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ABSTRACT

We discuss the properties of orbits within the influence sphere of a supermassive black hole (BH), in the case that the
surrounding star cluster is non-axisymmetric. There are four major orbit families; one of these, the pyramid orbits,
have the interesting property that they can approach arbitrarily closely to the BH. We derive the orbit-averaged
equations of motion and show that in the limit of weak triaxiality, the pyramid orbits are integrable: the motion
consists of a two-dimensional libration of the major axis of the orbit about the short axis of the triaxial figure,
with eccentricity varying as a function of the two orientation angles and reaching unity at the corners. Because
pyramid orbits occupy the lowest angular momentum regions of phase space, they compete with collisional loss
cone repopulation and with resonant relaxation (RR) in supplying matter to BHs. General relativistic advance of
the periapse dominates the precession for sufficiently eccentric orbits, and we show that relativity imposes an
upper limit to the eccentricity: roughly the value at which the relativistic precession time is equal to the time for
torques to change the angular momentum. We argue that this upper limit to the eccentricity should also apply
to evolution driven by RR, with potentially important consequences for the rate of extreme-mass-ratio inspirals
in low-luminosity galaxies. In giant galaxies, we show that capture of stars on pyramid orbits can dominate the
feeding of BHs, at least until such a time as the pyramid orbits are depleted; however this time can be of order a
Hubble time.
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1. INTRODUCTION

Following the demonstration that self-consistent equilibria
could be constructed for triaxial galaxy models (Schwarzschild
1979, 1982), observational evidence gradually accumulated for
non-axisymmetry on large (kiloparsec) scales in early-type
galaxies (Franx et al. 1991; Statler et al. 2004; Cappellari et al.
2007). On smaller scales, imaging of the centers of galaxies also
revealed a wealth of features in the stellar distribution that are
not consistent with axisymmetry, including bars, bars-within-
bars, and nuclear spirals (Shaw et al. 1993; Erwin & Sparke
2002; Seth et al. 2008). In the nuclei of low-luminosity galaxies,
the non-axisymmetric features may be recent or recurring,
associated with ongoing star formation; in luminous elliptical
galaxies, central relaxation times are so long that triaxiality,
once present, could persist for the age of the universe.

In a triaxial nucleus, torques from the stellar potential can
induce gradual changes in the eccentricities of stellar orbits,
allowing stars to find their way into the central black hole
(BH). Gravitational two-body scattering also drives stars into the
central BH, but only on a timescale of order the central relaxation
time, which can be very long, particularly in the most luminous
galaxies. Simple arguments suggest that the feeding of stars
to the central BHs in many galaxies is likely to be dominated
by large-scale torques rather than by two-body relaxation (e.g.,
Merritt & Poon 2004).

This paper discusses the character of orbits near a supermas-
sive BH in a triaxial nucleus. The emphasis is on low-angular-
momentum, or “centrophilic,” orbits, the orbits that come closest
to the BH. Self-consistent modeling (Poon & Merritt 2004) re-
veals that a large fraction of the orbits in triaxial BH nuclei can
be centrophilic.

Within the BH influence sphere, orbits are nearly Keplerian,
and the force from the distributed mass can be treated as a small
perturbation which causes the orbital elements (inclination,
eccentricity) to change gradually with time. A standard way
to deal with such motion is via orbit averaging (e.g., Sanders
& Verhulst 1985), i.e., averaging the equations of motion over
the short timescale associated with the unperturbed Keplerian
motion. The result is a set of equations describing the slow
evolution of the remaining orbital elements due to the perturbing
forces. This approach was followed by Sridhar & Touma (1999)
for motion in an axially symmetric nucleus containing a massive
BH, and by Sambhus & Sridhar (2000) for motion in a constant-
density triaxial nucleus.

In their discussion of motion in triaxial nuclei, Sambhus
& Sridhar (2000) passed over one important class of orbit:
the centrophilic orbits, i.e., orbits that pass arbitrarily close
to the BH. Examples of centrophilic orbits include the two-
dimensional “lens” orbits (Sridhar & Touma 1997, 1999) and
the three-dimensional “pyramids” (Merritt & Valluri 1999; Poon
& Merritt 2001). Centrophilic orbits are expected to dominate
the supply of stars and stellar remnants to a supermassive BH
(e.g., Merritt & Poon 2004) and are the focus of the current
paper.

The paper is organized as follows. In Section 2, we present
a model for the gravitational potential of a triaxial nuclear star
cluster, which is more general than that studied in Sambhus
& Sridhar (2000), but which has many of the same dynamical
features. Then in Section 3 we write down the orbit-averaged
equations of motion, and in Section 4 present a detailed
analytical study of their solutions, with emphasis on the case
where the triaxiality is weak and the eccentricity is large. In
this limiting case, the averaged equations of motion turn out to
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be fully integrable. In Section 5, we derive the equations that
describe the rate of capture of stars on pyramid orbits by the
BH. Comparison of orbit-averaged treatment with real-space
motion is made in Section 6, to test the applicability of the
former. In Section 7, we consider the effect of general relativity
(GR) on the motion, which imposes an effective upper limit
on the eccentricity. Section 8 discusses the connection with
resonant relaxation (RR): we argue that a similar upper limit
to the eccentricity should characterize orbital evolution in the
case of RR. Finally, in Section 9 we make some quantitative
estimates of the importance of pyramid orbits for capture of
stars in galactic nuclei. Section 10 sums up.

2. MODEL FOR THE NUCLEAR STAR CLUSTER

Consider a nucleus consisting of a BH, a spherical star cluster,
and an additional triaxial component. An expression for the
gravitational potential that includes the three components is

Φ(r) = − GM•
r

+ Φs

(
r

r0

)2−γ

+ 2π Gρt (Txx
2 + Tyy

2 + Tzz
2). (1)

The second term on the right-hand side is the potential of
a spherical star cluster with density ρ(r) = ρs(r/r0)−γ ; the
coefficient Φs is given by

Φs = 4πG

(3 − γ )(2 − γ )
ρsr

2
0 .

The scale radius r0 may be chosen arbitrarily but it is
convenient to set r0 = rinfl, with rinfl the radius at which the
enclosed stellar mass is twice M•:

rinfl =
(

3 − γ

2π

M•
ρs

)1/3

. (2)

The third term is the potential of a homogeneous triaxial el-
lipsoid of density ρt ; this term can also be interpreted as a first
approximation to the potential of a more general, inhomoge-
neous triaxial component. In the former case, the dimensionless
coefficients (Tx, Ty, Tz) are expressible in terms of the axis ra-
tios (p, q) of the ellipsoid via elliptic integrals (Chandrasekhar
1969). The x(z)-axes are assumed to be the long(short) axes of
the triaxial figure; this implies Tx � Ty � Tz. In what follows
we will generally assume ρt � ρs(r0), i.e., that the triaxial bulge
has a low density compared with that of the spherical cusp at
r = rinfl.

3. ORBIT-AVERAGED EQUATIONS

Within the BH influence sphere, orbits are nearly Keplerian3

and the force from the distributed mass can be treated as a small
perturbation which causes the elements of the orbit (inclination,
eccentricity, etc.) to change gradually with time. A standard way
to deal with such motion (e.g., Sanders & Verhulst 1985) is to
average the equations over the coordinate executing the most
rapid variation, e.g., the radius. The result is a set of equations
describing the slow evolution of the remaining variables due to
the perturbing forces.

We begin by transforming from Cartesian coordinates to
action-angle variables in the Kepler problem. Following Sridhar

3 We consider general relativistic corrections in Section 7.

& Touma (1999) and Sambhus & Sridhar (2000), we adopt the
Delaunay variables (e.g., Goldstein et al. 2002) to describe the
unperturbed motion.

Let a be the semimajor axis of the Keplerian orbit. The
Delaunay action variables are the radial action I = (GM•a)1/2,
the angular momentum L, and the projection of L onto the z-axis
Lz. The conjugate angle variables are the mean anomaly w, the
argument of the periapse � , and the longitude of the ascending
node Ω. In the Keplerian case, five of these are constants; the
exception is w which increases linearly with time at a rate

νr = (GM•)2/I 3. (3)

In terms of the new variables, the Hamiltonian is

H = −1

2

(
GM•

I

)2

+ Φp(I, L,Lz,w,�,Ω); (4)

the first term is the Keplerian contribution and Φp, the “per-
turbing potential,” contains the contributions from the spherical
and triaxial components of the distributed mass. This transfor-
mation is completely general if we interpret the new variables
as instantaneous (osculating) orbital elements. However, if we
assume that the perturbing potential is small compared with
the point-mass potential, the rates of change of these variables
(again with the exception of w) will be small compared with
the radial frequency νr , and the new variables can be regarded
as approximate orbital elements that change little over a radial
period P ≡ 2π/νr . Accordingly, we average the Hamiltonian
over the fast angle w:

H = − 1

2

(
GM•

I

)2

+ Φp, (5a)

Φp ≡
∮

dw

2π
Φ = 1

2π

∫ 2π

0
dE (1 − e cos E) Φp(r). (5b)

The final term replaces the mean anomaly w by the eccentric
anomaly E, where r = a(1 − e cos E) and the eccentricity is
e =

√
1 − L2/I 2. After the averaging, H is independent of w

and I is conserved, as is the semimajor axis a. We are left with
four variables and with Φp as the effective Hamiltonian of the
system.

The spherically symmetric part of Φp is

Φs = Fγ (e) Φs

(
a

r0

)2−γ

, (6)

Fγ (e) ≡ 2F1

([
−3 − γ

2
,−2 − γ

2

]
, [1], e2

)
.

A good approximation to Fγ (e) is

Fγ (e) ≈ 1 + αe2 , α = 23−γ Γ( 7
2 − γ )√

π Γ(4 − γ )
− 1, (7)

which is exact for γ = 0 and γ = 1; for 0 � γ < 2,
0 < α � 3/2. When γ > 1 and e is close to 1, a better
approximation is

Fγ (e) ≈ 1 + α + α′(e2 − 1) , α′ = 21−γ (2 − γ )√
π

Γ( 5
2 − γ )

Γ(3 − γ )
.

(8)
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We adopt the latter expression in what follows. Good approx-
imations are

α ≈ 3
2 − 79

60γ + 7
20γ 2 − 1

30γ 3, (9a)

α′ ≈ 3
2 − 29

20γ + 11
20γ 2 − 1

10γ 3. (9b)

Similar expressions can be found in Ivanov et al. (2005) and
Polyachenko et al. (2007).

Expressions for the orbit-averaged triaxial harmonic potential
(excluding the spherical component) are derived in Sambhus
& Sridhar (2000). Adopting their notation, the orbit-averaged
potential in our case becomes

Φp = Φs

(
a

r0

)2−γ

(1 + α − α′�2) + 2πGρtTx a2 (10a)

×
[

5

2
− 3

2
�2 + ε

(t)
b Hb(�, �z,�,Ω) + ε(t)

c Hc(�, �z,� )

]

Hb = 1
2 [(5 − 4�2)(c� sΩ + cicΩs� )2 (10b)

+ �2(s� sΩ − cicΩc� )2],

Hc = 1
4

(
1 − c2

i

)
[5 − 3�2 − 5(1 − �2)c2� ], (10c)

ε
(t)
b ≡ Ty/Tx − 1 , ε(t)

c ≡ Tz/Tx − 1. (10d)

The shorthand sx, cx has been used for sin x, cos x. We have
defined the dimensionless variables � = L/I and �z = Lz/I ,
both of which vary from 0 to 1; the orbital inclination i is given
by cos i ≡ �z/� and the eccentricity by e2 = 1 − �2.

The first term in Equation (10b), which arises from the spher-
ically symmetric cusp, does not depend on the angular variables
and has the same dependence on �2 as the corresponding term
in the harmonic triaxial potential. So we can sum up the coeffi-
cients at �2 and renormalize the triaxial coefficients εb,c to obtain
the same functional form of the Hamiltonian as in the purely har-
monic case. Dropping an unnecessary constant term (depending
only on a) and defining a dimensionless time τ = νpt , where
νp is characteristic rate of precession,

νp ≡ 2πGρtTxa
2(1 + A)/I , (11)

A ≡ 4α′
3(3−γ )(2−γ )Tx

ρs

ρt

(
a

r0

)−γ

, (12)

we obtain the dimensionless Hamiltonian and the equations of
motion describing the perturbed motion:

H ≡ Φp

νpI
= −3

2
�2 + εbHb + εcHc, (13a)

d�

dτ
= − ∂H

∂�
,

d�

dτ
= ∂H

∂�
,

d�z

dτ

= − ∂H

∂Ω
,

dΩ
dτ

= ∂H

∂�z

. (13b)

The renormalized triaxiality coefficients are εb,c ≡ ε
(t)
b,c/

(1 + A).
If there were no spherical component (A = 0), this would

reduce to the purely harmonic triaxial case studied by Sambhus
& Sridhar (2000).4 Adding the spherically symmetric cusp
increases the rate of periapse precession, while at the same time
reducing the relative amplitude of the triaxial terms; otherwise
the form of the Hamiltonian is essentially unchanged.

A more transparent expression for the precession frequency
νp is

νp = νr

(
Mt (a)

M•

3Tx

2
+

Ms(a)

M•

2α′

3(2 − γ )

)
(14a)

Mt (a) ≡ 4π

3
a3ρt , Ms(a) ≡ 4π

3 − γ
a3ρs

(
a

r0

)−γ

, (14b)

where M(a) denotes the mass enclosed within radius r = a.
From Equation (13b), the precession rate of an orbit in the
spherical cluster is ν� ≡ |d�/dt | = 3�νp = 3

√
1 − e2 νp.

Near the BH influence radius, it is clear that νp ≈ νr ; hence
the orbit-averaged treatment, which assumes only one “fast”
variable, is likely to break down at this radius.

We note that ν� → 0 as e → 1. For the very eccentric orbits
that are the focus of this paper, the rate of precession is much
lower than for a typical, non-eccentric orbit of the same energy.
This will turn out to be important, since the slow precession
allows torques from the triaxial part of the potential to build up.

4. ORBITAL STRUCTURE OF THE MODEL POTENTIAL

4.1. General Remarks

The orbit-averaged Hamiltonian (13a) describes a dynamical
system of two degrees of freedom. The trajectories must be ob-
tained by numerical integration of the equations of motion (13b).
We begin by making some qualitative points about the nature of
the solutions.

In the absence of the triaxial terms in Equation (13a), the
effect of the distributed mass is to rotate the periapse angle
� in a fixed plane; this steadily rotating elliptic orbit fills an
annulus. The addition of a weak triaxial perturbation changes the
rate of in-plane precession slightly, and also causes the orbital
plane itself to change, as described by the last two terms in
Equation (13b).

In general, two angular variables � and Ω can either librate
around fixed points or circulate, giving rise to four basic families
of orbits (Figure 1). Solutions to the equations of motion that are
characterized by circulation in both � and Ω correspond to tube
orbits about the short axis (SAT). Motion that circulates in �
but librates in Ω corresponds to tube orbits about the long axis
(LAT). Both types of orbit are qualitatively similar to the tube
orbits that are generic to the triaxial geometry (Schwarzschild
1979). A subclass of the SAT orbits corresponds to motion that
circulates in Ω and librates in � (Sambhus & Sridhar 2000;
Poon & Merritt 2001). These orbits resemble cones or saucers;
similar orbits exist also at r 	 rinfl in oblate or nearly oblate
potentials (Richstone 1982; Lees & Schwarzschild 1992).

If the degree of triaxiality is small (εb,c � 1), then as noted
above, the dominant effect of the distributed mass is simply to

4 Equation (12) of Sambhus & Sridhar (2000) for �̇ lacks a minus sign in
front of the first term.
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Figure 1. Four classes of orbits around a BH in a triaxial nucleus. Left column: time dependence of the dimensionless angular momentum � (top/blue) and its
component �z along the short axis of the figure (bottom/red). Middle column: argument of the periapse � . Right column: angle of nodes Ω.

(A color version of this figure is available in the online journal.)

induce a periapse shift, at a rate ν� ≡ d�/dτ = −3�. If the
additional mass is much less than the mass of the BH, then on
short timescales (comparable to the radial period ν−1

r ) the orbit
resembles a nearly closed ellipse. On intermediate timescales
(of order the precession time ν−1

� ), a steadily rotating elliptic
orbit fills an annulus in a fixed plane. On still longer timescales
ν−1
Ω , the orbital plane itself changes due to the torques from the

triaxial potential. Similar considerations give rise to the concept
of vector resonant relaxation (VRR; Rauch & Tremaine 1996).

The foregoing description is valid as long as the angular mo-
mentum is not too low. Since the precession rate is proportional
to �, for sufficiently low � the intermediate and long timescales
become comparable (Figure 2). As a result, the triaxial torques
can produce substantial changes in � (i.e., the eccentricity) on
a precession timescale via the first term in Equation (13b), and
the circulation in � can change to libration. This is the origin
of the pyramid orbits, which are unique to the triaxial geometry
(Merritt & Valluri 1999).

4.2. Pyramid Orbits

Of the four orbit families discussed above, the first three
were treated, in the orbit-averaged approximation, by Sambhus

& Sridhar (2000). The fourth class of orbits, the pyramids, are
three-dimensional analogs of the two-dimensional “lens” orbits
discussed by Sridhar & Touma (1997), also in the context of the
orbit-averaged equations. An important property of the pyramid
orbits is that � can come arbitrarily close to zero (Poon & Merritt
2001; Merritt & Poon 2004). This makes the pyramids natural
candidates for providing matter to BHs at the centers of galaxies.

Pyramid orbits can be treated analytically if the following two
additional approximations are made: (1) the angular momentum
is assumed to be small, �2 � 1; (2) the triaxial component
of the potential is assumed to be small compared with the
spherical component, i.e., εb, εc � 1. As shown below, these
two conditions are consistent, in the sense that �2

max ∼ εb,c for
pyramid orbits.

Removing the second-order terms in εb, εc, and in �2 from
the orbit-averaged Hamiltonian (13a), we find

H = −3

2
�2 +

5

2

[
εc

(
1 − c2

i

)
s2
� + εb(c� sΩ + cis� cΩ)2

]
, (15)

where again ci ≡ cos i = �z/�.
Because an orbit described by Equation (15) is essentially a

precessing rod, one expects the important variables to be the two
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Figure 2. Dependence of the characteristic frequencies ν� (in-plane precession)
and νΩ (nodal precession) on the value of the dimensionless angular momentum
�. Top (open) symbols: ν� ; bottom (filled) symbols: νΩ. Magenta boxes: LATs;
red triangles: SATs; yellow diamonds: saucers; green circles: pyramids. For large
� ν� ∝ � and νΩ � ν� , but for sufficiently low � these two are comparable,
which gives birth to the pyramid and saucer orbits. Vertical line denotes the
threshold in � (Equation (36)) and horizontal line denotes the characteristic
frequency νx0 (Equation (22)). Triaxiality coefficients were set to εc = 10−3,
εb = 0.4εc .

(A color version of this figure is available in the online journal.)

that describe the orientation of the rod and its eccentricity. This
argument led us to search for exact solutions to the equations
of motion in terms of the Laplace–Runge–Lenz vector or its
dimensionless counterpart, the eccentricity vector, which point
in the direction of orbital periapse.

We therefore introduced new variables ex, ey, and ez:

ex = cos � cos Ω − sin � cos i sin Ω, (16a)

ey = sin � cos i cos Ω + cos � sin Ω, (16b)

ez = sin � sin i, (16c)

which correspond to components of a unit vector in the direction
of the eccentricity vector. Of these, only two are independent,
since e2

x + e2
y + e2

z = 1. In terms of these variables, the
Hamiltonian (15) takes on a particularly simple form

H = −3

2
�2 +

5

2

[
εc − εce

2
x − (εc − εb)e2

y

]
. (17)

As expected, the Hamiltonian depends on only three vari-
ables: ex and ey, which describe the orientation of the orbit’s
major axis, and the eccentricity �.

To find the equations of motion, we must switch to a
Lagrangian formalism. Taking the first time derivatives of
Equations (16) and using Equation (13b), we find

ėx = 3�(sin � cos Ω + cos � sin Ω cos i), (18a)

ėy = 3�(sin � sin Ω − cos � cos Ω cos i), (18b)

where ėx ≡ dex/dτ , etc. Taking second time derivatives, the
variables describing the orientation and eccentricity of the orbit
drop out, as desired, and the equations of motion for ex and ey
can be expressed purely in terms of ex and ey:

ëx = − ex 6(H + 3�2) (19a)

= − ex

[
30εc − 6H − 30εce

2
x − 30(εc − εb)e2

y

]
,

ëy = − ey 6
(
H + 3�2 − 5

2εb

)
(19b)

= − ey

[
30εc − 6H − 15εb − 30εce

2
x − 30(εc − εb)e2

y

]
.

From Equations (18), (ėx, ėy) = 0 implies � = 0, i.e.,
the eccentricity reaches one at the “corners” of the orbit.
These define the base of the pyramid. Defining (ex0, ey0) to
be the values of (ex, ey) when this occurs, the Hamiltonian has
numerical value

H = 5

2
εc − 5

2

[
εce

2
x0 + (εc − εb)e2

y0

]
. (20)

Equations (19) have the form of coupled, nonlinear oscilla-
tors. Given solutions to these equations, the time dependence of
the additional variables (�, �z,�,Ω) follows immediately from
Equations (16) and (18):

�2 = ė2
x + ė2

y − (ėxey − exėy)2

9(1 − e2
x − e2

y)
= 1

9
(ė2

x + ė2
y + ė2

z ),

�z = (ėxey − exėy)/3,

sin2 � = 1 − e2
x − e2

y

1 − �2
z/�

2
= e2

z

1 − �2
z/�

2
,

ė2
z = (exėx + eyėy)2

1 − e2
x − e2

y

, e2
z = 1 − e2

x − e2
y,

and a quite lengthy expression for Ω which we choose not to
reproduce here.

In the limit of small amplitudes, (ex, ey) � 1 (which
corresponds to H ≈ 5

2εc), the oscillations are harmonic and
uncoupled, with dimensionless frequencies

νx0 ≡
√

15εc , νy0 ≡
√

15(εc − εb). (22)

The apoapse traces out a two-dimensional Lissajous figure in
the plane perpendicular to the short axis of the triaxial figure.
This is the base of the pyramid (e.g., Merritt & Valluri 1999;
Figure 11). The solutions in this limiting case are

ex(τ ) = ex0 cos(νx0τ + φx), (23a)

ey(τ ) = ey0 cos(νy0τ + φy), (23b)

�2(τ ) = �2
x0 sin2(νx0τ + φx) + �2

y0 sin2(νy0τ + φy),

where φx and φy are arbitrary constants and

�x0 = νx0ex0/3, �y0 = νy0ey0/3. (24)

Figure 3(a) plots an example.
Equations (23) describe integrable motion. Remarkably, it

turns out that the more general (anharmonic, coupled) equations
of motion (19) are integrable as well. The first integral is H; an
equivalent, but non-negative, integral is U where

U ≡ 15εc − 6H = ν2
x0e

2
x + ν2

y0e
2
y +

(
ė2
x + ė2

y + ė2
z

)
. (25)
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Figure 3. Pyramid orbit, in three approximations. Each orbit has the same (ex0, ey0) = (0.5, 0.35). (a) The simple harmonic oscillator (SHO) approximation, Equations
(23), valid for small �2, (εb, εc), and (ex0, ey0). (b) From Equation (19), which does not assume small (ex0, ey0). (c) From the full orbit-averaged Equations (13),
which does not assume small �2, ε, or (ex0, ey0). Aside from the fact that the latter orbit is fairly close to a 5:2 resonance, the correspondence between the physically
important properties of the approximate orbits is good. The triaxiality parameters are (εb, εc) = (0.0578, 0.168), corresponding to a pyramid orbit with a = 0.1r0
in a nucleus with triaxial axis ratios (0.5, 0.75), density ratio ρt (r0)/ρs (r0) = 0.1, and γ = 1. The frequencies for the SHO case are νx0 = 1.59 and νy0 = 1.28
(Equation (22)); frequencies for planar orbits with the same ex and ey amplitudes are 1.48 and 1.24, respectively (Equation (27)).

The second integral is obtained after multiplying the first of
Equations (19) by 15εcėx , the second by 15(εc − εb)ėy , and
adding them to obtain a complete differential. The integral W is
then

W = ν2
x0

(
ė2
x + ν2

xe
2
x − ν2

x0e
4
x

)
+ ν2

y0

(
ė2
y + ν2

ye
2
y − ν2

y0e
4
y

)

− 2ν2
x0ν

2
y0 e2

xe
2
y, (26a)

ν2
x ≡ U + ν2

x0 , ν2
y ≡ U + ν2

y0. (26b)

The existence of two integrals (U,W ), for a system with two
degrees of freedom, demonstrates regularity of the motion.

Regular motion can always be expressed in terms of action-
angle variables. The period of the motion, in each degree of
freedom, is then given simply by the time for the correspond-
ing angle variable to increase by 2π . We were unable to derive
analytic expressions for the action-angle variables correspond-
ing to the two-dimensional motion described by Equations (19).
However, the periods of oscillation of the planar orbits (ex = 0
or ey = 0) described by these equations are easily shown to be

νx0P (ex0) = 4K
(
e2
x0

)
(ey = 0), (27)

νy0P (ey0) = 4K
(
e2
y0

)
(ex = 0),

where K(α) is the complete elliptic integral:

K(α) =
∫ π/2

0

(
1 − α sin2 x

)−1/2
dx.

For small α, K ≈ π/2 and P ≈ 2π/ν0. As α → 1,
K → ∞; this corresponds to a pyramid that precesses from the
z-axis all the way to the (x, y)-plane. The oscillator is “soft”:
increasing the amplitude increases also the period. Figure 3
shows comparison of orbits with the same initial conditions,
calculated in three different approximations.

Pyramid orbits can be seen as analogs of regular box orbits in
triaxial potentials (Schwarzschild 1979), with three independent
oscillations in each coordinate. Like box orbits, they do not
conserve the magnitude of the sign of the angular momentum
about any axis. The difference is that a BH in the center serves
as a kind of “reflecting boundary,” so that a pyramid orbit is
reflected by 180◦ near periapsis, instead of continuing its way
to the other side of x–y-plane as a box orbit would do.

4.3. The Complete Phase Space of Eccentric Orbits

While our focus is on the pyramid orbits, the low-angular-
momentum Hamiltonian (15) also supports orbits from other
families. In this section, we complete the discussion of the phase
space described by Equation (15), by delineating the regions
in the U–W plane that are occupied by each of the four orbit
families (Figure 4).

Pyramids and LATs both resemble distorted rectangles in
the ex, ey plane. The corner points of this region correspond to
ėx = ėy = 0. Evaluating the two integrals at a corner (denoted
by the subscript 0) gives

U = ν2
x0 e2

x0 + ν2
y0 e2

y0 + ė2
z,0 , (28a)

W = ν4
x0 e2

x0 + ν4
y0 e2

y0 +
(
U − ė2

z,0

)
ė2
z,0 . (28b)

6



The Astrophysical Journal, 726:61 (20pp), 2011 January 10 Merritt & Vasiliev

0

0.01

0.02

0.03

0.05 0.1 0.15 0.2

U

W

Pyramid

LAT

SAT

Saucer

ab

c

d

Figure 4. Regions in the U–W plane occupied by the different orbit families.
Lower (dark blue) line (a), Equation (29); upper (red) curve (d), Equation (34);
green line (c), Equation (30); light blue line (b), Equation (31); red points,
Equation (35); blue points, Equation (32). Plotted for εb = 0.002, εc = 0.008.

(A color version of this figure is available in the online journal.)

The difference between pyramids and LATs arises from
the last term: corner points of pyramid orbits correspond to
�2 = 0 and hence (from Equation (21a)) to ėz,0 = 0. For LATs
the condition is, conversely, ė2

z,0 > 0 and ez,0 = 0 (hence
e2
y0 = 1 − e2

x0). Analyzing these expressions, we find that for
pyramids and LATs the lower and upper boundaries for W given
U are

W = ν2
y0 U , (29)

W = ν2
x0 U , (30)

and the boundary between pyramids and LATs is given by

W = (
ν2

x0 + ν2
y0

)
U − ν2

x0 ν2
y0. (31)

Pyramids lie above and to the left of this line in the U–W
plane, while LATs are below and to the right. The intersection
of this line with Equations (29) and (30) occurs at the points

U = ν2
y0, W = ν4

y0 , (32a)

U = ν2
x0, W = ν4

x0 . (32b)

These points constitute the leftmost bound for LATs and the
rightmost bound for pyramids, respectively.

Short-axis tubes and saucers resemble distorted rectangular
regions in the ex, ez plane. Again, the corner points (with
subscript 0) are defined to have ėx = ėz = 0 and ey = 0,
with ė2

y > 0, and therefore

U = ν2
x0 e2

x0 + ė2
y0 , (33a)

W = ν2
x0 U +

(
ν2

x0e
2
x0 + ν2

y0 − ν2
x0

)
ė2
y0 . (33b)

Both these families have W � εcU , i.e., lie above the
line (30). SAT orbits intersect the plane ez = 0, so we can

Figure 5. Poincaré section for �, � plotted at Ω = π/2 for energy H = 0.02
(εb = 0.99−2 − 1, εc = 0.96−2 − 1) showing the three possible types of
orbit: LATs, pyramids, and SATs/saucers. This figure adopts the same potential
parameters as Figure 5(b) in Sambhus & Sridhar (2000), but those authors
chose H = −0.02 which precludes pyramid orbits. Boundaries are marked by
the same letters as in Figure 4.

(A color version of this figure is available in the online journal.)

set ex0 = 1 in Equation (33). (Alternatively, for SATs, both
angles circulate, so we can set � = Ω = 0, which again gives
ex = 1.) We then find that SATs lie below the line (31).

On the other hand, saucers never reach ez = 0 (since for
them sin2 � > 0), so that they lie above the line (31). To obtain
the upper limit for W at fixed U, we substitute ė2

y0 from the
first equation in Equation (33) in the second, and then seek a
maximum of W with respect to ex0 at fixed U. This gives

W = ν2
x0 U +

(
U + ν2

y0 − ν2
x0

)2
/4. (34)

This curve intersects Equations (30) and (31) in the points

U = ν2
x0 − ν2

y0, W = ν2
x0U , (35a)

U = ν2
x0 + ν2

y0, W = ν2
x0U + ν4

y0 , (35b)

which define the left- and rightmost bounds for the saucer region.
All these criteria are summarized in Figure 4. In particular,

pyramid orbits exist in the following cases.

1. For 0 � H � 5
2εb they coexist with LATs.

2. For 0 � H � 5
2 (εc − εb) they coexist with SAT saucers.

3. Above these values they are the only population for H �
5
2εc, which is the maximum allowed value of H.

4. Below H < 0 pyramids do not exist (this is easily seen
from Equation (15): since the term in square brackets is
always non-negative, it is impossible to have �2 = 0 when
H < 0).

Figure 5 shows Poincaré surfaces of section for Ω = π/2 and
0 < H < 5

2εb. The three families of orbits are delineated.
Since H is an integral of the motion, the maximum allowed

value of �2 cannot exceed

�2
max(H ) = 5εc − 2H

3 + 4εc − εb

≈ 1

3
(5εc − 2H ). (36)

The latter approximate expression is immediately seen from
the simplified Hamiltonian (15), while the former comes from
the exact Hamiltonian (13). However, it does not follow that an
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Figure 6. Proportions of the restricted part of phase space (defined by �2 < �2
max(0)) that are occupied by the major orbit families: LATs, pyramids, SATs, and

SAT/saucers, as a function of the ratio εb/εc . Left: analytic estimates from the simplified orbit-averaged Hamiltonian (15) for εc → 0; middle: orbit-averaged
Hamiltonian (13) for εc = 0.1; right: real-space integration for orbits with semimajor axis a = rinfl (equal to the BH influence radius) and εc = 0.1.

(A color version of this figure is available in the online journal.)

orbit with a sufficiently low instantaneous value of the angular
momentum is necessarily a pyramid: both tube families can
also have arbitrarily low �. The principal distinction is that any
pyramid orbit can achieve arbitrarily low � (that is, the lower
bound is � = 0), while tube orbits always have 0 < �2

min � �2

(however small �min may be, it is strictly positive).
We now return from the simplified Hamiltonian (15) to the

full Hamiltonian (13), i.e., we no longer require ε to be small.
The full Hamiltonian retains all the qualitative properties of
the simplified system but requires numerical integration of the
equations of motion (13) to determine orbit classes.

To quantify the overall fraction of pyramid orbits in a given
potential, one should uniformly sample the phase space for all
four variables and determine the orbit class for each initial
condition. From Equation (36), we can restrict ourselves to
values of �2 � �2

max(0) = 5εc

3+4εc−εb
(but we must take care not to

filter out initial conditions corresponding to H < 0).
We calculated the proportions of the �2

max-restricted fraction of
phase space occupied by each family of orbits. Initial conditions
were drawn randomly for 104 points (with uniform distribution
in �2 ∈ [0...�2

max], in �z ∈ [0...�], and in �,Ω ∈ [0, π
2 ]). The

proportions were found to depend very weakly on εc if εc � 1.
To elucidate the dependence on εb/εc (the degree of triaxiality)
we took 15 values in the range (0.001–0.999).

We found that the relative fraction η of pyramids among low-�
orbits is almost independent of εc (Figure 6):

η ≈ 0.28

√
4
εb

εc

(
1 − εb

εc

)
. (37)

The fraction of pyramids among all orbits is η̃ = η�2
max(0) =

5
3εc η. For comparison, the left panel of Figure 6 shows the
results obtained using the simplified Hamiltonian (15) and
the analytical classification scheme described above, while the
middle panel, made for εc = 0.1, shows almost the same
behavior, with the addition of a small number of chaotic orbits.
We note that for εc ∼ 1 the phase space becomes largely
chaotic.

These estimates of the relative fraction of pyramid orbits are
directly applicable to a galaxy with an isotropic distribution
of stars at any energy. This assumption may not be valid, for
example, in the case of induced tangential anisotropy following
the merger of supermassive BHs (Merritt & Milosavljevic
2005).

One can ask a different question: if we know the instantaneous
value of an orbit’s eccentricity and orientation, what can we
conclude about the orbit class? It is clear that without knowledge
of the derivatives of ex,y the answer will only be probabilistic. It
turns out that the probability p for an orbit with “sufficiently
high” eccentricity (i.e., with �2 � �2

max) to be a pyramid
depends mostly on the z-component of the eccentricity vector:
p ≈ 0.7

√
4 εb

εc
(1 − εb

εc
) e1.5

z (here the normalization comes from
the total number of pyramids among low-� orbits). That is, an
orbit lying in the plane defined by the long and intermediate
axes of the potential is certainly not a pyramid, and the highest
probability occurs for orbits directed toward the short axis.

4.4. Large � Limit

In the previous sections we considered the case εb,c � 1 and
�2 ∼ εc, which allowed a simplification leading to integrable
equations.

In the opposite case, when εb,c � �2 � 1, the frequency
of in-plane precession, ν� , is much greater than the rates
change of Ω and i (Figure 2). In this limit we can carry out
a second averaging of the Hamiltonian (13a), this time over � .
Thus,

〈H 〉 = 1

2π

∫ 2π

0
Hd� = −3

2
�2 (38)

+
5 − 3�2

4

[
εb

(
s2
Ω + c2

i c
2
Ω

)
+ εc(5 − 3�2)

(
1 − c2

i

)]
.

On timescales T � ν−1
p the orbit resembles an annulus that

lies in the plane defined by the angles i and Ω. The only
remaining equations of motion are those that describe the change
in orientation of the orbital plane:

d�z

dτ
= − εb

4
(5 − 3�2)

(
1 − c2

i

)
s2Ω, (39)

�
dΩ
dτ

= εb

2
(5 − 3�2)c2

Ωci − εc

2
(5 − 3�2)ci .

One expects the natural variables in this case to be the
components of the angular momentum:

8
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�x = � sin i sin Ω, (40)

�y = � sin i cos Ω,

�z = � cos i,

and �2
x + �2

y + �2
z = �2 = constant. In terms of these variables,

the Hamiltonian is

〈H 〉 = −3

2
�2 +

(5 − 3�2)

4�2

[
εb

(
�2 − �2

y

)
+ εc

(
�2 − �2

z

)]
. (41)

After some algebra, one finds the equations of motion:

�̇x = − 1

2
(εc − εb)(5 − 3�2)

�y�z

�2
, (42)

�̇y = εc

2
(5 − 3�2)

�x�z

�2
,

�̇z = − εb

2
(5 − 3�2)

�x�y

�2

(only two of which are independent). These can be written as

d��
dτ

= T × ��, (43)

T = 5 − 3�2

2�2

(
0

εb�y

εc�z

)
.

Conservation of the Hamiltonian (41) implies

εb�
2
y + εc�

2
z = constant = C.

This is an elliptic cylinder; the axis is parallel to the �x-axis,
and the ellipse is elongated in the direction of the �y-axis. In
addition, we know that

�2
x + �2

y + �2
z = constant = �2

which is a sphere. So, the motion lies on the intersection of a
sphere with an elliptic cylinder. There are two possibilities.

1. �2 > C/εb. In this case, the cylinder intersects the sphere in
a deformed ring that circles the �x-axis. This corresponds
to a LAT orbit.

2. �2 < C/εb. In this case, the locus of intersection is a
deformed ring about the �z-axis. This orbit is a SAT.

In other words, precession of the angular momentum vector
can be either about the short or long (not intermediate) axes of
the triaxial ellipsoid.

5. CAPTURE OF PYRAMID ORBITS BY THE BH

As we have seen, pyramid orbits can attain arbitrarily low
values of the dimensionless angular momentum �. The BH
tidally disrupts or captures stars with angular momentum
less than a certain critical value L• or—in dimensionless
variables—�• ≡ L•/I (a). We can express �• in terms of
the capture radius rt, the radius at which a star is either
tidally disrupted or swallowed. For BH masses greater than
∼ 108 M�, main-sequence stars avoid disruption and rt ≈

Figure 7. Two-torus describing oscillations of (ex, ey ) for a pyramid orbit. The
ellipses correspond to regions near the four corners of the pyramid’s base where
� � �•. In the orbit-averaged approximation, trajectories proceed smoothly
along lines parallel to the solid lines, with slope tan α = νy/νx . In reality,
successive periapse passages occur at discrete intervals, once per radial period.

rSchw ≡ 2GM•/c2; for smaller M•, tidal disruption occurs
outside the Schwarzschild radius; e.g., at the center of the Milky
Way, rt ≈ 10rSchw for solar-type stars. Defining rt = ΘrSchw
and writing L2

• ≈ GM•rt , then gives

�2
• = Θ

rSchw

a
≈ 10−5Θ

(
M•

108 M�

)(
a

1 pc

)−1

. (44)

We note the following property of the pyramid orbits: as long
as the frequencies of ex and ey oscillation are incommensurate,
the vector (ex, ey) fills densely the whole available area, which
has the form of distorted rectangle. The corner points correspond
to zero angular momentum, and the “drainage area” is similar
to four holes in the corners of a billiard table.

Unless otherwise noted, in this section we adopt the simple
harmonic oscillator (SHO) approximation to the (ex, ey) motion,
that is, we use the simplified Hamiltonian (15) and its solutions
(23); these orbits have e2

x + e2
y � 1 and they form a rectangle

in the ex–ey plane, with sides 2ex, 2ey . As long as the motion is
integrable, the results for arbitrary pyramids with ex, ey � 1 will
be qualitatively similar. Quantitative results may be obtained by
numerical analysis and are presented near the end of this section.

Figure 7 shows a two-torus describing oscillations in (ex, ey)
for a pyramid orbit. In the SHO approximation, solutions are
given by Equation (23). If the two frequencies νx0, νy0 are
incommensurate, the motion will fill the torus. In this case,
we are free to shift the time coordinate so as to make both phase
angles (φ1, φ2) zero, yielding

�2(τ ) = �2
x0 sin2(νx0τ ) + �2

y0 sin2(νy0τ ) (45a)

= �2
x0 sin2 θ1 + �2

y0 sin2 θ2, (45b)

where θ1 = νx0τ, θ2 = νy0τ . (In the case of exact com-
mensurability, i.e., m1νx0 + m2νy0 = 0 with (m1,m2) inte-
gers, the trajectory will avoid certain regions of the torus and

9
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such a shift may not be possible.) In the SHO approximation,
νx0 = √

15εc, νy0 = √
15(εc − εb) (Equation (22)). More gen-

erally, integrable motion will still be representable as uniform
motion on the torus but the frequencies and the relations between
� and the angles will be different.

Stars are lost when �(θ1, θ2) � �•. Consider the loss region
centered at (θ1, θ2) = (0, 0). This is one of four such regions,
of equal size and shape, that correspond to the four corners
of the base of the pyramid. For small �•, the loss region is
approximately an ellipse,

�2
x0

�2•
θ2

1 +
�2

y0

�2•
θ2

2 � 1. (46)

The area enclosed by this “loss ellipse” is

π
�2

•
�x0�y0

. (47)

There are four such regions on the torus; together, they
constitute a fraction

μ = 1

π

�2
•

�x0�y0
(48)

of the torus.
Stars move in the (θ1, θ2) plane along lines with slope

tan α = νy0/νx0, at an angular rate of
√

ν2
x0 + ν2

y0. Since periapse
passages occur only once per radial period, a star will move a
finite step in the phase plane between encounters with the BH.
The dimensionless time between successive periapse passages
is Δt = 2πνp/νr . The angle traversed during this time is

Δθ = 2π (νp/νr )
√

ν2
x0 + ν2

y0. (49)

The rate at which stars move into one the four loss ellipses is
given roughly by the number of stars that lie an angular distance
Δθ from one side of a loss ellipse, divided by Δt .

This is not quite correct, however, since a star may precess
past the loss ellipse before it has had time to reach periapse. We
carry out a more exact calculation by assuming that the torus is
uniformly populated at some initial time, with unit total number
of stars. To simplify the calculation, we transform to a new phase
plane defined by

ψ = νx0�
2
x0θ1 + νy0�

2
y0θ2√

ν2
x0�

2
x0 + ν2

y0�
2
y0

, (50)

ϑ = −νy0�x0�y0θ1 + νx0�x0�y0θ2√
ν2

x0�
2
x0 + ν2

y0�
2
y0

. (51)

With this transformation, the phase velocity becomes

ψ̇ = (
ν2

x0�
2
x0 + ν2

y0�
2
y0

)1/2
, ϑ̇ = 0 (52)

and the loss regions become circles of radius �•. The angular
displacement in one radial period is

Δψ = 2π (νp/νr )
(
ν2

x0�
2
x0 + ν2

y0�
2
y0

)1/2
. (53)

The density of stars is (4π2�x0�y0)−1.

Figure 8. Trajectories of stars in the (ψ, χ ) plane as they encounter a loss region
from left to right, defined as ψin � ψ � ψout. χ increases from 0 at periapse, to
1/2 at apoapse, to 1 at subsequent periapse. Trajectories are indicated by dashed
lines. Stars are lost if they reach periapse while inside the loss region. Stars
within the orange region are lost in one radial period. (a) Δψ < ψin −ψout; (b)
Δψ > ψin − ψout.

(A color version of this figure is available in the online journal.)

At any point in the (ψ,ϑ) plane, stars have a range of radial
phases. Assuming that the initial distribution satisfies Jeans’
theorem, stars far from the loss regions are uniformly distributed
in χ where

χ = P −1
∫ r

rp

dr

vr

; (54)

here P ≡ 2π/νr is the radial period, rp is the periapse distance,
and vr is the radial velocity. The integral is performed along
the orbit, hence χ ranges between 0 and 1 as r varies from rp
to apoapse and back to rp. (χ = w mod 2π , where w is mean
anomaly.)

Figure 8 shows how stars move in the (χ,ψ) plane at fixed
ϑ . The loss region extends in ψ a distance 2

√
�2• − ϑ2, from ψin

to ψout. Stars are lost to the BH if they reach periapse while in
this region.

Two regimes must be considered, depending on whether Δψ
is less than or greater than ψout − ψin.

1. Δψ < ψout − ψin (Figure 8(a)). In one radial period, stars
in the orange region are lost. One-half of this region lies
within the loss ellipse; these are stars with � < �0 but
which have not yet attained periapse. The persistence of
stars inside the “loss cone” is similar to what occurs in the
case of diffusional loss cone repopulation, where there is
also a “boundary layer,” the width of which depends on the
ratio of the relaxation time to the radial period (e.g., Cohn
& Kulsrud 1978). The other one-half consists of stars that
have not yet entered the loss region. The area of the orange
region is equal to the area of a rectangle of unit height
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and width Δψ ; since stars are distributed uniformly on
the (χ,ψ) plane, the number of stars lost per radial period
is equal to the total number of stars, of any radial phase,
contained within Δψ .

2. Δψ > ψout − ψin (Figure 8(b)). In this case, some stars
manage to cross the loss region without being captured. The
area of the orange region is equal to that of a rectangle of
unit height and width ψout − ψin. The number of stars lost
per radial period is therefore equal to the number of stars,
of arbitrary radial phase, contained within ψout − ψin =
2
√

�2• − ϑ2.

To compute the total loss rate, we integrate the loss per radial
period over ϑ . It is convenient to express the results in terms of
q where

q ≡ Δψ

2�•
= π

νp

νr

�−1
•

√
ν2

x0�
2
x0 + ν2

y0�
2
y0. (55)

q � 1 corresponds to an “empty loss cone” and q 	 1 to a
“full loss cone.” However, we note that—for any q < 1—there
are values of ϑ such that the width of the loss region, ψout −ψin,
is less than Δψ . In terms of the integral W defined above
(Equation (28)), q becomes simply

q = Pνp

6�•

√
W. (56)

Unlike the case of collisional loss cone refilling, where
q = q(E) is only a function of energy, here q is also a function of
a second integral W. Pyramid orbits with small opening angles
will have small W and small q.

The area on the (ψ,ϑ) plane that is lost, in one radial period,
into one of the four loss regions is

2
∫ ϑc

0
Δψdϑ + 2

∫ �•

ϑc

(ψout − ψin)dϑ, (57)

where
ϑc ≡ �•

√
1 − q2 (58)

is the value of ϑ , where Δψ = ψout − ψin; for q � 1, ϑc = 0.
For q � 1, the area integral becomes

4q�•
∫ ϑc

0
dϑ + 4

∫ �•

ϑc

√
�2• − ϑ2dϑ

= 4q�2
•
√

1 − q2 + 4�2
•

∫ 1

√
1−q2

dx
√

1 − x2

= �2
•(π + 2q

√
1 − q2 − 2 arcsin

√
1 − q2)

= 4q�2
•f (q),

f (q) = 1

2

√
1 − q2 +

1

2q
arcsin(q) (59)

and for q > 1 it is π�2
•. The function f (q) varies from f (0) = 1

to f (1) = π/4 ≈ 0.785.
The area on the phase plane that is lost each radial period can

be interpreted in a very simple way geometrically, as shown in
Figure 9.

Figure 9. Illustrating the area of the (ψ, ϑ) phase plane that is lost into the BH
each radial period. The circle centered at (0, 0) is the loss region corresponding
to one corner of the pyramid orbit; its radius is �•. Regions marked in bold
denote the area of the torus that is lost in one radial period, for q < 1 (Δψ1) and
q > 1 (Δψ2). While the number of stars lost per radial period is proportional to
the marked areas, the region on the torus from which those stars come is more
complicated since it depends also on an orbit’s radial phase (Figure 8).

Considering that there are four loss regions, the instantaneous
total loss rate F , in dimensionless units, is

F = f (q)
2�•

π2 �x0�y0

√
ν2

x0 �2
x0 + ν2

y0 �2
y0 = μ

Pνp

4q f (q)

π

for 0 � q � 1, (60a)

F = q−1 �•
2π �x0�y0

√
ν2

x0 �2
x0 + ν2

y0 �2
y0 = 1

2π2

�2
•

�x0�y0

νr

νp

= μ

Pνp

for q > 1. (60b)

The second expression for the loss rate, Equation (60b), can
be called the “full-loss-cone” loss rate, since it corresponds to
completely filling and emptying the loss regions in each radial
step (Figure 9). Note that the loss rate for q < 1 is ∼ q times
the full-loss-cone loss rate. A similar relation holds in the case
of collisionally repopulated loss cones (Cohn & Kulsrud 1978).

The inverse of the loss rate F gives an estimate of the time
tdrain required to drain an orbit, or equivalently the time for a
single star, of unknown initial phase, to go into the BH. In this
approximation, the loss rate remains constant until t = tdrain
at which time the torus is completely empty. In reality the
draining time will always be longer than this, since after ∼1
precessional periods, some parts of the torus that are entering
the loss regions will be empty and the loss rate will drop below
Equation (60). For Δψ � ψin − ψout, the downstream density
in Figure 8, integrated over radial phase, is easily shown to
be 1 − q−1

√
1 − ϑ2/�2• times the upstream density while for

Δψ < ψin − ψout the downstream density is zero. Integrated
over ϑ , the downstream depletion factor becomes

1 − π

4q
−

√
1 − q2(1 + q) +

1

2q
sin−1

√
1 − q2 (61)

for q � 1 and 1−π/4q for q > 1; it is 0 for q = 0, ∼ 0.215 for
q = 1, and 1 for q → ∞. For small q, the torus will become
striated, containing strips of nearly zero density interlaced with
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undepleted regions; the loss rate will exhibit discontinous jumps
whenever a depleted region encounters a new loss ellipse and the
time to totally empty the torus will depend in a complicated way
on the frequency ratio νx/νy and on �•. For large q, the loss rate
will drop more smoothly with time, roughly as an exponential
law with time constant ∼ tdrain.5

We postpone a more complete discussion of loss cones in
the triaxial geometry to a future paper. Here, we make a few
remarks about pyramids with arbitrary opening angles, i.e., for
which ex0, ey0 are not required to be small.

For each orbit one can compute μ, the fraction of the torus
occupied by the loss cone (Equation (48)), by numerically
integrating the equations of motion (13) and analyzing the
probability distribution for instantaneous values of �2: P(�2 <
X) ∝ X−�2

min, where �2
min allows for a nonzero lower bound on

�2. Almost all pyramids have �min = 0, but some of them happen
to be resonances (commensurable νx and νy) and hence avoid
approaching � = 0. This linear character of the distribution of �2

near its minimum corresponds to a linear probability distribution
of periapse radii (P(rperi < r) ∝ r), which is natural to expect
if we combine a quadratic distribution of impact parameters at
infinity with gravitational focusing (see Equation (7) of Merritt
& Poon 2004).

The coefficient μ for each orbit is calculated as P(�2 < �2
•).

As seen from Equation (48), the smaller the extent of a pyramid
in any direction, the greater μ—this is true even for orbits with
large ex0 or ey0. While μ varies greatly from orbit to orbit, its
overall distribution over the entire ensemble of pyramid orbits
follows a power law:

Pμ(μ > Y ) ≈ (Y/μmin)−2 , μmin ≈ �2
•

2η̃
; (62)

Pμ is the probability of having μ greater than a certain value
and η̃ is the fraction of pyramids among all orbits (37). The
average μ for all pyramid orbits is therefore μ = 2μmin, and
the average fraction of time that a random orbit of any type
and any � spends inside the loss cone is μη̃ � �2

• (almost
independent of the potential parameters εb and εc)—the same
number that would result from an isotropic distribution of orbits
in a spherically symmetric potential.

6. COMPARISON WITH REAL-SPACE INTEGRATIONS

We tested the applicability of the orbit-averaged ap-
proach by comparing the orbit-averaged equations of motion,
Equation (13b), with real-space integrations of orbits having the
same initial conditions (and arbitrary radial phases). The agree-
ment was found to be fairly good for orbits with semimajor axes
a � 0.1rinfl: about 90% of the orbits were found to belong to the
same orbital class, and the correspondence between values of
μ and �2

min was also quite good for individual orbits. Averaged
over the ensemble, the proportion of phase space occupied by
the different orbital families, as well as the net flux of pyramids
into the BH, is almost the same for the two methods. However,
at larger radii, the relative fraction of pyramids and saucers de-
creases (Figures 6 (right) and 10). Since the maximum possible
angular momentum for orbits with a given semimajor axis a
grows faster than

√
GM•a, this means that the fraction of pyra-

mid orbits among all (not just low-�) orbits is even smaller. For
orbits with semimajor axis a � rinfl the frequency of radial os-
cillation becomes comparable to the frequencies of precession,

5 This was the approximation adopted by Merritt & Poon (2004).

Figure 10. Proportion of phase space (�2 < �2
max(0)) that is occupied by the

major orbit families: LATs, pyramids, SATs, saucers, and chaotic orbits, as
a function of semimajor axis a based on real-space integrations. Triaxiality
parameters are εb = 0.5εc and εc = 0.12/[0.2 + (a/rinfl)−1] (Equation (11)),
corresponding to a density cusp with γ = 1 and εc = 0.1 at a = rinfl. For
a � rinfl most low-� orbits are chaotic (Poon & Merritt 2001).

(A color version of this figure is available in the online journal.)

and when these overlap, orbits tend to become chaotic. (Weakly
chaotic behavior starts earlier.) So low-� orbits with a > 1.5rinfl
are mostly chaotic, as seen from Figure 10, confirming that reg-
ular pyramid orbits (along with saucers) exist only within BH
sphere of influence (Poon & Merritt 2001).6

7. EFFECTS OF GENERAL RELATIVITY

In the previous sections we considered the BH as a Newtonian
point mass. In GR, the gravitational field of the BH is more
complicated, and this will affect the behavior of orbits with
distances of closest approach that are comparable to rg ≡
GM•/c2.

For a non-spinning BH, the lowest-order post-Newtonian
effect is advance of the periapse, which acts in the opposite
sense to the precession due to an extended mass distribution.
The GR periapse advance is

Δ� = 6π

c2

GM•
(1 − e2)a

(63)

per radial period, with c the speed of light (Weinberg 1972),
making the orbit-averaged precession frequency

νGR = νr

3GM•
c2 a �2

. (64)

We can approximate the effects of this precession by adding
an extra term to the orbit-averaged Hamiltonian (13):

H = − 3

2
�2 + εbHb + εcHc − �

�
(65a)

� ≡ νGR�2

νp

= 3GM•
c2a

νr

νp

∼ rSchw

a

M•
M(a)

. (65b)

6 We note that saucer orbits also exist in potentials with high central
concentration of mass, such as logarithmic potential studied in, e.g., Lees &
Schwarzschild (1992).
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min max
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chaotic LAT or pyramid

regular LAT

P( )
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Qmax = /6
2
y0

Figure 11. Illustrating the allowed variations in angular momentum � for orbits
in the presence of general relativistic precession. The solid (red) curve represents
the function P (�) (Equation (67)); the dashed (blue) parabola is the same
function in the Newtonian case (� = 0). If � �= 0, P (�) has a minimum at
�crit (Equation (66)). Orbits make excursions along the curve P (�) in the range
from a certain value Pmax to Pmax − Qmax (here Qmax is given for the case of
planar orbits of Section 7.1 and equals 5

2 (εc − εb) ≡ ν2
y0/6). If during such an

excursion � does not cross �crit, then the orbit resides on one branch of P (�),
typically remaining regular. Otherwise it flips to the other branch, reaching
lower values of �min (Equation (79)), becoming a (typically chaotic) LAT or
pyramid orbit.

(A color version of this figure is available in the online journal.)

This is equivalent to adding the term �/l2 to the equation of
motion for � , i.e., to the right-hand side of d�/dτ = ∂H/∂�.
When � = �crit, where

�crit =
(�

3

)1/3
, (66)

the precession due to GR exactly cancels the precession due
to the spherical component of the distributed mass. Since the
angular momentum of a pyramid orbit approaches arbitrarily
close to zero in the absence of GR, there will always come a
time when its precession is dominated by the effects of GR, no
matter how small the value of the dimensionless coefficient �.

We again restrict consideration to the simplified
Hamiltonian (15), valid for εb, c � 1, �2 � εc, now with the
added term due to GR. This Hamiltonian may be rewritten as

5

2
εc − H =

[
3

2
�2 +

�

�

]
+

[
5

2
εce

2
x +

5

2
(εc − εb)e2

y

]

≡ P (�) + Q(ex, ey) , (67)

where P and Q denote the expressions in the first and second sets
of square brackets. The minimum of P (�) occurs at � = �crit:

Pmin = 3
√

81�2/8. (68)

The function Q can vary from 0 to some maximum value
Qmax due to the limitation that e2

x + e2
y � 1.

Two differences from the Newtonian case are apparent.

1. For each value of (ex, ey) (and therefore Q), there are now
two allowed values of �. One of these is smaller than �crit
while the other is greater (Figure 11).

2. Both the minimum and maximum values of �—both
of which correspond to the maximum value of P
(Figure 11)—are attained when Q = 0, i.e., when ex =
ey = 0. The maximum of Q corresponds to � = �crit. In
the Newtonian case, the minimum of � corresponds to the
maximum of Q.

7.1. Planar Orbits

We first consider orbits confined to the y–z-plane (ex = 0,
hence Ω = π/2, �z = 0 throughout the evolution). Namely,
we start an orbit from � = π/2 (ey = 0) and � = �0. In the
absence of GR, such an orbit would be a LAT for �0 > 5

3εb and
a pyramid otherwise.

The Hamiltonian and the equations of motion are

5

2
εc − H = 3

2
�2

0 +
�

�0
= 3

2
�2 +

�

�
+

ν2
y0

6
cos2 � , (69)

�̇ = − ν2
y0

6
sin 2� , �̇ = −3� +

�

�2
. (70)

The orbit in the course of its evolution may or may not
attain � = 0 (mod π ). If it does, then the angle � circulates
monotonically, with �̇ �= 0. In Figure 11, the condition �̇ = 0
corresponds to reaching the lowest point in the P (�) curve,
� = �crit. Whether this happens depends on the value of �0: since
the orbit starts from Q = 0 and P = P (�0), it can “descend”
the P (�) curve at most by Qmax = ν2

y0/6. If this condition is
consistent with reaching P (�crit), the orbit will flip to the other
branch of the P (�) curve. The condition for this to happen is

3

2
�2

0± +
�

�0±
= 3

2
�2

crit +
�

�crit
+

ν2
y0

6
; (71)

�0+ and �0− are the upper and lower positive roots of this
equation.

If �0 > �0+, the orbit behaves like a Newtonian LAT
(Figure 12, case a): it has �̇ < 0 and � > �crit. If �0 < �0−,
the orbit is again a LAT, but now it precesses in the opposite
direction (�̇ > 0) due to the dominance of GR, and � never
climbs above �crit (Figure 12, case e). In these cases the
condition � = 0 gives the extremum of �, which is found
from Equation (69):

3

2
�2

extr,L +
�

�extr,L
= 3

2
�2

0 +
�

�0
− ν2

y0

6
. (72)

This extremum appears to be a minimum (�extr,L < �0) if
�0 > �0+ and a maximum (�extr,L > �0) if �0 < �0−.

Pyramid orbits are those that reach � = �crit. �̇ changes sign
exactly at �crit, but the angular momentum continues to decrease
beyond the point of turnaround, reaching its minimum value
only when � returns again to π/2, i.e., the z-axis. The two
semiperiods of oscillation are not equal: the first (� > �crit and
�̇ < 0) is slower, the other is more abrupt (Figure 12, cases
b and d).7 In effect, the orbit is “reflected” by striking the GR
angular momentum barrier. After the orbit precesses past the
z-axis in the opposite sense, the angular momentum begins to
increase again, reaching its original value after the precession in

7 T. Alexander has suggested that these be called “windshield-wiper orbits.”
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Figure 12. Planar y–z orbits, solutions of Equation (69) in a potential with
εc = 10−2, εb = εc/2, � = 10−4, started with � = π/2 and different �0: (a)
0.104, (b) 0.103, (c) 0.0322, (d) 0.006, (e) 0.0058. The first two orbits lie close to
the separatrix between LATs and pyramids, �0+ = 0.10392 (Equation (71)); the
third is the stationary orbit with �0 = �crit; and the last two lie near the separatrix
between pyramids and GR-precession-dominated LATs, �0− = 0.005845. Top
panel shows the evolution of �(τ ), bottom panel shows � (τ ). For pyramid orbits
(b–d), the angle � librates around π/2, and � crosses the critical value �crit;
tube orbits (a and e) have � monotonically circulating, and � is always above
or below �crit.

(A color version of this figure is available in the online journal.)

� has gone a full cycle and the orbit has returned to the z-axis
from the other side.

If �0 = �crit, there is no oscillation at all—the GR and
extended mass precession balance each other exactly (Figure 12,
case c). For �0 � �crit, the orbit precesses in the opposite sense
to the Newtonian precession.

We can find the extreme values of � by setting �̇ = 0 in
Equation (70). This occurs for � = π/2, i.e., for Q = 0 or
P (�) = P (�0). This gives

�extr,P = �0

2

(√
1 + 8�3

crit/�
3
0 − 1

)
. (73)

If �0 > �crit, this root corresponds to the minimum �, with �0
the maximum value; in the opposite case they exchange places.
For � � 3�3

0 this additional root is

�min ≈ 2�3
crit

�2
0

= 2

3

�

�2
0

. (74)

Thus, the minimum angular momentum attained by a pyramid

10–3
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10–1

1

10–3 10–2 10–1 1

LATPyramidLAT

0

crit

G
R

precession

c

e

d

b

a

0+0–

Figure 13. Minimum and maximum values of � for a series of orbits with
initial conditions � = �0, ω = π/2, �z = 0, Ω = π/2. Potential parameters
are εc = 10−2, εb = εc/2, � = 10−4. The straight line is � = �0; dashed
line is the extremum for pyramids, Equation (73). These two curves intersect
at �crit (Equation (66)), where they exchange roles. For � > �0+ and � < �0−
(Equation (71)) the orbit is a tube, and the minimum (or maximum) is given by
Equation (72). Dotted gray line shows the leading frequency of � oscillations,
ν� × 10−2; for high-� orbits ν� ≈ 3�, for orbits dominated by GR precession
ν� ≈ 2�/�2. Letters denote the position of orbits shown in Figure 12.

(A color version of this figure is available in the online journal.)

orbit in the presence of GR is approximately proportional to �.
Note the counterintuitive result that the pyramid orbit with the
widest base (largest �0) comes closest to the BH.

Figure 13 shows the dependence of the maximum and
minimum values of � on �0 for the various orbit families.

7.2. Three-dimensional Pyramids

In the case of pyramid orbits that are not restricted to a
principal plane, numerical solution of the equations of motion
derived from the Hamiltonian (65a) are observed to be generally
chaotic, increasingly so as � is increased (Figure 14). This may
be attributed to the “scattering” effect of the GR term �/l in the
Hamiltonian, which causes the vector (ex, ey) to be deflected by
an almost random angle whenever � approaches zero. In the limit
that the motion is fully chaotic, H remains the only integral of
the motion. The following argument suggests that the minimum
value of the angular momentum attained in this case should be
the same as in Equation (73).

Suppose that the Hamiltonian (67) is the only integral that
remains. Then the vector (ex, ey) can lie anywhere inside an
ellipse

Q(ex, ey) ≡ 5

2

[
εce

2
x + (εc − εb)e2

y

]
� Qmax , (75)

whose boundary is given by

Qmax = 5

2
εc − H − Pmin. (76)

This ellipse defines the base of the “pyramid” (which now
rather resembles a cone). As in the planar case, the maximum
and minimum values of � are attained not on the boundary
of this ellipse (i.e., the corners in the Newtonian case), but at
ex = ey = 0, where Q = 0 and P attains its maximum. These
values are given by the roots of the equation P (�) = 5

2εc − H
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Figure 14. Three pyramid orbits with the same initial conditions (� = 0.05, �z = 0.02,� = Ω = π/2; εc = 0.01, εb = 0.005) and three values of the GR coefficient
� (Equation (65b)). Left: � = 0 (regular); middle: � = 10−6 (weakly chaotic); right: � = 10−5 (strongly chaotic). The green ellipse marks the maximal extent of the
(ex, ey ) vector, Equation (75), i.e., � = �crit, Equation (66); red segments correspond to � < �crit, blue to � > �crit and to the non-relativistic case.

(A color version of this figure is available in the online journal.)

or
3�3 − (5εc − 2H )� + 6�3

c = 0 . (77)

The two positive roots of this cubic equation are given by

�min,max = 2

3

√
5εc − 2H sin

(π

6
± φ

)
, (78)

φ = 1

3
arccos

(
9�

(5εc − 2H )3/2

)
.

The plus sign in the argument of the sine function gives �max
while the minus sign gives �min. These two values are linked by
a simple relation:

�min = �max

2

(√
1 + 8��3

max/3 − 1

)
≈ 2

3

�

�2
max

, (79)

where the latter approximate equality holds for � � �3
max. In

the same approximation

�min ≈ 2�

5εc − 2H
, �2

max ≈ 5εc − 2H

3
. (80)

Equation (73) for planar pyramids is a special case of this
relation where �0 = �max.

The ellipse (75) serves as a “reflection boundary” for tra-
jectories that come below � ≈ �crit. If this happens, the vector
(ex, ey) is observed to be quickly “scattered” by an almost ran-
dom angle (Figure 14, right, denoted by the red segments),
similar to the rapid change in � that occurs in the planar case
(Figure 12). Roughly speaking, all pyramid orbits and some tube
orbits (those that may attain � � �crit) will be chaotic.8

The distinction between pyramids and chaotic tubes is in
the radius of this ellipse: pyramids by definition have a fixed
sign of ez or e2

x + e2
y < 1, which means that the ellipse (75)

should not touch the circle e2
x + e2

y = 1. Hence, pyramids have

Q � 5
2 (εc − εb) and

5

2
εb − Pmin � H � 5

2
εc − Pmin. (81)

8 A small fraction of the “flipping” orbits, especially those that oscillate near
�crit (close to the lowest point on the P (�) curve of Figure 11), may retain
regularity by virtue of being resonant.

This condition is different from the one described in Section 4
even in the case � = 0 = Pmin, since now pyramids do not
coexist with LAT orbits.

The condition for LATs to be chaotic (i.e., to pass through
�crit) is Pmin +Qmax � 5

2εc−H . For LATs the ellipse (75) always
intersects the unit circle, so this condition can be satisfied for
−Pmin � H � 5

2εb − Pmin. However, this is a necessary but
not sufficient condition for a chaotic LAT: some orbits from this
range do not attain � < �crit because of the existence of another
integral of motion besides H (that is, they are regular).

Finally, we consider the character of the motion when the
precession is dominated by GR, as would be the case very
near the BH. This is equivalent to staying on the left branch
of P (�), with �min,max � �0− < �crit (71). In this limit there
is a second short timescale in addition to the radial period,
the time for GR precession. This situation is similar to the
high-� case (Section 4.4), in the sense that we can carry out a
second averaging over � and obtain the equations that describe
the precession of an annulus due to the triaxial torques. The
orbits in this case are again short- or long-axis tubes. The only
difference from Section 4.4 is that we have to add the term −�/�
to the averaged Hamiltonian (41), but since � is constant in this
approximation, the equations of motion for �z,Ω do not change.
These very low � regular tube orbits can be easily captured by
the BH, however their number is very small and we do not
consider them when computing the total capture rate.

We argue in Section 8 that the conservation of � for orbits in
this limit can have important consequences for RR.

7.3. Capture of Orbits by the BH in the Case of GR

The inclusion of general relativistic precession has the effect
of limiting the maximum eccentricity achievable by a pyramid
orbit. However, if �min � �•, an orbit can still come close enough
to the BH to be disrupted or captured. Introducing the quantity
w ≡ �min/�•, we can write

w ≡ �min

�•
� 1

�•

2�

5εc − 2H
� 3

5εc

νr

νp

�•
Θ

, (82)

where we used Equations (64) and (65b) and set H = 0 as
a lower limit for pyramid orbits (orbits with the smallest H
have the largest �max and the smallest �min). Comparison with
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Equation (56), with W � (15εc)2, shows that

w ≈ 3π

Θ
q−1. (83)

Roughly speaking, the condition that stars be captured
(w < 1) is equivalent to the statement that the loss cone is
full (q > 1). This is not a simple coincidence: a full loss cone
implies that for low-� orbits the mean change of � during one
radial period (∼ ν0�0 νp/νr ) is of order �•, while the condition
w = 1 requires that for the lowest allowable �, the GR preces-
sion rate (64) is comparable to the radial frequency. These two
conditions are roughly equivalent.

We can express this necessary condition for capture in terms
of more physically relevant quantities. Writing Equation (14a)
as

νp

νr

≈ 1

2

M(a)

M•
, (84)

and approximating rinfl of Equation (2) as

rinfl ≈ GM•
σ 2

≡ r0 (85)

with σ the one-dimensional stellar velocity dispersion at r =
rinfl, the condition w � 1 becomes

1

εc

√
Θ

σ

c

(
a

r0

)γ−7/2

� 1. (86)

The Milky Way BH constitutes one extreme of the BH mass
distribution. Writing Θ ≈ 10 (solar-mass main-sequence stars),
σ ≈ 102 km s−1, and γ = 3/2 gives

ε1/2
c

a

r0
� 10−2, (87)

e.g., for a = 0.1r0 ≈ 0.3 pc, εc � 10−3 is required for stars
to be captured. This is a reasonable degree of triaxiality for the
Galactic center.

At the other mass extreme, we consider the galaxy M87,
for which σ ≈ 350 km s−1 and Θ ≈ 3. Setting γ = 0.5,
corresponding to a low-density core, we find

ε1/3
c

a

r0
� 10−1. (88)

A dimensionless triaxiality of order unity is reasonable for a
giant elliptical galaxy.

In Section 9, we estimate the loss rate using the expres-
sion (60b) for the full-loss-cone rate, with the modification that
the fraction of time μ an orbit spends inside the loss cone is now
given not by Equation (48), but by

μ ≈ �2
• − �2

min

�2
0 − �2

min

. (89)

This relation implies that the instantaneous value of �2 is
distributed uniformly in the range [�2

min...�
2
max]. This is a good

approximation for chaotic pyramid orbits and a reasonable
(within a factor of few) approximation for chaotic LATs (and
also for regular orbits).

In the next section, we point out the importance of the angular
momentum limit for the rate of gravitational wave events due to
inspiral of compact stellar remnants.

8. CONNECTION WITH “RESONANT RELAXATION”

RR is a phenomenon that arises in stellar systems exhibiting
certain regularities in the motion (Rauch & Tremaine 1996;
Hopman & Alexander 2006). Due to the discreteness of the
stellar distribution, torques acting on a test star from all other
stars do not cancel exactly, and there is a residual torque that
produces a change in the angular momentum:

∣∣∣∣dL
dt

∣∣∣∣ ≈
√

N
Gm

a
= Lc

√
N m

M•
2πP −1 (90)

(here m is the stellar mass, P = 2π/μr is the radial period,
Lc ≡ √

GM•a is the angular momentum of a circular orbit
with radius a, and N is roughly the number of stars within a
sphere of radius a). In a non-resonant system this net torque
changes the direction randomly after each radial period, but in
the case of near-Keplerian motion, for example, orbits remain
almost the same for many radial periods, so the change of
angular momentum produced by this torque continues in the
same direction for a much longer time, the so-called coherence
time tcoh, until the orientation of either the test star’s orbit or
the other stars’ orbits change significantly. If this decoherence
is due to precession of stars in their mean field, then

tcoh ≈ tM ≡ ν−1
p ≈ M•

m

P

N
, (91)

where the relevant precession time is that for an orbit of average
eccentricity.

The total change of L during tcoh is

(ΔL)coh ≈
√

N
Gm

a
tcoh ≈ Lc√

N
. (92)

On timescales longer than tcoh the angular momentum expe-
riences a random walk with step size (ΔL)coh and time step tcoh.
The relaxation time is defined as the time required for an orbit
to change its angular momentum by Lc, and hence it is given by

tRR,s ≈
(

Lc

ΔL

)2

tcoh ≈ P
M•
m

. (93)

The above argument describes “scalar” RR, in which both the
magnitude and direction of L can change. On longer timescales,
precessing orbits fill annuli, which also exert mutual torques;
however, since these torques are perpendicular to L, they may
change only the direction, not the magnitude of L. This effect
is dubbed VRR, and its coherence time is given by the time
required for orbital planes to change. In a spherically symmetric
system the only mechanism that changes orbital planes is the
relaxation itself.9 Hence, for VRR the coherence time is given
by setting |dL/dt | = Lc/tcoh in Equation (90):

tcoh ≡ tΩ,VRR ≈ M•
m

P√
N

≈
√

NtM (94)

and the relaxation time, Equation (93), becomes

tRR,v ≈ tΩ,VRR ≈ P
M•

m
√

N
, (95)

9 If the BH is spinning, precession due to the Lense–Thirring effect also
destroys coherence (Merritt et al. 2010).

16



The Astrophysical Journal, 726:61 (20pp), 2011 January 10 Merritt & Vasiliev

which is ∼√
N times shorter than the scalar relaxation

time.
We begin by comparing RR timescales with timescales for

orbital change due to a triaxial background potential. Consider
a star on a (regular) pyramid orbit confined to the x–z-plane.
It experiences periodic changes of angular momentum � ≡
L/Lc with frequency � νx0νp (Equation (22)) and amplitude
�x0 � νx0/3 (24). Hence, the typical rate of change of angular
momentum is

dL

dt
≈ Lc ν2

x0νp/3 ≈ Lc 5εc

Nm

M•
2πP −1 . (96)

Comparison with Equation (90) shows that the rate of change
of angular momentum due to unbalanced torques from the
other stars (RR) is greater than the rate of regular precession
if ε

√
N � 1. However, the coherence time for RR is a typical

precession time of stars in the cluster, ν−1
p , whereas pyramids

change angular momentum on a longer timescale (νp

√
15ε)−1.

On the other hand, in the case of RR the angular momentum
continues to change in a random-walk manner on timescale
longer than tcoh, while in the case of precession in triaxial
potential its variation is bounded.

Next, we consider VRR, which corresponds to changes in
orbital planes defined by the angles Ω and i = arccos(�z/�).
The frequency of orbital plane precession in a triaxial potential,
νΩ, is ∼ νp

√
ε for low-� orbits (pyramids and saucers) and even

lower for other orbits (Figure 2). The corresponding timescale
may be written as

tΩ,triax � M•
m

P

N
√

ε
. (97)

Comparison with the VRR timescale (95) shows that
tRR,v/tΩ �

√
Nε. For the Milky Way, these two timescales

are roughly equal at a ∼ 0.5 pc (Figure 15). For sufficiently
large N the regular precession due to triaxial torques goes on
faster than the relaxation, so the coherence time for VRR is
now defined by orbit precession, and the relaxation time itself
becomes even longer. On the other hand, for small enough N
the VRR destroys orientation of orbital planes before they are
substantially affected by triaxial torques. It seems that VRR
in triaxial (or even axisymmetric) systems can be suppressed
by regular orbit precession; we defer the detailed analysis of
relaxation for a future study.

So far we have considered the torques arising under RR
as being independent of the torques due to the elongated star
cluster. Suppose instead that we identify the

√
N torques that

drive RR with the torques due to the triaxial distortion. The
justification is as follows: During the coherent RR phase,
the gravitational potential from N orbit-averaged stars can be
represented in terms of a multipole expansion. If the lowest-
order non-spherical terms in that expansion happen to coincide
with the potential generated by a uniform-density triaxial cluster,
the behavior of orbits in the coherent RR regime would be
identical to what was derived above for orbits in a triaxial
nucleus. We stress that this is a contrived model; in general,
an expansion of the orbit-averaged potential of N stars will
contain nonzero dipole, octupole, etc., terms that depend in
some complicated way on radius. Nevertheless, the comparison
seems worth making since (as we argue below) there is one
important feature of the motion that should depend only weakly
on the details of the potential decomposition.
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(A color version of this figure is available in the online journal.)

Equating the torques due to RR

TRR ≈
√

N
Gm

r
(98)

with those due to a triaxial cluster,

Ttriax ≈ ε
GNm

r
(99)

our ansatz becomes
ε ≈ N−1/2. (100)

As shown above (Section 7), GR sets a lower limit to the
angular momentum of a pyramid orbit (Equation (74)):

�min ≈ �

�2
0

≈ κ

ε
≈ rSchw

a

M•
M(a)

√
N; (101)

the third term comes from setting �0 ≈ �max ≈ √
ε, the

maximum value for a pyramid orbit, while the fourth term uses
our ansatz (Equation (100)) and the definition (Equation (65b))
of �. Expressed in terms of eccentricity,

1 − emax ≈
( rSchw

a

)2
(

M•
m

)2 1

N (a)
. (102)

There is another way to motivate this result that does not
depend on a detailed knowledge of the behavior of pyramid
orbits. If we require that the GR precession time

ν−1
GR ≈ �2

�
ν−1

p (103)

(Equation (64)) be shorter than the time

�

∣∣∣∣d�

dt

∣∣∣∣
−1

≈ �

ε
ν−1

p (104)
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for torques to change � by of order itself, then

� � �

ε
≈

√
N� ≈ rSchw

a

M•
M(a)

√
N (105)

as above. In other words, when � � �min, GR precession is
so rapid that the

√
N torques are unable to change the angular

momentum significantly over one precessional period.
In order for this limiting angular momentum to be relevant

to RR, the timescale for changes in the background potential
should be long compared with the time over which an orbit with
� ≈ �min appreciably changes its angular momentum. As just
shown, the latter timescale is

tGR ≡ ν−1
GR ≈ �2

�
ν−1

p ≈ �Nν−1
p . (106)

The former timescale is the coherence time for VRR,
Equation (94):

tΩ ≈ M•
m

P√
N

. (107)

The condition tΩ 	 tGR is then

M•
m

P√
N

	 �Nν−1
p (108)

or
a

rSchw

√
N 	 M•

m
. (109)

Applying this to the center of the Milky Way, the condition
becomes

a

mpc

√
N (a) 	 102, (110)

which is likely to be satisfied beyond a few mpc from SgrA∗.
On timescales longer than ∼ tcoh, the torques driving RR

will change direction. This is roughly equivalent in our simple
model to changing the orientation of the triaxial ellipsoid or
to changing �0 at fixed �. Such changes might induce an orbit
to evolve to values of � lower than �min, by advancing down
the narrow “neck” in the lower left portion of Figure 13.
However, such evolution would be disfavored, for two reasons:
(1) it would require a series of correlated changes in the
background potential, increasingly so as � became small; (2)
as � decreased and νGR increased, changes in the background
potential would occur on timescales progressively longer than
the GR precession time, and adiabatic invariance would tend
to preserve � (Section 4.4). These predictions can in principle
be tested via direct N-body integration of small-N systems
including post-Newtonian accelerations (e.g., Merritt et al.
2010).

A lower limit to the angular momentum for orbits near a
massive BH could have important implications for the rate of
gravitational wave events due to extreme-mass-ratio inspirals or
EMRIs (Hils & Bender 1995). The critical eccentricity at which
the orbital evolution of a 10 M� compact object begins to be
dominated by gravitational wave emission is

1 − eEMRI ≈ 10−5

(
tr

109 yr

)−2/3 (
M•

106 M�

)4/3

, (111)

with tr the relaxation time (e.g., Amaro-Seoane et al. 2007,
Equation (6)). By comparison, Equation (102), after substitution
of N (< a) = N0(a/mpc) implies

1 − emax ≈ 2 × 10−4

(
M•

106 M�

)4 (
N0

100

)−1 (
a

10 mpc

)−3

.

(112)

9. ESTIMATES FOR REAL GALAXIES

In this section we estimate the fraction and lifetime of pyramid
orbits to be expected in the nuclei of real galaxies.

We restrict calculations to the case of “maximal triaxiality,”
εb = εc/2, although we leave the amplitudes of εb, εc free
parameters. We also limit the discussion to orbits within the
BH influence radius, r � rinfl, where our analysis is valid and
where orbits are typically regular.10 Beyond ∼ rinfl, centrophilic
(mostly chaotic) orbits still exist and could dominate, e.g., the
rate of feeding of a central BH (Merritt & Poon 2004).

The first set of parameters is chosen to describe the center of
the Milky Way. The BH mass is set to M• = 4 × 106 M� (Ghez
et al. 2008; Gillessen et al. 2009a, 2009b). The density of the
spherically symmetric stellar cusp is taken to be ρs = 1.5 ×
105 M� pc−3 (r/1 pc)−γ (Schödel et al. 2007), with γ = 1.5
(Schödel et al. 2008); the corresponding BH influence radius is
rinfl ≈ 3 pc.11 The triaxial component of the potential is highly
uncertain; one source would be the nuclear bar with density
ρt ≈ 150 M� pc−3 (Rodriguez-Fernandez & Combes 2008),
yielding a triaxiality coefficient at r = 1 pc of εc ≈ 10−3. We
also considered a larger value, εc = 10−2, which may be justified
by some kind of asymmetry on spatial scales closer to rinfl than
the bar. In this model, the precession time due to the spherical
component of the potential, 2π/(3νp) for a circular orbit, is
independent of radius and equals ∼1.7 × 105 yr; the two-body
relaxation time is also constant (5 × 109 yr), and timescales for
scalar and VRR are given by Equations (93) and (95) with stellar
mass m = 1 M�.

The second set of parameters is intended to describe the case
of galaxies with more massive BHs, using the so-called M•–σ
relation in the form

M• ≈ 1.7 × 108 M�

(
σ

200 km s−1

)4.86

(113)

(Ferrarese & Ford 2005). Combined with the definition of
rinfl ≈ GM•/σ 2, we get

rinfl ≈ 13 pc

(
M•

108 M�

)0.59

. (114)

The two-body relaxation time evaluated at rinfl (assuming a
mean-square stellar mass m� = 1 M� and a Coulomb logarithm
ln Λ = 15) is

t2br (rinfl) ≈ 2.1 × 1013 yr

(
σ

200 km s−1

)7.5

(115a)

≈ 9.6 × 1012 yr

(
M•

108 M�

)1.54

(115b)

(Merritt et al. 2007).
We first estimate the radius rcrit that separates the empty

(q < 1) and full-loss-cone regimes. As noted in the previous

10 Excepting for the effects of GR, which as noted above may introduce
chaotic behavior even for orbit-averaged parameters. The chaos that sets in at
r � rinfl (Section 6) arises from the coupling of the orbit-averaged and radial
motions.
11 These cusp parameters correspond to an inward extrapolation of the density
observed at r � 1 pc. Recent observations (Buchholz et al. 2009; Do et al.
2009; Bartko et al. 2010) reveal a “hole” in the density of evolved stars inside
∼ 0.5 pc, implying a possibly much lower density for the spherical component
near the BH.
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section, GR precession prevents a pyramid orbit from reaching
arbitrarily low angular momenta; the radius beyond which
capture becomes possible is roughly rcrit. Using Equation (56)
with W = (15εc)2 (the maximum value for pyramids) and
Equations (14a) and (44), the condition q = 1 translates to

1 = 4π

3 − γ

ρsr
3
0

M•

(
rcrit

r0

)3−γ 2α′

3(2 − γ )

5π εc(rcrit)√
ΘrSchw/rcrit

If we take r0 to be rinfl, and ρs and σ as the density and
velocity dispersion at this radius, we obtain

rcrit

rinfl
≈ 0.5

(
σ

c

√
Θ

εc(r0)

)2/7

. (116)

The radius rcrit typically lies in the range (0.2–0.7)rinfl, weakly
dependent on the parameters. Since regular pyramid orbits exist
only for a � rinfl (Figure 10), there is evidently a fairly narrow
range of radii for which capture of stars from pyramid orbits
is possible.12 However, pyramid-like, centrophilic can exist at
much larger radii (Poon & Merritt 2001).

Next, we make a rough estimate of the pyramid draining
time at a > rcrit, using the expression (60b) for the flux in the
full-loss-cone regime, F = μ/(Pνp); μ (the fraction of phase
space occupied by the loss cone) is given by Equation (89) with
�min � �•, �2

max ≈ 5
3εc (Equation (80)):

tdrain = 1

F νp

≈ 5π

3Θ
c2

(GM•)3/2
a5/2εc(a) (117)

≈ 109 yr × εc(a)

Θ

(
M•

108 M�

)−3/2 (
a

1 pc

)5/2

.

A more exact calculation of tdrain(a) for the Milky Way, based
on numerical analysis of properties of orbits sampled from the
entire phase space, is shown in Figure 15.

Finally, we estimate the total capture rate for all pyramids
inside rinfl, using tpyr ≡ tdrain(rinfl) as a typical timescale and
applying Equations (113), (114) and (117):

tpyr ≈ 6 × 1011 yr × εc(rinfl)

Θ

(
M•

108 M�

)−0.025

. (118)

The capture rate from pyramids is then

Ṁpyr ≈ εc(rinfl)M•
tpyr

≈ 1.6 × 10−4 M� yr−1Θ
(

M•
108 M�

)1.025

.

(119)
For the Milky Way we find ∼4×10−5 M� yr−1 for εc = 10−3

and ∼10−4 M� yr−1 for εc = 10−2.
This capture rate should be compared with that due to two-

body relaxation, which is estimated to be (Merritt 2009)

Ṁ2br ≈ 0.1
M•
t2br

≈ 10−6 M� yr−1 ×
(

M•
108 M�

)−0.54

. (120)

Thus, even for a Milky-Way-sized galaxy, the capture rate of
pyramids could be comparable with or greater than that due to
two-body relaxation. For more massive galaxies this inequality

12 This is also roughly the radial range from which EMRI events are believed
to originate (e.g., Ivanov 2002).

becomes even stronger. However, this is only the initial capture
rate—after ∼tpyr, all stars on pyramid orbits would have been
consumed, at least in the absence of other mechanisms for
repopulating the small-� parts of phase space (not necessarily
� � �•, but the much broader region � � √

εc from which
draining is effective).

In the most luminous galaxies, like M87, standard mecha-
nisms for relaxation are expected to be ineffective even over
Gyr timescales and pyramid orbits once depleted are likely to
stay depleted. Setting εc = 0.1, Θ = 3, and M• = 4 × 109 M�
gives for M87 tpyr ≈ 5 Gyr and Mpyr ≈ 4 × 108 M�. This could
be an effective mechanism for creating a low-density core at the
centers of giant elliptical galaxies.

10. CONCLUSIONS

We discussed the character of orbits within the radius of
influence rinfl of a supermassive BH at the center of a triaxial
star cluster. The motion can be described as a perturbation of
Keplerian motion; we derive the orbit-averaged equations and
explore their solutions both analytically (when the triaxiality is
small) and numerically. Orbits are found to be mainly regular in
this region. There exist three families of tube orbits; a fourth
orbital family, the pyramids, can be described as eccentric
Keplerian ellipses that librate in two directions about the short
axis of the triaxial figure. At the “corners” of the pyramid, the
angular momentum reaches zero, which means that stars on
these orbits can be captured by the BH. We derive expressions
for the rate at which stars on pyramid orbits would be lost
to the BH; there are many similarities with the more standard
case of diffusional loss cone refilling, but also some important
differences, due to the fact that the approach to the loss cone
is deterministic for the pyramids, rather than statistical. The
inclusion of general relativistic precession is shown to impose a
lower bound on the angular momentum. We argue that a similar
lower bound should apply to orbital evolution in the case that
the torques are due to RR. The rate of consumption of stars
from pyramid orbits is likely to be substantially greater than the
rate due to two-body relaxation in the most luminous galaxies,
although in the absence of mechanisms for orbital repopulation,
these high consumption rates would only be maintained until
such a time as the pyramid orbits have been drained; however
the latter time can be measured in billions of years.
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