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ABSTRACT

Feedback from protostellar outflows can influence the nature of turbulence in star-forming regions even if they are
not the primary source of velocity dispersion for all scales of molecular clouds. For the rate and power expected in
star-forming regions, we previously (Carroll et al.) demonstrated that outflows could drive supersonic turbulence
at levels consistent with the scaling relations from Matzner although with a steeper velocity power spectrum than
expected for an isotropically driven supersonic turbulent cascade. Here, we perform higher resolution simulations
and combine simulations of outflow driven turbulence with those of isotropically forced turbulence. We find that the
presence of outflows within an ambient isotropically driven turbulent environment produces a knee in the velocity
power spectrum at the outflow scale and a steeper slope at sub-outflow scales than for a purely isotropically forced
case. We also find that the presence of outflows flattens the density spectrum at large scales effectively reducing
the formation of large-scale turbulent density structures. These effects are qualitatively independent of resolution.
We have also carried out Principal Component Analysis (PCA) for synthetic data from our simulations. We find
that PCA as a tool for identifying the driving scale of turbulence has a misleading bias toward low amplitude
large-scale velocity structures even when they are not necessarily the dominant energy containing scales. This
bias is absent for isotropically forced turbulence but manifests strongly for collimated outflow driven turbulence.

Key words: ISM: clouds – ISM: jets and outflows – ISM: kinematics and dynamics – methods: data analysis –
turbulence

1. INTRODUCTION

Supersonic velocity dispersions are a ubiquitous phenomena
occurring over a wide range of scales in star-forming molecu-
lar clouds. The relationship between velocity dispersions (line
widths) and size was first summarized by Larson (1981). While
Larson’s laws originally applied only to global relationships be-
tween different giant molecular clouds (GMCs), Heyer & Brunt
(2004) showed that the same line width size relationships held
within individual GMCs. These observed velocity dispersions
are commonly interpreted as resulting from turbulent gas mo-
tion. The formal distinction between turbulent motion and other
sources of velocity dispersion in molecular clouds such as grav-
itational fragmentation is an important one (Field et al. 2008,
2010), but for simplicity we presently use the terms turbulence
and velocity dispersions interchangeably.

The source of turbulent motions in molecular clouds is
a topic of debate. If self-gravity is ignored then large-scale
sources of energy for turbulence include the kinetic energy
injection from supernova and galactic differential rotation.
Sources of turbulent energy on smaller scales include stellar
feedback in the form of H ii regions, radiatively driven winds
or accretion driven outflows. This raises the issue of the so-
called injection scale, and whether there are in fact more than
one dynamically important injection scale where energy is
deposited into the turbulent spectrum. For a clump scale cloud
(�10 pc), theoretical scenarios tend to divide the sources of
turbulent forcing mentioned above into external and internal:
external forcing models consider the injection scale to be larger
than the cloud scale (e.g., supernova driven ISM turbulence)
whereas internal forcing would refer to injection scales smaller
than the cloud size (H ii regions, outflows; McKee & Ostriker
2007) or winds from B stars (Valverde 2010). Note that if
self-gravity is included, then gravitational contraction from
very large scales can itself produce velocity dispersions that

are consistent with Larson’s laws (Field et al. 2008, 2010).
That represents an alternative paradigm for driving turbulent-
like motions in molecular clouds. Whatever the source of the
motions, in order for the turbulence in the parsec and subparsec
scale clumps and cores to remain in an approximate steady state,
it needs to be continually driven over timescales longer than a
crossing time either internally via stellar feedback or externally
via a cascade down from the ISM.

Distinct from the question of the origin of turbulent motions,
is the role of turbulent “feedback” on the star formation process.
In the absence of turbulent support, most of the mass within a
given structure (GMC, clump, core) would collapse into stars
within one free fall time giving an efficiency per free fall
time εff = 1 (McKee & Ostriker 2007). Observations however
yield surprising low values of εff ranging from 0.01 to 0.1 not
only for GMCs but also for substructures within GMCs of
mean densities nH ranging from 102 to 105 cm−3 (Krumholz
& McKee 2005; Krumholz & Tan 2007). One explanation for
these low values of εff is the that the observed turbulent motions
are signatures of internal kinetic support against collapse. We
emphasize that the global energy budget of turbulence is a
separate issue from the issue of local turbulent feedback. For
example, star clusters form on scales that are a fraction of the
total molecular cloud scale Lcloud/Lcluster ∼ 10 and dynamical
feedback from outflows can impede star formation on cluster
forming scales even if the total energy budget from outflows is
insufficient to power the observed turbulent energy budget of
the entire GMC. This means that internal sources of turbulent
forcing may be important on small scales whether or not they are
important on large scales (Arce et al. 2010). On even smaller
scales (i.e., Lcore ∼ 0.1 pc), outflows are likely responsible
for the dispersal of gas (Velusamy & Langer 1998; Matzner &
McKee 2000; Myers 2008) especially if the outflow opening
angle widens with time (Arce & Sargent 2006), although the
complex interaction between cores and their outflows requires
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more numerical modeling. In addition, not all forcings are equal:
some forcings are isotropic and some are not. This distinction
has observational consequences.

In this paper, we focus on the physics and observational con-
sequences of collimated outflow driving into both initially lam-
inar and initially turbulent ambient environments. Theoretical
treatments of feedback from multiple spherical outflows creat-
ing a self-regulating star-forming system was first explored by
Norman & Silk (1980). Analytical work by Matzner (Matzner
2000, 2001, 2007) has explored the role of collimated outflow
feedback on clouds. Krumholz et al. (2006) also considered
the nature of feedback via outflows, concluding that these sys-
tems provide an important source of internal driving in dense
star-forming cores. The first simulation based study of the prob-
lem was presented by Mac Low (2000). More recently, Li &
Nakamura (2006) and Nakamura & Li (2007) have mapped out
the complex interplay between star formation outflows and tur-
bulence. Their simulations include a self-consistent formulation
of driving outflows from newly formed stars and they concluded
that protostellar outflows were a viable means of generating tur-
bulence in star-forming clusters. Wang et al. (2010) built on
these studies using higher resolution adaptive mesh refinement
studies demonstrating the vigorous feedback that outflows are
able to provide a cluster including the significant modification of
the star formation efficiency and development of massive stars.
We note that the Nakamura, Li, and Wang studies all focused
on cluster scales rather than molecular cloud scales. In addition,
they did not focus specifically on the mechanisms by which
outflows generated turbulence or the physics of power spectra
signatures. We also note a study of single jets by Banerjee et al.
(2007) that explored the volume filling averages of post shock
concluding that single jets would not leave enough supersonic
material in their wakes to act as a relevant source of internal
forcing.

The study of the detailed mechanics of outflow driven tur-
bulence was taken up in a series of papers by Cunningham
et al. (2006a, 2006b, 2008). These investigations built off ob-
servational work by Quillen et al. (2005) for NGC 1333 which
showed that turbulence was likely driven not by active outflows
but by the interaction of fossil shells driven by extinct outflows.
In Cunningham et al. (2008), it was shown how single outflows
in a turbulent environment would be disrupted leading to their
energy resupplying turbulent motions. In Carroll et al. (2009),
a study of multiple, randomly oriented jets driven into a quies-
cent medium was undertaken. The results of these simulations
showed conclusively that interacting outflows can lead to turbu-
lent motions. Explorations of the energy spectrum and the den-
sity probability density function (PDF) showed that statistically
steady isotropic random motions were maintained by the out-
flows. Of particular interest was the fact that an injection scale
associated with outflow cavity interaction Koutflow was apparent
in the energy spectrum E(k). Also, the power-law index of the
spectrum was steeper than would be expected for Burgers type
turbulence such as that generated when less realistic isotropic
forcing at large scales is used. Carroll et al. (2009) found that the
steeper spectrum was associated with outflow cavities sweeping
up vortices at smaller scales. Thus, the Carroll results provided
both proof that outflows can drive turbulence and some insights
into the physics involved and its statistical signatures.

The goal of discerning scales of turbulent driving in real
molecular clouds has, recently, received considerable attention.
In Brunt et al. (2009), Principal Component Analysis (PCA) was
used to determine the dominant scales of turbulent driving based

on molecular line emission. Based on comparisons of the first
and second eigenimages of molecular channel maps for 13CO
and 12CO, they find that the data support the conclusion that
the bulk of the energy driving for turbulence comes from scales
much larger than that of clumps. Padoan et al. (2009) reached
a similar conclusion by applying VCS (Velocity Coordinate
Spectrum; Lazarian 2009) on 13CO data. Brunt et al. (2009) also
analyzed C180 data which probes denser regions of the clumps,
and these data did reveal evidence for a second, subparsec
driving scale consistent with that of outflows. While neither
of these studies preclude the importance of feedback from
outflows on very small scales, neither of these papers actually
invoke full three-dimensional simulations of collimated outflow
driven turbulence in their conclusions about driving scale. Thus,
there is a potential loophole in the application of methods that
require a density-velocity scaling relation in order to interpret
observations as a signature of kinetic energy density on a given
scale. One of the topics we address in this paper is the bias that
results from this specific issue.

In Section 2, we discuss the basic parameters and setup of
our simulations and choices of forcing for both our collimated
outflow driving and our isotropically forced cases. In Section 3,
we discuss the results comparing the isotropically driven tur-
bulence with collimated outflow driven turbulence and the in-
terplay between the two. In particular, we analyze the growth
and saturation of turbulence, the velocity and density spectra,
the characteristic driving scales, and the relative insensitivity to
resolution. In Section 4, we uncover biases in the current use
of PCA to infer the scales of turbulent driving when compar-
ing isotropically forced to outflow driven turbulence. We show
that PCA fails to identify where the dominant driving power is
when comparing sources of turbulence with different forcings.
We conclude in Section 5.

2. NUMERICAL MODEL

As in Carroll et al. (2009), we used an MHD code called
AstroCUB but without magnetic fields for this work. The code
is second order accurate in space and time and uses a non-split
corner transport upwind method with upwinded constrained
transport as described by Gardiner & Stone (2005, 2008).
All four of the simulations were performed on a periodic
cube of length Lbox = 1.48 pc initialized with a uniform
density ρ0 = 2.51 × 10−20 g cm−3 and mean particle weight
of 2.1 amu at 10 K giving a sound speed of 0.20 km s−1.
Each of the simulations was driven by some combination
of outflow feedback (Section 2.1) and/or isotropic forcing
(Section 2.2) described below. Run HDO was forced solely
via outflows, run HDI was forced isotropically, and run HDOI
employed both forms of forcing each of comparable strength.
It is worth mentioning that the difference in velocity between
typical outflows (240 km s−1) and the turbulence they generate
(1 km s−1) makes simulations that model both types of flows
computationally intensive. This is because with Eulerian grid-
based codes, the computational time steps are limited by the
highest speeds (240 km s−1) but the timescale of interest is set by
the turbulent velocity (1 km s−1). Therefore, since simulations
with outflow forcing would normally take of order 100 times
as long as those with just isotropic forcing, we started runs
with outflow forcing at lower resolutions and then periodically
doubled the resolution until the desired resolution was reached.
Since supersonic turbulence decays on the order of 1 dynamical
time td = Lbox

vrms
, any effects from regridding are expected to also
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Table 1
Table of Runs

Run Isotropic Outflow Initial Final Regrid Time in T
Forcing Forcing Resolution Resolution 128 256 512

HDO No Yes 1283 5123 · · · 5 6
HDI Yes No 5123 5123 · · · · · · · · ·
HDOI Yes Yes 643 5123 3 5 6

Table 2
Outflow Scales

Outflow Scale cgs Units Astronomical Units Isotropic Scale

ρ0 2.51 × 10−20 g cm−3 371 M� pc−3 ρ0

P 3.98 × 1039 g cm s−1 20.0 M� km s−1 128P
S 6.31 × 10−68 cm−3 s−1 58.4 pc−3 Myr−1 S/128
M 3.73 × 1034 g 18.7 M� 64M
L 1.14 × 1018 cm 0.370 pc 4L
T 1.07 × 1013 s 0.338 Myr 2T
V 1.07 × 105 cm s−1 1.07 km s−1 2V
A 1.00 × 10−8 cm s−2 3.23 pc Myr−2 A

disappear after 1 td . For this reason, all of the spectra were taken
after at least 1 td after the final regridding. All of the runs and
the regridding times are summarized in Table 1.

2.1. Outflow Feedback

During the runs with outflow feedback, highly collimated
bipolar outflows of momentum P = 20.0 M� km s−1 were
launched at the volumetric rate of S = 58.4 pc−3 Myr−1 or with
a period of Tlaunch = 1

SL3
box

= 5.28 kyr. Combining the outflow

momentumP and rateS with the mean density ρ0 determines the
characteristic outflow scales of mass, length, and time (Matzner
2007):

M = ρ4/7
0

P3/7

S3/7
L = P1/7

ρ1/7
0

S1/7
T = ρ3/7

0

P3/7S4/7
.

Combining these gives other characteristic quantities. Of par-
ticular interest is the characteristic velocity, the characteristic
wave number, and the characteristic acceleration:

V = L
T K = 2π

L A = L
T 2 .

Table 2 summarizes the various resulting outflow scales.
Each outflow was launched from a cylindrical source region

randomly located and oriented with radius ro and length 2zo.
Instead of constantly setting the values of density and momen-
tum within each launch region as in Carroll et al. (2009), source
terms were calculated to supply the mass and momentum needed
to maintain the desired density and velocity profiles. The density
profile was chosen to be constant (ρ0 ) while the velocity profile
contained a quiescent core (|z| < zi) with |z| the direction of
the outflow. Beginning with bipolar acceleration regions from
zi < |z| < zo the profile is described below.

vz =
{

0 : 0 � |z| < zi

sign (z)
Vo(|z| − zi)

Δz
: zi � |z| � zo.

The source terms for density Sρ and momentum Sρv were cal-
culated by substituting the launch profiles into the conservation
equations and solving for a steady state solution.

∂ρ

∂t
= −∇ · (ρv) + Sρ = 0 ⇒ Sρ = ∇ · (ρv) (1)

Table 3
Outflow Parameters

Description Symbol Value Comment

Density ρ0 2.5 × 10−20 g cm−3 · · ·
Velocity Vo 65.5 km s−1 · · ·
Duration to 2.34 kyr · · ·
Period To 5.28 kyr · · ·
Radius ro 5960 AU 10Δx at 5123

Inner buffer zi 2Δx 1190 AU at 5123

Launch thickness Δz 3580 AU 6Δx at 5123

Opening angle θo 0◦ · · ·
Mass loss rate Ṁ 1.30 × 10−4 M� yr−1 · · ·

∂ρv
∂t

= − ∇ · (v : (ρv)) − ∇P + Sρv = 0

⇒ Sρv = ∇ · (v : (ρv)) + ∇P (2)

As was mentioned before, modeling outflows and the turbulence
they produce is computationally difficult due to the high ratio
between the outflow velocity Vo and the turbulent velocities
they produce V . Fortunately, since outflows are highly radiative,
it is their momentum which is most critical in modeling their
feedback. This allows us to increase the mass injected while
decreasing the velocity thereby reducing the ratio Vo/V . So,
while the momentum injected by each outflow was modeled on
a 0.5 M� star ejecting 1/6 of its mass at 240 km s−1, the actual
mass injected by each outflow was increased from 0.083 M�
to 0.305 M� to allow for a slower velocity jet (Vo/V = 61
instead of 224). This outflow mass loss increases the mean
density by ≈2% for each outflow time T . Since the simulations
were run for 8T , the overall increase in the mean density was
<16%. In addition, the mass loss rate was chosen to be 1.30 ×
10−4 M� yr−1 giving an outflow duration of 2.35 kyr. The
actual duration of the outflow was modified slightly to allow
for a gradual ramp down of the velocity while keeping the
total momentum injected equal to P . This helped to prevent
a large rarefaction from developing once the outflow sourced
terms were shut off. Since the outflow period was Tlaunch =
5.28 kyr, only one outflow was ever active at a given time.
Table 3 summarizes the outflow parameters.

2.2. Isotropic Forcing

In addition to forcing via outflow feedback, a constant
isotropic solenoidal forcing at the box scale Lbox = 4Lwas used
to mimic the cascade of turbulent energy from larger scales. The
mean acceleration of the isotropic forcing was 〈a〉 = 0.95A
while the components and phases of each wavevector were
chosen randomly. Table 4 lists the forcing vectors and phases
for each wave mode. The total force applied to each cell was

�f = ρ�a (�x) = ρ
∑

n

�An cos ( �kn · �x + φn). (3)

In a similar manner to the outflow forcing, we can combine
the isotropic forcing scale Lbox with the mean acceleration A
and the ambient density ρ0 to calculate characteristic scales
for the isotropically driven turbulence. Of particular interest
is the velocity scale VI = √

LboxA = √
4LA = 2V and the

associated timescale TI = VI /A = 2T . While both types of
forcing have the same mean acceleration and inject momentum
at comparable rates, the isotropic forcing has a greater velocity



148 CARROLL, FRANK, & BLACKMAN Vol. 722

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (T )

v r
m

s(
V)

Comparison of Velocity Dispersion

HDI
HDOI
HDO

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

Time (T )

P
(ρ 0

V)

Comparison of Mean Scalar Momentum

HDI
HDOI
HDO

Figure 1. Time series showing development of the mean scalar momentum density P and the velocity dispersion vrms for runs HDI (solid lines), HDOI (dash-dotted
lines), and HDO (dashed lines). All quantities are scaled to the outflow scales (i.e., T ,V , and ρ0 ).

Table 4
Isotropic Forcing Components

�k �A φ

[1, 0, 0] [0, 0.04087, 0.81547] 1.6519
[0, 1, 0] [−0.64450, 0, −0.50128] 1.1919
[0, 0, 1] [−0.41577, 0.70271, 0] 3.7784

scale simply because it injects energy on a larger spatial scale.
For completeness, all of the equivalent scales associated with
the isotropic forcing are listed in Table 2.

3. RESULTS

3.1. Growth and Saturation of Turbulence

Figure 1 shows the growth and saturation of the mean
scalar momentum P ≡ < ρ|�v| > and the velocity dispersion
vrms ≡

√
< v2 > with just isotropic forcing (HDI), just outflow

forcing (HDO), and where both types of forcing are present
(HDOI). Since both types of forcing have approximately the
same mean acceleration (A for the outflow forcing and 0.95A for
the isotropic forcing), the initial growth of the scalar momentum
seen in the left panel of Figure 1 for run HDOI is larger (about
twice) than that of runs HDO and HDI as expected, although due
to the lower initial resolutions of run HDO and HDOI, the initial
growth in the outflow momentum injection rate appears to be
≈80%ρ0V/T . The effects of the resolution can also be clearly
seen in the resaturation of the scalar momentum for run HDO
following regridding at t = 5T and 6T and somewhat less so
for run HDOI at t = 3T , 5T , and 6T . Each time the resolution
is doubled, the dissipation scale is halved, the dissipation rate is
reduced, while the injection rate remains the same—leading to
a higher saturation level.

Even though both types of forcing have the same mean
acceleration, the final saturation levels for the mean scalar
momentum for runs HDI and HDO differ due to the difference in
length scales associated with the driving. The isotropic forcing
injects its energy/momentum at a larger scale (Lbox = 4L
instead of ∞L), leading to a longer turnover or cascade time
(2T instead of ∞T ), and a slower dissipation. This results in
a higher saturation level consistent with the velocity scale for
the isotropic forcing (VI = 2V). The saturation level for run

HDOI is slightly larger than that of run HDI due to the additional
momentum injected by the outflows. Given the scaling relations,
we might expect the velocity dispersion for runs HDI and HDO
to follow a similar trend. Instead, we see that in spite of having
a lower turbulent velocity scale, the outflow driven turbulence
has a comparable velocity dispersion. This can be explained by
considering the high velocity nature of the outflows themselves
(V0/V = 61). It takes very little high velocity gas to significantly
contribute to the velocity dispersion, and when outflows are
present there is plenty of high velocity gas around. In addition,
the high velocity impulsive nature of the outflow driving leads
to the high degree of variability in the velocity dispersion.

In Figure 2, we show joint probability distribution for the three
hydrodynamic runs. The isotropically forced runs shows the
expected log-normal distribution with density (Federrath et al.
2008). As was demonstrated in Carroll et al. (2009), outflows
will also produce such a log-normal distribution in ρ as can be
seen in the higher resolution HDO runs. Thus, we confirm the
conclusions that transient outflow cavities can set the bulk of
initially quiescent material into random but statistically steady
supersonic motions. The PDFs for runs HDO and HDOI also
reveal the presence of the high velocity material produced by the
outflows responsible for the high velocity dispersions and the
higher degree of variability. The isotropic forcing on the other
hand is only able to accelerate material at A over a distance Lbox

to velocities of ≈√
2LboxA = √

8V leading to the cutoff in the
left panel of Figure 2 (run HDO) and the horizontal kink in the
middle panel (run HDOI).

3.2. Driving Scales of Turbulence

In order to better understand how these two types of forcing
influence their environments over a range of scales, we looked at
the velocity and density spectra for runs HDO, HDI, and HDOI
after a statistically steady state had been reached at a resolution
of 5123. First, as would be expected, the driving scales asso-
ciated with the outflow forcing (K) and the isotropic forcing
( k
kmin

= 1) are clearly evident in the velocity spectra seen in
Figure 3. The velocity spectra for runs HDO and HDOI have a
clear peak and knee, respectively, at the outflow wave number
K, while the velocity spectra for runs HDI and HDOI peak at
the isotropic forcing scale k

kmin
= 1. Secondly, as would also
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Figure 3. Velocity power spectrum (left) and density spectrum (right) for runs HDI (solid line), HDOI (dash-dotted line), and HDO (dashed line). The vertical dashed
line corresponds to the outflow wave number K and all quantities are scaled to the outflow scales.

be expected, run HDI has a spectral index of β = 2.0 over
the marginally resolved inertial range, consistent with previous
simulations of supersonic, isothermal, and isotropically forced
turbulence as well as supersonic cascade and shock-dominated
models. Somewhat unexpectedly, however, is the steep slope
(β = 3.2) present in the velocity spectra for runs HDO and
HDOI at sub-outflow scales. This steep slope along with the
significantly greater amount of energy implies more coherent
higher-velocity structures on sub-outflow scales. This is reason-
able however, given the nature of the outflow forcing. Outflow
cavities are able to expand coherently out to distances L be-
fore they have decelerated to the background turbulent veloci-
ties, at which point they lose coherence. As the cavities break
up, they will stir motions with velocities V over size scales L
and inject their remaining momentum into turbulent motions.
The timescale for these turbulent motions to cascade, however
L
V = T , is the same as the timescale between successive out-
flows, so each outflow effectively destroys any decoherent mo-
tions left by its predecessors. It is interesting that the source of
the turbulent energy is also, to some degree, the source of its
dissipation. We conjecture that this conclusion will hold for all
forms of internal driving where stellar sources feed energy back
into the parent cloud. Our results highlight the difference be-

tween simulations which track the more realistic discrete driving
and those which impose an a priori driving spectrum at large
scales to model an unknown process of external driving.

Nakamura & Li (2007) also looked at the velocity spectrum
(see Figure 9) of their simulations with outflow feedback and
found a slope at sub-outflow scales of β = 2.5. This is
steeper than isotropic models but it is not quite as steep as
our models HDO and HDOI (β = 3.2). They also found a
flattening of the spectra at smaller scales absent in our spectra.
We conjecture that this increase in kinetic energy at small
scales is likely due to material falling on to sink particles due
to their inclusion of gravity. While the expanding cavities in
our simulations have a Hubble type velocity profile v ∝ r1

corresponding to a β of 3, collapsing material would be expected
to have a velocity profile v ∝ r−1/2 corresponding to a β of
0. These infalling motions would blend with the expanding
cavities creating a shallower spectra. Recently, Federrath et al.
(2010) also found that compressive forcing leads to steeper
velocity spectra (β = 1.94) than solenoidal forcing (β = 1.86).
However, while a single outflow provides purely compressive
forcing, a collection of randomly placed and oriented outflows
will produce a mixture of both compressive and solenoidal
forcings. Additionally, the differences in the slope of the power
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spectra due to the compressive or solenoidal nature of the forcing
are not enough to account for the differences seen in runs with
solenoidal forcing and those with outflows.

In contrast to the effect outflows have on the velocity
spectra (a steepening at sub-outflow scales), the density spectra
undergoes a flattening at supra-outflow scales as seen in the right
panel of Figure 3. Note the density spectrum for run HDO is
quite flat at large scales and that run HDOI is flattened compared
to run HDI. This is not too surprising when one considers
that each outflow is randomly placed and oriented. To gain a
visual sense of what this means, we present in the top panels
of Figure 5 two-dimensional cuts of density through both the
HDOI and HDI simulations once saturation has been achieved.
In addition, in the bottom panels of Figure 5 we show log column
density maps to give a sense of the difference in observational
appearance the two modes of turbulent driving would obtain.

When only outflows are present (as in run HDO), there
is no source for large-scale (supra-outflow) coherent motions
producing large-scale coherent density structures. The random
placement and orientation of outflows produces fairly random
density structures and a fairly white spectra. Only when large-
scale isotropic forcing is present (as in run HDI) do large-scale
motions driven by large-scale isotropic forcing generate large-
scale coherent density structures. These can be clearly seen in
the right panels of Figure 5. The timescale however needed for
these structures to form is TI = 2T . Thus, when both large-
scale forcing and outflows are present (as in run HDOI), these
large-scale density structures are unable to survive being torn
apart by sequential rounds of outflow generation (which occur
on a timescale T ). Thus, outflows suppress small k modes in
density resulting in a flatter density spectra as seen in Figure 3
as well as a less coherent density field as seen in the left panels
of Figure 5. This disruption in large-scale density structures
is somewhat mirrored in the disruption of large-scale velocity
structures. This explains the decrease in power at large scales
seen in run HDOI as compared to run HDI.

3.3. Resolution Study

To better understand the role numerical dissipation might
play in the density and velocity spectra, we completed run
HDOI at 643, 1283, 2563 as well as 5123 in order to perform

a resolution study. Figure 4 shows both the velocity and density
power spectra at ∼8T at resolutions of 643, 1283, 2563, and
5123. The velocity spectra are fairly insensitive to numerical
resolution, especially at sub-outflow scales. In cascade models
of turbulence, the lack of turbulent eddies near the dissipation
scale reduces the rate at which energy can cascade creating
a pileup of energy at scales above the dissipation scale. This
bottleneck and subsequent steepening depends entirely on the
dissipation scale and would be resolution dependent. The lack of
any resolution dependent bottleneck effect is however consistent
with the lack of any cascade at sub-outflow scales, owing
to outflows themselves being responsible for the turbulent
dissipation. The outflows themselves create a kind of bottleneck,
but this bottleneck is at the outflow scale—not the dissipation
scale—and is well resolved (except perhaps marginally so
at 643).

The density spectra, on the other hand, due show strong res-
olution dependent effects. At supra-outflow scales, the spectra
become flatter as the resolution increases due to the ability of
the outflows to more finely shred the large-scale density struc-
tures. The spectra also appear to steepen at a resolution depen-
dent scale of ∼8Δx most likely due to numerical diffusion near
shocks. At a resolution of 5123, this steepening scale is a few
times smaller than the sonic length ls ∼ 24Δx where v(ls) = cs

or Pv(ls) = c2
s = 0.035V2. Below the sonic length scale, turbu-

lent velocity fluctuations become subsonic (and therefore less
compressible).

3.4. Discussion of Dynamical Results

Outflow driven turbulence is very different from isotropically
forced turbulence, and the presence of outflows within an
isotropically driven cascade significantly alters the dynamics.
In general, the presence of outflows will lead to a steeper
velocity spectrum at sub-outflow scales and a shallower density
spectrum at supra-outflow scales. The steepening of the velocity
spectrum at sub-outflow scales can be attributed to the presence
of coherent outflows themselves, as well as their ability to
effectively impede the cascade of energy by sweeping up small
eddies as they expand. As a result, the dynamics on sub-outflow
scales are dominated by the passing of subsequent outflows
rather than the cascading of energy from larger scales.
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Figure 5. Plots showing a slice through log density (top) and log column density (bottom) for run HDOI in which turbulence is driven by outflows and isotropic
forcing (left panels) and for run HDI in which turbulence is driven by isotropic forcing only (right panels). The density plots are scaled to ρ0 , and the column density
plots to N0 = ρ0 Lbox. The x and y axis are in units of the outflow length scale L.

The flatter density spectra at supra-outflow scales can be
attributed to the ability of the outflows to disrupt larger scale
structures from forming. This can be most clearly seen upon
visual inspection of the bottom panels in Figure 5. When the
outflows are highly collimated (as is the case here), they can also
disrupt the coherent density structures produced by neighboring
outflows leading to a flattened density spectra even into the sub-
outflow scale as seen in Figure 3. Outflow feedback is therefore
important in not only sustaining turbulence but also in limiting
the spatial scales of density structures and therefore shaping the
initial mass function. This interplay will be somewhat modified
when the outflow locations and orientations are linked to the
global dynamics of the clouds via gravitational collapse and
magnetic fields, but we see as in Wang et al. (2010) that outflows
have the potential to play a large role in setting the star formation
rate and the initial mass function in their neighborhoods.

We note that our results do not imply that outflows can drive
turbulence across the entire cloud. Given the paucity of young
stellar object outflows across the entire length of a cloud like
Perseus, it seems unlikely that the cloud as a whole can be set
into turbulent motions from outflow feedback. But this does not
preclude outflow driving in regions where stars actually form.
The pervasive clustering inherent to star formation implies that
outflows can significantly affect the star formation rate even
though they likely do not drive the global GMC turbulence.

4. CONNECTING TO OBSERVATIONS

Although the model of outflow driven turbulence used here
is somewhat idealized by the outflows having uniform strength,
collimation, and mean separation, it is reasonable to expect a
similar signal to be present in the actual velocity spectra for
regions where outflows are dynamically important. We note
that such a signal is likely to be blurred since outflows will have
varying strength, collimation, and separation. Even under the

best of conditions, observers are still left with the difficult task
of inferring the velocity spectra using VCA (velocity channel
analysis), VCS, or PCA from data cubes of emission intensity
as a function of position on the sky and line-of-sight velocity
T (x, y, vz). Since emission is at least density dependent, some
assumptions on density-velocity correlations and distributions
must be made. These assumptions are often justified on the
basis of both theoretical and numerical models of isotropically
forced turbulence. Figure 2, however, shows clearly that the
density-velocity distributions and to some extent correlations are
different between outflow driven turbulence and isotropically
forced turbulence. It is therefore worth investigating the ability
of various techniques to reconstruct the velocity spectrum of
models of outflow driven turbulence (as well as more realistic
simulations that involve self-gravity, etc.). Here, we look at the
efficacy of one such technique (PCA) to infer the presence of
outflows.

4.1. Synthetic Observations

In practice, the actual emission from molecular clouds will
depend on more than just density (i.e., temperature and chem-
istry). In addition, optical depth effects further complicate the
issue. Here, we ignore such effects and assume ideal observa-
tions of a density weighted velocity field. This allows us to
focus more directly on how the different density-velocity cor-
relations and distributions produced by isotropic and outflow
forcing effect the results inferred from PCA. To convert our
computational box into a spherical cloud, we first tiled the box
in each direction. This allowed us to apply a spherical window as
in Brunt et al. (2009) without discarding as much information.
This also increased the ratio of cloud size to isotropic forcing
scale and prevented a sort of blending of the first two principal
components (described below). We then created synthetic data
cubes created by making density weighted histograms of the
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Figure 6. Histograms of line-of-sight velocity for runs HDI, HDOI, and HDO weighted by density ρ (upper left), by volume/unweighted (upper right), by line-of-sight
momentum ρvz (lower left), and by ρv2

z (lower right). Note the high velocity components present in runs with outflow forcing (HDOI and HDO) that contribute to the
momentum and energy but produce a very small signal in the density weighted emission.

line-of-sight velocity along the x-axis at each yz position for
runs HDI, HDOI, and HDO. (We did check that ignoring emis-
sion from material below the critical density of the J = 2 → 1
transition of C18O or 0.65ρ0 had little effect on our results;
Offner et al. 2008; Schöier et al. 2005).

4.2. Global Line Profiles

Before applying PCA, it is instructive to examine the “unre-
solved” spectra (integrated over the plane of the sky) for each
run (upper left panel of Figure 6). Note that runs with isotropic
forcing (HDI and HDOI) have a broader central line profile than
the run with just outflow forcing (HDO) roughly consistent with
the greater velocity scale VI = 2V associated with the isotropic
forcing as well as the saturation levels of momentum seen in the
left panel of Figure 1. It is not surprising that the line widths
are more consistent with the saturation levels of momentum
as opposed to velocity dispersions since both momentum and
emission are weighted by density.

Additionally, the line profiles for runs with outflow forcing
(HDO and HDOI) have extended wings not present in run HDI

due to the higher velocity material injected by the outflows.
While the wings are only marginally apparent in the density
weighted emission and as such do not contribute to the observed
line widths, they do contribute significantly to the momentum
and energy. This becomes apparent after weighting the “ob-
served” line profiles by the line-of-sight velocity vz or by v2

z .
These modified spectra seen in the bottom panels of Figure 6
show the distribution of momentum or energy at the different
velocities. Note the large contribution to the momentum and
energy provided by the high velocity wings in runs HDO and
HDOI. As a result, line widths inferred from density weighted
emission will tend to underestimate the energy and momentum
injected by the outflows. In addition to the line profiles pro-
duced by density weighted emission, we constructed line pro-
files of volume (or unweighted) emission (upper right panel of
Figure 6). Note the global line profiles are very similar imply-
ing a lack of any strong density velocity correlations. This is not
surprising since the density-velocity distributions in Figure 2
are only weakly correlated over the bulk of the material for all
three runs.
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All eigenimages are normalized to mean emission (column density). Note the lack of large-scale coherent structures in the first principal eigenimage for runs HDOI
and HDO where outflows are present, and the large dipole structure present for runs HDOI and HDI where large-scale forcing is present.

4.3. Principal Component Analysis

Principal Component Analysis is a technique for finding
relationships between a given set of variables that can best
explain the variance in a given set of measurements. Given a set
of n measurements of p variables Tij (corresponding to the i th

measurement of variable j), PCA first involves the construction
of the covariance matrix Sjk = ∑n

i=1 T̂ij T̂ik where we have
subtracted off the mean values for each variable (T̂ij = Tij − T̄j

where T̄j = 1
n

∑n
i=1 Tij ). The first principal component is then

the (normalized) eigenvector V 1
j of the covariance matrix (and

corresponding projection P 1
i = ∑p

j=1 T̂ijV
1
j ) with the largest

eigenvalue λi and as such can account for the largest source
of variance. The second principal component is the eigenvector
with the second largest eigenvalue and so on.

Principal Component Analysis as applied to interstellar tur-
bulence is formally described in Heyer & Schloerb (1997) and
Brunt & Heyer (2002a). It involves treating the spectroscopic
datacube Tij = T (xi, yi, vj ) as a measurement at each pixel
(xi, yi) of a set of variables (the emission in each velocity chan-
nel vj ). The eigenvectors of the covariance matrix are then
line spectra in velocity space, and the projections are images
in xy space where each pixel represents the degree of corre-
lation between the line spectra at that pixel and the principal

eigenvector. These principal “eigenspectra” and corresponding
“eigenimages” then account for the largest sources of variance in
the datacube. While PCA formally uses the covariance matrix,
a modified version (mPCA) has also been used to decompose
datacubes into eigenspectra and eigenimages–though using the
“co-emission” matrix ˜Sjk = ∑n

i=1 TijTik in which the mean
values for each channel are not subtracted. The ij th element
of the co-emission matrix is therefore the degree of correlation
between the emission in velocity channels i and j summed over
all positions. The lack of any mean value subtraction introduces
additional pseudo-variance which is effectively removed in the
first principal component. Here, we use mPCA to make contact
with previous work (Brunt & Heyer 2002a, 2002b; Brunt 2003;
Brunt et al. 2009).

PCA effectively reduces the dimensionality of the dataset by
projecting the three-dimensional datacube onto a sequence of
one-dimensional principal eigenspectra resulting in a sequence
of two-dimensional principal eigenimages. The generation of
the eigenspectra (and therefore the eigenimages), however,
does not make use of the velocities associated with each
channel (or the positions on the sky of each pixel). The
positions in the sky of each spectra could be shuffled without
changing the eigenvectors, and the velocity channels could be
shuffled without changing the resulting eigenimages. However,
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the resulting (unshuffled) eigenvectors and eigenimages can
be used to determine sequentially the velocity magnitudes
(dvi) and length scales (li) over which the largest sources
of variance change. These scales are typically calculated as
the distance at which the autocorrelation functions of the
eigenspectra (dvi) and eigenimages (li) drop by a factor of e.

The combination of li and dvi for each principal component then
allow for the reconstruction of a line width size relationship (or
equivalently a velocity spectra EPCA). These inferred spectra
have been shown to closely mimic the actual velocity spectra in
fractional Brownian motion simulations (Brunt & Heyer 2002a).
In addition, Brunt et al. (2009) demonstrated that the ratio of l2
to l1 (when using mPCA) is correlated with the ratio of cloud
size λD to driving scale Lbox in simulations of isotropically
forced turbulence. Since the first principal component in mPCA
is likely to mirror the mean values to account for the pseudo-
variance, the principal length l1 is typically the size of the cloud.
This leaves the second principal component and corresponding
length l2 to account for the largest source of true variance which
should be associated with the driving scale.

Figures 7 and 8 show the first three eigenimages and eigen-
vectors for the three different cases. Note that while all three
runs have similar velocity dispersions (Figure 1), the runs with
isotropic forcing (HDI and HDOI) have much broader eigen-
spectra (Figure 8). This broadening results in higher spectral
correlation magnitudes dvi for runs HDI and HDOI given in
Table 5. These differences, however, are in general consis-
tent with the differences seen in the final values of the mean
scalar momentum in Figure 1 and is not surprising considering
that both the mean scalar momentum and emission are density
weighted. It is also interesting to note that the first three spectral
correlation lengths for run HDOI are actually smaller (≈10%)
than those for run HDI even though run HDOI has additional
forcing via outflows, a larger velocity dispersion, and a larger
saturation value of mean scalar momentum. We interpret this
decrease in velocity correlation length as arising from the dis-
ruption by outflows of the large-scale coherent flows produced
by the isotropic forcing. This is consistent with the decrease in
power at large scales seen in the velocity spectra in Figure 3.

While the presence of outflows in run HDOI does not
contribute to larger velocity correlation lengths (dv1, dv2,
and dv3) and as such is not readily apparent in the principal
eigenspectrum, the presence of outflows is apparent in the
first principal eigenimage in the lack of coherent large-scale
density structures for run HDOI compared to run HDI. This
is consistent with the flattening of the density spectra seen in
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Figure 9. Plots showing the line widths and correlation lengths for the spectroscopically resolved principal components. Left panel shows the results for runs HDI,
HDOI, and HDO. Right panel shows how the line widths and correlation lengths change when a sinusoidal perturbation of varying strength is added to the final frame
of run HDO.
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Figure 10. Plot showing how the second principal eigenspectra (top) and eigenimage (bottom) change when a sinusoidal perturbation of varying strength is added to
the final frame of run HDO. Plots are scaled as in Figures 7 and 8. Note the slight broadening of the eigenspectra and the appearance of a large dipole structure in the
eigenimages resulting in a larger correlation length (l2)

Table 5
Autocorrelation Lengths of Eigenimages and Eigenvectors from Principal Component Analysis

Run l1 l2 l3 l2/l1 ΛD/Lbox dv1 dv2 vrms
dv1
vrms

HDI 0.7960 0.2904 0.2076 0.3649 1.000 2.376 0.9276 1.9785 1.201
HDOI 1.126 0.3067 0.1142 0.2723 1.000 2.183 0.8593 2.2546 0.9682
HDO 1.113 0.0973 0.0492 0.0874 0.2500 0.7977 0.3293 2.2907 0.3482
HDO10 1.115 0.1251 0.0537 0.1123 · · · 0.8187 0.3289 · · · · · ·
HDO20 1.117 0.1964 0.0595 0.1758 · · · 0.8684 0.3520 · · · · · ·
HDO30 1.119 0.3138 0.0703 0.2804 · · · 0.9402 0.3903 · · · · · ·
HDO40 1.118 0.3874 0.0927 0.3466 · · · 1.023 0.4370 · · · · · ·
HDO50 1.112 0.4367 0.1235 0.3928 · · · 1.108 0.4907 · · · · · ·

Note. All lengths are in pc and velocities in km s−1.

Figure 3 and the larger principal autocorrelation length (l1) given
in Table 5. However, the second and third eigenimages for run
HDOI are very similar to run HDI and show clear evidence
for the large-scale driving. These large dipole structures present
in the second eigenimages for runs HDI and HDOI result in
larger autocorrelation lengths (l2) and larger ratios of l2 to l1
especially when compared to run HDO (see Table 5). We find
as in Brunt et al. (2009) that the ratio of l2 to l1 correctly
identifies the largest driving scale. Runs HDI and HDOI are
driven isotropically with λD

Lbox
= 1 and have ratios l2

l1
= 0.3649

and 0.2723, respectively, while run HDO is driven by outflows
at one fourth the scale ( λD

Lbox
= 0.25) and has a corresponding

ratio roughly one fourth ( l2
l1

= 0.0874). While the ratio of l2 to
l1 does not reveal the presence of the outflows in run HDOI,
the resulting line width size relationships shown in the left
panel of Figure 9 do show an excess of energy for run HDOI
beginning at the third principal component whose correlation
length l3 = 0.1142 is approximately the same as that for the
second principal component for run HDO l2 = 0.0973 which is
the scale associated with the outflow driving. We note, however,
that since the inferred spectra from PCA rely on line widths that
are fairly insensitive to the high velocity wings, PCA will in
general underestimate the true strength of the outflow forcing.
This explains why run HDI appears to have more power over the



156 CARROLL, FRANK, & BLACKMAN Vol. 722

entire range of scales in the results from PCA when in fact run
HDI has less power at small scales as seen in the true velocity
spectrum in Figure 3.

We have already seen how the density weighting of the
emission results in line widths consistent with values of the
mean scalar momentum rather than the velocity dispersion.
This alone explains why the second principal component for
run HDOI picks out the variance produced by the isotropic
forcing rather than that due to the ouflows. However, since the
emission is not weighted by velocity, low velocity motions on a
given scale can produce just as much variance in the datacube
as high velocity signals on the same scale. Thus, a low velocity
large-scale coherent motion could produce more variance than
a high velocity motion of less coherence on that scale. Thus, the
ratio of l2 to l1 is more a simple measure of the largest scale
of coherent motion rather than the scale of dominant driving
energy. In simulations of isotropically forced turbulence, there is
no distinction. But in clouds where outflows are present within
an external cascade, or where there are large-scale coherent
motions due to angular momentum conserving collapse, this
distinction becomes important.

To further test the aforementioned bias, we ran PCA on a
series of datacubes produced by modifying the velocity field
in run HDO through the addition of a large-scale sinusoidal
variation in the line-of-sight velocity—similar to what is seen
in run HDOI. We varied the strength of the perturbation
from 10%V to 50%V in 10% increments (HDO10, HDO20,
HDO30, HDO40, and HDO50) and looked at how the resulting
correlation lengths shifted. The first three eigenimages for
each run are shown in Figure 10. By run HDO30, the second
principal eigenimage shows the large-scale velocity variation
and the resulting autocorrelation length l2 has increased from
its initial value of 0.0587 to 0.1477 corresponding to the
driving scale seen in runs HDI and HDOI. Note also the
(small) 20% increase in dv1 from 0.10245 to 1.2009 produced
by the velocity perturbation. These trends are also evident
in the line width size relationships shown in the right panel
of Figure 9. Thus, our results indicate that PCA is not a
reliable measure for determining the specific question of the
dominant mode of energy input in driving turbulence. In our
experiments, even though the energy put into the solenoidal
motions was smaller than that in the outflows, PCA still picked
up these solenoidal motions as dominant, i.e., Esol < Eof
but l2(sol) > l2(of).

5. CONCLUSION

Building on the work of Carroll et al. (2009), we studied
the properties of turbulence driven isotropically by outflows
and by a combination of both for input parameters typical
of clump scale molecular clouds. We find as in Carroll et al.
(2009) that outflows are able to drive supersonic turbulence at
levels consistent with the scaling relations put forth by Matzner
(2007). We also find that turbulence driven by outflows is
characterized by a steeper velocity spectrum at sub-outflow
scales and an overall flatter density spectrum. Based on our
resolution study, we conclude that when outflows are present,
the resulting steep velocity spectra and correspondingly smooth
velocity structures seen at sub-outflow scales are not due to
numerical dissipation but rather due to the presence of the
outflows themselves. Outflows are able to continually generate
smooth velocity structures on outflow scales that sweep up
and “dissipate” smaller structures at the same rate that these
structures would begin to cascade. Outflow driven turbulence is

therefore quite different from the cascade of energy produced
by large-scale isotropic forcing.

Since outflows drive motions on sub-parsec scales, it seems
likely that realistic outflow driving will take place in the presence
of a externally driven cascade, due to external energy inputs
into molecular cloud systems from much larger scales. With this
motivation, we drove outflows into a medium also supplied with
isotropically driven turbulence from larger scales. We found
that the properties of the turbulence at sub-outflow scales were
largely unchanged by the external isotropic cascade for typical
cloud parameters. In particular, the velocity spectra still contain
a knee at the outflow scale and a steep slope at sub-outflow
scales. We also found that the outflows produced a flatter density
spectra even at supra-outflow scales. We attribute this to the
disruption by outflows of larger scale structures produced by
the large-scale driving. We conclude therefore, as in Wang et al.
(2010), that outflows have the potential to play a large role in
setting the star formation rate and the initial mass function in
their neighborhoods.

Finally, we also find that the density-velocity distributions
and to a smaller extent correlations present in outflow driven
turbulence are quite different from those present in an isotropic
cascade. Many of the techniques for inferring the velocity spec-
trum of turbulence in star-forming regions rely on assumptions
about density-velocity distributions and correlations based on
simulations of isotropically forced turbulence. To illustrate the
resulting potential bias, we tested one such model (PCA) against
the results from our simulations of outflow driven turbulence.
We find that indeed PCA underestimates the contribution of out-
flows to the velocity dispersion, though not necessarily the mean
scalar momentum. We find that PCA is able to infer the driving
scale of the outflows for the case of pure outflow driven turbu-
lence but that the presence of even small velocity large-scale
flows quickly leads to an overestimation. We suggest weighting
the data cubes by the line-of-sight velocity as one way to make
PCA more sensitive to higher velocity flows. This highlights
that nature of the forcing of turbulence (e.g., isotropic on large
scales vs. outflow driven) is of direct importance for interpreting
observations.
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APPENDIX

Calculating a smooth 1D spectra E (k) from a discrete three-
dimensional velocity field vi is not completely straightforward
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so here we give a description of our methodology. Formally,

E(k) =
∫

v̂2(k)δ(k − |k|)dk where v̂(k)

=
∫

v(x)e−2πik·xdx (A1)

To discretize the second integral we apply the Discrete Fourier
Transform (DFT)

v̂(k) → v̂k =
∑

i

vie
−2πk·xi Δx3 (A2)

We then effectively subtract off the mean quantities by zeroing
out the k = [0, 0, 0] component of v̂k. To discretize the first
integral, we have to first replace the Dirac-Delta function with
a finite approximation

δ(k) → δ̄k =
{

0 : |k| > ε
1
ε

: |k| � ε
where ε = kmin = 2π

Lbox

We then use constant interpolation of v̂k to calculate v̂(k) in the
discretized integral

E(k) =
∑

k

v̂(k)2δ̄(k − |ki|)Δk3 where Δk = ε

8
(A3)

We then calculate Ev(k) → Ev,k at k
kmin

= [1, 2, 3, . . . , N]

where N = Lbox
Δx

. We then “perform” linear interpolation to plot
Ev(k) and we scale k to kmin and Ev(k)dk to outflow units (V2).

To calculate the density spectra Eρ(k) we replace v with ρ

and v̂ with ρ̂ and scale Eρ to ρ2
0
. As a final note, if we do not

zero out the k = [0, 0, 0] component of ρ̂k or v̂k, the total mass
or average velocity in the grid would contribute to the k

kmin
= 1

component of Eρ(k) or Ev(k) respectively.
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