresponding 10003 run (HD5 and HD8, re-
spectively). The run with the highest value of αvir is expected to
be the one requiring the largest numerical resolution, because
ρcr,HD/ρ0 ∝ αvir, according to Equation (8). In other words,
higher αvir can be interpreted as lower mean density (everything
else remaining unchanged), making it harder to reach the critical
density for collapse in the simulation.

The HD runs also confirm the theoretical prediction that
SFRff should increase with increasing MS,0 (the opposite of
the prediction in Krumholz & McKee 2005), as shown by the
comparison of runs HD4 and HD10, with MS,0 = 4.5 and 9,
respectively. The lower Mach number run fits the theoretical
prediction very well, confirming our choice of τff,cr for the
timescale of star formation.

Similar considerations apply to the MHD runs. There is good
agreement between the simulations and the theoretical model
with ε = 0.5, although the model predicts a significantly higher
SFR than the 5003 simulation with the largest value of αvir. This
discrepancy may be entirely due to the insufficient numerical
resolution of the simulation, because the 10003 run with the
same virial parameter, αvir = 2.04, yields a value of SFRff
almost identical to the theoretical prediction. As in the HD
simulations, the case with αvir = 0.95 seems to be already
converged at a resolution of 5003 computational zones, as its
SFRff is nearly identical to that of the corresponding 10003 run
(and only approximately 20% below the predicted value).

The value of ε = 0.5 derived from the comparison of the
model with the MHD simulations can be understood with the
following argument. In the MHD case, the critical mass for
collapse depends on both the local density and the local magnetic
field strength, B, while in HD it depends only on the local
density (assuming constant temperature). In HD, regions with
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Figure 5. Star formation efficiency vs. time for all the HD runs with MS,0 = 9
listed in Table 1. The star formation efficiency is defined as the mass in stars
(sink particles) divided by the total mass, and the time is in units of the free-fall
time of the mean density of each simulation, τff,0. The dashed lines show the
least-squares fit to each curve between SFE = 0.03 and SFE = 0.2. The slope
of those linear fits defines the SFRff plotted in Figure 7. The two dotted curves
are from the 10003 runs (HD8 and HD9). The value of αvir for each curve varies
from 0.22 to 2.04 (see Table 1) from top to bottom.

(A color version of this figure is available in the online journal.)

density larger than the critical value must collapse, because of
the lack of gas pressure support. In the MHD case, instead,
at any density value there is a large scatter in B. Even if the
local density is above the critical value, the pressure support is
dominated by magnetic pressure, and, due to the large scatter
in B (and even larger in B2), a region with B larger than the
mean value at that density may be prevented from collapsing.
The value ε = 0.5 is reasonable, because the critical density is
derived with characteristic postshock values, and it is possible
that in half of the cases the magnetic field deviates enough from
its characteristic postshock value to prevent the gravitational
collapse.

8. DISCUSSION

8.1. The Timescale of Star Formation

We have modeled the SFR assuming that a mass fraction
ε of all regions with density larger than the critical one is
converted into stars in a time τff,cr. To maintain this SFR over
a time longer than τff,cr, the turbulent flow must continuously
“regenerate” the high-density tail of the gas density pdf, on a
timescale shorter than or equal to τff,cr. This may seem unlikely,
because in super-Alfvénic turbulence the global dynamical time
is always longer than the collapse time of the unstable regions,
τdyn > τff,cr. For example, τff,cr/τdyn = 4.6 θ M−1

S,0(1+β−1)/(1+
0.925β−3/2)1/3 = 0.34 and 0.16, for β = 0.39 and β → ∞,
respectively, assumingMS,0 = 10. However, the turbulence can
“regenerate” the high-density tail of the pdf sufficiently rapidly,
because the collapsing dense regions account for only a very
small fraction of the total mass. The turbulent flow “processes”
a gas mass of the order of the total mass in one dynamical
time (think of the trivial example of a single shock crossing the
whole volume in one dynamical time), hence, a mass fraction
of order τff,cr/τdyn in a time equals to τff,cr. At a characteristic
Mach number value of MS,0 = 10, this mass fraction is always
larger than 0.16 (the value found above for the extreme limit
of β → ∞). The mass fraction above the critical density is
typically much smaller than that of order a few per cent. If the

Figure 6. Same as Figure 5, but for the MHD simulations.

(A color version of this figure is available in the online journal.)

critical density is increased, the mass fraction processed by the
turbulence in a time τff,cr decreases as ρ

−1/2
cr , while the mass

fraction above the critical density drops more rapidly, due to the
lognormal nature of the pdf. Therefore, the collapse of regions
with density above the critical value can be continuously “fed”
by the turbulence, and our choice of τff,cr as the star formation
timescale is justified.

The above argument also means that the collapse of unstable
regions of densities ρ > ρcr is not expected to strongly affect
the density pdf at densities ρ � ρcr. We have verified that, once
star formation is initiated by the inclusion of self-gravity, the
density pdf in our simulations develops a power-law tail ∝ ρ−3/2

at densities ρ � ρcr, a signature of free fall, while it maintains
the lognormal shape for ρ < ρcr. The rapid mass processing by
the turbulence that allows the preservation of the lognormal pdf
despite the effect of self-gravity explains why it is possible to
predict the SFR based on the statistics of turbulence alone, with
no modification due to self-gravity. One can model the process
of star formation with two distinct phases: the formation of
dense regions by turbulent compressions and the gravitational
collapse of the densest of those regions. Locally, this is roughly
what happens, while globally, the turbulence and the gravity are
always operating at the same time.

8.2. SFR in Molecular Clouds

Krumholz & Tan (2007) argue that SFRff ∼ 0.02 in a variety
of star-forming environments, spanning approximately four
orders of magnitude in gas density. The estimated values of SFR
have large error bars, but the lack of a strong density dependence
would suggest that most star-forming regions have a comparable
value of αvir. More recently, Evans et al. (2009) have estimated
values of SFRff in giant molecular clouds (GMCs) and within
some of the dense cloud cores. They find values significantly
larger than the characteristic one in Krumholz & Tan (2007).
They obtain SFRff = 0.03–0.06 for GMCs with mean densities
distributed around a mean value of 〈n〉 = 390 cm−3 (and SFE in
the range 0.03–0.06 as well), and SFRff = 0.05–0.25 for dense
cores with mean densities 50–200 times those of the GMCs
(and SFE of approximately 0.5). These values are computed by
assuming that all the stars detected (by their infrared excess)
have been formed in the last 2 Myr. The authors report a best
estimate of 2 ± 1 Myr for the lifetime of the Class II phase,
meaning that the SFRff could be 50% lower, or 100% higher
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Figure 7. Star formation rate per free-fall time vs. virial parameter for the 5003

MHD simulations (triangles) and for the 5003 HD simulations (diamonds) with
MS,0 = 9. The squares are for the 10003 runs, and the asterisk for the 5003

HD run with MS,0 = 4.5. The MHD model with MS,0 = 9 and β = 0.39 is
shown by the solid line. The HD model (β0 = ∞) is shown by the dashed line
for MS,0 = 9 and by the dotted line for MS,0 = 4.5. The values of SFRff from
the simulations are the slopes of the linear fits to the SFE vs. time between SFE
= 0.03 and SFE = 0.2 (see Figures 5 and 6). The values of SFRff of the models
are from Equation (30), with ε = 1.0 in the HD case, and ε = 0.5 for the MHD
model.

(A color version of this figure is available in the online journal.)

than the values given above. Accounting for this uncertainty,
one gets SFRff = 0.02–0.12 for GMCs, and SFRff = 0.03–0.5
for dense cores, suggesting a characteristic value of order 0.1,
rather than 0.01. Evans et al. (2009) suggest that the SFR in
dense cores would be lower, if one assumed that the total mass
in the cores was larger when the star formation process started
than at present. However, it is also possible that star formation
was already occurring while the cores were still being assembled
by flows accreting from the larger scale. In this case, the initial
core mass may have been smaller than the current one, resulting
in an SFR larger than estimated.

Figure 3 shows that for a range of values of MS,0 character-
istic of MCs, we predict SFRff ≈ 0.12–0.28 at αvir = 2. These
values should be reduced by a factor of two or three (Matzner
& McKee 2000; André et al. 2010), to account for mass loss
from stellar outflows and jets, not included in the model and in
the simulations. With this reduction, our results are consistent
with the relatively high values of SFRff found by Evans et al.
(2009). Another source of uncertainty lies in the mapping of our
definition of the virial ratio for a periodic box (Equation (1))
to the virial ratios used to characterize observed star-forming
regions. One example is the estimate of the characteristic αvir of
GMCs. Heyer et al. (2009) have recently studied again a large
subset of the GMCs sample of Solomon et al. (1987). For each
cloud, they compute LTE masses based on the J = 1–0 emission
lines of 13CO and 12CO. They find masses smaller by a factor
of 2–5 than the virial masses derived by Solomon et al. (1987).
Their revised velocity dispersion is also somewhat smaller than
in Solomon et al. (1987), but their resulting virial parameters
are still a factor of approximately 2–3 larger.

Figure 8 shows αvir versus the cloud mass, Mcl, for all their
316 maps (including the smaller ones of area A2). The mean
value of the virial parameter is αvir = 2.8 ± 2.4. If the LTE-
derived mass underestimates the real mass by a factor up to
two, as argued by the authors, then the values of αvir should
be reduced by a factor of two. The mean value is therefore

Figure 8. Virial parameter vs. cloud mass from Heyer et al. (2009). All 316
objects from their Table 1 are shown, including those selected within the smaller
maps of area A2. The horizontal solid line marks the mean value of αvir = 2.8,
and the dashed line half that value, αvir = 1.4, assuming that the LTE-derived
mass underestimates the true mass by a factor of two, causing an overestimate
of the virial parameter by the same factor.

(A color version of this figure is available in the online journal.)

likely to lie in the range αvir = 1.4–2.8, but with a very large
scatter. As commented above, if GMCs have a characteristic
value of αvir ≈ 2, as suggested by this observational sam-
ple, the SFR predicted by our model for a reasonable range
of values of MS,0, and accounting for a factor of two or three
reduction due to mass-loss in outflows and jets, may be con-
sistent with the recent observational estimates by Evans et al.
(2009).

9. SUMMARY AND CONCLUDING REMARKS

This work presents a new physical model of the SFR that
could be implemented in galaxy formation simulations. The
model depends on the relative importance of gravitational,
turbulent, magnetic, and thermal energies, expressed through
the virial parameter, αvir, the rms sonic Mach number, MS,0,
and the ratio of the mean gas pressure to mean magnetic
pressure, β0. The value of SFRff is predicted to decrease with
increasing αvir, and to increase with increasing MS,0, for values
typical of star-forming regions (MS,0 ≈ 4–20). In the complete
absence of a magnetic field, SFRff increases typically by a
factor of three, proving the importance of magnetic fields in star
formation, even when they are relatively weak (super-Alfvénic
turbulence).

In the non-magnetized limit, our definition of the critical
density for star formation has the same dependence on αvir
and MS,0 as in the model of Krumholz & McKee (2005),
but our physical derivation does not rely on the concepts of
local turbulent pressure and sonic scale. Due to our different
choice of star formation timescale (see Section 8.1), our model
predicts a different dependence of the SFR on αvir and MS,0
from the model of Krumholz & McKee (2005). The model
predictions have been tested with an unprecedented set of large
numerical simulations of supersonic MHD turbulence, including
the effect of self-gravity, and capturing collapsing cores as
accreting sink particles. The SFR in the simulations follows
closely the theoretical predictions.

Although based on reasonable physical assumptions, this phe-
nomenological model of the SFR bypasses the great complexity
of the nonlinear dynamics of supersonic, self-gravitating, mag-
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netized turbulence, by taking advantage of the gas density pdf
of fully developed turbulence. Because it provides a prediction
of the SFR based solely on turbulence statistics, with no cor-
rection for the effect of self-gravity, the model shows that the
process of star formation may be envisioned as the effect of
two almost independent steps: (1) turbulent fragmentation, with
little influence from self-gravity, and (2) the local collapse of
the densest regions, with little influence from turbulence. This
approximation is a basic assumption in the stellar IMF model
of Padoan & Nordlund (2002) as well. It is also fundamentally
different from the assumptions of star formation models relying
on the concept of local turbulent pressure support, where the
local competition between turbulence and self-gravity is always
important on all scales.

This work illustrates how the turbulence controls the SFR. It
does not address how the turbulence is driven to a specific value
of αvir. Because much of the turbulence driving is likely due
to SN explosions, the turbulent kinetic energy and the value of
αvir are coupled to the SFR in a feedback loop. The feedback
determines the equilibrium level of the SFR (and hence also the
equilibrium level of αvir) at large scales. If αvir were to decrease
(increase) relative to the equilibrium, the SFR would increase
(decrease), according to the results of this work, resulting in an
increased (decreased) energy injection rate by SN explosions,
thus restoring a higher (lower) value of αvir. The dependence
of the SFR on αvir found in this work suggests that this self-
regulation may work quite effectively.

Cosmological simulations of galaxy formation provide the
rate of gas cooling and infall, which sets the gas reservoir for
the star formation process and thus ultimately controls the SFR.
They also include prescriptions for the star formation feedback,
known to be essential to recover observed properties of galaxies
(Gnedin et al. 2009; Gnedin & Kravtsov 2010). Future galaxy
formation simulations should adopt a physical SFR law with an
explicit dependence on αvir, MS,0, and β as derived in this work,
in order to correctly reflect specific conditions of protogalaxies
at different redshifts. This requires a treatment of the star
formation feedback capable of providing an estimate of αvir
on scales of order 10–100 pc, not far from the spatial resolution
currently achieved by the largest cosmological simulations of
galaxy formation.
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