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ABSTRACT

The linear growth factor of density perturbations is generally believed to be a powerful observable quantity of
future large redshift surveys to probe physical properties of dark energy and to distinguish among various gravity
theories. We investigate systematic effects on determination of the linear growth factor f from a measurement of
redshift-space distortions. Using a large set of high-resolution N-body simulations, we identify dark matter halos
over a broad mass range. We compute the power spectra and correlation functions for the halos and then investigate
how well the redshift distortion parameter β ≡ f/b can be reconstructed as a function of halo mass both in Fourier
and in configuration space, where b is the bias parameter. We find that the β value thus measured for a fixed halo
mass generally is a function of scale for k > 0.02 h Mpc−1 in Fourier space or r < 80 h−1 Mpc in configuration
space, in contrast with the common expectation that β approaches a constant described by Kaiser’s formula on the
large scales. The scale dependence depends on the halo mass, being stronger for smaller halos. It is complex and
cannot be easily explained with the exponential distribution function in configuration space or with the Lorentz
function in Fourier space of the halo peculiar velocities. We demonstrate that the biasing for smaller halos has
larger nonlinearity and stochasticity, thus the linear bias assumption adopted in Kaiser’s derivation becomes worse
for smaller halos. Only for massive halos with the bias parameter b � 1.5 does the β value approach the constant
predicted by the linear theory on scales of k < 0.08 h Mpc−1 or r > 30 h−1 Mpc. Luminous red galaxies (LRGs),
targeted by the Sloan Digital Sky Survey (SDSS) and the SDSS-III’s Baryon Oscillation Spectroscopic Survey
(BOSS), tend to reside in very massive halos. Our results indicate that if the central LRG sample is used for the
measurement of redshift-space distortions, the linear growth factor can fortunately be measured unbiasedly. On
the other hand, emission-line galaxies, targeted by some future redshift surveys such as the BigBOSS survey, are
inhabited in halos of a broad mass range. If one considers using such galaxies, the scale dependence of β must be
taken into account carefully; otherwise, one might give incorrect constraints on dark energy or modified gravity
theories. We also find that the β reconstructed in Fourier space behaves fairly better than that in configuration space
when compared with the linear theory prediction.
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methods: statistical
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1. INTRODUCTION

The presence of dark energy, which changes the gravitational
assembly history of matter in the universe, explains the observed
acceleration of the cosmic expansion well within the framework
of general relativity (Riess et al. 1998; Perlmutter et al. 1999;
Spergel et al. 2003; see Komatsu et al. 2010 for the latest
constraints). There are also many attempts to explain the
acceleration without dark energy by modifying general relativity
on cosmological scales (see, e.g., Dvali et al. 2000; Carroll
et al. 2004). Cosmological models in different gravity theories
that predict a similar expansion rate H (z) can have a different
cosmic growth rate f (z). f (z) is often parameterized as f (z) =
Ωγ

m(z), where Ωm(z) is the mass density parameter at a given
redshift z and the growth index γ � 0.55 in the ΛCDM
model (Linder 2005). Thus, the precise measurement of the
growth rate enables us to investigate the deviation of gravity
from the general relativity. Recent analysis, which focused on
such deviations using weak gravitational lensing data, cosmic
microwave background (CMB) data, and Type Ia supernova
data, showed a good agreement with the pure ΛCDM model
(e.g., see Daniel et al. 2010 for the latest work).

One of the most promising tools to investigate modified
gravity is redshift-space distortion effects caused by peculiar
velocities in galaxy redshift surveys. In linear theory and
under the plane-parallel approximation, Kaiser (1987) derived
a formula to relate the observed power spectrum of galaxies
P (s)(k, μk) and the true power spectrum of dark matter P (r)

m (k)
through

P (s)(k, μk) = b2
(
1 + βμ2

k

)2
P (r)

m (k), (1)

where (r) and (s), respectively, denote quantities in real and
redshift space, μk is the cosine of the angle between the line
of sight and the wavevector k, β is the linear redshift distortion
parameter related to the growth rate as β = f/b, and b is
the bias parameter (Kaiser 1984). Thus, the measurement of the
redshift-space distortions allows one to directly probe deviations
from general relativity, although the determination of the biasing
is another important issue. Kaiser’s formula (Equation (1))
is modified on small scales because the nonlinear random
velocities smear the clustering along the line of sight known
as the “finger-of-god” effect (Jackson 1972). However, such a
nonlinear model still relies on Kaiser’s formula on large scales
(Peacock & Dodds 1994). For the importance of nonlinearity
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on such scales, see Scoccimarro (2004), Taruya et al. (2009),
Desjacques & Sheth (2010), and Jennings et al. (2010).

Constraints on β have been reported in various surveys
(e.g., Peacock et al. 2001; Zehavi et al. 2002; Hawkins et al.
2003; Tegmark et al. 2004, 2006; Ross et al. 2007; Guzzo
et al. 2008; da Angela et al. 2008; Cabré & Gaztañaga 2009).
Okumura et al. (2008) also showed using a luminous red galaxy
(LRG) sample from the Sloan Digital Sky Survey (SDSS)
that simultaneously analyzing redshift-space distortions and
anisotropy of the baryon acoustic scales allows one to give
a strong constraint on dark energy equation of state, as was
theoretically predicted (Hu & Haiman 2003; Seo & Eisenstein
2003; Matsubara 2004) and this fact was explicitly emphasized
by Amendola et al. (2005). Guzzo et al. (2008) considered
constraints on f to test the deviation from general relativity
using the observations at different redshifts (see also Di Porto &
Amendola 2008; Nesseris & Perivolaropoulos 2008; Yamamoto
et al. 2008; Cabré & Gaztañaga 2009). We note that all these
previous studies have used linear theory prediction of redshift-
space distortions to compare with their measurements on scales
presumably large enough for the linear theory to be valid.
Nakamura et al. (2009) adopted an alternative approach and
constrained the growth factor by measuring the damping of the
baryon acoustic oscillations. Reyes et al. (2010) gave a strong
constraint on modified gravity theory and confirmed general
relativity using the method proposed by Zhang et al. (2007)
which can eliminate the uncertainty of the galaxy biasing by
combining weak gravitational lensing, galaxy clustering, and
redshift-space distortions (for similar theoretical attempts, see,
e.g., Percival & White 2009; McDonald & Seljak 2009; Song
& Kayo 2010).

There are many ongoing and upcoming large galaxy surveys,
such as the SDSS-III’s Baryon Oscillation Spectroscopic Survey
(BOSS; Schlegel et al. 2009a), the Fiber Multiobject Spectro-
graph (FMOS; Sumiyoshi et al. 2009), the Hobby-Eberly Dark
Energy Experiment (HETDEX; Hill et al. 2004), the WiggleZ
(Glazebrook et al. 2007), the BigBOSS (Schlegel et al. 2009b),
and so on. These observations are expected to enable us to distin-
guish among gravity theories with high precision through mea-
surement of redshift-space distortions as well as that of baryon
acoustic oscillations. However, it is not clear if the accuracy of
predicting redshift-space distortions is better than or comparable
to the precision required from future surveys. In addition, we do
not know how large the deviation from true cosmology is if any.
Precision of the constraint may depend on galaxy types, such
as luminosity and host halo mass. There were many attempts
to investigate the validity to use the redshift-space distortions
to extract the cosmological information (e.g., Hatton & Cole
1998, 1999; Berlind et al. 2001; Tinker et al. 2006). Tinker et al.
(2006) found that β can be estimated accurately using linear
theory if the finger-of-god effect is removed perfectly.

In this paper, we present a detailed study on this aspect us-
ing a large set of N-body simulations. We measure the power
spectra and correlation functions of dark matter halos. Using
these, we estimate the redshift distortion parameter β from the
monopole-to-real-space ratio and the quadrupole-to-monopole
ratio, both of which are related to β in linear theory. Then we
examine whether β measured in these ways can give true cos-
mological information. We also investigate the dependence of
the precision of reconstructed β on halo mass. Particularly, we
will clearly show that the β value obtained from the small-
halo clustering does not approach a constant even on large
scales as linear theory predicts. In addition, such small halos

Table 1
Simulation Parameters

Box Size Particles Realizations mp(h−1 M�) zout

600 10243 15 1.5 × 1010 0.295
1200 10243 4 1.2 × 1011 0.274

Note. mp in Column 4 is the particle mass.

are shown to be more stochastic tracers of the underlying den-
sity field than massive halos. We also discuss in detail on which
scale and with which method one can get the correct β or f from
the redshift-space distortions.

The paper is organized as follows. In Section 2, we describe
the N-body simulations and the halo occupation distribution
(HOD) model used to populate them with mock galaxies.
The basic two-point statistics used in our analysis are also
presented. In Section 3, we briefly review the linear theory of
redshift distortions and how to determine the redshift distortion
parameter β from the power spectrum and the correlation
function. Section 4 is devoted to the analysis of redshift
distortion effects in simulations to determine β and the growth
rate f. Our conclusions are given in Section 5.

2. N-BODY SIMULATIONS

2.1. Dark Matter Halo and Galaxy Catalogs

We use a large set of N-body simulations, which is an
updated version of Jing et al.’s (2007), to create dark matter
halo distribution. We assume a spatially flat ΛCDM model with
the mass density parameter Ωm = 0.268, the baryon density
parameter Ωb = 0.045, and the Hubble constant h = 0.71.
Initial conditions are generated using the matter transfer function
by CMB fast code (Seljak & Zaldarriaga 1996) and the density
fluctuation amplitude is set to be σ8 = 0.85. We employ 10243

particles in 15 cubic boxes of side 600 h−1 Mpc and 4 of side
1200 h−1 Mpc, respectively abbreviated to L600 and L1200.
We mainly show results obtained from the L1200 boxes, while
the L600 boxes are used in order to analyze dark matter halos
with small mass and to see if the L1200 samples have good
enough resolution for the smallest halos. Simulation parameters
are summarized in Table 1. See Jing et al. (2007) for details of
the simulations. Dark matter halos are identified at the redshift
zout using the friends-of-friends algorithm with a linking length
equal to 0.2 times the mean particle separation. All unbound
particles in the friends-of-friends halos are further discarded.
As shown by Jing et al. (2007), it is necessary to eliminate
these unbound particles in order to have a correct measurement
of clustering for small halos of a few tens particles. We use
all the halos with more than 12 particles. Identification of
small halos is subtler than that of massive halos because of the
limited number of dark matter particles which constitute small
halos. As will be shown with L600 and L1200 simulations in
Sections 2.2 and 4, however, the clustering of halos can be
well measured to this limit. We choose zout ≈ 0.28 because
the LRGs of the SDSS are at this redshift, but almost all
of our conclusions should not rely on our choice of this
particular redshift.

We consider as a mock galaxy catalog the LRG sample
(Eisenstein et al. 2001) in the SDSS (York et al. 2000). In
order to populate the center of the halos with LRGs, we rely
on the framework of the HOD (e.g., Jing et al. 1998; Seljak
2000; Scoccimarro et al. 2001; Berlind & Weinberg 2002; Yang
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Figure 1. Two-point statistics for dark matter halos, LRGs, and dark matter particles. (a) Real-space power spectra P (r)(k). (b) Redshift-space power spectra P (s)(k).
(c) Real-space correlation functions ξ (r)(r). (d) Redshift-space correlation functions ξ (s)(r). The values quoted in the figure are the halo mass at the center of the mass
bin in units of the solar mass (h−1 M�). Error bars are the standard error of the mean.

(A color version of this figure is available in the online journal.)

Table 2
Properties of Simulated Halos and Galaxies

Box M(h−1 M�) np Nhalo b(k) b(r)

L600 2.2 × 1011 13 � np � 18 1.3 × 106 0.69 0.70
1.7 × 1012 92 � np � 136 1.9 × 105 0.88 0.89

L1200 1.8 × 1012 12 � np � 17 1.7 × 106 0.89 0.88
1.4 × 1013 92 � np � 136 2.2 × 105 1.30 1.30
1.0 × 1014 692 � np � 1037 2.2 × 104 2.28 2.31

LRG 12 � np � 25000 1.4 × 105 1.90 1.94

Notes. The halo mass M in Column 2 shows the central values of each mass bin.
Column 3 shows the ranges of the number of particles. Nhalo is the total number
of halos. b(k) and b(r) in Columns 4 and 5 are the best-fit bias parameters in
Fourier and configuration space, respectively (see Section 2.2).

et al. 2003; Zheng et al. 2005), which describes the relationship
between the galaxy and dark matter density fields. Galaxies
are assigned to the halos using the best-fit HOD parameters
for LRGs found by Seo et al. (2008; see also Zheng et al. 2005,
2009). This method was applied in our previous work (Okumura
et al. 2009) and the good agreement with the observation in
clustering has been confirmed. LRGs are found to reside in
massive halos of typical mass ∼ 2 × 1013–1014 h−1 M�. The
fraction of satellite LRGs is 6.3% and only central LRGs are
used for our analysis below. The peculiar velocity of their halos
is assigned to central LRGs. Table 2 lists the detail of the
representative halo and LRG catalogs.

2.2. Two-point Statistics

We plot the two-point statistics for dark matter halos, central
LRGs, and dark matter particles measured from our simulation
catalogs in Figure 1. When dark matter halos are analyzed, they
are divided into narrow mass bins as Mi − ΔMi < Mi <
Mi +ΔMi for the ith bin, where ΔMi = 0.2Mi . Corresponding
ranges of the number of particles for each halo catalog are listed
in Table 2. Results of LRGs and dark matter are shown only for
the L1200 samples, while those of high- and low-mass halos are
shown for the L1200 and L600 samples, respectively. Results
are averaged over all the realizations. In redshift space, positions
of objects are displaced as a result of the peculiar velocity along
the line of sight. We regard each direction along the three axes of
simulation box as the line of sight and the statistics are averaged
over three projections of all realizations for a total of 45 samples
for the L600 simulation and 12 for the L1200 simulation. The
error bars shown in Figure 1 are the standard error of the mean.

Figures 1(a) and (b) show the power spectra in real space,
P (r)(k), and in redshift space, P (s)(k), respectively. In both
figures, clear halo-mass dependence of the clustering amplitude
can be found. The gray and green lines show the halo power
spectra with the same halo mass in the L600 and L1200
samples, respectively. It can be easily seen that the agreement
of the power spectra between the two boxes is very good
for k > 0.03 h Mpc−1, indicating that the resolution of a
halo with �12 particles is enough for the clustering analysis
here. The discrepancy between the two lines at the smaller
k < 0.03 h Mpc−1 is due to the large cosmic variance effect
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Figure 2. Halo bias (a) in Fourier space and (b) in configuration space. The color of each line corresponds to the one with the same color in Figure 1. The bias for the
central LRGs is also plotted for comparison. Error bars are the standard error of the mean. The region enclosed by the two vertical lines shows the scales where we
assume the scale-independent bias.

(A color version of this figure is available in the online journal.)

in the L600 sample. Figures 1(c) and (d) show the correlation
functions in real space, ξ (r)(r), and in redshift space, ξ (s)(r),
respectively. The suppression of the correlation functions for
halos and central LRGs is caused by the finite size of the
halos and it is alleviated to some extent in redshift space due to
their random velocities (Jackson 1972). The baryonic acoustic
features, which were clearly detected in our simulation samples
as a single peak at ∼100 h−1 Mpc, appear as slight bumps in
Figures 1(c) and (d) because we use the binning much broader
than the width of the peak.

The bias parameter can be computed both in Fourier space,
b(k), and in configuration space, b(r), through

b(k) =
(

P (r)(k)

P
(r)
m (k)

)1/2

, b(r) =
(

ξ (r)(r)

ξ
(r)
m (r)

)1/2

. (2)

Figure 2 shows the b(k) and b(r) for dark matter halos and
LRGs. The results are averaged over realizations and the error
bars are the error of the mean. In both configuration and Fourier
spaces, the bias parameters for halos and LRGs are found to
be almost constant on sufficiently large scales. We assume the
bias to be constant and search for the best-fit value for each
sample by computing the χ2 statistics. We compute χ2 for
16 h−1 Mpc < r < 79 h−1 Mpc in configuration space and
for 0.018 h Mpc−1 < k < 0.10 h Mpc−1 in Fourier space
for results from the L1200 simulations. On the other hand, we
compute it for 16 h−1 Mpc < r < 63 h−1 Mpc in configuration
space for the L600 samples because the large-scale data are not
very reliable owing to the cosmic variance while we still use the
same range in Fourier space. Figure 3 shows the halo biasing
as a function of the halo mass, b(M). The error bars show the
95% confidence interval. The results between L600 and L1200
are largely overlapped with each other, and we confirm that the
systematic error caused by the different box sizes is negligibly
small. In addition, the bias parameters obtained in Fourier and
configuration space are consistent. The best-fit values obtained
here are used for the theoretical prediction of β through Kaiser’s
formula in Section 4.

3. LINEAR THEORY OF REDSHIFT-SPACE
DISTORTIONS

There are at least two ways to determine the redshift distortion
parameter β. They have been well developed both in Fourier
space (Kaiser 1987; Cole et al. 1994) and in configuration
space (Hamilton 1992) under the plane-parallel approximation
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Figure 3. Halo bias as a function of the halo mass. Shown is the best-fit
values for constant fits of b between 15 h−1 Mpc < r < 80 h−1 Mpc (L1200)
and 15 h−1 Mpc < r < 60 h−1 Mpc (L600) for ξ (r) and 0.02 h Mpc−1 <

k < 0.1 h Mpc−1 for P (k). Results from the L1200 samples are shown for
1.4 × 1012 M� � M � 1.9 × 1014 M� and those from the L600 samples for
1.8 × 1011 M� � 1.6 × 1013 M�. The error bars show the 95% confidence
levels.

(A color version of this figure is available in the online journal.)

and summarized in a review by Hamilton (1998), who also
collected the observational constraints then available on β in
various surveys. We follow a notation similar to that adopted by
Tinker et al. (2006).

3.1. Fourier Space

For plane-parallel redshift-space distortions, the redshift-
space power spectrum can be written as (Kaiser 1987)

P (s)(k, μk) = P0(k)L0(μk)+P2(k)L2(μk)+P4(k)L4(μk), (3)

where Ll are Legendre polynomials. The multipoles of the
redshift-space power spectrum are expressed as

Pl(k) = 2l + 1

2

∫ +1

−1
P (s)(k, μk)Ll(μk)dμk. (4)

We can derive two useful combinations of these which are
directly related to β: the ratio of the monopole to the real-space
power spectrum, P (0/r), and the quadrupole-to-monopole ratio,
P (2/0) (Cole et al. 1994):

P (0/r)(k) ≡ P0(k)

P (r)(k)
= 1 +

2

3
β +

1

5
β2, (5)
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Figure 4. Redshift distortion parameter β reconstructed from (a) the monopole-to-real-space ratio of the power spectra, (b) the monopole-to-real-space ratio of
the correlation functions, (c) the quadrupole-to-monopole ratio of the power spectrum, and (d) the quadrupole-to-monopole ratio of the correlation functions. The
horizontal lines represent the prediction from linear theory for each measurement with the same color and line type, where the best-fit parameter for the biasing is used
for the prediction. Error bars are the standard error of the mean. The diamonds and the open circles have been offset in the horizontally positive direction for clarity,
while the open squares and the triangles in the horizontally negative direction.

(A color version of this figure is available in the online journal.)

P (2/0)(k) ≡ P2(k)

P0(k)
=

4
3β + 4

7β2

1 + 2
3β + 1

5β2
. (6)

The last equality in the two equations holds only on large scales
where linear theory can be applied.

3.2. Configuration Space

The redshift-space correlation functions can be expressed
similarly to the power spectra under the plane-parallel approxi-
mation as

ξ (s)(rp, rπ ) = ξ0(r)L0(μ) + ξ2(r)L2(μ) + ξ4(r)L4(μ), (7)

where rp and rπ are the separations perpendicular and parallel
to the line of sight and μ is the cosine of the angle between
the separation vector and the line of sight μ = cos θ = rπ/r .
The multipoles of the redshift-space correlation function are
expressed as

ξl(r) = 2l + 1

2

∫ +1

−1
ξ (s)(rp, rπ )Ll(μ)dμ. (8)

In linear theory, the ratio of the monopole to the real-space
correlation function and the quadrupole-to-monopole ratio are
related to the redshift distortion parameter β on large scales
(Hamilton 1992):

ξ (0/r)(r) ≡ ξ0(r)

ξ (r)(r)
= 1 +

2

3
β +

1

5
β2, (9)

ξ (2/0)(r) ≡ ξ2(r)

ξ0(r) − ξ̄0(r)
=

4
3β + 4

7β2

1 + 2
3β + 1

5β2
, (10)

where ξ̄0(r) = (3/r3)
∫ r

0 ξ0(r ′)r ′2dr ′. When one wants to con-
strain the pairwise velocity dispersion (PVD) of galaxies which
becomes dominant on small scales, the real-space correlation
function is convolved with the distribution function of pair-
wise velocities to give the redshift-space correlation function
(Peebles 1980), which is not the purpose of this paper (see, e.g.,
Peacock et al. 2001; Zehavi et al. 2002; Hawkins et al. 2003; Jing
& Börner 2004; Guzzo et al. 2008; Cabré & Gaztañaga 2009).
We will briefly discuss the effect of the pairwise velocities on β
reconstruction in Section 4.2.

4. RESULTS AND DISCUSSION

4.1. β Reconstruction

In Figure 4, we show the resulting β values of dark matter
halos, LRGs, and dark matter reconstructed by the methods
described in Section 3. In each panel, the horizontal lines
show the large-scale values predicted by general relativity,
β = Ω0.55

m (z)/b (Linder 2005). For the bias parameters in
Fourier and configuration space, we use the best-fit values
obtained in Figure 3. The β value of dark matter is simply equal
to the growth rate f because b = 1. We can see the agreement
of the β values obtained from the L600 and L1200 samples
with the same halo mass, thus the different number of particles,
indicating that the resolution of a halo with 12 particles is

5



The Astrophysical Journal, 726:5 (11pp), 2011 January 1 Okumura & Jing

accurate enough for β reconstruction. The discrepancy between
the two on large scales is again owing to the cosmic variance in
the L600 sample.

Figure 4(a) shows β as a function of k measured from
the ratio of the monopole to the real-space power spectrum
P (0/r) = P0/P

(r). Small-scale values obtained from the dark
matter particles and small-mass halos are suppressed by the
random peculiar velocities, while those from the LRGs and
massive halos go up on such scales as a result of the finite size
of halos, as described in Section 2.2. One can see that, for the
most massive halos (M ∼ 1014 h−1 M�) and LRGs, the ratio
P (0/r) reconstructs the β values predicted by linear theory at
k < 0.08 h Mpc−1. This means that linear theory is accurate
enough to predict and constrain β using such massive halos.
On the other hand, the smaller halos we focus on, the more
prominent scale dependence of β we find even on large scales.
This behavior of β from the smaller mass halos is consistent with
that obtained by Tinker et al. (2006). They used mock galaxies
assigned to the halos by the HOD parameters applied to the
SDSS MAIN galaxies (Zehavi et al. 2005) which preferentially
reside in halos with small mass. Thus, the behavior seen by
Tinker et al. (2006) is found to be caused by the contribution
from smaller halos. Note that here we used the real-space power
spectrum measured from the simulations. It is not a direct
observable and translation of the power spectrum from redshift
space to real space usually draws the additional error.

Figure 4(b) is the same as Figure 4(a), but the β values
are measured as a function of separation r computed from the
ratio of the redshift-space and real-space correlation functions
ξ (0/r) = ξ0/ξ

(r). The slight difference of the linear theory
prediction between Fourier and configuration space is due to
the difference of the best-fit parameters for the biasing seen in
Figure 3. The scale dependence of the reconstructed β found by
using ξ (0/r) is more prominent than that by using P (0/r). Even
the result obtained from the LRGs is monotonically increasing,
intersects with the prediction from linear theory, and does not
draw closer to a constant on all scales probed. A similar behavior
has also been found for dark matter by Cabré & Gaztañaga
(2009) up to 40 h−1 Mpc (see also the red line in Figure 4(b)),
but the tendency is much more significant for dark matter
halos, even for those with b ∼ 1. Constraints on β are usually
given under the assumption of one constant parameter over a
scale range for which the χ2 statistics is computed. However,
according to Figure 4(b), it could be a coincidence that one
gets the true value of β as a best-fit parameter. Thus, one
should be cautious when the deviation from general relativity
is investigated through the measurement of β from the ratio
ξ0/ξ

(r).
In measuring β from the quadrupole-to-monopole ratio in

Fourier space P (2/0) = P2/P0, one needs to measure P (s)(k, μ)
in finite bins, usually constant separations in μ, and numerically
integrate it along the μ direction. Hence, the finite bin size
may cause a systematic error in the measurement of β. Using
linear theory, we test the accuracy of the integration between
constant μ and constant θ = cos−1 μ binnings. We found that
constant μ binning underestimates β by 2.5%, while constant
θ binning overestimates by 1.3% for 10 bins. We thus adopt
the constant θ binning and take the number of bin to be 10
between 0◦ � θ � 90◦. Figure 4(c) shows β measured from the
quadrupole-to-monopole moments P (2/0). This quantity can be
directly measured in observation. We put artificial large-scale
cuts in β values measured from the L600 samples because they
have limited number of modes and thus are strongly affected

by the cosmic variance. We can see this by the difference
between the green and gray lines because they have a similar
halo mass. On the other hand, we did not use such strong scale
cuts in Figure 4(a) because the effect of the cosmic variance
can be eliminated to some extent by taking the ratio of two
power spectra (McDonald & Seljak 2009). In Fourier space, the
behavior of β measured from P (2/0) is almost the same as that
from P (0/r) except for the magnitude of the error bars owing to
the cosmic variance.

Finally, we show β values measured from the quadrupole-
to-monopole ratio in configuration space ξ (2/0) = ξ2/ξ0 in
Figure 4(d). In measuring the quadrupole moment by Equa-
tion (8), we adopt the binning on a polar grid of logarithmic
spacing in r and linear spacing in angle, then numerically inte-
grate the correlation function at each r, as was done by Tinker
et al. (2006). On small scales, the behavior of β thus determined
is complicated. For small halos, the results give lower β values
than those from linear theory prediction, which may be caused
by the random peculiar velocities and thus might be correctable
to some extent (see Hawkins et al. 2003; Tinker et al. 2006).
However, note that peculiar velocities predicted from a simple
halo model (Yang et al. 2003) have very different luminosity
dependence with those from observations (Jing & Börner 2004;
Li et al. 2006; see also Slosar et al. 2006). For the massive
halos, the β values on small scales are larger than the linear
theory prediction, which might indicate that these halos are ap-
proaching with each other. Interestingly, for the most massive
halos (1.0 × 1014 h−1 M�) and the LRG sample, we can simply
use linear theory and use the data points on scales larger than
∼25 h−1 Mpc in order to constrain the growth rate. For galaxies
within the halos with the mass ∼1.4×1013 h−1 M�, the β value
is coincidently a constant, but it is lower than the linear theory
prediction. If we use a population of such galaxies, we would
underestimate the growth factor. Finally, for galaxies within less
massive halos, the reconstructed β becomes a scale-dependent
function, and one has to be extremely careful in extracting the
linear growth factor from the measurement of redshift-space
distortions of such galaxies.

4.2. Pairwise Velocity Dispersion

In order to see if random peculiar velocities can cause the
deviation from the linear theory prediction, we consider a simple
exponential model for the PVD in configuration space which
results in a Lorentz damping factor in Fourier space:

G(k, μk, σv) = (
1 + k2μ2

kσ
2
v

/
2
)−1

. (11)

The power spectrum of this dispersion model is expressed
as Equation (1) multiplied by G(k, μk, σv). Although more
accurate models have been developed by many authors, this
simple model is useful enough for our purpose. In Figure 5, we
show the predictions for the quadrupole-to-monopole ratio in
Fourier space P (2/0) from the dispersion model. In order to avoid
making the figure unclear, we show the results for only dark
matter particles, the most massive halos, and the smallest halos.
The overall shape of P (2/0) for dark matter is well explained
by the dispersion model with σv ∼ 600 km s−1, which has
already been found using more accurate models (e.g., Taruya
et al. 2010). However, the results for dark matter halos are much
more complicated. Here we adopt σv ∼ 450 km s−1 for the halos
according to Hamana et al. (2003). For small halos, not only the
deviation of the measurement from the linear theory prediction
but also its scale dependence cannot be corrected by the model.
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(A color version of this figure is available in the online journal.)

On the other hand, the behavior of β reconstructed for massive
halos is opposite to the dispersion model. These complex results
are somewhat expected because the halo peculiar velocities
change very mildly with their mass (Hamana et al. 2003).
Thus, the difference of the scale dependences of β among small
and large halos cannot be simultaneously explained with such
analytical models for the PVD. We note that the model of PVD
was adopted by Guzzo et al. (2008) to correct for the nonlinear
effect when they measure β at redshift 0.8.

4.3. Nonlinear Stochastic Biasing

In the derivation of Kaiser’s effect, the linear bias relation
between objects considered (galaxies or halos) and dark matter
was assumed. However, there could be considerable stochastic-
ity and nonlinearity in the bias relation between dark halos (or
galaxies) and dark matter (Dekel & Lahav 1999). We follow
the formalism proposed by Taruya & Suto (2000) and applied
to simulation data by Yoshikawa et al. (2001). We briefly sum-
marize some parameters defined by Taruya & Suto (2000) to
quantify the nonlinearity and stochasticity of the halo bias. First,
the density fields of dark matter and dark halos are evaluated
as δm(x, RS) and δ(x, RS), respectively, smoothed over the top-
hat window radius Rs. The bias parameter and the correlation
coefficient are, respectively, defined by

bvar ≡
√

〈δ2〉〈
δ2
m

〉 , rcorr ≡ 〈δδm〉√
〈δ2〉〈δ2

m

〉 . (12)

Note that the bias parameters defined in Section 2.2 are from the
two-point statistics, while the bias bvar defined here is from one-
point statistics. In order to quantify the nonlinear and stochastic
nature of the biasing separately, two more useful parameters are
introduced. For this purpose, let us define the conditional mean
of δ for a given δm,

δ̄(δm) =
∫

δP (δ|δm)dδ, (13)

where P (δ|δm) is the conditional probability distribution func-
tion. Then the nonlinearity of the biasing is quantified by

εnl ≡
〈
δ2
m

〉〈δ̄2〉
〈δ̄δm〉2

− 1, (14)

which vanished only when the biasing is linear. Similarly, the
stochasticity of the biasing is characterized by

εscatt ≡
〈
δ2
m

〉〈(δ − δ̄)2〉
〈δ̄δm〉2

, (15)

which vanishes for the deterministic bias where δ = δ̄(δm).
Following the same procedure of Yoshikawa et al. (2001), we

compute the parameters defined above for our halo catalogs in
real and redshift space. In order to minimize the Poisson noise
effect and fairly compare the results of different mass, only in
this section we keep each subsample of a given halo mass to
have the same number density, 1.16 × 10−4(h−1 Mpc)−3. This
density corresponds to Nhalo ≈ 2.5 × 104 for L600 samples and
Nhalo ≈ 2.0 × 105 for L1200 samples. We adopt the smoothing
scales Rs = 20 and 30 h−1 Mpc. Many pairs of the values
[δ(x), δm(x)] are obtained for randomly selected points x in the
simulation box.

In Figure 6, we show the joint distribution of δ with δm in real
space (left) and in redshift space (right). From top to bottom,
the results obtained from the smallest mass bin of the L600
samples (M = 1.9 × 1011 h−1 M�), the smallest mass bin of
the L1200 samples (M = 1.4 × 1012 h−1 M�), and the largest
mass bin of the L1200 samples (M > 2.9 × 1013 h−1 M�)
are plotted. In each panel, we also plot the conditional mean
relation δ̄(δm) as the solid line and the linear bias relation
δ = bvarδm as the dashed line, both of which are obtained from
our simulations. Here we focus on halo mass dependence of the
nonlinear stochastic biasing. The deviation of δ̄ from the linear
bias is caused by the nonlinear stochastic bias as well as the
halo exclusion effect (Yoshikawa et al. 2001; see also Smith
et al. 2007). The halo exclusion effect is alleviated in redshift
space due to the random velocities of halos, as we have seen in
Section 2.2. Despite the fact that this exclusion effect is more
significant for larger thus more massive halos, the deviation
from the linear relation for such halos is much smaller. This
indicates that more massive halos have the smaller nonlinearity
and stochasticity, and the latter was also found by Hamaus et al.
(2010) using a complementary statistics in real space.

In order to see these effects more quantitatively, we show
rcorr, εnl, and εscatt as functions of halo mass in Figure 7 from
top to bottom. The results for the parameter εnl show that the
nonlinearity of the halo biasing is smallest for the most massive
halos. It increases for smaller halos and gets close to a constant.
Similarly, the stochasticity parameter εscatt has the minimum
value for the most massive halos. At a whole mass range probed,
however, the stochastic bias monotonically increases toward
the lowest mass. Finally, the stochasticity of the smallest halos
becomes five times larger than that of the most massive halos.
Thus, both the nonlinearity and stochasticity of the halo biasing,
particularly the latter, is likely one of the cause for the systematic
deviation of β values from the theoretical prediction.

4.4. Halo Mass Dependence of Growth Rate Constraints

Because we also calculated the power spectra and correlation
functions for dark matter particles in the same samples as those
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Figure 6. Joint probability distributions of overdensity fields for dark halos with dark matter overdensity in real space (left panels) and in redshift space (right panels)
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(A color version of this figure is available in the online journal.)
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for dark matter halos and LRGs, we can directly reconstruct the
growth rate through

f (r) = b(r)β(r) =
[
ξ (r)(r)

ξ
(r)
m (r)

]1/2

β(r), (16)

f (k) = b(k)β(k) =
[
P (r)(k)

P
(r)
m (k)

]1/2

β(k). (17)

The difference between the use of β and f is just whether the bias
b is used as prediction or measurement. When f is used, however,

we can take into account the slight scale dependence of the bias
seen in Figure 2. Figure 8 shows the growth rate measured
from the four methods described above. The horizontal line
shows the input ΛCDM model predicted from general relativity
f = Ω0.55

m (z) (Linder 2005). We can also see that the linear
redshift distortions for the LRGs reconstruct the true value of f
well, except for that from ξ (0/r).

Here let us discuss which method can be used to obtain the
growth factor f better. Figure 9 shows the comparison among the
four methods for the measurement of f from the LRG clustering.
As we have seen above, we find strong scale dependence of the
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growth factor obtained from ξ (0/r). On the other hand, both
of the methods in Fourier space, P (0/r) and P (2/0), and the
estimator ξ (2/0) in configuration space, can give good estimation
of β in linear theory on scales λ ≡ π/k > 30 h−1 Mpc or
r > 30 h−1 Mpc.

5. CONCLUSION

We have investigated how accurately the redshift-space dis-
tortions can be used to measure the linear growth factor f. The

growth factor is a powerful observable targeted by future large
redshift surveys to probe dark energy and to distinguish among
different gravity theories. For this purpose, we constructed a
large set of N-body simulations, dividing each dark matter halo
catalog into the subsamples with narrow mass ranges. As an
example of a galaxy sample, mock SDSS LRG catalogs were
constructed by applying the HOD modeling to the simulated
halos. Then we have measured the two-point statistics, power
spectra, and correlation functions for dark matter halos and
LRGs. The dark matter halos were analyzed as a function of
halo mass in order to see the dependence of the β measurement
on the halo mass.

We have determined the β values as a function of halo
mass and scale using four methods. First, we found that β
reconstructed from the ratio of the monopole to the real-space
power spectra P (0/r) = P (s)/P (r) (Equation (5)) asymptotically
approaches the true value. In particular, for the massive halos
and LRGs, the prediction from linear theory known as Kaiser’s
formula is applicable to give a correct constraint on the growth
rate. However, for less massive halos, the ratio approaches
the true value only at a very large scale k < 0.02 h Mpc−1.
Second, β reconstructed from the ratio of the monopole to the
real-space correlation function ξ (0/r) = ξ (s)/ξ (r) (Equation (9))
approaches neither the true value nor a constant even on large
scales. This statement is valid especially for small halos with the
bias parameter b � 1. Because the growth rate is assumed to be
a constant when modified gravity theories are tested, the ratio
ξ (s)/ξ (r) cannot be used in a simple way for this purpose. Third,
the quadrupole-to-monopole ratio in Fourier space P (2/0) =
P2/P0 (Equation (6)) gives almost the same value of β as P (0/r)

9



The Astrophysical Journal, 726:5 (11pp), 2011 January 1 Okumura & Jing

but with larger error bars as expected. Finally, we found that
when the quadrupole-to-monopole ratio in configuration space
ξ (2/0) = ξ2/ξ0 (Equation (10)) is used, a similar conclusion is
reached to that of P (2/0) when r = λ = π/k is adopted.

For small halos with b � 1.3, the reconstructed β values
do not approach a constant in most of the measurable regions,
particularly those from ξ (0/r) in the configuration space. No
method can provide a reliable estimator for the determination
of the growth factor from the clustering of such small halos
on the large range of scales probed. Using the halo catalogs
with different box sizes, we confirmed that such a behavior is
not caused by the resolution effect of small dark matter halos.
While the scale dependence changes with the halo mass, the
peculiar velocity of halos does not change much with the mass
(Hamana et al. 2003). Using the simple dispersion model, we
demonstrated that the different scale dependence of β among
small and large halos cannot be simultaneously explained. There
are also two types of velocity biases which affect the redshift
distortion: the dynamical bias caused by dynamical friction and
the spatial bias caused by the difference between the distribution
of halos and that of dark matter. There is no dynamical velocity
bias because the halo velocities are determined from the mean
velocities of dark matter within the halos in our analysis. The
spatial velocity bias should exist, which is coupled with the
nonlinear stochastic bias discussed in the text.

On the other hand, it is known that the clustering of small
dark matter halos depends not only on their mass but also
on their assembly history, the so called assembly bias (e.g.,
Gao et al. 2005). Wang et al. (2007) showed that old and
low-mass halos that are preferentially associated with a high
density field are more strongly clustered than young halos
with the same mass, and consequently have higher velocities.
Besides, the stochasticity between halos and dark matter (Dekel
& Lahav 1999) can be a source of systematic errors in the β
reconstruction. Using the method introduced by Taruya & Suto
(2000) and applied to simulation data by Yoshikawa et al. (2001),
we have found that both the nonlinearity and the stochasticity
of small halos become larger than massive halos. Particularly,
the stochastic bias monotonically increases as the mass of halos
decreases, as was found in real space by Hamaus et al. (2010)
using the two-point statistics. Thus, the strong scale dependence
of β for low-mass halos could be caused by the assembly and/
or nonlinear stochastic bias. However, fortunately, the scale
dependence of the measured β weakens with the increase of
halo mass. For massive halos with b > 1.5, the measured β
approaches the constant predicted by Kaiser’s formula on scales
k < 0.08 h Mpc−1 or r > 30 h−1 Mpc.

Because the analysis of redshift-space distortions is powerful
to investigate not only the properties of dark energy but also
modified gravity theories, it will keep on playing a key role in
ongoing and upcoming large redshift surveys, such as BOSS,
FMOS, HETDEX, WiggleZ, and BigBOSS. Galaxies targeted
by the BOSS survey are LRGs, which reside in massive halos.
In this work, we demonstrate that the β value can be well
reconstructed with a redshift distortion analysis of LRGs. On
the other hand, one of the samples targeted by the BigBOSS,
for example, is that of emission-line galaxies, which reside in
halos with a broad range of halo mass. One needs to be careful in
using such a sample to constrain the growth rate from the redshift
distortion, because it can be a scale-dependent function. While
one might be able to obtain a result consistent (or inconsistent)
with the prediction from general relativity, it could be just a
coincidence after the scale-dependent growth rate is averaged

over some separation or wavenumber ranges. We will use semi-
analytical modeling or a halo occupation model to investigate
this issue in future work.

Recently, an interesting method was proposed by Seljak et al.
(2009) to suppress the shot noise in power spectrum measure-
ment. They considered an optimal weighting function f (M)
in measuring the galaxy overdensity, where they give higher
weights on higher mass halos. Compared with our results pre-
sented here, such a mass weighting scheme is useful not only
for suppressing the shot noise but also obtaining the true value
of the growth rate. This scheme can be naturally incorporated
into our method and such a study will be presented in our
future paper. Another theoretical improvement to be applied
to observation is evading the cosmic variance limit, which is
one of the most important tasks for precise measurement of
the redshift-space distortions, as we have already seen above.
McDonald & Seljak (2009) showed that using multiple trac-
ers of density with different biases suppresses the noise for the
measurement of β on large scales dramatically compared to
the traditional single-tracer method (see also White et al. 2009;
Gil-Marı́n et al. 2010). But the different scale-dependent proper-
ties of β for different halo masses found in Figure 4 imply that
the real situation might be more complex, and realistic mod-
els of galaxies must be adopted to investigate if the method of
multiple tracers works.

We thank Uroš Seljak and Vincent Desjacques for fruit-
ful discussions and Issa Kayo for useful comments. We also
thank the anonymous referee for many useful suggestions. This
research in Seoul was supported by the WCU (World Class
University) program through the National Research Founda-
tion of Korea funded by the Ministry of Education, Science
and Technology (R32-2009-000-10130-0), and the research in
Shanghai was supported by NSFC (10821302, 10878001), by
the Knowledge Innovation Program of CAS (KJCX2-YW-T05),
by 973 Program (2007CB815402), and by the CAS/SAFEA
International Partnership Program for Creative Research Teams
(KJCX2-YW-T23).

REFERENCES

Amendola, L., Quercellini, C., & Giallongo, E. 2005, MNRAS, 357, 429
Berlind, A. A., Narayanan, V. K., & Weinberg, D. H. 2001, MNRAS, 549, 688
Berlind, A. A., & Weinberg, D. H. 2002, ApJ, 575, 587
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