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ABSTRACT

The detection of high contrast companions at small angular separation appears feasible in conventional direct
images using the self-calibration properties of interferometric observable quantities. The friendly notion of closure
phase, which is key to the recent observational successes of non-redundant aperture masking interferometry
used with adaptive optics, appears to be one example of a wide family of observable quantities that are not
contaminated by phase noise. In the high-Strehl regime, soon to be available thanks to the coming generation of
extreme adaptive optics systems on ground-based telescopes, and already available from space, closure phase like
information can be extracted from any direct image, even taken with a redundant aperture. These new phase-noise
immune observable quantities, called kernel phases, are determined a priori from the knowledge of the geometry
of the pupil only. Re-analysis of archive data acquired with the Hubble Space Telescope NICMOS instrument
using this new kernel-phase algorithm demonstrates the power of the method as it clearly detects and locates
with milliarcsecond precision a known companion to a star at angular separation less than the diffraction limit.
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1. PHASE IN THE FOURIER PLANE

Only two parameters essentially determine whether a source
is detectable during an observation: its brightness at the wave-
length λ of interest and the angular resolution necessary to
separate the source or feature from its direct environment. The
angular resolution is ultimately constrained by the diffraction of
the telescope, and astronomers usually follow the rule of thumb
known as the Rayleigh criterion, stating that to be resolved,
two sources need to be separated by 1.22λ/D, where D is the
diameter of the telescope used, to design their observations.

The development of optical interferometry has however
made this criterion obsolete: thanks to the exquisite level of
calibration it permits, interferometry indeed makes it possible
to detect sources or constrain the extent of features around
objects at separations significantly smaller than the diffraction
limit. Even at the scale of one single telescope, the results
obtained with the technique known as non-redundant masking
(NRM) interferometry, first, seeing-limited (Haniff et al. 1987;
Readhead et al. 1988) and more recently used with adaptive
optics (AO) systems (Tuthill et al. 2000, 2006; Lloyd et al. 2006;
Ireland et al. 2008; Kraus et al. 2008; Martinache et al. 2009)
demonstrate the relevance of this technique for the detection
of structures at small angular separation, that would not be
accessible from conventional AO images (Rajagopal et al. 2004).

Even if it only uses one single telescope in order to reach
this level of resolution, one however needs to accept that the
familiar product called “image” may not necessarily constitute
the best final data product. Instead, when interested in high-
angular resolution properties of partially resolved objects, it
is convenient to derive information not from the image itself,
but from its Fourier-transform counterpart. This information,
known as complex visibility, is extracted from the Fourier plane,
calibrated and then tested against a model of the observed object.

In optical interferometry, this approach is often mandatory:
the paucity of apertures (N ∼ 2–5) and baselines make the con-
tent of a direct (Fizeau) image of limited value. Information-
rich images can be reconstructed after extraction of the com-
plex visibility function from the (u, v)-plane, but only with a

large (N > 10) number of apertures as in radio interferome-
try, or after using image synthesis. The optical image recon-
struction known as pupil densification that is used in hypertele-
scopes (Labeyrie 1996) does provide an alternative, but again,
only becomes compelling if a large number of apertures are
used (Labeyrie et al. 2008). But even when an image can be
reconstructed from optical interferometry measurements, e.g.,
the images of the binary Capella by Baldwin et al. (1996),
the intensity map of the surface of Altair by Monnier et al.
(2007) or the spectacular images of the disk eclipsing ε Aurigae
(Kloppenborg et al. 2010), quantitative characteristics of the
sources can only be deduced from the fit of the interferometric
data by parametric models. In the case of a marginally resolved
binary star, precise measurements of angular separation, ori-
entation and contrast, with confidence intervals, deduced from
a model fit of complex visibilities carry much more scientific
value than an image of “blurry blobs.”

Visibilities in the Fourier plane are complex numbers, whose
amplitude and phase are usually considered separately. This
paper focuses on the treatment of the phase and ignores the
amplitude. In general, the power contained at given spatial
frequency is the result of the coherent sum of R random phasors,
with R being a scalar coding the redundancy of the spatial
frequency. In the presence of residual optical path differences
(OPDs), this coherent sum of R random phasors loses the phase
information and results in the formation of speckles in seeing-
limited images with a visible/IR telescope. NRM interferometry
solves this problem, by discarding light with a pupil mask
designed so that each baseline is unique (R = 1), which makes
the extraction of the phase possible.

The phases alone, being corrupted by residual OPDs, are
of restricted interest. It is however possible to combine them
to form what is known as closure phase (Jennison 1958), that
is the sum of three phases measured by baselines forming a
closed triangle. This remarkable interferometric quantity (cf.
the introduction to closure phase by Monnier 2000) exhibits
a compelling property: it rejects all residual pupil-plane phase
errors. Moreover, because it is determined from the analysis of
the final science detector and not on a separate arm wavefront
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sensor, it is also immune to non-common path errors between
the wavefront sensor and the science camera.

Once extracted and calibrated, the closure phases can then
be compared to a parametric model, for instance of a binary
star, to confirm or infirm the presence of a companion around
a given source, while uncertainties provide contrast detection
(i.e., sensitivity) limits. This approach was successfully used
by Lloyd et al. (2006), Martinache et al. (2007), Ireland et al.
(2008), Kraus et al. (2008), and Martinache et al. (2009), who
typically report sensitivity of 5–6 mag in the near-infrared at
separations ranging from 0.5 to 4 λ/D.

This paper aims at generalizing the notion of closure phase,
and shows that closure phase like quantities, i.e., sharing the
same property of independence to pupil-plane phase errors, can
be constructed even in the case of redundant apertures.

2. KERNEL PHASE

2.1. Linear Model

Whether contiguous (i.e., single dish) or not (i.e., interfero-
metric), the two-dimensional pupil of an imaging system can be
discretized into a finite collection of N elementary sub-apertures.
One of these elementary sub-apertures taken as zero-phase refer-
ence, the pupil-plane phase of a coherent point-like light source
can be written as an (N −1)-component vector ϕ. Given that the
image, or interferogram, of this source is sufficiently sampled,
then in the Fourier plane (a.k.a. (u, v)-plane in interferometry)
one will be able to sample up to M phases, where M is a function
of the pupil geometry only. For a non-redundant array made of N
elementary sub-apertures, the number of sampled (u, v) phases
is maximum M = (N2 ). The same number of sub-apertures orga-
nized in a redundant array, for instance following a regular grid,
produces significantly less distinct (u, v) sample points as each
point receives the contribution of several pairs of sub-apertures.

In most cases, since each point receives the sum of several
random phasors, both phase and amplitude are lost and cannot
be simply retrieved: this results in the formation of speckles.
However, if the Strehl is high enough, the complex amplitude
associated with the instrumental phase in one point of the pupil,
ϕk , can be approximated by eiϕk ≈ 1 + iϕk . Direct application
of the approach is therefore for now restricted to space-borne
diffraction-limited optical and mid-IR telescopes like HST (cf.
Section 3), but should also prove relevant to the upcoming
generation of extreme AO systems.

Given that the proposed approximation holds, while observ-
ing a point source, the unknown (instrumental) phase distribu-
tion in the pupil ϕ can be related to the phases Φ measured in
the Fourier plane with a single linear operator. To build an intu-
itive understanding of this relation, let us consider the following
scenarios.

1. If the phase is constant across the entire pupil, then none
of the baselines formed by any pair of elementary sub-
apertures does record a phase difference, and the phase in
the Fourier plane is zero everywhere.

2. If a phase offset δφ is added to one single sub-aperture,
then each baseline involving this aperture records a phase
difference, which is exactly ±δφ . Figure 1 represents several
such scenarios.

3. If the pupil-plane phase vector ϕ is completely random,
each of the M samples in the Fourier plane is then the
average of R phase differences on the pupil, where R is the
redundancy of the considered baseline.
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Figure 1. Iterative process for the determination of the transfer matrix A. The top
row shows the sub-aperture of the full two-dimensional pupil (circular aperture
with 30% central obscuration), where a phase offset is applied (three cases are
represented). The bottom row shows the resulting distribution of phase in the
Fourier plane. The overlaid dashed-line circle in the bottom row marks the cutoff
spatial frequency of the transfer function.

To reproduce this behavior, the following linear model will
be used:

Φ = R−1 · A · ϕ, (1)

where Φ represents the M-component Fourier plane phase
vector, R an M × M diagonal matrix whose diagonal elements
code the redundancy of the baselines, and A represents an
M × (N − 1) transfer matrix, whose properties form the core of
the discussion of this work. To be complete, the model should
also include the phase information intrinsic to the observed
source, represented by the term ΦO that simply adds on top of
the instrumental phase. One can then multiply both sides of the
equation by the matrix R so that it becomes

R · Φ = A · ϕ + R · ΦO. (2)

While R and A could have been merged into one single
operator, they are intentionally kept distinct. The rationale for
this choice is so that the left-hand side of Equation (2), i.e.,
the measurements, can be acquired by reading directly the
imaginary part of the complex visibility. Given that the next
(quadratic) term in the Taylor expansion of eiϕ being real, this
makes the approximation valid to the third order in phase. This
also makes A of striking aspect as it is then exclusively filled
with values 0, 1, or −1.

If the matrix A were invertible, then the analysis of one
unique focal plane image of a single star (case corresponding to
Equation (1)) would be sufficient to determine the instrumental
phase ϕ as seen from the detector, and drive an AO system and/
or delay lines. Except for the special case of a non-redundant
aperture, the problem is however known to be degenerate,
despite the larger number of measures than unknowns (M >
N − 1).1

As demonstrated by the successes of NRM interferometry,
a complete characterization of the wavefront is not essential if
one can determine observable quantities that are pupil-phase
independent. The closure relations used in interferometry can
be related to the operator A: these relations are simply linear
combinations (modelized by an operator K) of rows of A that

1 The use of this model for wavefront sensing purposes will be the object of
another paper.
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produce 0, forming something known as the left null space
of A:

K · A = 0. (3)

For a non-redundant array, each closure relation will fill a row of
K with mostly zeroes, except in three positions corresponding
to the baselines forming a closing triangle, that will contain 1
or −1. These relations are however not the only possible ones,
and less trivial combinations, involving more than three rows
at a time, can be constructed. The total number of independent
relations however remains unchanged and is only imposed by
the geometry of the array.

Although not impossible, finding the operator K “by hand”
(i.e., finding a basis for the left null space of A) for a redundant
aperture is a tedious task, as the matrix A can get quite large.
A very efficient way to do this is to calculate the singular value
decomposition (SVD) of AT . The SVD algorithm (Press et al.
2002) allows us to decompose the now (N − 1) × M matrix AT

as the product of an (N − 1) × M column-orthogonal matrix U,
an M × M diagonal matrix W with positive or zero elements
(the so-called singular values), and the transpose of an M × M
orthogonal matrix V:

AT = U · W · VT . (4)

One relevant property of the SVD is that it explicitly constructs
orthonormal bases for both the null space and the range of the
matrix AT . Of particular interest here are the columns of V that
correspond to singular values equal to zero: these vectors form
an orthonormal base for the null space, also referred to as Kernel
of AT , that is exactly what is needed to fill in the rows of K.

If the observed target is not perfectly symmetric, and exhibits
actual phase information (i.e., ΦO �= 0, see for instance Monnier
2000), Equation (2) is required. Multiplying it with the left side
operator K leads to a new series of new phase-like quantities
that are not contaminated by instrumental phase, generalizing
the notion of closure phase (Baldwin et al. 1986) on which NRM
interferometry from the ground (Tuthill et al. 2000) and from
space (Sivaramakrishnan et al. 2009) entirely rely.

While not as immediately tangible as the notion of closure
phase, this proposed generalization, hereafter referred to as
kernel phase (or Ker-phase) since it relates to the kernel of the
matrix AT , exhibits a unique advantage over the classical closure
phase: it is not restricted to non-redundant apertures and makes
it possible to extract phase-residual immune information from
images acquired from telescopes of arbitrary pupil geometry.

This has some obvious advantages over the restrictive non-
redundant case:

1. Throughput: non-redundant aperture masks exhibit a typi-
cal 5%–15% throughput (Martinache et al. 2007), and pho-
ton noise of the companion one tries to detect may be the
dominant source of noise. Given that it benefits from the
same phase-noise canceling properties as closure phase, for
a given readout noise and exposure time, kernel phase on an
unmasked aperture offers an immediate boost in sensitivity
(or dynamic range) on faint sources.

2. Number of observable quantities: a common non-redundant
aperture mask design exhibits nine sub-apertures, therefore
forming (9

2) = 36 baselines and (8
2) = 28 independent

closure phases (Monnier 2000). More independent kernel
phases can be extracted from the Fourier transform of a full-
aperture image, which will provide a better characterization
of the target.

Another incidental advantage is that, being a product of the
SVD, all the kernel-phase relations contained in K form an
orthonormal basis, and therefore do not introduce correlation
in the data. A consequence is that manipulating Ker-phases
does not require keeping track of the covariance matrix used for
closure phases in masking interferometry, which simplifies their
interpretation.

2.2. Calibration

In discretizing the pupil into a finite number of sub-apertures,
one important assumption is made: the phase (or more gener-
ally, the complex amplitude of the electric field) is assumed to
be uniform within each sub-aperture. Yet even for a space-borne
telescope, in the absence of atmosphere, this is only an ideal-
ization as small-scale structures, like polishing imperfections of
the primary mirror for instance, will impact, to some extent, the
value of the Ker-phases. This issue is not proper to Ker-phases
and also affects closure phases. Thus, unless perfect (i.e., single
mode) spatial filtering is performed within each sub-aperture of
a non-redundant array, the closure phase on a point source is not
exactly be zero.

This effect can somewhat be mitigated by subtracting from the
Ker-phases of a science target, the Ker-phase signal measured
on a point source observed in identical conditions. NRM
interferometry results reported in Martinache et al. (2009),
for instance, make extensive use of this kind of calibration:
from the ground, this approach is very powerful as it makes it
possible to calibrate other sources of systematic errors like the
effect of broadband filters which smear out the Fourier plane
and differential atmospheric refraction. From space, this may
not be as essential depending on the science goal: if the Ker-
phases obtained on a binary system are non-calibrated, then they
will simply contain a systematic error term that will limit the
achievable contrast.

3. KERNEL-PHASE ANALYSIS OF HST/NICMOS DATA

While the kernel-phase approach may prove difficult to ap-
ply to ground-based observations until extreme AO become
available, it can readily be applied to diffraction-limited ob-
servations made from space. It is tested here on a series of
non-coronagraphic narrowband images acquired with the Near-
Infrared Camera and Multiobject Spectrometer (NICMOS) on-
board the Hubble Space Telescope. Two data sets acquired with
the NICMOS1 in the F190N filter on two distinct objects are
used: the first target is a calibration star, SAO 179809, which
was observed in 1998; the second is the high-proper motion star
GJ 164, around which a companion was astrometrically dis-
covered and whose existence was confirmed after point-spread
function (PSF) modelization and subtraction of these NICMOS1
images by Pravdo et al. (2004). This latter target is an ideal
benchmark: given its expected <10:1 luminosity contrast, one
should expect a strong, unambiguous Ker-phase signal.

Moreover, ground-based infrared aperture masking interfer-
ometry measurements reported by Martinache et al. (2009) com-
bined with the astrometry have led to strong constraints on the
orbit of the companion around the primary. The location of
GJ164 B measured from the Ker-phase analysis of the data can
be compared to the orbit prediction.

Figure 2 shows the model of the pupil used for this exercise.
The HST pupil exhibits a 30% central obscuration as well as 90◦
spider arms (actual dimensions were taken from the NICMOS1
configuration file in the TinyTim PSF simulation package for
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Figure 2. Model for the geometry of the HST/NICMOS pupil and location of
the sample points for the determination of the Ker-phase relations. The 156
sample points of the pupil fall on a regular square grid with a step of 1/16 of
a pupil diameter that do not intersect with the central obstruction or the spider
arms.

HST). The phase across the pupil is discretized into a 156
elementary sub-aperture array, whose locations fall on a regular
square grid of step of 1/16 of the outer pupil diameter. The phase
sample is assembled into a 155-component (N − 1) vector ϕ.

These 156 pupil phase samples map in the (u, v)-plane onto
a square grid of 366 distinct elements.2 The resulting (u, v)-
sampling is illustrated in Figure 3. For this analysis, A (cf.
Equation (1)) is therefore a 155 × 366 rectangular matrix,
whose SVD reveals that 78 singular values are non-zero, leaving
366 − 78 = 288 Ker-phase relations.

The GJ164 data consist of a total of 80 frames, acquired at
average Julian Date 2453049.3 (2004 February 14 UT). Each
image is a non-saturated 32 s exposure, and the target was
acquired in a total of 10 distinct dither positions. Note that this

2 Note for reference that a non-redundant array of 156 sub-apertures would
produce exactly 12,090 distinct (u, v) points.

data set does not include images on a point source and therefore,
the Ker-phases calculated from this data set are non-calibrated.
Images corresponding to one dither position were simply co-
added forming a final total of ten 250 s exposure images, and
assembled into a data cube. The SAO 179809 data consist of
four distinct 20 s exposure frames assembled into a separate
data cube.

For both data cubes, the images were then centered with sub-
pixel accuracy and windowed by a super-Gaussian function as
described by Kraus et al. (2008) to limit sensitivity to readout
noise. The window size is about 25λ/D in diameter, which is
significantly larger than the field of view in which this technique
is relevant.

After this preparatory stage, the images are simply Fourier-
transformed (cf. second panel of Figure 3), and the signal
R · Φ is directly measured for each of the 366 (u, v) points
by sampling the imaginary part of the local complex visibility.
The uncertainty associated with the measurement of each phase
is estimated from the dispersion of the signal in the direct
neighborhood of the (u, v) point.

The (u, v) signals are then assembled into Ker-phases using
the relations gathered in the rows of K and uncertainties are
propagated. The procedure is repeated for each of the frames
within each data cube. The final retained series of 288 Ker-
phases is the weighted average for all frames.

Because the Ker-phase relations are designed to produce
quantities independent from pupil phase errors, a point source
is expected to exhibit zero signal within uncertainty. Despite
the small number of statistics (four frames acquired on SAO
179809), the Ker-phase of the calibrator do average to zero (with
a 19.◦7 standard deviation), while the binary exhibits a large
signal amplitude (>100◦) in comparison with the uncertainty
of individual Ker-phases (∼2◦). The third panel of Figure 3
compares the Ker-phase histograms of both data sets.

To further investigate the GJ 164 data, a parametric model
of the (u, v)-plane phase ΦO for a binary star is needed. The
parameters are the angular separation, the position angle of the
secondary relative to the primary, and the luminosity contrast
ratio. The model phase ΦO is then multiplied by the diagonal
matrix R, and finally, transformed into model Ker-phases using
the relations established during the SVD.

The agreement between the data and the model is very good
(cf. panel 4 of Figure 3), considering the large number of
measurements (288) adjusted by only three parameters. The
uncertainties on the Ker-phases, determined from the scatter of
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Figure 3. From left to right: example of a narrowband (F190N ) NICMOS1 image used for this work, visualized with a nonlinear brightness scale; the Fourier
transform of this image. The 366 sample points for the phase in the Fourier domain are overlaid; a comparison of histograms of the 288 Ker-phases calculated using
the relations identified in Section 2.1. By design, the Ker-phases calculated from images of a single star are expected to be zero within uncertainty: the corresponding
histogram (gray curve) confirms this expectation. In comparison, the Ker-phase histogram of the binary (dark curve) appears significantly larger. The same GJ164
Ker-phases plotted against the model of a binary star that best fits the data convince of the presence of a companion in the data.
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Figure 4. To determine confidence intervals for the parameters of the binary, a
likelihood analysis comparable to the one presented by for closure phase was
performed. These panels show the three projections of the likelihood function
in the region of best fit. Except for the expected correlation between angular
separation and contrast ratio for a detection within 1 λ/D, the solution is
unambiguous and well constrained, demonstrating the elegance of the Ker-
phase approach.

the data however, lead to a best-fit reduced χ2 larger than 1.
A global error term (10◦) is then added in quadrature to
the uncertainty to account for a systematic error in the non-
calibrated Ker-phase and produce a final reduced χ2 = 1.

One can then proceed with determining the uncertainty
on the parameters of the model fit, by close examination of
the likelihood function, very much like what is described in
Martinache et al. (2009). The three panels of Figure 4 show the

NICMOS data contrast detection limits
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Figure 5. Level of confidence in the detection of a companion from the
analysis of the HST/NICMOS data with the Ker-phase algorithm. A darker
color indicates a region of lower confidence level. Three levels are highlighted:
the 90%, 99%, and 99.9% confidence levels. At angular separation 0.5 λ/D

(i.e., 80 mas at λ = 1.9 μm), a contrast limit better than 50:1 is possible at the
99% confidence level.

Table 1
Ker-Phase Detection of GJ164B in Nicmos Data Compared

to Prediction from Orbital Parameters

Parameter Ker-phase fit Prediction

Separation (mas) 88.5 ± 3.6 88.2
P.A. (deg) 100.6 ± 0.3 100.4
Contrast 9.1 ± 1.2

evolution of this function in the parameter space region near
the best solution. Just like with closure phase data, at angular
separations less than 1 λ/D, contrast and separation appear to
be correlated.

The uncertainty on each parameter of the model fit is
determined after marginalization of the likelihood function over
the other two parameters. Despite the noted correlation, the
constraint on the parameters appears satisfactory, and the best fit
(cf. Table 1) lies well within 1σ of the position predicted from the
orbital parameters determined from NRM interferometry from
the ground. It also matches the location reported by Pravdo et al.
(2004), after subtraction of a simulated PSF from the same data,
only with a constraint on the position angle improved by a factor
of 10.

From its (H − K) color index, Martinache et al. (2009) were
able to conclude that GJ 164 B is of spectral type later than M8.5,
while the primary is well characterized as an M4.5 dwarf. One
of the most prominent spectral features for M dwarfs is the
broad absorption band of water at 1.8 μm, getting deeper with
later types (Jones et al. 1994; Leggett et al. 2001). The ∼5:1
contrast ratio quoted in the NRM paper was determined over
the full Ks filter (bandwidth 2.0–2.3 μm). A careful examina-
tion of the spectral sequence by (Jones et al. 1994) reveals
that for this combination of spectral types, the luminosity of
GJ 164B relative to GJ164A seen in the NICMOS F190N filter
is expected to drop by 30%–40% due to the water absorption
band. The 9:1 contrast determined from the Ker-phase model (cf.
Table 1) in this narrow filter reflects this evolution. The analysis
of this GJ164 data demonstrates the validity of the Ker-phase
approach, by positively detecting a companion whose existence
was known beforehand. This <10:1 contrast detection was how-
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ever expected to be easy, despite the small angular separation of
the detection (0.6 λ/D).

Typical NICMOS1 data sets on a given target usually consist
of four frames only. The SAO 179809 data set is then a
representative example and the statistics of its Ker phase (σ =
19.◦7) can be used in a Monte Carlo simulation to determine
contrast detection limits.

Because the sampling of the (u, v)-plane exhibits no gap, the
sensitivity does not depend on the position angle relative to the
central star. One can however expect it to be a function of angular
separation. A total of 10,000 simulations were performed per
point in the angular separation/contrast plane to produce the
sensitivity map displayed in Figure 5. The map highlights the
90%, 99%, and 99.9 % confidence level detection thresholds.

The technique looks promising: for such a data set, at
0.5 λ/D, a 50:1 contrast detection appears possible at the
99% confidence level. The sensitivity increases and peaks at
180 mas, which unsurprisingly corresponds to the location of the
first zero of the diffraction for the centrally obstructed telescope
(about 1.1 λ/D), and reaches ∼200:1.

4. CONCLUSION

Classical closure phase appears to be one special case of a
wider family of observable quantities that are immune to phase
noise and non-common path errors. In the high-Strehl regime, it
was demonstrated that closure phase like quantities, called Ker-
phases, can be extracted from focal plane images, and provide
high-quality “interferometric grade” information on a source,
even when the pupil is redundant. The Ker-phase technique
was successfully applied to a series of archive NICMOS im-
ages, clearly detecting a 10:1 contrast companion at a separa-
tion of 0.5λ/D. Non-calibrated Ker-phase appears sensitive to
the presence of 200:1 contrast companion at angular separa-
tion 1λ/D. Re-analysis of other comparable NICMOS data sets
with this technique might very well lead to the detection of pre-
viously undetected objects in the direct neighborhood of nearby
stars.

Unlike closure phases, which are extremely robust to large
wavefront errors, the use of Ker-phases is however for now
restricted to the high-Strehl regime, and will only become rel-
evant to ground-based observations when extreme AO systems
become available. There is nevertheless hope to be able to
extend the application of Ker-phases to not-so-well corrected
AO images, using additional differential techniques. One pos-
sibility, consists in using integral field spectroscopy to fol-
low in the Fourier plane the evolution of the complex visi-
bilities as a function of wavelength. With enough resolution
and spectral coverage, this indeed allows us to identify the
phasors contributing to the power contained at one spatial
frequency.

The SVD of the transfer matrix used to create Ker-phase
relations can also be used to produce a pseudoinverse to the
matrix, and in some cases, allows us to inverse the relation
linking the (u, v) phases to the pupil phases. This means that
under certain conditions, a single monochromatic focal plane
image can also be useful for wavefront sensing purposes. This
is particularly interesting since the measurement is happening
at the level of the final science detector, which therefore allows
us to calibrate non-common path errors. The application of the
formalism to wavefront sensing will be the object of a future
publication.
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