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ABSTRACT

In a thermally bistable medium, cold, dense gas is separated from warm, rarefied gas by thin phase transition
layers, or fronts, in which heating, radiative cooling, thermal conduction, and convection of material are balanced.
We calculate the steady-state structure of such fronts in the presence of magnetic fields, including the processes
of ion–neutral drift and ion–neutral frictional heating. We find that ambipolar diffusion efficiently transports the
magnetic field across the fronts, leading to a flat magnetic field strength profile. The thermal profiles of such fronts
are not significantly different from those of unmagnetized fronts. The near uniformity of the magnetic field strength
across a front is consistent with the flat field strength–gas density relation that is observed in diffuse interstellar gas.
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1. INTRODUCTION

The low- and intermediate-temperature parts of the interstel-
lar medium (ISM) constitute a thermally bistable medium that
results from the balance between radiative heating and cool-
ing as well as heating by cosmic rays (Field et al. 1969) and
photoelectric heating from polycyclic aromatic hydrocarbons
(PAHs; Wolfire et al. 1995), the dominant heating source. The
two stable phases are referred to as the cold neutral medium
(CNM), having TCNM ∼ 101−2 K, and the warm neutral medium
(WNM), with TWNM ∼ 103−4 K. The degree to which magnetic
fields are frozen into this interstellar gas is parameterized by the
magnetic Reynolds number, ReM, and the ambipolar Reynolds
number, ReAD (Zweibel & Brandenberg 1997). The magnetic
Reynolds number is given by the ratio of the Ohmic diffusion
time to the dynamical time, and for ISM parameters it is of
order 1015–1021. The ambipolar Reynolds number, given by the
ratio of the ion–neutral drift time to the dynamical time, is many
orders of magnitude smaller and may approach unity in dense
molecular gas. Based on these estimates, one would expect that
magnetic fields should be well coupled to both the ionized part
of the gas and to the neutrals for all but the most dense or low
column density clouds.

Under ideal magnetohydrodynamic (MHD) conditions, such
as those indicated above, one might expect a strong correlation
between magnetic field strength and density. If the relationship is
expressed as B ∝ ρχ and we ignore diffusion, for flows directed
transverse to the field we have χ = 1, whereas for field aligned
flows χ = 0. The median magnetic field strength in the CNM
has been measured at B ∼ 6 μG (Heiles & Troland 2005). If the
field was frozen in, we might expect to detect much smaller field
strengths in warmer, lower density gas, but instead it is found
that the field strength in other ISM components is similar to that
of the CNM. This was demonstrated by measurements of the
Zeeman effect over the density range 0.1 cm−3 < n < 100 cm−3

that yielded a flat magnetic field strength–gas density (B–ρ)
relation (Troland & Heiles 1986). The most obvious explanation
for this relation is that motions are aligned with the magnetic
field. However, this has been argued against in two ways. First,

in order for a magnetic field to collimate a flow in this manner,
it must dominate the turbulent energy density, but the field
strength is less than or equal to equipartition (Heitsch et al.
2004). Second, the accumulation length for the formation of
giant molecular clouds is of order a kiloparsec and may be
too large a scale over which to expect coherent flows (Mestel
1985). Thus, the flat B–ρ relation may be indicative of magnetic
diffusion.

Among the mechanisms that have been proposed to account
for the flat B–ρ relation in the diffuse ISM are turbulent am-
bipolar diffusion (Zweibel 2002; Heitsch et al. 2004), decorre-
lation due to MHD waves (Passot & Vázquez-Semadeni 2003),
and turbulent magnetic reconnection (e.g., Santos-Lima et al.
2010). These dynamical studies argued that ambipolar diffusion
alone was not sufficiently fast to transport magnetic flux over the
large scales under consideration and so invoked turbulence to en-
hance transport. However, a one-dimensional two-fluid dynami-
cal study of the thermal instability as a formation mechanism for
diffuse clouds showed ambipolar diffusion to efficiently trans-
port magnetic field such that the observed B–ρ relation could be
reproduced (Inoue et al. 2007). The work presented here com-
plements those findings but is also a significant departure from
that and the other cited examples as we shall consider the actual
transitions from one phase to another. Our approach is advan-
tageous in that we control the diffusive processes and are not
hampered by numerical diffusion. The hydrodynamic structure
of CNM/WNM transitions has already been presented (Inoue
et al. 2006, hereafter IIK06), but the effects of a magnetic field
have not previously been studied. In the case of a magnetic field
orthogonal to a transition layer, the field has no effect on the
structure as it does not exert any force or modify thermal con-
duction in the direction of the temperature gradient, although
it has a large effect on stability (Stone & Zweibel 2009). In
this work, we consider the case of a magnetic field tangential
to a transition layer in a simple one-dimensional geometry and
include ion–neutral drift as the magnetic diffusion mechanism.

Our paper is organized as follows. In Section 2, we present our
numerical method for calculating the structure of a phase transi-
tion layer for a given initial density and magnetic field strength.
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Figure 1. Geometry of front and magnetic field. We seek a front solution
connecting the CNM with the WNM for the case of a uniform magnetic field
tangential to the front, BCNM = B(x)ẑ. The bulk velocity flow is in the x-
direction. The WNM quantities to the right of the front are to be solved for.

(A color version of this figure is available in the online journal.)

In Section 3, we discuss the effect of ambipolar drift heating
on the two-phase structure of the neutral ISM. In Section 4,
we show a selection of our ambipolar diffusion-mediated front
solutions and include a brief discussion of the flux-freezing ap-
proximation. In Section 5, we discuss the physical significance
of our results, and in Section 6, we summarize our findings.

2. METHOD

We consider the scenario of a phase transition layer, or
front, separating two uniform media of different densities and
temperatures in a simple one-dimensional geometry with x as
the direction of variation. A uniform magnetic field is tangential
to the front such that B = B(x)ẑ. The geometry is illustrated in
Figure 1. We assume a steady-state and ionization equilibrium
and work in the reference frame of the front. These assumptions
shall be justified in Section 5. In order to calculate the physical
structure of a front we consider six variables: pressure (p),
density (ρ), bulk velocity (v), plasma velocity (vp), magnetic
field strength (B), and temperature (T) that are described by the
following five equations, namely, the equation of state

p = RρT

μ
, (1)

the continuity equation

∂ρ

∂t
+

∂

∂x
ρv = 0, (2)

the momentum equation

∂ρv

∂t
+

∂

∂x

(
ρv2 + p +

B2

8π

)
= 0, (3)

the induction equation

∂B

∂t
= − ∂

∂x
(vpB), (4)

and the energy equation

γ

γ − 1

R

μ
ρ

dT

dt
− dp

dt
= ∂

∂x
κ

∂T

∂x
− ρL, (5)

where γ is the adiabatic index, R is the molar gas constant, μ is
the mean molecular weight, κ is the thermal conductivity, ρL is
the cooling function (which includes ambipolar drift heating),
and d/dt ≡ ∂/∂t +v ∂/∂x. In the approximation that the plasma
and neutral fluids are well coupled, and the neutral density
dominates, the plasma velocity may be written as the sum of
the drift velocity, vD = vi − vn, and center of mass velocity,
v ≈ vn, such that vp ≈ v + vD , where the drift velocity is given
by Shu (1983):

vD = J × B
cρiρnγAD

, (6)

with the drag coefficient for collisions between ions and neutrals
given by γAD = 〈σv〉in/(mi + mn) cm3 s−1 g−1, where 〈σv〉in =
2 × 10−9 cm3 s−1 (Draine et al. 1983).

Assuming a steady-state (and having already dropped the ŷ
and ẑ dimensions), integrating Equations (2), (3), and (5) with
respect to x yields the following conservation laws:

j ≡ ρv, (7)

MB ≡ ρv2 + p +
B2

8π
, (8)

γ

γ − 1

R

μ
j
dT

dx
− v

dp

dx
= ∂

∂x
κ

∂T

∂x
− ρL, (9)

where j is the mass flux and MB is the total energy density. To
solve Equation (9), we require expressions describing the evolu-
tion of the flow speed and magnetic field strength, including the
process of ambipolar diffusion. An equation for the flow speed
is obtained by taking the derivative of the total energy density,
Equation (8), to obtain

dv

dx
=

(
μv2B dB

dx
+ 4πRjv dT

dx

)
4πj (RT − μv2)

. (10)

An equation describing the magnetic field strength is derived
by substituting B = B(x)ẑ into Faraday’s law in one dimension
and using Equation (4) to yield

∂Bz

∂t
= −c

∂Ey

∂x
⇒ cEy = −(vp × B)y = vpxBz = constant.

(11)
Substituting the plasma velocity, with the drift velocity given

by Equation (6), into Equation (11) we obtain

vB − B2

4πρiρnγAD

dB

dx
= cE. (12)

This is a first-order ordinary differential equation (ODE) with
one parameter, cE. Mathematically, cE can take any value since
it is a constant of integration. However, we will argue at the end
of this section that physical considerations of the magnetic field
strength and ambipolar heating across a front serve to greatly
reduce the cE parameter space.

Equations (9), (10), and (12), and the definition z ≡ dT /dx
yield a system of four ODEs for T, B, and v that apply for any
functional form of conductivity and cooling function. In the gas
states studied here, conductivity is dominated by neutral atoms
such that κ = 2.5 × 103 T 1/2 erg s−1 K−1 cm−1 (Parker 1953).
The cooling function is written in full as

ρL = n[nΛ − (ΓPAH + ΓAD)]. (13)
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We take the simple functional forms used by IIK06 for Lyα
and [C ii] radiative cooling such that

Λ = 7.3 × 10−21 exp

(
−118, 400 K

T + 1500 K

)

+ 7.9 × 10−27 exp

(
−92 K

T

)
erg s−1 cm−3, (14)

and for photoelectric heating

ΓPAH = 2 × 10−26 erg s−1. (15)

Heating by ion–neutral friction is represented by ΓAD:

nΓAD = ρiρnγADv2
D = 1

ρiρnγAD

(
B

4π

dB

dx

)2

erg s−1 cm−3

(16)
(Scalo 1977; Padoan et al. 2000), where the density of

neutrals is given by ρn = μnmHn and the density of ions by
ρi = μimpne. We compute the ionization fraction using

ne

nH
=

(
1.19 × 10−4 − 1.36 × 10−8 T 0.845

nH

)

+

(
1.42 × 10−8 + 2.72 × 10−8 T 0.845

nH
+ 1.85 × 10−16 T 1.69

n2
H

)1/2

(17)

(Ferrière et al. 1988).
In solving this system, we choose initial values for the density

and magnetic field strength and impose the following boundary
conditions:

T (x = x1) = T1, T (x = x2) = T2, (18)

dT

dx

∣∣∣∣∣
x1,x2

= 0, (19)

where x1 and x2 represent the left- and right-hand boundaries,
respectively, and T1 and T2 satisfy thermal equilibrium at these
boundaries. T1 is found by solving Equation (13) for the chosen
initial value of the density at x1, and T2 is the temperature
obtained by integrating as far as x2, where the size of the domain
is chosen such that T2 will also satisfy thermal equilibrium. For
our third and fourth conditions, given by Equation (19), we
impose zero temperature gradient at both boundaries. Finally,
we set the value of the initial magnetic field strength gradient,
|dB/dx|x1 , as this controls the amount of ambipolar heating in
a given front model. As we will show in Section 4, the choice
of the initial field strength gradient affects the structure of the
front. Given that we set five boundary values but have a system
of only four ODEs, we thus set up an eigenvalue problem in
which the mass flux, j, is the parameter to be adjusted to find a
self-consistent solution.

The numerical method we employ is that of shooting, in
which the integration is performed with an initial guess for j, the
resulting boundary values compared to the desired conditions,
and j adjusted accordingly so that the integration can be
repeated as necessary until the right-hand boundary conditions
are satisfied to within some chosen tolerance. We find that the

degree to which thermal equilibrium is satisfied at the right-
hand boundary depends on the size of the domain, which should
be adjusted to achieve optimum results. For cases in which
ambipolar drift heating does not dominate, it is possible to
satisfy thermal equilibrium to better than one part in 105. We
use a fifth-order adaptive Runge–Kutta scheme (Press et al.
1992) and adjust the eigenvalue according to the secant method.
When appropriate bounds are chosen, our method converges to
a solution quickly, requiring of order 10 iterations. Note that we
always integrate from the cold medium to the warmer one.

We close this section with a brief discussion of the initial
magnetic field strength gradient boundary condition and the
parameter cE. In setting up our initial conditions, instead of
choosing the value of cE directly we instead set the initial value
of the magnetic field strength gradient, |dB/dx|x1 . This implies
the value of cE, which is kept constant across the domain, as
we may evaluate it by substituting our initial conditions into
Equation (12). Note that the value of cE will change with each
iteration of the shooting method because it depends on the bulk
velocity, which is adjusted according to the secant method.
For all density and magnetic field strength initial conditions,
there is some minimum value of cE below which the magnetic
field strength gradient is positive throughout the domain. The
outcome for choosing an initial field gradient that yields a value
of cE below this minimum would be a larger magnetic field
strength in the warm medium than in the colder one. However,
if one imagines an evaporating cool cloud with the assumption
of frozen-in magnetic field lines, this does not seem like a
physically reasonable scenario as the field lines will become
further apart as the cloud expands. Furthermore, if the value
of cE is too large, ambipolar drift heating may dominate over
photoelectric heating making it increasingly difficult to satisfy
thermal equilibrium at the far boundary, implying that a front
can no longer exist. We demonstrate quantitatively the effects
of |dB/dx|x1 , and hence cE, in Section 4, but do not refer to
cE explicitly in the rest of the paper.

3. EFFECTS OF AMBIPOLAR DRIFT HEATING ON
TWO-PHASE STRUCTURE

The two neutral phases of the ISM are enabled by the balance
of radiative cooling and heating by, in this work, photoelectric
heating and ion–neutral friction. We present the equilibrium
state of the cooling function, ρL (n, T) = 0, in Figure 2, with
ρL given by Equation (13). The solid line shows the case in
which there is no ambipolar drift heating, for which IIK06
report that a two-phase structure is possible for 102.8 K cm−3 <
p/kB < 104.1 K cm−3 (where kB is the Boltzmann constant).
The other lines illustrate the effects of increasing the ambipolar
drift heating rate at a fixed magnetic field strength of 3 μG.
Although we have already shown ΓAD to be a function of the
density and field strength, for the purposes of this plot we
have set it to be a constant fraction of the photoelectric heating
rate, ΓPAH. Increasing the total heating rate serves to increase
the pressure at which two phases can coexist: the minimum
pressure at which the cold phase can exist and the maximum
pressure at which the warmer phase can exist both increase.
In fact, the pressure range over which two phases can exist
becomes larger as the total heating is increased. For example,
for the ΓAD/ΓPAH = 0.50 case plotted in Figure 2, two-phase
structure is possible for 103.0 K cm−3 < p/kB < 104.3 K cm−3,
and for the ΓAD/ΓPAH = 1.00 case the pressure range is
103.1 K cm−3 < p/kB < 104.4 K cm−3. We can understand the
shift toward lower densities as follows: increasing the heating
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Figure 2. Thermal equilibrium state of the cooling function, ρL (n,T) = 0, in the
thermal pressure–number density plane. The solid line shows the hydrodynamic
case in which there is no ambipolar drift heating. The other curves show the
effect of increasing the ambipolar drift heating rate at a fixed magnetic field
strength of 3 μG. In the area above the curves ρL > 0 so cooling dominates,
while below the curves ρL < 0 so heating dominates. Increasing the ambipolar
drift heating rate increases the pressure at which two phases can coexist. Note
that the ambipolar drift heating rate is actually a function of density and magnetic
field strength, as given by Equation (16), but for the purposes of this plot we set
it to be some constant fraction of the photoelectric heating rate.

increases the temperature, so it must decrease the density. The
upshift of the equilibrium to higher pressures also reflects the
increased heating.

4. FRONT SOLUTIONS

The characteristics of a front are determined by its thermal
pressure. There exists a “saturation pressure” at which heating
and cooling are balanced within a front (Zel’dovich & Pikel’ner
1969; Penston & Brown 1970). If Λ and Γ can be written as
functions of pressure and temperature (where Γ is the total
heating rate), this pressure may be calculated by solving the
integral (Inoue et al. 2006)∫ T2

T1

κρLdT =
∫ T2

T1

κn(nΛ − Γ)dT = 0 (20)

and substituting for n using the equation of state,
Equation (1). For the hydrodynamic case (ΓAD = 0), IIK06 ob-
tain psat/kB = 2612 K cm−3, which, by solving Equation (13),
implies an initial density of n = 106.08 cm−3 and hence an
initial temperature of T = 24.63 K. If the thermal pressure ex-
ceeds this value of psat, a fluid element passing through the
front experiences net cooling, so we have a condensation front.
If instead the thermal pressure is less than the saturation value a
fluid element experiences net heating, so we have an evaporation
front.

In this section, we demonstrate the effect of ambipolar
diffusion on the saturation pressure and present our ambipolar
diffusion-mediated front solutions. We also argue that the flux-
freezing approximation is not accurate for steady-state thermal
fronts.
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Figure 3. Saturation number density, temperature, and pressure (where
psat/kB = nsatTsat) as a function of the initial magnetic field strength gra-
dient for initial field strengths of 1, 3, and 5 μG. The range of |dB/dx|x1 has
been chosen to show the inflection point of the saturation pressure. The 1 μG
curve has not been extended further because when |dB/dx|x1 is too large such
a front cannot connect to a thermal equilibrium phase before the magnetic field
strength becomes negative. The 3 and 5 μG curves can be extended to larger
saturation pressures than shown here, until their magnetic profiles also become
negative.

4.1. Effects of Ambipolar Drift Heating on Saturation Pressure

The saturation pressure is altered in the presence of a magnetic
field due to ambipolar drift heating. The integral given by
Equation (20) cannot be solved analytically when ΓAD is non-
zero, so instead we use our shooting method, as discussed in
Section 2, to find the initial density that yields a static solution
as a function of the initial magnetic field strength gradient.
The results for initial magnetic field strengths of 1, 3, and
5 μG are shown in Figure 3. Note that the field gradients are
actually negative, as we anticipate the magnetic field strength
to decrease with increasing temperature, and we refer to the
absolute magnitude of the quantity, which we give in units
of μG pc−1.

As |dB/dx|x1 is increased, the saturation density and pres-
sure for all magnetic field strengths initially decrease until a
sufficiently large value of |dB/dx|x1 is reached, after which
the density and pressure both increase. Therefore, it is possi-
ble to have two different fronts at the same saturation pressure.
This non-monotonic behavior may be understood by solving
Equation (20) for the saturation pressure using the equation of
state, Equation (1), to obtain

psat

kB

= Γ
∫ T2

T1

κ
T
dT∫ T2

T1

κΛ
T 2 dT

. (21)

This shows that increasing the total heating rate, Γ, tends
to increase the saturation pressure. But increased heating also
tends to drive up the temperature, which for CNM tempera-
tures greatly increases the cooling rate, Λ, and according to
Equation (21) this decreases the saturation pressure. For ex-
ample, Figure 3 shows that if B0 = 5 μG and |dB/dx|x1 =
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Figure 4. Two static fronts with pthermal/kB = 2500 K cm−3 and an initial
magnetic field strength of 3 μG, but different initial magnetic field strength
gradients. Only the phase transition is shown, so the reader may find it helpful
to picture the cold phase occupying the region x < 0, and the warmer
medium filling the region beyond the end of the transition. The dashed line
shows the front subject to a higher ambipolar diffusion heating rate, which
connects a cold medium, with nCNM = 84.66 cm−3 and TCNM = 29.53 K,
with a warmer medium with nWNM = 0.52 cm−3 and TWNM = 8063 K.
The front with the lower ambipolar drift heating rate connects a cold phase
having nCNM = 95.51 cm−3 and TCNM = 25.12 K with a warm phase having
nWNM = 0.32 cm−3 and TWNM = 8533 K. The top panels show the temperature
and density profiles, and the lower panels show the magnetic field strength
profiles and the ratio of the field strength to the density for both models.

300 μG pc−1, the CNM temperature is increased from 24 to
28 K. According to Equation (14), this results in a greater than
70% increase in the cooling rate, Λ. Such a large increase in
cooling requires a lower density and a lower saturation pressure
for equilibrium to be maintained. This effect dominates as long
as the heating and cooling rates, Γ and Λ, are not too large
and is the reason for the dip in the saturation pressure seen in
Figure 3. An inflection point is not observed in the saturation
pressure in the 1 μG case, the reason being that at higher val-
ues of |dB/dx|x1 (and hence larger ambipolar heating rates)
the magnetic field profile is so steep that a thermal equilibrium
phase cannot be reached before the magnetic field strength be-
comes negative. In such instances, the temperature on the cold
side is still well within the range of CNM values, so it is not the
medium being overheated that prohibits physical front solutions.

We present example saturation fronts having a thermal pres-
sure of pth/kB = 2500 K cm−3 and an initial field strength
of 3 μG, but with different initial values of |dB/dx|x1 , in
Figure 4. Note that the values of |dB/dx|x1 given represent the
largest gradients at any point throughout the front. The magnetic
field strength gradients of all the fronts we present quickly relax
to become much smaller than the initial values that we impose.
The front having the larger value of |dB/dx|x1 has a higher am-
bipolar drift heating rate and connects a lower density, higher
temperature CNM with a higher density, cooler WNM than the
static front with the lower heating rate. The front with the lower
ambipolar drift heating rate is the most diffusive, which is illus-
trated by its flatter magnetic field strength profile. This is also
indicated by the ratio of the field strength to the number density,
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Figure 5. Profiles of fronts having an initial density of n = 106.08 cm−3 and
an initial magnetic field strength of B0 = 3 μG for various initial magnetic field
strength gradients. The top panels show the temperature and density profiles,
and the lower panels show the bulk velocity and magnetic field strength profiles
of the fronts. The different line styles represent different values of |dB/dx|x1
(note that these same line styles are used in Figures 6 and 7).

which shows a larger variation across the domain than the same
quantity for the static front with the higher heating rate.

4.2. Ambipolar Diffusion-mediated Front Solutions

As stated at the beginning of Section 4, in the hydrody-
namic case a static front has a thermal pressure of psat/kB =
2612 K cm−3, which corresponds to an initial density and tem-
perature of n = 106.08 cm−3 and T = 24.63 K, respectively. To
demonstrate the effects of ambipolar diffusion, we present sev-
eral front models having this same initial density and an initial
magnetic field strength of 3 μG in Figure 5. The initial tem-
perature changes according to the ambipolar drift heating rate,
so it is not the same as in the hydrodynamic case. The differ-
ent models correspond to various initial magnetic field strength
gradients, |dB/dx|x1 , where a larger gradient corresponds to
increased heating. The properties of the phases connected by
these fronts are listed in Table 1.

The overall shapes of the temperature profiles, shown in
the top left panel of Figure 5, are fairly similar with the
main differences being the temperature gradients on small
scales and the final temperatures of the warm phases becoming
lower as |dB/dx|x1 is increased. The main effect of increasing
|dB/dx|x1 is that the size of the integration domain required to
reach thermal equilibrium at the right-hand boundary becomes
smaller due to the increased ambipolar drift heating. In fact,
the lowest |dB/dx|x1 profile shown here is very similar to the
hydrodynamic solution of IIK06. The top right panel of Figure 5
shows that the density varies by more than 2 orders of magnitude
across the front for all heating rates. As |dB/dx|x1 is increased
the density of the warm phase at the far boundary increases and
hence the temperature decreases.

For insight into the actual nature of fronts, one may begin
by looking at the bulk velocity profiles, shown in the bottom
left panel of Figure 5. The effect of the initial magnetic field
strength gradient on the velocity profile of a front is not
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Table 1
Properties of Cold and Warm Phases Connected by Frontsa Having an Initial Density of nCNM = 106.08 cm−3 and an Initial

Magnetic Field Strength of BCNM = 3 μG

|dB/dx|x1 (μG pc−1) Front Type TCNM (K) nWNM (cm−3) TWNM (K) BWNM (μG) Thickness (pc)

0.31 Static 24.63 0.31 8580 3.000 0.94
617.2 Condensation 25.65 0.45 8210 2.386 0.28
1157.3 Condensation 27.97 0.67 7818 1.053 0.12
1219.0 Evaporation 28.30 0.72 7743 0.037 0.08

Note. a The profiles of the connecting fronts are presented in Figure 5.
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Figure 6. Plasma velocity (vp ≈ v + vD) profiles of fronts having an initial
density of n = 106.08 cm−3 and an initial magnetic field strength of B0 = 3 μG
for various initial magnetic field strength gradients.

straightforward. For the lowest initial |dB/dx|x1 case shown,
the velocity profile is flat and close to zero, as should be the
case for a static front. As |dB/dx|x1 is increased the velocity at
first becomes larger and negative. This is because the saturation
pressure is altered from the original hydrodynamic value of
psat/kB = 2612 K cm−3, as we discussed in Section 4.1.
The models shown here with negative velocity profiles are
actually condensation fronts. However, as |dB/dx|x1 is further
increased there comes a point when the velocity no longer
becomes increasingly negative and instead begins to increase.
Eventually, the front transitions from being a condensation front
to an evaporation front, which is illustrated by the positive
velocity profile of the largest |dB/dx|x1 model shown in
Figure 5. This is expected because of the non-monotonic
behavior of the saturation pressure as the ambipolar heating
rate is increased (see Figure 3).

The magnetic field strength profile of the lowest value
|dB/dx|x1 model, given in the lower right panel of Figure 5,
is extremely flat. As |dB/dx|x1 is increased the field strength
decreases across the domain in an almost linear fashion; for
sufficiently large values the profile becomes nonlinear. Given
that the change in density across a front is much more dramatic
than that of the magnetic field strength, the ratio of the magnetic
field strength to the number density of neutrals, B/n, changes
markedly throughout the transition layer.

In Figure 6, we plot the plasma velocity profile, given by
vp ≈ v + vD and Equation (6), of each of the front models

Figure 7. Ambipolar drift heating rates normalized by photoelectric heating
rate across fronts having an initial density of n = 106.08 cm−3 and an initial
magnetic field strength of B0 = 3 μG for various initial field strength gradients.

of Figure 5. The shapes of the profiles are governed by the
behavior of the magnetic field strength. The plasma velocity
is almost constant across the lowest |dB/dx|x1 model since
the magnetic field strength profile is close to flat, whereas the
larger |dB/dx|x1 models show more variation in their plasma
velocity profiles due to the presence of significant gradients in
the magnetic field. In all cases, the drift velocity is positive and
larger than the bulk velocity of the front, such that the plasma
velocity is also positive.

In Figure 7, we compare the ion–neutral drift heating rate,
given by Equation (16), to that of photoelectric heating, given
by Equation (15), for each of the front models of Figure 5.
The lowest |dB/dx|x1 model has a much smaller ambipolar
drift heating rate than photoelectric heating rate which is
why the structure of that front is barely different from the
hydrodynamic case. The three larger |dB/dx|x1 fronts have
larger ambipolar heating rates that are comparable to the
photoelectric heating rate. These fronts depart more noticeably
from the hydrodynamic solution and are less diffusive.

We also investigate the effect of magnetic field strength on
front profiles at fixed initial |dB/dx|x1 . Figure 8 shows a variety
of front characteristics for initial field strengths of 1, 3, and 5 μG
and |dB/dx|x1 = 308.6 μG pc−1. The temperature profiles are
very similar, with the effect of increasing the field strength being
larger temperature gradients at small scales and thinner fronts.
The effect on the density profile is that the higher magnetic field
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Figure 8. Temperature, density, bulk velocity, and magnetic field strength
profiles of fronts having an initial density of n = 106.08 cm−3 at various
magnetic field strengths for fixed |dB/dx|x1 = 308.6 μG pc−1. The same line
styles are also employed in Figures 9 and 10.
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Figure 9. Plasma velocity profiles of fronts having an initial density of
n = 106.08 cm−3 at various magnetic field strengths for fixed |dB/dx|x1 =
308.6 μG pc−1.

strength fronts connect warm phases with higher densities. The
velocity profiles are slightly negative, which implies that these
are actually condensation fronts, and the departure from a static
solution seems to increase with increasing field strength. Higher
field strength solutions have flatter magnetic profiles because the
efficiency of ambipolar diffusion increases with magnetic field
strength.

In Figure 9, we plot the plasma velocity profiles of each
of the front models of Figure 8. The size of the plasma
velocity increases with increasing magnetic field strength and
the shape of the profile becomes flatter. This is also due to the

Figure 10. Ambipolar drift heating rates normalized by photoelectric heating
rate across fronts having an initial density of n = 106.08 cm−3 and various
initial magnetic field strengths for fixed |dB/dx|x1 = 308.6 μG pc−1.

higher efficiency of ambipolar diffusion at larger magnetic field
strengths.

In Figure 10, we compare the photoelectric and ambipolar
heating rates for the front models shown in Figure 8. For these
particular cases the photoelectric heating rate is larger than the
ambipolar heating rate for all field strengths and the ambipolar
heating rate increases with magnetic field strength.

4.3. Flux-freezing Approximation

For completeness, we also present the flux-freezing approx-
imation, in which the behavior of the magnetic field is tied to
the density such that B/ρ is constant in one dimension. This
result can be obtained by computing the total derivative of the
quantity B/ρ using the continuity and induction equations. To
calculate the structure of a front in this approximation, we solve
Equations (9) and (10) and everywhere replace B by ρC, where
C is a constant. Including the definition z ≡ dT /dx, we have
a system of three ODEs, which we solve using our shooting
method, with the mass flux, j, the parameter to be adjusted.
We impose the boundary conditions given by Equations (18)
and (19), with no need for a condition on the magnetic field
strength since its behavior is governed by that of the density.

Figure 11 shows solutions for an initial density of n =
106.08 cm−3 at various initial magnetic field strengths. As
the field strength is increased, the front becomes thinner and
the transition reaches a progressively lower temperature, higher
density final state at the right-hand boundary. Both the den-
sity and magnetic field strength span more than 2 orders of
magnitude from one phase to the other. While such a range of
densities is routinely observed in the neutral ISM, such widely
varying magnetic field strengths are not (e.g., Troland & Heiles
1986) and this provides the first indication that the flux-freezing
approximation is not suitable for our problem.

We go on to use these results to calculate ambipolar drift
velocities, using Equation (6), and heating rates, given by
Equation (16), throughout the front. These are plotted in the
lower two panels of Figure 11. For the most extreme case shown,
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Figure 11. Profiles of fronts having an initial density of n = 106.08 cm−3,
hence, pthermal/kB = 2612 K cm−3, calculated in the flux-freezing approxima-
tion (without ambipolar drift heating) at various magnetic field strengths. The
top panels show the temperature and magnetic field strength profiles. Although
not shown here, the density profile has the same shape as the field strength
profile, as dictated by flux freezing. The lower panels show the plasma velocity
and the ratio of the ambipolar heating rate to the photoelectric heating rate. The
solid line shows the hydrodynamic result, so it only appears in the upper left
panel.

a saturated front with an initial density of 106.08 cm−3 and an
initial magnetic field strength of 5 μG, we obtain a maximum
drift velocity of 19.4 km s−1 and a maximum heating rate of
1.9 × 10−21 erg s−1 cm−3, 3 orders of magnitude greater than
the photoelectric heating rate. Although the equation for drift
velocity breaks down for cases in which it is supersonic, we may
still employ it to show that if the flux-freezing approximation
held, the drift velocities and heating rates would be enormous.
Such an outcome is not self-consistent with the rest of the model
and allows us to argue that the solutions must be closer to what
we have already presented, with the magnetic field strength
almost constant over the extent of the front for cases in which
ambipolar drift heating does not dominate. We thus suggest that
by the time steady-state fronts are established in the neutral ISM
the flux-freezing approximation does not apply.

5. DISCUSSION

We have shown the magnetic field strength profiles of fronts
having ion–neutral drift heating rates much smaller than the
photoelectric heating rate to be almost flat. In this section, we
argue that it is the thin extent of these fronts that mediates the
leakage of the magnetic field by ambipolar diffusion. We begin
by using our results to justify our steady-state and ionization
equilibrium assumptions. The minimum flow time through a
front is of order τflow ∼ 0.01 km s−1/0.1 pc ∼ 10 Myr
(refer to Figure 5). This should be compared to the ion–neutral
collision time, given by τin ∼ (ρnγAD)−1 ∼ 15.8/nn yr.
Thus, we have τin/τflow 
 1, so are safe in our steady-
state formulation of ambipolar diffusion. The assumption of
ionization equilibrium is scrutinized by comparing τflow to the
recombination time for hydrogen, given by τrec ∼ 1/α(2)n,
where α(2) ∼ 2.06 × 10−11 T −1/2 cm3 s−1 (Spitzer 1978). For
a front with an initial density of 106.08 cm−3, we calculate a

recombination time of ∼70 yr on the cold side and on the warm
side we obtain ∼5000 yr. For all our other front models we
also find τrec/τflow 
 1, so for this work our simple single-fluid
treatment of ambipolar diffusion will suffice.

We now present a diffusive description of fronts in which
we compare the thermal and ambipolar diffusivities. Taking
U = nkBT to be the energy density, we write the thermal
timescale as τth = U/ρL and the thermal diffusivity as
λth = κT /U , such that the characteristic length scale of the
problem, the Field length, is given by lF = √

λthτth (Field 1965;
Begelman & McKee 1990). Hence, the thermal timescale and
flow velocity may be written in terms of the thermal diffusivity,
such that τth ∼ l2

F /λth and vth ∼ λth/lF , respectively. In the
magnetic field case, the field is redistributed diffusively, with
ambipolar diffusivity, λAD = v2

Aτni, where τni is the neutral–ion
collision time, approximated by τni ∼ 1.58×103/ni yr (Padoan
et al. 2000). Comparing the thermal and ambipolar diffusivities
we obtain

λth

λAD
= κ

nkBv2
Aτni

∼ 10−2 ni T 1/2

B2
μ

, (22)

where Bμ is the field strength in units of μG. We compute
Equation (22) at both boundaries of our front models and for all
cases we obtain τAD/τth 
 1. For example, for a front with an
initial density and magnetic field strength of 106.08 cm−3 and
5 μG, respectively, and |dB/dx|x1 = 308.6 μG pc−1, we obtain
τAD/τth ∼ 4.9×10−5 on the cold side and τAD/τth ∼ 4.0×10−4

on the warm side. This means the drift time is always much
smaller than the time to flow through the front, suggesting that
the field has time to become close to uniform.4

Our results show that increasing the ambipolar heating rate
changes the structure of our front solutions. By balancing
the ambipolar and photoelectric heating rates, Equations (15)
and (16), and approximating the magnetic field strength gradient
as B0/LBcrit, we can estimate the critical length scale at which
the magnetic field becomes important in determining structure:

LBcrit =
(

λADB2
0

4πnΓPAH

)1/2

. (23)

The magnetic length scale is given by LB ∼ B/|∇B|, so if
LB > LBcrit the effect of the field on the structure of a front
is small. We compare LB and LBcrit in Figure 12 for a front
with an initial density of n ∼ 106.08 cm−3 and initial field
strengths of B = 1, 3, and 5 μG, with an initial field strength
gradient of |dB/dx|x1 = 308.6 μG pc−1. For the 5 μG case we
obtain LB ∼ 1.6 × 10−2 pc and LBcrit ∼ 5.4 × 10−3 pc on the
cold side, and on the warm side we find LB ∼ 16.3 pc and
LBcrit ∼ 2.9 pc. The magnetic length scale is larger than the
critical scale throughout the front; thus, ambipolar drift heating
does not have a dramatic effect on the structure of a front.

Previous dynamical studies have claimed that ion–neutral
drift is not a sufficiently fast diffusion process for transport-
ing magnetic energy and instead invoked turbulent ambipolar
drift (Heitsch et al. 2004) or turbulent magnetic reconnection
(Santos-Lima et al. 2010) to explain the B–ρ relation. However,
these studies were on larger scales than the fronts considered
here. Our results suggest that for this simple scenario in which

4 Note that the value of |dB/dx|x1 enters into this estimate only insofar as it
affects the equilibrium temperature and front structure.
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Figure 12. Ratio of the critical magnetic length scale to the magnetic length
scale for fronts having an initial density of n ∼ 106.08 cm−3 and various
initial magnetic field strengths, with |dB/dx|x1 = 308.6 μG pc−1. Ambipolar
drift heating becomes important in determining the structure of the front if
LB < LBcrit.

the phase transitions are thin, ambipolar diffusion alone is a suf-
ficient mechanism for redistributing the magnetic field energy,
without the need for turbulence. Our work directly complements
a study of the thermal instability as a formation mechanism for
diffuse H i clouds (Inoue et al. 2007). In that work, it was shown
that ambipolar diffusion is a necessary and sufficient ingredient
for the formation of a two-phase medium. Once that medium is
established, the methods discussed in this paper may be applied
to calculate its structure.

6. SUMMARY AND CONCLUSIONS

In this work, we have investigated the effect of magnetic
fields on two-phase structure in the neutral ISM. We have pre-
sented a numerical method for calculating the one-dimensional
structure of fronts separating the CNM from the WNM, in-
cluding the effects of ambipolar diffusion. We showed that the
pressure range over which two-phase structure is permitted be-
comes larger, by as much as a factor of 2, due to the contribution
of ambipolar drift heating, with both the minimum and maxi-
mum pressures increasing from their hydrodynamic values. We
find our magnetized front profiles to be very similar to the hy-
drodynamic solutions, and, in cases where photoelectric heating
dominates ambipolar drift heating, to have close to flat magnetic

field strength profiles. We also showed that the flux-freezing
assumption yields unphysically large drift velocities and fric-
tional heating rates. Our method is generic and, by including
the appropriate physics, may be extended to other astrophysical
multi-phase systems.

Although the one-dimensional picture discussed in this work
is fairly simple, if the magnetic field strength and density were
related we would have expected to see a correlation. Our results
are consistent with the observational evidence that there is no
relationship between magnetic field strength and density in
interstellar atomic gas, which suggests that ambipolar diffusion
is an efficient transport mechanism in the neutral ISM. The effect
of ambipolar diffusion on the stability properties of thermal
fronts will be the subject of forthcoming publications.
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