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Institut d’Astrophysique Spatiale, Université Paris-Sud, UMR8617, bât. 121, F-91405 Orsay, France; sebastien.galtier@ias.fr
Received 2010 July 13; accepted 2010 September 1; published 2010 October 5

ABSTRACT

Nonlinear diffusion equations of spectral transfer are systematically derived for anisotropic magnetohydrodynamics
in the regime of wave turbulence. The background of the analysis is the asymptotic Alfvén wave turbulence equations
from which a differential limit is taken. The result is a universal diffusion-type equation in k-space which describes
in a simple way and without free parameter the energy transport perpendicular to the external magnetic field B0

for transverse and parallel fluctuations. These equations are compatible with both the thermodynamic equilibrium
and the finite flux spectra derived by Galtier et al.; it improves therefore the model built heuristically by Lithwick
& Goldreich for which only the second solution was recovered. This new system offers a powerful description of a
wide class of astrophysical plasmas with non-zero cross-helicity.
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1. INTRODUCTION

The observations of astrophysical plasmas by various
spacecraft have added substantially to our knowledge of
magnetohydrodynamic (MHD) turbulence. Among the different
media widely analyzed such as the interstellar medium (Scalo &
Elmegreen 2004) or the Sun’s atmosphere (Chae et al. 1998), the
solar wind is certainly the most interesting plasma since direct
measurements are possible. This unique situation in astrophysics
allows us to probe deeply the nature of the fluctuations and to
investigate, for example, the origin of anisotropy (Matthaeus
et al. 1996; Alexakis et al. 2007; Galtier 2009b; Podesta 2009),
to evaluate the mean energy dissipation rate (MacBride et al.
2008), to detect intermittency (Salem et al. 2009), or to analyze
the transition to the regime of dispersive turbulence character-
ized by a steepening of the magnetic field fluctuations spectrum
with a power-law index going from −5/3, at frequencies lower
than 1 Hz, to indices lying around −2.5 at higher frequencies
(Galtier 2006, 2008; Smith et al. 2006; Sahraoui et al. 2009).

The low solar corona provides a second interesting example
where it is believed that MHD turbulence plays a central role
in the dynamics and the small-scale heating. For example, in
active region loops spectrometer analyses revealed non-thermal
velocities sometimes reaching 50 km s−1 (Chae et al. 1998); this
line broadening is generally interpreted as unresolved turbulent
motions with length scales smaller than the diameter of coronal
loops which is about 1 arcsec and timescales shorter than the
exposure time of the order of few seconds. Turbulence is evoked
in the solar coronal heating problem since it offers a natural
process to produce small-scale heating (Heyvaerts & Priest
1992; Galtier 1999; Cranmer 2010). Weak MHD turbulence is
now proposed as a possible regime for some coronal loops since
a very small ratio is expected between the fluctuating magnetic
field and the axial component (Rappazzo et al. 2007). Inspired
by the observations and by recent direct numerical simulations
of three-dimensional MHD turbulence (Bigot et al. 2008a), an
analytical model of coronal structures has been proposed (Bigot
et al. 2008b) where the heating is seen as the end product of a
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wave turbulent cascade. Surprisingly, the heating rate found is
non-negligible and may explain the observational predictions.

A third example where MHD turbulence seems to be fun-
damental is given by the upper solar corona which makes a
connection between the lower corona and the stationary solar
wind. Observations reveal that the heating in this region af-
fects preferentially the ions in the direction perpendicular to the
mean magnetic field. The electrons are much cooler than the
ions, with temperatures generally less than or close to 106 K
(David et al. 1998). Additionally, the heavy ions become hot-
ter than the protons within a solar radius of the coronal base.
Ion cyclotron waves could be the agent which heats the coronal
ions and accelerates the fast wind. Naturally, the question of the
origin of these high-frequency waves arises. Among different
scenarios, turbulence appears to be a natural and efficient mech-
anism to produce ion cyclotron waves. In this case, the Alfvén
waves launched at low altitude with frequencies in the MHD
range would develop a turbulent cascade to finally degenerate
and produce ion cyclotron waves at much higher frequencies.
In that context, the wave turbulence regime was considered in
the weakly compressible MHD case at low β plasmas (where
β is the ratio between the thermal and the magnetic pressure)
in order to analyze the nonlinear three-wave interaction transfer
to high-frequency waves (Chandran 2005). The wave turbu-
lence calculation shows—in the absence of slow magnetosonic
waves—that MHD turbulence is a promising explanation for the
anisotropic ion heating.

MHD turbulence modeling is the main tool for investigating
the situations previously discussed. Although it cannot be denied
that numerical resources have been significantly improved
during the last decades (Mininni & Pouquet 2007), direct
numerical simulations of MHD equations are still limited for
describing highly turbulent media. For that reason, shell cascade
models are currently often used to investigate the small-scale
coronal heating (Buchlin & Velli 2007) and its impact in terms
of spectroscopic emission lines. Transport equations are also
used, for example, in the context of solar wind acceleration
in the extended solar corona (Cranmer & van Ballegooijen
2003). The ad hoc model is an advection–diffusion equation
for the evolution of the energy spectrum whose inspiration
is found in the original paper by Leith (1967). It is also a
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cascade model where the locality of the nonlinear interactions
is assumed but where the dynamics is given by a second-order
nonlinear partial differential equation whereas we have ordinary
differential equations for shell models.

In the next section, the origin of the Leith’s model is discussed
and in Section 3 the Alfvén wave turbulence equations are
recalled in the case of non-zero cross-helicity. In Section 4,
the differential limit is taken on the previous wave turbulence
equations and the associated nonlinear diffusion equations for
anisotropic MHD turbulence are systematically derived. Finally,
a conclusion is developed in the last section.

2. LEITH’S MODEL

A theoretical understanding of the statistics of turbulence
and the origin of the power-law energy spectrum, generally
postulated from dimensional considerations à la Kolmogorov,
remains one of the outstanding problems in classical physics
which continues to resist modern efforts at solution. The diffi-
culty lies in the strong nonlinearity of the governing equations
which leads to an unclosed hierarchy of equations. Faced with
that situation different models have been developed such as
closure models in Fourier space for hydrodynamic and MHD
turbulence (Kraichnan 1963; Orszag & Kruskal 1968). In the
meantime—and following an approach often fruitful in radia-
tion and neutron transport theory (Davidson 1958)—Leith in-
troduced the idea of a diffusion approximation to inertial energy
transfer in isotropic turbulence (Leith 1967). This new class of
ad hoc models describes the time evolution of the spectral en-
ergy density, e(k), for originally an isotropic three-dimensional
incompressible hydrodynamic turbulence, in terms of a partial
differential equation by making a diffusion approximation to
the energy transport process in the k-space representation. Ig-
noring forcing and dissipation the three-dimensional isotropic
Navier–Stokes equations read in Fourier space

∂e(k)

∂t
= −∇ · F = − 1

k2

∂

∂k
(k2Fr ). (1)

The radial component of the energy flux vector is modeled as

Fr = −D(k)
∂e(k)

∂k
, (2)

where D(k) is a diffusion coefficient that remains to be de-
termined. It is straightforward to show dimensionally that the
diffusion coefficient scales as

D ∼ k2

τ
, (3)

where τ is the typical transfer time of the Navier–Stokes
equations which can be identified as the eddy turnover time
τeddy. Therefore, we may evaluate this time as

τ = τeddy ∼ 1

k
√

ek3
. (4)

We recall that the total kinetic energy per mass is by definition∫
e(k)dk = ∫

E(k)dk. After substitution of Equation (4) into
Equation (3) it is possible to rewrite (up to a factor) the model
equation (1) for the omnidirectional spectrum (Leith 1967) as

∂E(k)

∂t
= ∂

∂k

(
k11/2E1/2 ∂

∂k
(E/k2)

)
, (5)

which is commonly named the Leith’s equation. Beyond its rel-
ative simplicity, Equation (5) exhibits several important proper-
ties like the preservation after time integration of a nonnegative
spectral energy and the production of the Kolmogorov spectrum
in the inertial range which corresponds to a finite energy flux so-
lution. It is straightforward to prove that by imposing a constant
energy flux in the inertial range, namely,

k11/2E1/2 ∂

∂k
(E/k2) = constant. (6)

If we look for power-law solutions, E ∼ kx , then the unique
solution that emerges is x = −5/3. Note that this equation
may also exhibit an anomalous scaling during the nonstationary
phase with a steeper power law (Connaughton & Nazarenko
2004).

A generalization of the Leith’s model to three-dimensional
isotropic MHD turbulence was proposed by Zhou & Matthaeus
(1990). (Note that Iroshnikov (1964) proposed the first such
model for MHD from which the −3/2 spectrum was derived.)
The main modification happens in the evaluation of the transfer
time τ for which a combination of the eddy turnover time τeddy
and the Alfvén time τA is proposed. The phenomenological
evaluation of the transfer time allows the recovering of either the
Heisenberg–Kolmogorov (−5/3) or the Iroshnikov–Kraichnan
(−3/2) spectrum when the ratio τeddy/τA is respectively much
less or much larger than one (Kolmogorov 1941; Heisenberg
1948; Iroshnikov 1964; Kraichnan 1965). The model was also
adapted to the case of a non-zero cross-helicity for which a
distinction was made between the Elsässer energies E+ and
E−. The generalization of the Leith’s model to the more
realistic situation of anisotropic MHD turbulence where an
external magnetic field B0 is imposed was proposed only
recently (Matthaeus et al. 2009). As already announced by
Zhou & Matthaeus (1990), the departure from the assumption of
isotropic turbulence generates a difficult mathematical treatment
since, in particular, a diffusion tensor is expected instead of
a scalar. Another difficulty comes from the locality of the
nonlinear interaction which is assumed in the isotropic case:
when a mean magnetic field is imposed the situation is different
since a reduction of nonlinear transfers occurs along B0. In terms
of triads, k = κ + L, it means that one of the wavevectors, say
κ , is mainly oriented transverse to B0. The sophisticated model
proposed by Zhou & Matthaeus (1990) is an attempt to describe
such a nontrivial dynamics.

The case of Alfvén wave turbulence for which a relatively
strong B0 is required is an important limit for which a rigorous
analysis is possible (Galtier et al. 2000). The wave kinetic
equations derived are a set of coupled integro-differential
equations which are not obvious to simulate numerically in the
most general case (Galtier et al. 2000; Bigot et al. 2008c). This
was a motivation for deriving a model made of two coupled
diffusion equations which describe Alfvén wave turbulence
with a non-zero cross-helicity (Lithwick & Goldreich 2003).
These model equations are able to recover the finite flux
spectra which are exact solutions of the wave kinetic equations
(Galtier et al. 2000). In this paper, it is shown that a set
of two coupled nonlinear diffusion equations may be derived
systematically from the asymptotic equations of Alfvén wave
turbulence by taking a differential limit. An important difference
is found between the nonlinear diffusion equations derived here
and the model proposed by Lithwick & Goldreich (2003).
The main physical problem is the inability of the model to
reproduce the thermodynamic equilibrium solutions which are
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exact solutions of the wave turbulence equations. It is believed
that the higher degree of accuracy of the new system offers a
powerful description of a wide class of astrophysical plasmas
with non-zero cross-helicity.

3. ASYMPTOTIC THEORY OF ALFVÉN
WAVE TURBULENCE

The wave turbulence theory for three-dimensional incom-
pressible MHD was rigorously derived by Galtier et al. (2000).
It is a perturbative theory which necessitates heavy calculations
which will not be reproduced here. We refer the reader to the
original paper for a global explanation or to two satellite papers
where simplified approaches are adopted (Galtier et al. 2002;
Galtier & Chandran 2006). Since it is important to understand
the wave turbulence equations from which our analysis will
start, we shall recall below the main steps in their derivation.

The inviscid incompressible three-dimensional MHD
equations read

∂tz
s − sB0 · ∇zs = −z−s · ∇zs − ∇P∗, (7)

∇ · zs = 0, (8)

where zs = v + sb are the Elsässer fields (s = ±), v is the fluid
velocity, b is the magnetic field in velocity units, B0 is a uniform
magnetic field (in velocity units, i.e., the Alfvén speed), and P∗
is the total (thermal plus magnetic) pressure. We assume that the
uniform magnetic field is relatively strong (B0 � zs) and that
MHD turbulence is dominated by a wave dynamics for which
the nonlinearities are weak. In such a limit, a small parameter
ε may be introduced formally to measure the strength of the
nonlinearities. Then, we obtain for the jth-component

(∂t − sB0∂‖)zs
j = −εz−s

m ∂mzs
j − ∂jP∗ (9)

where the Einstein’s notation is used for the indices. Note
that the parallel direction (‖) corresponds to the direction
along B0. We shall Fourier transform such equations with the
following definition for the Fourier transform of the Elsässer
field components zs

j (x, t):

zs
j (x, t) =

∫
as

j (k, t) ei(k·x+sωkt) dk, (10)

where ωk = B0k‖ is the Alfvén frequency. The quantity as
j (k, t)

is the wave amplitude in the interaction representation, hence
the factor eisωkt . Then, the Fourier transform of Equation (9)
gives

∂ta
s
j (k) = −iεkmPjn

∫ ∫
a−s

m (κ)as
n(L)eisΔωt δk,κLdκ dL. (11)

Here, Pjn is the projector on solenoidal vectors such that
Pjn(k) = δjn − kj kn/k2; δk,κL = δ(k − κ − L) reflects the
triadic interaction and Δω = ωL − ωk − ωκ is the frequency
mixing. The appearance of an integration over wave vectors
κ and L is directly linked to the quadratic nonlinearity of
Equation (9) (as a result of Fourier transform of a correlation
product).

Equation (11) is nothing else than the compact expression
of the incompressible MHD equations when a strong uniform
magnetic field is present. It is the point of departure of the wave
turbulence formalism which consists in writing equations for
the long-time behavior of second-order moments. In such a sta-
tistical development, the timescale separation, τA/τeddy 	 1

Figure 1. Triadic interaction k = κ + L and its projection in the plane
perpendicular to B0.

(with τA = 1/ωk and τeddy = 1/k⊥zs), leads asymptotically to
the destruction of some nonlinear terms—including the fourth-
order cumulants—and only resonance terms survive (Galtier
et al. 2000; Galtier 2009a). It leads to a natural asymptotic
closure for the moment equations. In such a statistical develop-
ment, the following general definition for the total (shear- plus
pseudo-Alfvén wave) energy spectrum is used;〈

as
j (k)as

j (k′)
〉 = Es(k) δ(k + k′)/k⊥, (12)

where 〈〉 stands for an ensemble average and k⊥ = |k⊥|. In
the absence of magnetic helicity and in the case of an axially
symmetric turbulence, the asymptotic equations simplify. For
shear-Alfvén waves,3 the energy spectrum is given by

Es
shear(k⊥, k‖) = g(k‖)Es

⊥(k⊥), (13)

where g(k‖) is a function fixed by the initial conditions (i.e.,
there is no energy transfer along the parallel direction). In the
limit k⊥ � k‖, the transverse part obeys the following nonlinear
equation (the small parameter ε is now included in the time
variable and the limits of the integration are explicitly written)

∂tE
s
⊥(k⊥) = π

B0

∫ +∞

0

∫ +∞

0
h cos2 φ sin θ

k⊥
κ⊥

E−s
⊥ (κ⊥)

× [
k⊥Es

⊥(L⊥) − L⊥Es
⊥(k⊥)

]
dκ⊥dL⊥, (14)

where φ is the angle between k⊥ and L⊥, and θ is the
angle between k⊥ and κ⊥ with the perpendicular wave vectors
satisfying the triangular relation k⊥ = L⊥+κ⊥ (see Figure 1). To
explicitly take into account this constraint we have introduced
the function h such that h ≡ h(k⊥, κ⊥, L⊥) = 1 when a
triangle can be formed with sides of length k⊥, κ⊥, L⊥ and
h = 0 otherwise (which means in particular that h is invariant
under interchange of any two wavenumbers). Note that from the
axisymmetric assumption, the azimuthal angle integration has
already been performed, and we are only left with an integration
over the absolute values of the two wavenumbers, κ⊥ = |κ⊥|
and L⊥ = |L⊥|. In the same way, equations can be written for

3 We recall that shear-Alfvén and pseudo-Alfvén waves are the two kinds of
linear perturbations about the equilibrium, the latter being the incompressible
limit of slow magnetosonic waves.
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pseudo-Alfvén waves which are passively advected by shear-
Alfvén waves, namely,

∂tE
s
‖(k⊥) = π

B0

∫ +∞

0

∫ +∞

0
h sin θ

k⊥
κ⊥

E−s
⊥ (κ⊥)

× [
k⊥Es

‖(L⊥) − L⊥Es
‖(k⊥)

]
dκ⊥dL⊥, (15)

with by definition

Es
pseudo(k⊥, k‖) = g̃(k‖)Es

‖(k⊥), (16)

where g̃(k‖) is a function determined by the initial condition.
Equations (14) and (15) are asymptotically exact. These mas-

ter equations of Alfvén wave turbulence describe the nonlinear
evolution of MHD turbulence in the presence of a strong uniform
magnetic field, with non-zero cross-helicity and zero magnetic
helicity.4 In the limit k⊥ � k‖ considered, Equations (14) and
(15) describe respectively the dynamical evolution of transverse
and parallel fluctuations.

4. DIFFERENTIAL LIMIT FOR STRONGLY
LOCAL INTERACTIONS

We shall take a differential limit of Equations (14) and (15)
for strongly local interactions (Dyachenko et al. 1992). It is
important to note that by taking this limit we shall extract
a subset of the full set of interactions that is present in the
Alfvén wave turbulence Equations (14) and (15). In terms of
triads, strongly local interactions5 means that we will only retain
triangles which are approximately equilateral. (Note that the
locality concerns only perpendicular wavevectors.) Therefore,
the differential limit will lead to an approximate description of
Alfvén wave turbulence which is believed, however, sufficiently
rich to reproduce the most important properties of the original
system. The rigorous derivation will be presented only for
shear-Alfvén waves since the generalization to pseudo-Alfvén
waves is straightforward. Multiplying Equation (14) by an
unknown function f (k⊥) we obtain, after integration in k⊥,

∂t

∫ +∞

0
Es

⊥(k⊥)f (k⊥)dk⊥ =
∫ +∞

0

∫ +∞

0

∫ +∞

0
T (k⊥, L⊥, κ⊥)

× f (k⊥)dk⊥dκ⊥dL⊥, (17)

where

T (k⊥, L⊥, κ⊥) = π

B0
h cos2 φ sin φ

k⊥L⊥
κ2

⊥
E−s

⊥ (κ⊥)

× [
k⊥Es

⊥(L⊥) − L⊥Es
⊥(k⊥)

]
. (18)

Note the use of the triangle relation (see Figure 1)

sin θ = sin φ
L⊥
κ⊥

. (19)

4 We refer to the original paper (Galtier et al. 2000) for a discussion about the
domain of applicability in terms of wavevectors of the Alfvén wave turbulence
regime.
5 Strongly nonlocal interactions are another interesting limit from which we
may derive turbulent viscosities in the wave turbulence regime (Bigot et al.
2008b) or in the strong turbulence regime (Pouquet et al. 1976). In the latter
case, an EDQNM closure model was used and the main application was the
dynamo problem whereas in the former case the application was the solar
corona with coronal loops and coronal holes.

It is convenient to introduce the following definition S =
π cos2 φ sin φ. Then, by changing the name of indices one can
write

∂t

∫ +∞

0
Es

⊥(k⊥)f (k⊥)dk⊥

= 1

2

∫ +∞

0

∫ +∞

0

∫ +∞

0
[T (k⊥, L⊥, κ⊥)f (k⊥)

+ T (L⊥, k⊥, κ⊥)f (L⊥)]dk⊥dκ⊥dL⊥. (20)

However, by symmetry we also have

T (L⊥, k⊥, κ⊥) = −T (k⊥, L⊥, κ⊥), (21)

which gives

∂t

∫ +∞

0
Es

⊥(k⊥)f (k⊥)dk⊥

= 1

2

∫ +∞

0

∫ +∞

0

∫ +∞

0
T (k⊥, L⊥, κ⊥)(f (k⊥)

− f (L⊥))dk⊥dκ⊥dL⊥ . (22)

For strongly local interactions, we have the following relations:

κ⊥ = k⊥(1 + εκ ), |εκ | 	 1, (23)

L⊥ = k⊥(1 + εL), |εL| 	 1, (24)

where εκ and εL are two variables of small amplitude. Then, at
first order we have

f (L⊥) = f (k⊥) + εLk⊥
∂f (k⊥)

∂k⊥
, (25)

and also at first order

T (k⊥, k⊥(1 + εL), k⊥(1 + εκ )) = S

B0
hE−s

⊥ (k⊥)k⊥εL

×
[
k⊥

∂Es
⊥(k⊥)

∂k⊥
− Es

⊥(k⊥)

]

= S

B0
hE−s

⊥ (k⊥)k3
⊥εL

∂

∂k⊥
× (

Es
⊥(k⊥)/k⊥

)
. (26)

Therefore, Equation (22) may be reduced at first order as

∂t

∫ +∞

0
Es

⊥(k⊥)f (k⊥)dk⊥

= − 1

B0

∫ +∞

0

∫ +ε

−ε

∫ +ε

−ε

[
S

2
hE−s

⊥ (k⊥)k6
⊥ε2

L

∂

∂k⊥

(
Es

⊥(k⊥)/k⊥
)]

× ∂f (k⊥)

∂k⊥
dk⊥dεκdεL

= − 1

B0

∫ +∞

0

[
C⊥E−s

⊥ (k⊥)k6
⊥

∂

∂k⊥

(
Es

⊥(k⊥)/k⊥
)] ∂f (k⊥)

∂k⊥
dk⊥,

(27)

where

C⊥ ≡
∫ +ε

−ε

∫ +ε

−ε

S

2
hε2

LdεκdεL, (28)
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with ε being a small positive number. The introduction of ε
is necessary to ensure the strong locality of the interactions
and therefore the convergence of integral equation (28). An
integration by parts gives

∂t

∫ +∞

0
Es

⊥(k⊥)f (k⊥)dk⊥ = 1

B0

∫ +∞

0

∂

∂k⊥

×
[
C⊥E−s

⊥ (k⊥)k6
⊥

∂

∂k⊥

(
Es

⊥(k⊥)/k⊥
)]

f (k⊥) dk⊥ . (29)

Note that this operation implies for the function f some con-
strains of convergence at the boundaries. Since f is an arbitrary
function one can write

∂tE
s
⊥(k⊥) = C⊥

B0

∂

∂k⊥

(
k6
⊥E−s

⊥ (k⊥)
∂

∂k⊥

(
Es

⊥(k⊥)

k⊥

))
, (30)

which is the differential limit of the wave turbulence equation
for shear-Alfvén waves. It is useful to get an evaluation of C⊥
since the constant in front of an equation always enters into
account in the evaluation of the timescale dynamics. By noting
that for strongly local interactions the angles of the triads are
approximately π/3, one obtains at first order

C⊥ = π
√

3

16

∫ +ε

−ε

∫ +ε

−ε

ε2
LdεκdεL = πε4

4
√

3
. (31)

Clearly, the degree of locality will strongly modify the timescale.
For example, for strictly local interactions ε = 0 and no
evolution of the spectra is expected. This is consistent with the
original equation (14) for which the right-hand side is trivially
zero if L⊥ = k⊥.

The same type of analysis for pseudo-Alfvén waves gives

∂tE
s
‖(k⊥) = C‖

B0

∂

∂k⊥

(
k6
⊥E−s

⊥ (k⊥)
∂

∂k⊥

(
Es

‖(k⊥)

k⊥

))
, (32)

where at first order C‖ ≡ ∫ +ε

−ε

∫ +ε

−ε
(π/2)ε2

L sin φ dεκdεL =
πε4/

√
3.

5. FINITE FLUX SOLUTIONS AND
KOMOGOROV CONSTANTS

Equations (30) and (32) are the main results of the paper. They
describe respectively the dynamical evolution of perpendicular
and parallel fluctuations to the background magnetic field B0.
We see that in the differential limit of strongly local interactions
the wave turbulence equations are much simpler. They still
satisfy the finite flux solutions as we will see below by looking
at the power-law solutions for shear-Alfvén waves. First of all
let us introduce the energy flux P s

⊥(k⊥) which is by definition

∂tE
s
⊥(k⊥) ≡ −∂P s

⊥(k⊥)

∂k⊥
. (33)

We obtain

P s
⊥(k⊥) = −C⊥

B0
k6
⊥E−s

⊥ (k⊥)
∂

∂k⊥

(
Es

⊥(k⊥)

k⊥

)
. (34)

We shall find the power-law solutions by introducing Es
⊥ =

Csk⊥ns into Equation (35); one gets

P s
⊥(k⊥) = −C⊥

B0
CsC−s(ns − 1)kns+n−s+4

⊥ . (35)

Therefore, the finite flux solutions, P s
⊥(k⊥) = P s

⊥ = constant,
correspond to

n+ + n− = −4, (36)

with

CsC−s = P s
⊥B0

C⊥(1 − ns)
= P −s

⊥ B0

C⊥(1 − n−s)

= B0

C⊥

√
P s

⊥P −s
⊥

(1 − ns)(1 − n−s)
, (37)

which leads to

E+
⊥(k⊥)E−

⊥(k⊥) = B0

C⊥

√
1

(1 − n+)(1 − n−)

√
P +

⊥P −
⊥ k−4

⊥

= B0

C⊥

√
1

5 + n+n−

√
P +

⊥P −
⊥ k−4

⊥

= 4
√

3B0

πε4

√
1

5 + n+n−

√
P +

⊥P −
⊥ k−4

⊥ . (38)

For balance turbulence, n+ = n− = −2, and the finite flux
solution is

E⊥(k⊥) =
√

B0

3C⊥

√
P⊥k−2

⊥

=
√

4B0

π
√

3ε4

√
P⊥k−2

⊥

� 0.857

√
B0

ε2

√
P⊥k−2

⊥ . (39)

We see that the Kolmogorov constant depends on an arbitrary
truncation of the integration domain in Equation (31). We recall
that the Kolmogorov constant found by Galtier et al. (2000)
for balance turbulence was CK = 0.585

√
B0; therefore, the

constants coincide for ε � 1.21. Although the previous value
violates the assumption of smallness for ε it could be taken a
posteriori to find a unique solution compatible with the exact
derivation of Galtier et al. (2000).

A similar analysis for pseudo-Alfvén waves (32) gives the
energy flux

P s
‖ (k⊥) = −C‖

B0
k6
⊥E−s

⊥ (k⊥)
∂

∂k⊥

(
Es

‖(k⊥)

k⊥

)
. (40)

By introducing Es
‖ = C̃sk⊥ms we find the finite flux solutions

ms + n−s = −4 and thus

m+ + m− = −4, (41)

C̃+C̃− = B0C⊥
C2

‖

√
5 + n+n−

5 + m+m−

P +
‖ P −

‖√
P +

⊥P −
⊥

, (42)

and

E+
‖ (k⊥)E−

‖ (k⊥) = B0C⊥
C2

‖

√
5 + n+n−

5 + m+m−

P +
‖ P −

‖√
P +

⊥P −
⊥

k−4
⊥ , (43)



1982 GALTIER & BUCHLIN Vol. 722

which reduces for balance turbulence to

E‖(k⊥) =
√

B0C⊥
3C2

‖

P‖√
P⊥

k−2
⊥

=
√

B0

4π
√

3ε4

P‖√
P⊥

k−2
⊥

� 0.214

√
B0

ε2

P‖√
P⊥

k−2
⊥ . (44)

Note that the Kolmogorov constant found by Galtier et al. (2000)
for balance turbulence was C ′

K = 0.0675
√

B0; in this case, the
constants coincide for ε � 1.78.

Additionally, Equations (30) and (32) reproduce the thermo-
dynamic equilibrium solutions which correspond to zero flux
(Galtier et al. 2000). In this case, it is straightforward to show
from Equations (30) and (32) that

ns = ms = 1 . (45)

As explained above, Equations (30) and (32) are different
from the model equations (73) and (74) derived in Lithwick &
Goldreich (2003) (where the notation is different; a comparison
is possible if one takes ke↑↓ ∼ E+−

⊥ ) which do not give
the thermodynamic equilibrium solutions. The new system
systematically derived here improved therefore the previous
description while keeping the simplicity of a diffusion model.

The nonlinear diffusion equations (30)–(32) for non-zero
cross-helicity may exhibit different power laws as finite flux
solutions. Our knowledge of the initial system (14) and (15)
imposes a priori that the power-law indices satisfy the condition
−3 < ns,ms < −1 (Galtier et al. 2000). However, if we look at
the diffusion equations we do not find any other constraint than
relations (36) and (41) which means that in principle the power-
law indices are not bounded. The simplicity of the diffusion
equations allows us to write a simple relation for shear-Alfvén
energy fluxes, namely,

P +
⊥

P −
⊥

= E−
⊥∂

(
E+

⊥/k⊥
)
/∂k⊥

E+
⊥∂(E−

⊥/k⊥)/∂k⊥
= ∂ ln

(
E+

⊥/k⊥
)
/∂k⊥

∂ ln(E−
⊥/k⊥)/∂k⊥

. (46)

In the stationary state, we obtain

P +
⊥

P −
⊥

= n+ − 1

n− − 1
= −

(
n+ − 1

n+ + 5

)
, (47)

which gives P +
⊥/P −

⊥ = 1/2 for n+ = −1 and P +
⊥/P −

⊥ = 2 for
n+ = −3. Note that the zero cross-helicity case corresponds
to n+ = n− = −2 for which P +

⊥ = P −
⊥ . In the general case

which includes nonlocal interactions, we recall that we have
P +

⊥/P −
⊥ = 0 for n+ = −1 and P +

⊥/P −
⊥ = +∞ for n+ = −3

(Galtier et al. 2000). Therefore, the differences found between
both predictions (from the diffusion and the integro-differential
equations) give an evaluation of the nonlocal contributions.

6. NUMERICAL ILLUSTRATIONS

In order to check if the constant flux solutions are attractive
we have performed two numerical simulations of the nonlinear
diffusion equations. Only the case of shear-Alfvén waves
(transverse fluctuations) has been considered. A linear viscous

Figure 2. Time evolution of the energy spectrum E+
⊥(k⊥) for a cross-helicity

ρ = 0. The stationary spectrum is well fitted by a power law in k−2
⊥ . Forty

spectra are shown with a constant interval of time.

term is added in order to introduce a sink for the energy. In
practice, the following equations are simulated:

∂tE
±
⊥ (k⊥) = ∂

∂k⊥

(
k6
⊥E∓

⊥ (k⊥)
∂

∂k⊥

(
E±

⊥ (k⊥)

k⊥

))
−νk2

⊥E±
⊥ (k⊥),

(48)
where ν is the viscosity (a unit magnetic Prandtl number is
chosen). These types of equations are favorable to the use of a
logarithmic subdivision of the k⊥-axis such that in our case

k⊥i = 2i/10 (49)

where i is a positive integer. Such a discretization allows us to
reach Reynolds numbers much greater than in direct numerical
simulations. We take imax = 200 which corresponds to a ratio
of about 106 between the largest and smallest scales. In our
simulations, the viscosity is fixed to ν = 5 × 10−5.

The first simulation corresponds to the zero cross-helicity
case for which by definition E+

⊥ = E−
⊥ . Large-scale spectra

centered around k⊥ = k0 are initially taken with the form

E±
⊥ (k⊥) ∼ k⊥3 exp

( − k⊥2/k2
0

)
, (50)

where k0 = 5. Only the time evolution of E+
⊥ is given

in Figure 2. We see that the front of the energy spectrum
propagates toward larger wavenumbers to eventually reach a
k−2
⊥ -stationary spectrum as predicted by the theory. We may

note the acceleration of the front until the dissipation scale is
reached since spectra are separated by a constant interval of time.
In the second simulation, we have initially fixed the (reduced)
cross-helicity to

ρ = E+
⊥ − E−

⊥
E+

⊥ + E−
⊥

= 0.8. (51)

As in the previous case the initial spectra are centered around
k⊥ = k0 = 5 with more energy in spectrum E+

⊥ than in E−
⊥ .

We keep the same form as Equation (50). The result is shown in
Figure 3. We see that the compensated spectra fit well with the
theoretical prediction k−4

⊥ over several decades. In fact, spectra
meet at relatively small k⊥ and exhibit the same inertial range
with the same k⊥−2–spectrum over a wide range of scales.

7. DISCUSSION

It would be relevant to investigate if whether or not the sys-
tem recently derived by Matthaeus et al. (2009) for strong
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Figure 3. Time evolution of the compensated energy spectra E+
⊥E−

⊥k⊥4 for a
cross-helicity ρ = 0.8. The stationary spectra satisfy the relation n+ +n− = −4.
Forty spectra are shown with a constant interval of time.

(anisotropic) MHD turbulence is able to recover the present
equations when the limit of wave turbulence is taken. It would
also be interesting to analyze if an anomalous scaling is de-
tected during the front propagation (which is not easy to find
here). We recall that the wave kinetic equations (14) exhibit a
k⊥−7/3-spectrum during the non-stationary phase (at zero cross-
helicity) which is still not understood (Galtier et al. 2000).
Anomalous scalings are weaker in diffusion models of turbu-
lence than in wave kinetic equations (Connaughton & Newell
2010). We plan to further investigate this point by using, for ex-
ample, a higher order numerical scheme. We also plan to further
compare numerically the nonlinear diffusion equations and the
wave kinetic equations to determine the domain of divergence
between them or the influence of an external force (see, e.g.,
Galtier & Nazarenko 2008).

The nonlinear diffusion equations for non-zero cross-helicity
(Equations (30)–(32)) are a simple and therefore useful sys-
tem for describing a wide class of astrophysical plasmas. The
solar corona with the myriad of magnetic loops which are
characterized by a strong axial magnetic field is probably a
good example of the application of Alfvén wave turbulence
(Rappazzo et al. 2007; Bigot et al. 2008b). This regime is
also relevant for coronal holes where the solar wind is pro-
duced. For both examples, Equations (30)–(32) could give a
description of MHD turbulence at large scales since it seems
inevitable that at smaller scales the strong turbulence regime
overcomes. In this case, a coupling with for example the
advection–diffusion model proposed by Chandran (2008) would
be relevant.

We acknowledge Institut Universitaire de France for financial
support.
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