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ABSTRACT

We consider local, stratified, numerical models of isothermal accretion disks. The novel feature of our treatment
is that radial extent Lx and azimuthal extent Ly satisfy H � Lx,Ly � R, where H is the scale height and R
is the local radius. This enables us to probe mesoscale structure in stratified thin disks. We evolve the model
at several resolutions, sizes, and initial magnetic field strengths. Consistent with earlier work, we find that the
saturated, turbulent state consists of a weakly magnetized disk midplane coupled to a strongly magnetized corona,
with a transition at |z| ∼ 2H . The saturated α � 0.01–0.02. A two-point correlation function analysis reveals
that the central 4H of the disk is dominated by small-scale turbulence that is statistically similar to unstratified
disk models, while the coronal magnetic fields are correlated on scales ∼ 10H . Nevertheless angular momentum
transport through the corona is small. A study of magnetic field loops in the corona reveals few open field lines and
predominantly toroidal loops with a characteristic distance between footpoints that is ∼ H . Finally, we find quasi-
periodic oscillations with characteristic timescale ∼ 30 Ω−1 in the magnetic field energy density. These oscillations
are correlated with oscillations in the mean azimuthal field; we present a phenomenological, alpha-dynamo model
that captures most aspects of the oscillations.
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1. INTRODUCTION

The physics of angular momentum transport is at the
core of accretion disk studies. Classical viscous thin disk
theories (Shakura & Sunyaev 1973; Lynden-Bell & Pringle
1974; Novikov & Thorne 1973) assume the existence of a
local turbulent viscous stress, thus provide a simple local
parameterization, i.e., “anomalous viscosity” α, for disk mo-
mentum transport and dissipation. Since the early 1990s, the
magnetorotational instability (MRI; Balbus & Hawley 1991)
has been regarded as the best candidate to drive accretion disk
turbulence, although gravitational torque or magnetic winds of
a Blandford & Payne (1982) type can also enhance angular
momentum transport.

Classical thin disk theories are vertically integrated and az-
imuthally averaged, and are therefore essentially one dimen-
sional. Currently, disk vertical structure can only be obtained
from numerical simulations where turbulence is established
from first-principle instabilities such as the MRI. Global disk
simulations are just starting to investigate thin disks (Reynolds
& Fabian 2008; Shafee et al. 2008; Noble et al. 2009), but they
are computationally expensive and not yet able to fully resolve
turbulent structures in the disk. Shearing box simulations, on
the other hand, can concentrate resolution on disk dynamics at
scales of order the disk scale height H ≡ cs/ Ω, and there-
fore are more suitable to study accretion flows in detail. Past
studies of shearing box simulations with vertical gravity (e.g.,
Brandenburg et al. 1995; Stone et al. 1996; Miller & Stone 2000;
Hirose et al. 2006; Blaes et al. 2007; Suzuki & Inutsuka 2009)
have revealed a rich set of structures and dynamics in stratified
disks. However, all of these stratified shearing box simulations
were done with a box of limited radial extent Lx ∼ H , therefore
they were not able to explore any structure on scales larger than
H. Recently, Davis et al. (2010) have studied a stratified shear-
ing box of radial extent Lx = 4H , and Johansen et al. (2009)

have adopted models of box size up to Lx ∼ 10H in their zonal
flow studies. However, both of these studies are limited to the
small vertical extent (∼ ±2H ) and physically unrealistic peri-
odic vertical boundary conditions. In this paper, we study the
dynamics and structure in isothermal stratified disks using large
shearing box with domain sizes Lx � 10H in all directions.

We still do not know whether a magnetized turbulent disk is
well modeled as a steady-state, locally dissipated disk model.
It is possible, for example, that structures (gas and/or fields)
develop at a scale large compared with H and that these
structures could be associated with nonlocal energy or angular
momentum transport. Large-scale structures might also develop
in the magnetic field in the form of a dynamo. The disk might
also be secularly unstable (see the overview by Piran 1978),
which could cause the disk to break up into rings. It is well
known that a Navier–Stokes viscosity model for disk turbulence
leads, for some opacity regimes, to both viscous (Lightman &
Eardley 1974) and thermal (Piran 1978) instability, although it is
now believed that thermal instability can be removed by delays
imposed through finite relaxation time effects in MRI-driven
turbulence (Hirose et al. 2009).

From an observational point of view, the level of fluctuations
(inhomogeneity) at different locations in disks and how these
different locations communicate with each other have important
consequences for disk spectra modeling (Davis et al. 2005; Blaes
et al. 2006). In these models, observational diagnostics require
integrating over the disk surface, so radially extended structure
in the disk model may change the disk spectrum. Our disk
model is isothermal (we do not solve an energy equation) and is
therefore not capable of being used to investigate dissipation and
radiation. It is possible that larger fluctuations would appear in
physically richer models where thermodynamics and radiative
effects are taken into account (e.g., Turner et al. 2003; Turner
2004). It would then be interesting in the future for spectral
modelers to consider disk models with larger radial domains.
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A shearing box larger than H is also essential to catch the field
structure and dynamics in the accretion disk magnetic coronae
(Tout & Pringle 1996; also see a discussion in Uzdensky &
Goodman 2008), where the field has a characteristic curvature
l ∼ va/ Ω � H , and va is the characteristic Alfvén speed in the
region.

Recently, it has also been pointed out that a large box size
may be important to study the saturation properties of the MRI-
driven turbulence, either on the ground of resolving parasitic
modes (Pessah & Goodman 2009) or in a phenomenological
model of an MRI-driven dynamo (Vishniac 2009). Saturation
mechanisms in a stratified disk may be fundamentally different
from those in unstratified disks. Recent numerical experiments
on unstratified disks suggest that (1) with a zero-net flux, the
saturation decreases with resolution (Fromang & Papaloizou
2007), and is dependent on the microscopic Prandtl number
PrM in the disk, at least at low Reynolds number (Fromang
et al. 2007; Simon & Hawley 2009); (2) with a net (toroidal or
vertical) flux, the saturation increases with resolution (Hawley
et al. 1995; Guan et al. 2009), and is also dependent on PrM ,
at least at low Reynolds number (Lesur & Longaretti 2007;
Simon & Hawley 2009; Longaretti & Lesur 2010). Stratified
disk models, which are closer to real disks, may well maintain a
net (most likely, toroidal; see a discussion in Guan & Gammie
2009) field in the disk region because of the magnetic buoyancy
induced by stratification. Therefore, we expect saturation in
stratified disk models to differ from that of unstratified models.

It is worth enumerating the assumptions we adopt in this
work: (1) we use an isothermal equation of state (EOS) in
our models, (2) the vertical support comes from the gas and
magnetic pressure rather than the radiation pressure, (3) there
is no explicit viscosity or resistivity, (4) our initial conditions
consist of a uniform toroidal field in a region near the disk
midplane, and (5) we use outflow boundary conditions for the
vertical boundaries.

The paper is organized as follows. In Section 2, we give
a description of the local model and summarize our numerical
algorithm. In Section 3, we present a fiducial model and analyze
its structure in the saturated state. In Section 4, we describe how
this structure depends on model parameters. In Section 5, we
give a report on quasi-periodic oscillations (QPOs; “butterfly
diagrams”) and present a phenomenological model to describe
them that is based on a mean field dynamo model; Section 5
contains a summary of our results.

2. LOCAL MODEL AND NUMERICAL METHODS

The local model for disks can be obtained by expanding the
equations of motion around a circular-orbiting coordinate origin,
with (r, φ, z) = (ro, Ωot + φo, 0) in cylindrical coordinates,
assuming that the peculiar velocities are comparable to the
sound speed and that the sound speed is small compared
with the orbital velocity. The local Cartesian coordinates are
then obtained from cylindrical coordinates via (x, y, z) =
(r − ro, ro[φ − Ωot − φo], z). In this work, we assume the disk
sits in a Keplerian (1/r) potential. We also use an isothermal
(p = c2

s ρ, where cs is constant) EOS.
For an ideal MHD disk, the equation of motion in the local

model is

∂v

∂t
+ v · ∇v + c2

s

∇ρ

ρ
+

∇B2

8πρ
− (B · ∇)B

4πρ

+ 2Ω × v − 3 Ω2x x̂ + Ω2z ẑ = 0. (1)

From left to right, the last three terms in Equation (1) represent
the Coriolis force, tidal forces, and vertical gravitational accel-
eration in the local frame, respectively. The orbital velocity in
the local model is

vorb = −3

2
Ωx ŷ. (2)

This velocity, along with a vertical density profile ρ(z) =
ρ0 exp[−Ω2z2/(2c2

s )] and zero magnetic field, is a steady-
state solution to Equation (1). ρ0 is the midplane density. In
this work, we nondimensionalize the local model by choosing
ρ0 = 1, Ω = 1, and cs = 1; the usual disk scale height H is
therefore H ≡ cs/Ω = 1. The initial surface density is therefore∫

ρdz = √
2πρo.

The local model is realized numerically using the “shearing
box” boundary conditions (e.g., Hawley et al. 1995), which iso-
lates a rectangular region in the disk. The azimuthal (y) bound-
aries are periodic; the radial (x) boundaries are “shearing peri-
odic”; they connect the radial boundaries in a time-dependent
way that enforces the mean shear. The vertical (z) boundaries
use a form of outflow boundary conditions: all variables in
ghost zones (including the z velocity and momentum on verti-
cal boundaries because of the staggered mesh) are copied from
the last active zone in the computational domain, with the ad-
ditional constraint that no inflow is allowed. For stratified disk
models, the outflow boundary condition is better motivated than
periodic boundary conditions, although it is more difficult to
implement.

What constraint do these boundary conditions place on
the field evolution? Integrating the induction equation over
the computational domain yields, after application of Stokes
theorem,

LxLyLz∂t 〈Bx〉 ≡ ∂t

∫
d3xBx =

∫
dx

∫
d[s] · (v × B), (3)

where the second integral is taken on a circuit round the box
boundaries at fixed x. It is evident that the electromotive force
(EMF) integrated over a line on the top boundary will not cancel
that on the bottom boundary for outflow boundary conditions,
and so 〈Bx〉 is not conserved. A similar argument implies that
〈By〉 is not conserved either. ∂t 〈Bz〉 is proportional to a line
integral around the box at constant z, where the quasi-periodic
radial and periodic azimuthal boundary conditions do cause
cancellation, so 〈Bz〉 is constant (numerically: constant to within
accumulated roundoff error).

In the preceding paragraph, we adopted the notation 〈 〉 for a
volume average:

〈f 〉 ≡ 1

V

∫
V

dxdydzf. (4)

We will also use

[f ] ≡ 1

LxLy

∫
dxdyf (5)

for a plane average and

f̄ ≡ 1

T

∫
T

dtf (6)

for a time average.
Our models are evolved using ZEUS (Stone & Norman 1992)

with “orbital advection” (see Masset 2000; Gammie 2001; John-
son & Gammie 2005, aka FARGO) for the magnetic field
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(Johnson et al. 2008; Fromang & Stone 2009). ZEUS is an
operator-split, finite-difference scheme on a staggered mesh
that uses a Von Neumann–Richtmyer artificial viscosity to cap-
ture shocks (this is a nonlinear bulk viscosity that does not
produce significant angular momentum transport in our mod-
els), and the Method of Characteristics-Constrained Transport
(MOC-CT) scheme to evolve the magnetic field and preserve the
∇·B = 0 constraint to machine precision. The orbital advection
is implemented on top of ZEUS. It decomposes the velocity field
into a mean shear part with orbital velocity vorb = −qΩx ˆ[y]
and a fluctuating part δv; v = δv + vorb. Advection for the mean
flow can be done using interpolation (which is always stable),
so that the Courant limit on the time step depends only on δv
and not on vorb. Shearing boxes with Lx � H , where the shear
flow is supersonic, can then be evolved more accurately, and
with a larger time step.

We have also implemented an additional procedure to make
the numerical diffusion more nearly translation invariant in the
plane of the disk. As discussed in Guan & Gammie (2009),
the entire box is shifted by a few grid points in the radial
direction at t = 2nLy/(3ΩLx), n = 1, 2, 3, . . .; at these
instants the box is exactly periodic. After the shift we execute a
divergence cleaning procedure to remove the monopoles that
are created by joining the radial boundaries together in the
middle of the computational domain. This procedure carries
little computational cost.

The time step in large stratified disk simulations is lim-
ited through the Courant condition by the Alfvén speed vA =
B/

√
4πρ at large |z|/H , where the density is orders of mag-

nitude smaller than that at z = 0. To prevent the simulation
from being brought to a halt by low density zones (and to avoid
other numerical artifacts associated with small ρ), we impose
a density floor ρmin = 10−5ρ0. This density floor is ∼ 1–2 or-
ders of magnitude smaller than the averaged minimum density
in the saturated state. We have tested a smaller density floor
ρmin = 10−7ρ0 and found the choice of the density floor does
not affect our results.

3. LARGE STRATIFIED DISK SIMULATIONS

3.1. Fiducial Model

All models start from a hydrodynamical equilibrium, with
ρ(z) = ρ0 exp(−z2/[2H 2]). We introduce a uniform toroidal
field B0 = B0 ŷ at |z| � 2H ; B0 is chosen so that at the disk
midplane the initial plasma parameter β0 ≡ 8πP0/B

2
0 = 25

(the sharp vertical variation in By at |z| = 2H makes the disk
initially unstable to magnetic Rayleigh–Taylor instability, but
this structure is quickly wiped out by MRI-driven turbulence).
Each component of the velocity is perturbed in each zone, with
δvi uniformly distributed in [−0.01, 0.01]cs . The models are
evolved long enough (� 150 orbits ∼ 900 Ω−1) to reach a
saturated, i.e., statistically steady, state.

Our fiducial model has a domain size of (Lx,Ly, Lz) =
(16, 20, 10)H and resolution 384×256×128. This corresponds
to a physical resolution of (24, 12.8, 12.8) zones per scale
height. Snapshots of ρ and EB ≡ B2/8π at slices with constant
x, y, and z in the saturated state are shown in Figure 1.

Turbulence is confined to the region |z| � 2H . Within this
region magnetic field fluctuations are contained on a scale
l � H , with a structure in the shape of narrow filaments that are
extended by the azimuthal shear. This turbulent field structure
resembles that observed in unstratified disk simulations (Guan
& Gammie 2009). Density fluctuations on a scale ∼ H due to

sound waves are also evident in the x–z plane density snapshots.
At |z| > 2H , the MRI is suppressed. EB decreases sharply, but
not as rapidly as ρ.

The disk vertical structure is shown in Figure 2, which
shows [ρ], [EB], [β], Maxwell (magnetic) stress [Mxy] ≡
[−BxBy]/4π , and Reynolds stress [Rxy] = [ρvxδvy]. These
profiles are obtained from a time average over the last 100π/Ω.
The most striking feature in these profiles is the “turbulent disk
surface” at |z| ∼ 2H defined by [EB](z) and [Mxy](z). Inside
this surface both are independent of z; outside both exhibit an
approximately exponential dependence on z. As illustrated in the
vertical profile of β, as |z| increases, magnetic energy density
drops slower than density; above |z| ∼ 2.5H β drops below
unity. Therefore, the region |z| > 2H is magnetically dominated
and this leads to the suppression of the MRI. From now on we
will simply refer to the magnetically dominated upper region
with β < 1 as “corona” and the turbulent |z| � 2H region as
“disk.”

Fits to the disk structure give

[ρ](z) �
{

0.93ρo exp
(− z2

2H

)
, if |z| � 2.55H ;

0.036ρo exp
(−|z|−2.6H

0.44H

)
, otherwise,

(7)

and

[EB](z) �
{

0.012ρ0c
2
s , if |z| � 2.55H ;

0.012 exp
(−|z|−2.6H

0.64H

)
ρ0c

2
s , otherwise.

(8)

In the saturated state, [ρ](z) is different from the initial density
profile ρ0 exp[−z2/(2H 2)] due to the magnetic buoyancy effects
and mass loss through the z boundaries. Inside the disk, a nearly
Gaussian density profile indicates that this region is still mainly
supported by gas pressure.

How can we understand the vertical magnetic structure of
the disk? A uniformly magnetized atmosphere is subject to
interchange and Parker-type modes (Newcomb 1961; Parker
1966). The more dangerous of these are Parker-type modes,
whose stability condition is

−dρ

dz
>

ρ2g

γPgas
, (9)

where Pgas is the gas pressure, g = Ω2z is the gravitational
acceleration, and γ is the adiabatic index (here γ = 1; Newcomb
1961). For a disk in hydrostatic equilibrium,

−d(Pgas + Pmag)

dz
= ρg. (10)

Together these conditions imply

dPmag

dz
= dEB

dz
= 0. (11)

Marginally stable stratification therefore corresponds to con-
stant [EB], as is found at |z| < 2H . This suggests that (1)
magnetic buoyancy is driving the disk toward a marginally sta-
ble state and (2) magnetic buoyancy is crucial in controlling
the vertical magnetic structure in the bulk of the disk. If this is
correct, it follows that EB(z) in the disk could be different in
nonisothermal models. In particular, marginal stability requires

1

8π

d[B2]

dz
= γPgas

(
1

γ

d ln Pgas

dz
− d ln ρ

dz

)
. (12)
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Figure 1. Snapshots of density and magnetic energy density in the fiducial model, taken at t = 100 orbits. Left: density ρ; right: magnetic energy density EB; top:
image at y = 0 plane; middle: image at x = 0 plane; bottom: image at z = 0 plane.

(A color version of this figure is available in the online journal.)

Thus an isentropic disk has dB2/dz = 0, while a stably
stratified, nonradiative disk (in the Schwarzschild sense) can
support dB2/dz < 0. In a radiative disk, the instability
criterion is modified (disks heated by internal dissipation of
turbulence rather than external irradiation tend to have strong
radiative diffusion or Peclet numbers of order α−1 ∼ 50),
because radial radiative diffusion tends to wipe out temperature
perturbations for the most unstable modes with high radial
wavenumbers.

Figure 3 shows the evolution of magnetic energy density in
the disk 〈EB,d〉, magnetic energy density in the corona 〈EB,c〉,
and 〈α〉:

〈α〉 ≡
∫
Wxyd

3x∫
ρc2

s d
3x

, (13)

where Wxy ≡ Rxy + Mxy is the total shear stress. Averaging the
last 50 orbits, we found that 〈α〉 ∼ 0.013, 〈EB,d〉/ρ0c

2
s ∼ 0.012,

and 〈EB,c〉/ρ0c
2
s ∼ 0.0043.

3.2. Two-point Correlation Function

One question motivating this study was whether thin disks
exhibit mesoscale structure, i.e., structure on scales that are

 H but � R. As is evident in Figure 1, the characteristic scale
of the magnetic energy density varies with |z|. Near |z| = 0,
turbulent structure resembles that observed in unstratified disk
models: the field is confined in small structures with scale
l � H . Away from |z| = 0, l increases, reaching ∼ H at
|z| ∼ 2.5H .

The two-point correlation function ξ provides a quantitative
measure of disk structure:

ξB(z) ≡ [δB(x, y; z) · δB(x + Δx, y + Δy; z)]. (14)

Here δB ≡ B − [B]; for a detailed discussion of ξand the
corresponding correlation lengths λi see Guan et al. (2009).
Figure 4 shows ξB(z) in the (Δx, Δy) plane at z = 0, z =
2.5H , and z = 4.5H . In these plots, we have averaged eight
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Figure 2. Vertical profiles of several x–y plane-averaged quantities in the fiducial model. Upper left: density; upper right: magnetic energy density; lower left: plasma
β; lower right: xy component of Maxwell stress Mxy = −BxBy/4π (solid lines) and Reynolds stress Rxy = ρvxδvy (dotted lines). All quantities in solid and dotted
lines are averaged from the last 50 orbits. To illustrate the time average effect, we also plot [EB ](z) at t = 900 Ω−1 (dashed lines) in the upper right panel. The slight
asymmetry of [EB ](z) and [Mxy ](z) in the |z| � 2H region is probably due to our choice of orbits interval for time average.

neighboring vertical zones to increase the signal-to-noise ratio.
At the disk midplane, the correlation function has a narrow
elliptical core of width λ < a few H. As |z| increase to 2.5H
the core becomes larger, especially in the radiation direction,
and low-amplitude features develop on scales of ∼ 10H . These
low-amplitude, mesoscale features are new and are not seen in
unstratified disk models.

3.3. Coronal Loop Structure

Our disk models contain a “corona,” where β < 1. It is
not clear how accurately, or inaccurately, our code models this
region because it contains no explicit model for reconnection
(which is the case for any convincing model currently avail-
able; see Uzdensky & Goodman 2008 for a discussion of the
difficulties of simulating force-free coronae). Still, it is inter-
esting to characterize the field structure in existing simulations
before asking how they might be changed by more sophisticated
reconnection models.

How can we understand coronal magnetic field structure?
Most of the coronal field is anchored in the disk, so we begin by
sampling field lines that rise through the surface z = 2.5H at a
single instant. Using bilinear interpolation for the field, we trace
field lines initiated from every cell on the z = 2.5H surface,
until they either (1) come back to the z = 2.5H surface, or (2)
leave the upper z surface, or (3) exceed maximum integration
step 105 indicating the formation of a closed loop. A snapshot of
these field lines is shown in Figure 5. Two features of the coronal
field are obvious just from visual inspection: many of the field
lines return to the disk after only a short sojourn in the corona,
and the loops tend to have greater azimuthal than radial extent.

A more quantitative approach is to calculate a coronal loop
distribution function, as in the phenomenological model of
(Uzdensky & Goodman 2008, hereafter UG). The field lines
should then be sampled according to the flux through each zone
surface dΦi = Bz,idxdy. We also average over the last 50
orbits to improve the loop statistics. We find that ∼ 96% of the
field lines passing through the z = 2.5H surface return to the
same surface, ∼ 4% of field lines are open in the sense that they

5



The Astrophysical Journal, 728:130 (13pp), 2011 February 20 Guan & Gammie

Figure 3. Evolution of 〈α〉 (solid lines), 〈EB,d 〉/ρ0c
2
s at |z| � 2H (dotted lines),

and 〈EB,c〉/ρ0c
2
s at |z| > 2H (dashed lines) in the fiducial model. Saturation

〈α〉 ∼ 0.013 when averaged over the last 50 orbits.

Figure 4. Contour plots of two-dimensional two-point correlation function ξB (z)
for δB. Plotted are ξB (z)/(4πρ0c

2
s ) in the (Δx, Δy) plane at three different

vertical heights in the fiducial model. Left: midplane; middle: z = 2.5H ; right:
z = 4.5H . The contours run linearly from −0.058 to 0.229 for 20 levels; solid
lines: ξB � 0; dashed lines: ξB < 0; the heavy line is the 0 contour.

escape through the upper boundary of the box, and only ∼ 0.1%
of the field lines form closed loops inside the corona. We have
also found that the small fraction of the open field lines is quite
stable during the saturated state, ranging from ∼ 2%–5% at
instantaneous state; therefore it appears that the corona field
structure has reached a statistical steady state.

We then use three variables to describe the geometry of
close field lines (field loops) that return to the z = 2.5H
surface: the loop footpoint separation Δx in the x–y plane,
the loop maximum height Δzmax, and the loop orientation angle
θfoot ≡ the angle between the foot separation vector and the y-
axis. We calculate the distribution functions dΦ/dΔx, dΦ/dΔy,
dΦ/dΔzmax, and dΦ/dθfoot by following the trajectory of every
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Figure 5. Magnetic field lines originating from the plane z = 2.5H in the
fiducial model at t = 600 Ω−1. The lines are evenly sampled spatially from the
x–y plane. Both the line width and the color denote the flux carried by each
line at the footpoint, normalized by the total flux from the z = 2.5H plane. The
majority of the field lines return to z = 2.5H , forming closed loops.

(A color version of this figure is available in the online journal.)

Figure 6. Loop angle distribution functions in the fiducial model: θ denotes the
angle between the foot separation vector and the y-axis. Loops are stretched in
the azimuthal direction due to the shear.

field line that emerges at the center of each zone surface i,
then weighting the result by the flux dΦi . The final distribution
function is normalized by |Φ|, the total absolute flux through
the z = 2.5H plane.

Figures 6 and 7 show dΦ/dΔx, dΦ/dΔy, dΦ/dΔzmax, and
dΦ/dθfoot, averaged over the last 50 orbits. From dΦ/dθfoot
(Figure 6), it is evident that most of the field loops are orientated
in the azimuthal direction with θ � a few degrees. This suggests
that shear plays a significant role in determining the coronal field
structures. Most loops also have maximum height Δzmax � H
(see dΦ/dθfoot in Figure 7).

If there is no reconnection at all then magnetic energy
injection from the underlying turbulent disk might cause the loop
to grow in an unlimited way. This is not the case here: although
we do not include dissipation explicitly, numerical reconnection
due to truncation errors is present in our numerical scheme, as
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Figure 7. Loop distribution functions in the fiducial model. Left panel: footpoint separation distribution. The left curve is for Δx and the right curve is for Δy. The
distribution for ΔL = (Δx2 + Δy2)1/2 almost overlaps with the Δy curve. The heavy line indicates a k = −5/4 slope. Right panel: loop height distribution.

in all finite-difference MHD schemes. It is difficult, however, to
quantify the numerical reconnection rate in our model directly.
We therefore try to compare our numerical loop distributions to
the predictions of the UG model.

We fit a power law to dΦ/dΔx and dΦ/dΔy,

dΦ
dΔx

� C0

(
Δx

H

)k

, (15)

where C0 is a constant. Note that the shape for dΦ/dΔx and
dΦ/dΔy is very similar. For Δy a fit between 3H � Δy � 20H
gives k ≈ −1.2. We can also calculate the general loop
distribution function for ΔL = (Δx2+Δy2)1/2. It almost overlaps
with the dΦ/dΔy curve because the loops are nearly toroidal,
and a fit between 3H � Δy � 20H gives k ≈ −1.2.

In the model of UG, a slope of k ∼ −2 corresponds to
the limit that reconnection is slow compared to the shear (the
dimensionless reconnection parameter κ ∼ 0.01 in UG), and
a slope of k > −1.5 corresponds to the cases when the total
magnetic energy of the corona is dominated by the largest loops
(κ < 0.002). The shallow k ∼ −1.2 slope measured here then
indicates that our numerical models are probably in a slow
Sweet–Parker reconnection regime. However, this comparison
should not be taken too seriously3 because our model is ideal
MHD and does not explicitly model reconnection. One serious
concern is that the coronal reconnection could fall into a fast,
collisionless regime which is poorly understood, and not well
modeled by our grid scale dissipation.

Lastly we want to comment on several surface effects in
our model. These include the yz component of magnetic stress
tensor Myz ≡ −ByBz/(4π ), the vertical components of kinetic
flux and Poynting flux, and the mass loss rate. Note that these
quantities do not necessarily average to zero because of the
outflow boundary conditions. We have found that 〈Myz〉 is nearly
zero with temporal fluctuations of amplitude � 10−4ρ0c

2
s , much

smaller than the dominant xy component 〈Mxy〉. In the steady

3 Although the reconnection rate in the corona might well determine the
vertical magnetic energy profile [EB,c(z)], simply from a characteristic field
curvature argument, where l(z) ∼ [va(z)]/Ω ∼ Δx(z).

state, the vertical energy flux is dominated by the advective part
of the Poynting flux, which is on the order of 10−4ρ0c

3
s . This

vertical energy flux is only ∼ 1% of the turbulent dissipation rate
Q in the disk main body (Q ∼ αρ0c

3
s ∼ 10−2ρ0c

3
s ), indicating a

weak vertical energy flux.
The disk loses mass through the upper and lower boundaries.

In the last 50 orbits, the disk lost ∼ 1.4% of its initial mass.
The vertical mass loss rate is not negligible4 in our Lz = 10H
models because of the outflow boundary conditions. However,
we have noted a trend in which the vertical mass loss decreases
with increasing Lz. For example, in our Lz = 12H model the
disk lost ∼ 0.64% of its initial mass during the last 50 orbits,
giving a mass loss rate half that of the Lz = 10H model. We
therefore expect a decreasing mass loss rate as Lz increases.

It is also worth noting that in our models the mean vertical
magnetic fields maintain 〈Bz〉 = 0 because of the shearing box
boundary conditions. We also found that the plane-averaged
[Bz] ∼ 0 at all z including at the domain boundaries. The
vertical field at the surfaces is turbulent with patches of opposite
sign field penetrating the boundaries. However, the vertical field
here are fluctuations with radial correlation length < a few H
and amplitude ∼ one order of magnitude smaller than that at
the disk midplane. We have not observed a steady magnetic
wind and the observed mass loss is probably due to outflow
boundaries.

To summarize, in our models we see a weak wind launched
from the disk surface. In a steady state both vertical energy and
momentum flux are negligible.

3.4. Dependence on Model Parameters

Here we give a brief discussion of the saturation dependence
on model parameters, including (1) resolution, (2) Lx, (3) Lz,

4 The ratio of vertical mass loss rate to the mass accretion rate is

Ṁz

Ṁr

∼ πr2 δΣ
δt

3πΣν
= πr2 δΣ

δt

3πΣ αc2
s

Ω

= 1

3

δΣ
Σ

1

α

( r

H

)2 1

δtΩ
∼ 0.001

( r

H

)2
, (16)

where Ṁr is the mass accretion rate at the disk radius r, δΣ is the change of
disk surface density in δt , and we have used a disk turbulent viscosity
ν = αc2

s /Ω. For r/H = 30, Ṁz/Ṁr ∼ 1.
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Table 1
Model Parameters

Model Size Resolution β0 〈α〉 〈EB,|z|�2H 〉/ρ0c
2
s 〈EB,|z|>2H 〉/ρ0c

2
s

std16 (16, 20, 10)H 384 × 256 × 128 25 0.0125 0.0121 0.00427
s16b (16, 20, 10)H 384 × 256 × 128 100 0.0157 0.0152 0.00647
s16c (16, 20, 12)H 384 × 256 × 160 25 0.0141 0.0125 0.00497
s1 (1, 20, 10)H 48 × 256 × 128 25 0.0191 0.0171 0.00933
s8 (8, 20, 10)H 192 × 256 × 128 25 0.0124 0.0115 0.00665
s32 (32, 20, 10)H 768 × 256 × 128 25 0.0269 0.0270 0.0106
s16a (16, 20, 10)H 768 × 512 × 256 25 0.0230 0.0181 0.0101

and (4) initial field strength in terms of plasma parameter β0.
When exploring parameter space we vary only one parameter at
a time unless stated otherwise. Model parameters can be found
in Table 1.

1. Resolution. In model s16a, we test the convergence proper-
ties of our numerical models by doubling the resolution of
the fiducial run to 768 × 512 × 256. We run this model to
tf ∼ 75 orbits. Averaging over the last ∼ 25 orbits in the
saturated state, we found that 〈α〉 ∼ 0.023, almost double
of that in the fiducial run (〈α〉 ∼ 0.013); at the highest res-
olution explored in this work, saturation level continues to
increase with resolution. The dynamic range in resolution
explored in this work is modest (highest resolution in this
work is ∼ 20–40 zones per H) due to the computational de-
mands of the large box.5 We have also monitored “quality
factor” Q, where Qi ≡ λMRI,i/Δxi = 2πva,i/(ΩΔxi)(see a
discussion of Q in Noble et al. 2010), the zones per most
unstable linear MRI wavelength in our calculations. For the
bulk of the disk inside ±2H region, our highest resolu-
tion run gives a volume and time averaged Qy = 33.7 and
Qz = 6.8 in the saturated state, and so by this measure the
toroidal field MRI is well resolved while the vertical field
MRI is marginally resolved. Of course, the evolution of the
disk is not well described by linear theory in the fully tur-
bulent state, so it is not clear whether Q is a good indicator
of when MRI-driven turbulence is sufficiently resolved.
It is worth mentioning the convergence properties of shear-
ing box simulations done in smaller boxes: (1) the unstrati-
fied box with a net toroidal field, (2) the stratified box with
periodic vertical boundary conditions, and (3) the stratified
box with outflow boundaries. First, using a similar algo-
rithm in unstratified disk simulations with a mean toroidal
field, Guan et al. (2009) reported that in the resolution
range 32–256/H saturation energy increases with resolu-
tion (∝ N

1/3
x ). They also pointed out that convergence is

expected at higher resolution when the energy-containing
eddies are resolved. For the stratified disks, Shi et al. (2010)
used Lx = 2H stratified shearing box simulations with
vertical outflow boundaries and they also found that 〈α〉 in-
creases with resolution and an 〈α〉 ∼ 0.035 in their highest
resolution run at 32/H . Recently, stratified disk simulations
done in smaller boxes (Lx ∼ H ) and periodic boundary
conditions with zero-net flux have demonstrated conver-
gence with 〈α〉 ∼ 0.01 with a resolution ∼ 32–128/H us-
ing ATHENA code and periodic boundary conditions (Davis
et al. 2010). The sustained turbulence may be due to the
presence of a mean toroidal field in the disk midplane. Note

5 For example, a (Lx,Ly, Lz) = (16, 20, 10)H run with resolution
768 × 512 × 256 (run s16a) and tf ∼ 150 orbits required ∼ 0.5 × 106 cpu hr
on abe cluster at NCSA.

that 〈α〉 in their work is normalized with the initial midplane
pressure P0, which is normally a factor of a few larger than
domain-averaged 〈P 〉 used here. Using the definition in this
work, their 〈α〉 ∼ 0.04. It is therefore possible that in strat-
ified disk simulations, net-toroidal-field and zero-net-flux
models will have similar convergence properties. If this is
the case, we then expect a convergence at 64–256/H using
our ZEUS-type code.6

2. Lx. For Lx, we have carried out runs with Lx = H, 8H ,
and 32H , denoted by s1, s8, and s32. Time averaging the
last 50 orbits in each run, we found that the saturation level
in all these runs is close, with 〈α〉 ∼ 0.0191 ± 0.00453
when Lx = H , 〈α〉 ∼ 0.0124 ± 0.00116 when Lx = 8H ,
〈α〉 ∼ 0.0125 ± 0.000965 when Lx = 16H , and 〈α〉 ∼
0.0269 ± 0.00211 when Lx = 32H , where the numbers
after ± denote standard deviation σ . The dependence of
〈α〉 on the box size is not clear, however, it is difficult
to measure 〈α〉 in the Lx = H box because of the large
fluctuations. In runs with Lx � 8H , the σ -to-mean ratio is
around 0.07–0.09, while Lx = H gives a σ -to-mean ratio
∼ 0.25.
Past stratified disk studies (Davis et al. 2010; Shi et al.
2010) have shown that there exist significant (order of unity)
long-term fluctuations in Lx ∼ H box. The evolution of
magnetic energy density in the disk 〈EB,d〉 for Lx = H
and Lx = 16H runs are shown in Figure 8. The smaller
fluctuation in large Lx models suggests that (1) parts of the
disk with horizontal separation > H are uncorrelated and
(2) the volume integration over large-enough domain will
smooth out these local fluctuations.
What have we learned in these large domain size models
with Lx � 10H? Our Lx = H run is similar to the
toroidal model of Miller & Stone (2000). First, in large
box runs, the plane-averaged vertical disk structures are
similar to those in smaller box runs: we have observed
a gas-pressure-supported disk with a Gaussian density
profile inside ∼ 2H and an extended magnetic-dominated
corona outside ∼ 2H . Second, the long-term average of
disk turbulence saturation level is also very similar to the
∼ H runs, albeit with much smaller temporal fluctuations.
Statistically, for saturation measurement purposes, a large
domain run can be regarded as a sum of smaller H run,
where the temporal and spatial fluctuations are smoothed
out by integrating over decorrelated disk regions.
Our models also suggest that a magnetically dominated
corona cannot be studied in an Lx ∼ H box (if it can
be studied in a numerical MHD model at all). In large
domain size runs with Lx � 10H at |z| > 2H we find

6 A run of our fiducial run size with a resolution 64/H would require
> 5 × 106 cpu hr on NCSA’s abe cluster.
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Figure 8. Evolution of the disk magnetic energy density 〈EB,d 〉 in models std16
(solid lines) and s1 (dotted lines). Plotted are the mean magnetic energy density
in the region |z| � 2H .

features in the magnetic field correlation function on scales
of ∼ 10H , indicating the existence of mesoscale structure.
Although the magnitude of the mass, angular momentum,
and energy transport in the corona is small compared with
that in the central disk, the corona and the central disk
are dynamically connected and large-scale structure in
magnetically dominated upper layers may still influence
the spatial correlations/structures of the disk below (we
will explore this issue in a forthcoming paper). Therefore,
in accretion disk models where the spatial structure of the
corona is important, such as phenomenological models
for accretion disk coronae (e.g., the statistical model of
Uzdensky & Goodman 2008) and disk spectra calculations,
the radial extent of the corresponding numerical simulation
may require an Lx � 10H .

3. Lz. We have investigated the effect of vertical boundaries
by running a model (s16c) with Lz = 12H . We find no
qualitative difference between the Lz = 12H and Lz =
10H models: the saturation 〈α〉 ∼ 0.0141, 〈EB,d〉/ρ0c

2
s ∼

0.0125, and 〈EB,c〉/ρ0c
2
s ∼ 0.00497, all within ∼ 10%

of the fiducial model. We also obtain a similar vertical
disk structure when Lz increases: inside 2.5H the disk has
a well-fitted Gaussian [ρ](z) and a flat [EB](z); outside
2.5H the corona extends to |a| = ±6H in model s16c.
Both [ρ](z) and [EB](z) also have an exponential profile,
but the fitted coronal exponential scale height increases
∼ 20% compared to the fiducial model. The coronal loop
distribution functions are almost identical to those of the
fiducial model, which is not surprising considering the steep
decline of dΦ/dΔzmax as Δzmax exceeds ∼ H . As discussed
before, some caution is needed in interpreting this vertical
extension of corona structure with increasing domain size:
our calculation is essentially an MHD calculation, whereas
real disk coronae are probably force free and also influenced
by non-ideal plasma effects (e.g., reconnection) that are ill
modeled in our numerical scheme.

Figure 9. Evolution of 〈By〉 (solid lines), 〈EB 〉 (dotted lines), and 〈Wxy〉 (dashed
lines) at |z| � 2H in model s32. The oscillation period for 〈By〉 is twice that
of 〈EB 〉 and 〈Wxy〉. These temporal oscillations may be caused by a mean field
dynamo.

4. β0. We have tested the effect of initial field strength on
the saturation level. In most of our runs we start from
a uniform toroidal field inside the disk with β0 = 25.
We then carry out a comparison run s16b with the same
field geometry but weaker strength β0 = 100. We find that
turbulence saturates at the similar level using weaker initial
field strength, with 〈α〉 ∼ 0.0157, 〈EB,d〉/ρ0c

2
s ∼ 0.0152,

and 〈EB,c〉/ρ0c
2
s ∼ 0.00647, therefore in stratified disks

the saturation does not depend on the initial field strength.
In comparison, in unstratified disk models 〈EB〉 is found
to scale with the initial mean field strength 〈By〉7 (see a
detailed discussion in Guan et al. 2009). The important dif-
ference here lies in the stratification and the accompanying
outflow boundary conditions, which allow changes in mean
toroidal field strength in the turbulent disk. The stratified
disk model then allows the disk to adjust its net flux and
field strength in a self-consistent way. It is worth pointing
out that the saturation level is a volume average over large
scales where different parts of the disk decorrelate; on the
scale where the turbulence is localized (� H ), it is still
possible that the local saturation 〈EB,d〉local ∝ 〈By,d〉local.
Does the saturation level depend on the instantaneous mean
field strength in the stratified disk? The evolution of the
mean azimuthal field 〈By,d〉 in the region |z| � 2H in
model s32 is plotted in Figure 9. The mean field does not
have a fixed value and changes signs over a time scale
of ∼ 10 orbits. Averaging the last 100 orbits, the mean
magnitude of toroidal field strength in the turbulent disk
region is |〈By〉| ∼ 0.012

√
4πρ

1/2
0 cs , therefore there is weak

net toroidal field in the turbulent disk region to drive MRI.
The figure also shows the evolution of the mean magnetic

7 Guan et al. (2009) found a linear relation between 〈By〉d and the saturation
α ∝ 〈EB 〉 ∝ ρ0csVA,y0, where VA,y0 = By0/(4πρ0c

2
s )1/2 is the mean

azimuthal Alfvén speed. This result is also consistent with scalings obtained
from earlier work (e.g., Hawley et al. 1995).
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Figure 10. Butterfly diagram for [EB ] in model s32.

(A color version of this figure is available in the online journal.)

energy density 〈EB,d〉 and mean xy stress 〈Wxy,d〉 in the
same run. Both 〈EB,d〉 and 〈Wxy,d〉 have a fixed overall
saturation level with a superimposed small oscillation with
a period half of that of 〈By〉. Again, this is dramatically
different from the unstratified disk, where the saturation
level is proportional to the mean field strength. The overall
saturation level in a stratified disk is not determined by the
instantaneous mean field strength nor by the initial field
strength.
On the other hand, as shown in Figure 9, the oscillations
of 〈By〉 and 〈EB,d〉 are closely correlated and oscillation
period for 〈By〉 is twice that of 〈EB,d〉. This suggests that
〈B2〉 is correlated with 〈By〉, even though 〈By〉 � 〈B2〉1/2.
Therefore, the saturation level may be determined both by
the MRI induced by the mean toroidal field in the turbulent
disk region and magnetic buoyancy effects (e.g., Vishniac
2009).

4. BUTTERFLY DIAGRAM: A MEAN
DYNAMO IN THE DISK?

One interesting feature appearing in all our models is an
oscillation of the mean magnetic energy on a timescale of a few
orbits. As an example, we plot the “butterfly” diagram for model
s32 in Figure 10, which illustrates the evolution of [EB](z). This
bears a superficial resemblance to the famous butterfly diagram
observed in solar activity cycles.

We use Fourier analysis to determine the period of butterfly
diagram. Using data

∫
dyEB (|z| = 2.5H ; x, t), taken from

two layers with |z| ∼ 2.5H and have been averaged in the
y-direction to improve statistics, we perform a two-dimensional
fast Fourier transform (in x and t) on the data set. The normalized
temporal power spectral density (PSD) for [EB,|z|=2.5H ] in
model s32 is shown in Figure 11. Here we have plotted a
cut through kx = 0 plane in the two-dimensional kx − f
PSD map. We have also checked that the different sides of
the disk have very similar PSD and we have plotted the sum
of contribution from both layers. The arrow in the figure
marks the peak frequency in the PSD. This frequency, f ∼
0.03 Ω, corresponds to the period of the butterfly diagram
for [EB].

The PSD has P ∼ f k , with k ∼ −2.3. Interestingly, results
from recent global GRMHD simulations (Noble & Krolik 2009)
suggest that the slope for the coronal luminosity temporal power
spectrum is k ∼ −2, almost independent of model parameters
and very close to what has been observed at high frequency in
black hole accretion disk systems. The power-law index for the
temporal power spectrum from local and global simulations
is therefore remarkably close, considering that we are only
calculating the temporal spectrum for coronal magnetic energy
density.

Figure 11. Normalized temporal power spectral density for [EB ] in model s32.
The data are taken from the layers with |z| ∼ 2.5H . We also draw the best-fit
k = −2.3 slope for the temporal PSD. The arrow marks the peak frequency in
the power spectrum. This frequency, f ∼ 0.03 Ω, corresponds to the period of
the butterfly diagram for [EB ].

The period for [EB] is P[EB ] ∼ 5 orbits. Besides [EB], one
could also plot butterfly diagrams for [Wxy] and [By]. The period
for [Wxy] is the same as that of [EB], ∼ 5 orbits, while the period
for [By] is twice that of [EB], P[By ] ∼ 10 orbits, because of the
reversal of mean fields (see Figure 9).

For [EB], we find P〈EB 〉 ∼ 5 orbits in all our models. This
quasi-periodicity has appeared in all the stratified shearing box
simulations that we are aware of, even in those with periodic
vertical boundary conditions (Davis et al. 2010). Interestingly,
Reynolds & Fabian (2008) have also obtained similar butterfly
diagrams at certain radii (e.g., r = 8rg and r = 10rg , where
rg ≡ GM/c2 is the gravitational radii) in their global pseudo-
Newtonian thin disk simulations. It would be of interest in the
future to test (1) whether the butterfly diagram is simply a
local feature at a certain location on the disk (as in shearing
box simulations) or this quasi-periodicity can be coherent
and sustained over a large radial range and (2) what model
parameter(s) the period depends on.

The butterfly diagram together with the reversal of the mean
fields (for both the dominant toroidal field and a weak radial
field) in the disk may be modeled by a mean field dynamo of
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α̃ type (e.g., Moffatt 19788). In the rest of this section, we will
present a toy model to give a qualitative description of these
oscillations.

Let us first consider two important dynamical processes in a
stratified disk: (1) the MRI-driven turbulence, which draws free
energy of rotation and operates on the orbital timescale ∼ Ω−1;
and (2) magnetic buoyancy, which operates on the local Alfvén
timescale τA ∼ H/[δv2

A]1/2. In our simulations, we found in the
disk region |z| � 2H the magnetic energy density is almost a
constant with height, with [EB] � 10−2ρ0c

2
s , which gives an

average magnetic buoyancy timescale τA � a few Ω−1 inside
the disk. The period of the butterfly diagram is much longer
than these two timescales. Therefore, these two processes alone
cannot describe the dynamics represented in butterfly diagrams.

The α̃-type mean dynamo equations for the disk mean fields
〈Bx〉 and 〈By〉 can be derived from averaging the induction
equation, ∂t 〈B〉 = 〈∇ × (v × B)〉, here 〈 〉 denotes ensemble
averages. Assuming the turbulent EMF, ε is related to the mean
field with a dynamo parameter α̃i , 〈ε〉 ≡ 〈δv × δB〉 = α̃i〈Bi〉,
one simple form of dynamo equations in a stratified thin
Keplerian disk is (cf. Equations (5) and (6) in Vishniac &
Brandenburg 1997),

∂t 〈By〉 = −3

2
Ω〈Bx〉 − ∂z(〈vb〉〈By〉) + ∂z(α̃1〈Bx〉) (17)

and
∂tBx = −∂z(〈vb〉〈Bx〉) − ∂z(α̃2〈By〉) , (18)

where vb is a characteristic vertical velocity induced by magnetic
buoyancy. In Equation (17), the first term is the shear term, the
second term denotes buoyancy due to the mean field, and the
last term is the mean field dynamo term. Only ∂z terms are
retained because the disk is thin. For simplicity, we have also
dropped the diffusion terms (for a discussion on these terms,
see a recent study by Gressel 2010). We then take ∂z ∼ 1/(2H )
and vb ≈ |vA| ≡ |B|/√4πρ0 ∼ |By |/

√
4πρ0, where |vA| is the

mean Alfvén speed. Equations (17) and (18) then become

dBy

dt
= −3

2
ΩBx − |vA|

2H
By +

α̃1

2H
Bx (19)

and
dBx

dt
= −|vA|

2H
Bx − α̃2

2H
By . (20)

For clarity, we have dropped 〈 〉 in the above equations. Note
that Equations (19) and (20) have no spatial dependence. Taken
together, they are coupled ordinary differential equations and
can be solved numerically given initial conditions for By and Bx.

In Figure 12, we plot one solution for this toy model. This
solution is obtained by integrating the above equations from
an initially pure toroidal field with β0 ∼ 22 and by choosing
α̃1 = α̃2 = −0.01.9 The period for By in this particular toy
model is ∼ 10 orbits. The magnitude of α̃ controls the oscillation
frequency: in general, larger |α̃| leads to smaller period, although
the scaling is not linear. Initial conditions have little effect on the
evolution in our toy model. In conclusion, the butterfly diagram
and the mean field reversal observed in these simulations may
imply a mean field dynamo at work in stratified disks.

8 In this work, we use α̃ to denote dynamo model type. It should not be
confused with the accretion disk turbulence level parameter α.
9 By definition, α̃1 = 〈εx 〉

〈Bx 〉 = 〈δvy δBz−δvzδBy 〉
〈Bx 〉 and

α̃2 = 〈εy 〉
〈By 〉 = 〈δvzδBx−δvx δBz〉

〈By 〉 . In principle, α̃1 does not necessarily equal α̃2

due to anisotropy.

Figure 12. Evolution of By (solid lines) and Bx (dotted lines) in our mean field
dynamo toy model. α1 = α2 = −0.01 in the plotted model.

Does it make sense to identify these oscillations with ob-
served QPOs? In a Keplerian disk, the orbital frequency at
r is forb = 1/(2π )(GM)1/2r−3/2. The QPO frequency is
fQPO = 1/5forb ≈ 20 × (r/10M)−3/2(M/10 M�)−1Hz. Our
disk model represents a geometrically thin, optically thick disk.
This is most easily understood as corresponding to the high
soft state in black hole X-ray binaries, which is dominated by a
thermal component. For a 10 M� black hole, a 5Hz QPO (e.g.,
XTE J1550−564) corresponds to rin ∼ 25M , which is far from
the innermost region of a thin disk where most of the thermal
X-ray emissions presumably originate. This oscillation fre-
quency may be sensitive to the disk vertical structure (e.g., if the
disk is not isothermal), and therefore may exhibit a much more
complex behavior in real disks, in which the vertical structure is
closely coupled to vertical energy transport. On the other hand,
observations indicate that QPOs are absent or very weak in the
thermal state, but may appear in the very high state when a
sizable thermal disk component is present, although the QPOs
are more associated with Comptonizing electrons (Remillard
& McClintock 2006); it is difficult to associate the butterfly
oscillations with observed QPO phenomena.

5. SUMMARY AND DISCUSSION

We have carried out stratified shearing box simulations with
domain size Lx = H to Lx = 32H to study properties of
isothermal accretion disks on a scale larger than the disk scale
height H. Our numerical models have vertical extent � 5H
above and below the disk midplane with outflow boundary
conditions. All models start from a net mean toroidal field in the
central disk region and the mean fields are allowed to change in
the evolution.

We find the disk has an oscillating mean toroidal field
and 〈α〉 ∼ 0.012–0.025 in the parameter range we explored.
We have not found a clear dependence of 〈α〉 on Lx in our
models, although the temporal variances in volume-averaged
quantities decrease with Lx. The highest resolution used here
is modest (20–40 zones per H), and we have observed 〈α〉
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increases with resolution. Recently, Davis et al. (2010) report a
converged 〈α〉 ∼ 0.04 in Lx ∼ H high-resolution stratified disk
simulations with zero-net-flux and periodic vertical boundary
conditions (so that the volume-averaged field cannot change
during the evolution). The sustained turbulence may be due to
the presence of a mean toroidal field in the region close to the
disk midplane, lending plausibility to the idea that the saturation
mechanism of MRI in stratified disks near the midplane is
similar to that in unstratified disks with a net toroidal field.

In the saturated state, the disk vertical structure consists of (1)
a turbulent disk at |z| � 2H and (2) a magnetically dominated
upper region at |z| > 2H , confirming earlier small (Lx ∼ H )
box results.

At |z| � 2H , the disk is mainly supported by gas pressure,
and a Gaussian density profile is observed. The plane-averaged
magnetic energy density [EB](z) and Maxwell stress [Mxy](z)
are nearly uniform with vertical height z in this region, where the
disk is marginally stable to the Parker instability. At |z| > 2H ,
exponential dependences on z are observed for both [ρ] and
[EB]. Fitting formulae for [ρ](z) and [EB](z) are given in
Equations (7) and (8), respectively.

Using a two-point correlation function analysis, we found
that close to the midplane, the disk is dominated by small-
scale (� H ) turbulence, very similar to what we have observed
in unstratified disk models. In the corona, magnetic fields are
correlated on scales of ∼ 10H , implying the existence of
mesoscale structures. Recently, Johansen et al. (2009) have also
observed large-scale pressure and zonal flow structures in their
large shearing box simulations. We will give a detailed report
of mesoscale structure in isothermal disks in a forthcoming
paper.

We have adopted a statistical approach to study the geometry
of coronal magnetic fields. Only ≈ 4% of coronal field lines are
open. For closed field lines, we calculated the magnetic loop
distribution function for the loop foot separation Δx in the x–y
plane, loop maximum height Δzmax, and loop orientation angle
θfoot. The loops are dominantly toroidal due to the differential
shear. The loop foot distribution between H and 20H is a power
law with an index k ∼ −1.25. In the phenomenological model
of UG, this corresponds to the limit where reconnection is
slow compared to the shear. These comparisons are limited
because our models are working in an ideal MHD regime and
reconnection is purely numerical.

In our models, both vertical energy and momentum flux are
negligible in the steady state. The mass loss rate from the
disk surface is small and decreases with increasing Lz. The
surface effects are therefore minimal and indicate a lack of
disk winds in our stratified disk models. The weak winds are
consistent with the constraint that we have a zero-net vertical
magnetic flux in these models. A Blandford–Payne-type wind
requires the existence of a vertical net field (e.g., see Suzuki &
Inutsuka 2009), although we note that in their models the most
unstable wavelength for the extremely weak field is probably
not resolved. Initial investigations show that even a weak
(β0 ∼ 1600) net z field will induce very violent accretion in
stratified shearing box models: at certain regions of the disk
accretion will run away, eventually causing the disk break into
rings. Similar phenomena were reported in net vertical field
models of Miller & Stone (2000).

We have confirmed the “butterfly” diagram seen in earlier
stratified disk models of size Lx ∼ H . The butterfly diagrams
persist even in our largest runs with Lx = 32H . We also report
the reversal of the mean fields (for both the dominant toroidal

field and a weak radial field) in the disk on a timescale twice
that of [EB]. The periods for the butterfly diagram are close
in all our models, P ∼ 5 orbits for [EB] and P ∼ 10 orbits
for [By]. The mean field reversal and butterfly diagram may
indicate the existence of a mean field dynamo in stratified disks,
perhaps controlled by the MRI and magnetic buoyancy. We
have presented a toy model for an α̃-type mean field dynamo in
stratified disks and found that an α̃imp ∼ 0.01 will produce the
reported period. Further exploration of parameter dependences
would be useful for analytical modeling. In the future, it would
also be interesting to test whether the butterfly oscillations
persist when averaging over a large range of radii in global disk
simulations. The butterfly diagram may be associated with low
frequency QPOs and therefore a good observational diagnostic
for accretion flows. On the other hand, we also report a power-
law index k ∼ −2.3 in the temporal power spectrum for coronal
magnetic energy fluctuations, consistent with results from recent
GRMHD black hole accretion disk simulations.

Our stratified disk models are primarily limited by the as-
sumption that the disk is isothermal. Effects of thermodynamics
and radiation therefore are neglected in this work. Our models
are also limited by finite resolution, box size, evolution time, and
the absence of explicit dissipation. Additional insights may also
be provided by the future explorations on magnetic field strength
and geometry in disks.
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