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ABSTRACT

The physical processes that heat the solar corona and accelerate the solar wind remain unknown after many years
of study. Some have suggested that the wind is driven by waves and turbulence in open magnetic flux tubes, and
others have suggested that plasma is injected into the open tubes by magnetic reconnection with closed loops.
In order to test the latter idea, we developed Monte Carlo simulations of the photospheric “magnetic carpet” and
extrapolated the time-varying coronal field. These models were constructed for a range of different magnetic flux
imbalance ratios. Completely balanced models represent quiet regions on the Sun and source regions of slow solar
wind streams. Highly imbalanced models represent coronal holes and source regions of fast wind streams. The
models agree with observed emergence rates, surface flux densities, and number distributions of magnetic elements.
Despite having no imposed supergranular motions in the models, a realistic network of magnetic “funnels” appeared
spontaneously. We computed the rate at which closed field lines open up (i.e., recycling times for open flux), and
we estimated the energy flux released in reconnection events involving the opening up of closed flux tubes. For
quiet regions and mixed-polarity coronal holes, these energy fluxes were found to be much lower than that which
is required to accelerate the solar wind. For the most imbalanced coronal holes, the energy fluxes may be large
enough to power the solar wind, but the recycling times are far longer than the time it takes the solar wind to
accelerate into the low corona. Thus, it is unlikely that either the slow or fast solar wind is driven by reconnection
and loop-opening processes in the magnetic carpet.
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1. INTRODUCTION

The magnetic field in the solar photosphere exists in a com-
plex and continually evolving state that is driven by convective
motions under the surface. The dynamic interplay between the
magnetic field and the plasma has been called the Sun’s “mag-
netic carpet” (Title and Schrijver 1998). There is a clear correla-
tion between the topology and strength of the magnetic field and
the energy deposition that is responsible for the hot (T � 106 K)
solar corona. We also know that the gas pressure associated with
coronal heating is an important contributor for accelerating the
supersonic solar wind (Parker 1958). Thus, it is natural to won-
der to what extent the magnetohydrodynamic (MHD) motions
in the magnetic carpet are ultimately responsible for producing
at least some of the solar wind’s mass loss.

Recently, two distinct classes of theoretical explanation have
been proposed for the combined problem of coronal heating
and solar wind acceleration. In the wave/turbulence-driven
(WTD) models, convection jostles the open magnetic flux
tubes that are rooted in the photosphere and produces waves
that propagate into the corona. These waves (usually assumed
to be Alfvén waves) are proposed to partially reflect back
down toward the Sun, develop into MHD turbulence, and heat
the plasma by their gradual dissipation (Hollweg 1986; Velli
et al. 1991; Wang & Sheeley 1991; Matthaeus et al. 1999;
Suzuki & Inutsuka 2006; Cranmer et al. 2007; Wang et al.
2009; Verdini et al. 2010; Matsumoto & Shibata 2010). In
the reconnection/loop-opening (RLO) class of models, it is
assumed that closed, loop-like magnetic flux systems are the
dominant source of mass and energy into the open-field regions.
Some have suggested that RLO-type energy exchange primarily
occurs on small, supergranular scales (Axford & McKenzie
1992; Fisk et al. 1999; Fisk 2003; Schwadron & McComas
2003). However, other models have been proposed in which the

“interchange reconnection” occurs in and between large-scale
coronal streamers further from the solar surface (Einaudi et al.
1999; Suess & Nerney 2004; Antiochos et al. 2010).

The WTD idea of a flux tube that is open—and which stays
open as the wind accelerates—is conceptually simpler than the
idea of frequent changes in the flux-tube topology. Because of
this simplicity, the WTD models have been subject to a greater
degree of development and testing than the RLO models. In
addition, we have a great deal of observational evidence that
waves and turbulent motions are present everywhere from the
photosphere to the heliosphere (see, e.g., Tu & Marsch 1995;
Bruno & Carbone 2005; Hansteen 2007; Aschwanden 2008).
Thus, it is of interest to pursue the WTD idea to see how these
waves affect the mean state of the plasma in the absence of any
other sources of energy. For example, Cranmer et al. (2007)
and Cranmer (2009) showed that a set of WTD models that
varied only the magnetic flux-tube expansion rate (and kept all
other parameters fixed, including the wave fluxes at the lower
boundary) can successfully predict a wide range of measured
properties of both fast and slow solar wind streams.

RLO models need to be subjected to the same degree of
development, testing, and refinement as the WTD models. This
idea has a natural appeal since the open flux tubes must be
rooted in the vicinity of closed loops (Dowdy et al. 1986). In
fact, multiple RLO-like reconnection events have been observed
in coronal holes as “polar jets” by instruments on board the Solar
and Heliospheric Observatory (SOHO), Hinode, and STEREO
(e.g., Wang et al. 1998; Shimojo et al. 2007; Nisticò et al. 2009).
Reconnection at the edges of coronal holes may be necessary
to produce their observed rigid rotation (Lionello et al. 2006).
There are also observed correlations between the lengths of
coronal loops, the electron temperature in the low corona, and
the wind speed in interplanetary space (Gloeckler et al. 2003)
that are highly suggestive of a net transfer of magnetic energy
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from the loops to the open-field regions (see also Fisk et al.
1999; Fisk 2003).

Testing the RLO idea using theoretical models is more
difficult than testing the WTD idea because of the complex
multi-scale nature of the relevant magnetic fields. Many aspects
of RLO-type processes cannot be simulated without resorting
to fully three-dimensional and time-dependent models of the
connection between the magnetic carpet and the solar wind. The
goal of this paper is to begin constructing such models in order
to address several of the following unanswered questions about
the RLO model. For example, how much of the magnetic energy
that is liberated by reconnection goes into simply reconfiguring
the closed fields, and how much goes into changing closed
fields into open fields? Specifically, what is the actual rate at
which magnetic flux opens up from the magnetic carpet? Can the
observed polar jets provide enough energy to drive a significant
fraction of the solar wind? Lastly, how is the reconnection energy
distributed into various forms (e.g., bulk kinetic energy, thermal
energy, waves, or energetic particles) that can each affect the
accelerating wind in different ways?

In this paper, we present Monte Carlo models of the solar
magnetic carpet that are used to determine the topology, tem-
poral variability, and energy flux along field lines connected
with the accelerating solar wind. Section 2 gives an overview of
the motivations behind our choices of modeling technique. In
Section 3, we describe the physical ingredients that went into
the Monte Carlo models of the photospheric magnetic field.
Section 4 then presents the results of these models and compares
them with a range of observational diagnostics. In Section 5, we
then describe how field lines were extrapolated from the pho-
tospheric lower boundary up into the corona, and we discuss
the resulting timescales and energy fluxes that were derived for
flux tubes relevant to RLO wind acceleration models. Finally,
Section 6 concludes this paper with a brief summary of the ma-
jor results, a discussion of some of the wider implications of
this work, and suggestions for future improvements.

2. MOTIVATIONS AND METHODS

In this section, we summarize the techniques that we chose to
simulate the connections between the photospheric magnetic
field and the open flux tubes feeding the solar wind. It is
also important to clarify how and why our assumptions are
consistent with the goal to quantify the impact of RLO physical
processes. Our modeling was done in two steps. First, we
simulated the photospheric magnetic carpet by means of a Monte
Carlo ensemble of positive and negative monopole sources
of magnetic flux. These sources are assumed to emerge from
below (as bipolar ephemeral regions), move around on the
surface, merge or cancel with their neighbors, and spontaneously
fragment. We specified the rates and other details about these
processes by comparing with many different observational
constraints. Second, we used the photospheric flux sources to
extrapolate field lines up into the corona by assuming a potential
field.

Despite the model’s reliance on flux emergence from below
the solar surface, we did not model the subphotospheric motions
explicitly. A complete treatment of this problem should describe
how the photospheric fields are ultimately controlled by the
overturning dynamics of convection cells and their interactions
with one another (e.g., Fang et al. 2010; Stein et al. 2010).
In many ways, however, the photosphere is believed to act
as a relatively “clean” transition layer between the highly

fragmented fibril fields of the convection zone and the space-
filling fields of the corona (Amari et al. 2005; van Ballegooijen &
Mackay 2007). We take advantage of the rapid change in plasma
conditions between these regions to utilize the thin photospheric
layer as a natural lower boundary. Thus, we used observations
of individual features and their motions to set up statistical
rules for how these features evolve in our Monte Carlo models
of the photosphere. The ultimate test of the validity of these
rules is that the resulting complex and multi-scale photospheric
field matches a wide range of observations. (Of course, the
observations used to test the models must be independent of the
observations that were used to determine the rules; see Section 4
below for more details.)

Many earlier studies of magnetic flux transport in the pho-
tosphere were focused on the net horizontal diffusion of fields
(e.g., Wang et al. 1989; Simon et al. 1995; van Ballegooijen
et al. 1998). A new era was ushered in by Schrijver et al. (1997),
who constructed a statistical model that also included flux emer-
gence, cancellation, merging, and fragmenting. Numerical sim-
ulations of these effects were also produced by Parnell (2001),
Simon et al. (2001), and Crouch et al. (2007). Our Monte Carlo
models of the photospheric magnetic carpet are based on these
earlier models, but with three main differences: (1) we use more
up-to-date flux emergence rates (Hagenaar et al. 2008, 2010),
which give at least an order of magnitude faster “recycling time”
for photospheric flux; (2) we model both balanced and imbal-
anced regions on the solar surface that are designed to simulate
both quiet-Sun and coronal hole areas; and (3) we do not pre-
sume the existence of supergranular motions on the surface—but
the model does produce a network-like organization of the field
as a natural output (e.g., Rast 2003).

At each time step in the Monte Carlo simulations, we extrapo-
late magnetic field lines up into the corona by assuming the field
is derivable from a scalar potential. Although the actual solar
field is likely to have significant non-potential components (e.g.,
Sandman et al. 2009; Edmondson et al. 2009), the approxima-
tion of a potential field has been found to be useful in identifying
the regions where magnetic reconnection must be taking place
(Longcope 1996; Close et al. 2005). The potential-field method
is also many orders of magnitude more computationally effi-
cient than solving the full three-dimensional MHD conservation
equations. (Doing the latter for a system with a complex, evolv-
ing, magnetic-carpet-like lower boundary is still prohibitively
expensive in terms of computation time.) Our method involves
ignoring the “internal” details about how magnetic reconnec-
tion actually affects the coronal plasma and only investigat-
ing the magnetic energy that is lost via reconnection. We use
Longcope’s (1996) minimum current corona (MCC) model to
take account of the reconnection energetics. We emphasize
that—despite the title of this paper—magnetic reconnection is
not a primary “driver” unto itself and is merely the end prod-
uct of the flux emergence, cancellation, merging, fragmentation,
and diffusion that occurs on the photospheric lower boundary.

By modeling only the net changes in the magnetic field from
one time step to the next, we end up ignoring some potentially
important plasma effects. For example, Parnell & Galsgaard
(2004) showed that reconnection may progress much more
slowly in full MHD than one would expect from modeling
the system as an idealized succession of potential-field states.
Also, Lynch et al. (2008), Pariat et al. (2009), Edmondson et al.
(2010), and others have shown that long-lived, field-aligned
currents can exist in the corona due to the injection of magnetic
flux from below, and these energetically important structures
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are not accounted for in potential-field models. However, we
do not model the most topologically complicated regions of the
corona, such as the footpoints of field lines that connect to the
cusps of helmet streamers, or to the heliospheric current sheet, or
to other large-scale separatrix and quasi-separatrix layers (see,
e.g., Edmondson et al. 2009; Antiochos et al. 2010). Our models
generally presume the existence of a simple unipolar field at a
large height, in conjunction with the complex and time-varying
magnetic carpet field at the bottom. These “open” unipolar fields
may in fact close back down onto the solar surface on spatial
scales larger than our modeled patches of the Sun. Whether this
occurs or not depends on the global distribution of magnetic
flux across the entire solar surface, which is beyond the scope
of this paper to model.

There have been many three-dimensional MHD simulations
of the coronal response to underlying photospheric motions (see
also Gudiksen & Nordlund 2005; Peter et al. 2006; Galsgaard
2006; Isobe et al. 2008), and this paper does not attempt to
reproduce those results. The spatial and temporal complexity
of the footpoint motions in most MHD models, however, has
usually been assumed to be simpler than in the full magnetic
carpet as modeled here. We also ignore the possibility that
there could be a significant back-reaction from the corona
on the dynamics of the photospheric footpoints (see Grappin
et al. 2008). Others have studied how the evolving photospheric
field can affect the properties of coronal Alfvén waves (Malara
et al. 2007), coronal mass ejections (CMEs; Lynch et al. 2009;
Yeates et al. 2010), and the large-scale heliospheric magnetic
field (Jiang et al. 2010). The goal of this paper is much more
limited. We aim to take an initial census of the rate at which
closed flux opens up from the Sun’s magnetic carpet, and to
estimate how much magnetic energy may be released by the
attendant reconnection. Thus, this paper is envisioned as a kind
of “pathfinder” study that carves out the order-of-magnitude
expectations for what more sophisticated MHD simulations are
likely to reveal in detail.

3. PHOTOSPHERIC FIELD EVOLUTION: MODEL

In our model, the topology and energy balance of the coronal
magnetic field are assumed to be fully determined by the lower
boundary conditions at the solar photosphere. Here, we describe
how the photospheric field can be simulated by assuming it
consists of a collection of evolving flux sources. We developed
a FORTRAN code called BONES to produce Monte Carlo
simulations of these flux sources and to trace magnetic flux
tubes up into the corona. The title BONES was inspired by the
popular conception of the solar magnetic field as a topological
skeleton for locating important sites of energy release (Parnell
et al. 2008), and also by the dependence on randomness in the
Monte Carlo technique (i.e., “rolling the bones”).

For a Monte Carlo simulation like this, it is not possible to
write down a single set of equations that governs the behavior of
the magnetic field. Each simulation is a particular realization of
an ensemble of possible states (see also Schrijver et al. 1997).
Therefore, we must describe the individual processes that govern
the motion and evolution of the flux elements. Section 3.1 intro-
duces some of the general attributes of the BONES simulations.
The code models the time dependence of the photospheric field
as the net result of four processes: emergence of new bipoles
(Section 3.2), random horizontal motions (Section 3.3), merging
and cancellation between pairs of nearby elements (Section 3.4),
and spontaneous fragmentation (Section 3.5).

3.1. Basic Properties and Initial Conditions

We modeled a patch of the photospheric solar surface as a
horizontal square box that extends 200 Mm on each side. This
length scale was chosen to be large enough to encompass several
supergranular network cells, but small enough to be applicable
to solar wind source regions of roughly uniform character (i.e.,
coronal holes or quiet Sun) and to be able to ignore the radial
curvature of the solar surface. Thus, the surface area of the
model domain is defined as A = 4 × 1020 cm2, or about 0.7%
of the Sun’s surface area.

In the part of the BONES code that evolves the photospheric
magnetic field, each flux element is considered to be a point-
like monopole having only three attributes: an x-position,
a y-position, and a signed magnetic flux Φ. Even though
many elements are injected into the simulation in equal-and-
opposite pairs (i.e., as the footpoints of bipole loops), the code
retains no memory of that association in subsequent time steps.
We quantized the magnetic flux in units of 1017 Mx so that
incomplete cancellations do not produce a huge number of
infinitesimally small elements (see, e.g., Parnell 2001).

We computed the continuous magnetic field that results from
the flux elements in several ways. In Section 5.1, we describe
the computation of the vector field B above the photospheric
surface. Here, we show how an upper limit on the magnetic field
strength in the flux elements (in the photosphere) can be used to
obtain a lower limit on their spatial extent. Let us assume that
the horizontal cross section of a flux element is circular, and that
it is filled with a constant vertical magnetic field. It is generally
assumed that the field in small photospheric concentrations
cannot be significantly stronger than the so-called equipartition
field, in which the plasma is in total pressure equilibrium with its
(approximately field-free) surroundings. In this case, the upper
limit on the field strength is Bmax ≈ 1400 G (see, e.g., Parker
1976; Lites 2002; Cranmer & van Ballegooijen 2005). Thus,
we can estimate a lower limit to the radius of the circular flux
element as

rc =
√

|Φ|
πBmax

. (1)

The typical size of observed intergranular G-band bright points
is rc ≈ 50–150 km (Muller & Keil 1983). Recently, Sánchez
Almeida et al. (2010) measured the filling factor (f = 0.89%)
and number density (ρ = 0.97 Mm−2) of bright points in quiet-
Sun regions, and these values are consistent with a radius of
rc = (f/πρ)1/2 ≈ 55 km. The above range of sizes corresponds
appropriately to fluxes at the low end of the range simulated
here; i.e., between 1017 and 1018 Mx. Elements with larger
fluxes may not be completely filled by equipartition fields, and
thus they would have larger spatial extents than expected from
Equation (1).

At any one time in the simulation, the sum of all positive
fluxes is denoted by Φ+ and the sum of all negative fluxes
is denoted by Φ−. These are signed quantities, with Φ+ > 0
and Φ− < 0. For all models discussed below that have an
imbalance between the two polarities, the sense of the imbalance
is always to have |Φ+| > |Φ−|. All results should be equivalent
for imbalances in the opposite sense. The mean magnetic flux
densities in the positive and negative flux elements, taken over
the entire simulation domain, are denoted by B± = Φ±/A.
Thus, the total “unsigned” or absolute flux density is given
by Babs = B+ + |B−| and the net flux density is given by
Bnet = |B+ +B−| = B+ −|B−|. The simulation’s flux imbalance
fraction ξ is defined as ξ = Bnet/Babs. Small values for this ratio
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(i.e., ξ � 0.3) are typical for quiet-Sun regions, and larger values
(ξ � 0.7) are typical for coronal holes (Wiegelmann & Solanki
2004; Zhang et al. 2006; Hagenaar et al. 2008; Abramenko et al.
2009).

Each run of the BONES code begins with specified initial
conditions at time t = 0. For models having ξ = 0, there
are no flux elements in the domain at the beginning of the
simulation. Perfect flux balance is maintained by having all new
flux elements emerge into the domain at later times as balanced
bipoles. For models having ξ > 0, the simulation begins with a
number of identical flux elements, all having positive polarity,
that are distributed randomly over the surface A. These initial
elements are assumed to each have an equal flux given by 0.1
times the mean flux in an emerging bipole (see Section 3.2).
The number of these initial elements is determined by the input
value of the net flux density Bnet. As in the ξ = 0 case, all new
flux elements that enter the domain at t > 0 are balanced pairs,
and thus Bnet remains exactly constant as a function of time.

For a given simulation that is intended to model a patch of the
Sun having an imposed flux imbalance ratio ξ , the choice of the
proper input value of Bnet is not known at the outset. The overall
level of magnetic flux that ends up existing in the simulation
depends on the collection of dynamical parameters that describe
the flux emergence, fragmentation, horizontal diffusion, and
merging (see below). Specifically, the emergence rate E depends
explicitly on ξ (e.g., Hagenaar et al. 2008). Thus, for a given
set of dynamical parameters and a desired value of ξ , we had to
produce an iterative set of trial runs with a range of guesses for
Bnet. Only one unique value of Bnet gave rise to a model having
the proper self-consistent value of ξ . After doing this for a range
of models, the relationship between these two parameters was
fit with the following approximate relation,

ξ ≈ 0.268 Bnet

[1 + (Bnet/3.58)2.71]0.365
, (2)

where Bnet > 0 is measured in Gauss and ξ is dimensionless.
The discrete time step chosen for the simulations was Δt =

300 s, the same as that used by Parnell (2001). Five minutes
is a representative timescale for photospheric granulation (e.g.,
Deubner & Gough 1984), so using a smaller timescale would
only be appropriate if the coherent granular motions were being
modeled explicitly. Asensio Ramos (2009) found that on spatial
scales longer than 300–500 km the solar granulation acts as a
stochastic, Markovian process. For representative granulation
velocities of order 1 km s−1 (Hirzberger 2002), this confirms
that the minimum resolvable timescale (when ignoring coherent
convective overturning) should be about 300–500 s. For all
processes in the BONES code that are simulated as occurring
stochastically, we used the RAN2 random number generator
of Press et al. (1992). This routine does not repeat its pseudo-
random sequence until called at least 2 × 1018 times. This limit
was never approached, since in even the longest runs of the code
the RAN2 routine was never called more than 1010 times.

Over the course of each time step Δt , the code updates the
properties of each of the flux elements from the effects of the
four general sets of processes described below.

3.2. Flux Emergence

Bipolar magnetic features are observed to emerge from
beneath the photosphere with fluxes spanning several orders
of magnitude from ∼1016 Mx (internetwork concentrations) to
∼1022 Mx (sunspots; Schrijver 2001; Parnell 2002; Hagenaar

et al. 2008). Away from active regions, much of the emergence
tends to occur in the form of bipolar ephemeral regions (ERs)
with |Φ| ≈ 1018–1019 Mx (see, e.g., Harvey & Martin 1973).
The individual poles of ERs often are advected to the edges of
supergranular cells and coalesce to form network concentrations
that end up with similar absolute fluxes as the ERs themselves
(Martin 1988).

The rate of emergence of ER flux, which we denote as E,
has been estimated in various ways from both measurements
and models. As the sensitivity and cadence of observations
has improved, the derived emergence rates have generally
increased. Schrijver (2001) reviewed earlier measurements and
models that pointed to a range of E values between about
2 × 10−6 and 4 × 10−5 Mx cm−2 s−1. Earlier Monte Carlo
models also found that values in this range seemed to behave
in similar ways as the real Sun. For example, Parnell (2001)
used E ≈ 8 × 10−6 Mx cm−2 s−1, and Simon et al. (2001) used
E ≈ 1.3 × 10−5 Mx cm−2 s−1. Krijger & Roudier (2003) found
that a slightly higher value of 9×10−5 Mx cm−2 s−1 was needed
to reproduce Transition Region and Coronal Explorer (TRACE)
measurements of the chromospheric network. Assuming a mean
flux density in the quiet Sun of about 3–4 Mx cm−2, it is possible
to use the above emergence rates to estimate “flux recycling
times” between about 0.5 and 20 days.

However, many of these earlier measurements were made
with sequences of relatively low-cadence magnetograms.
Hagenaar et al. (2008) found that when the cadences are re-
duced from about 90 minutes to 5 minutes, many more emer-
gence events are observed and the emergence rate increases. In
fact, Martin (1988) claimed that it is virtually impossible to even
identify the same ER from one image to the next unless the time
cadence between them is shorter than about 10 minutes. The
revised analysis of Hagenaar et al. (2008) showed that values
as large as E ≈ 10−3 Mx cm−2 s−1 are often seen in regions of
balanced magnetic polarities,1 along with a noticeable decrease
in E as ξ increases from 0 to 1. For most values of the imbalance
ratio (ξ � 0.8), these rates of emergence are consistent with flux
recycling times of only 1–2 hr.

We fit the modified rates shown in Table 2 and Figure 5 of
Hagenaar et al. (2008, 2010) with a quadratic function of the
imbalance ratio ξ , and found

E = 7.928 × 10−4
(
1.356 − ξ 2

)
Mx cm−2 s−1. (3)

For a region with balanced magnetic flux (ξ = 0), the maximum
value of the emergence rate is E = 1.075 × 10−3 Mx cm−2 s−1.
As ξ → 1, the parameterized rate declines to a minimum value
of E = 2.824 × 10−4 Mx cm−2 s−1. Note, however, that the
largest imbalance fraction in the measurements of Hagenaar
et al. (2008) was ξ ≈ 0.94. Our use of values larger than this
represents extrapolation. It is possible that E may decrease more
rapidly—possibly to zero—as ξ increases from 0.94 to 1. In any
case, we never model the completely unipolar case of ξ = 1.
The largest value of ξ used in the models presented below is
0.99.

In order to determine the number of bipoles (Nem) that emerge
in each time step in the simulation domain, we adopted a fiducial

1 Figure 5 of Hagenaar et al. (2008) showed values that were erroneously
reduced in magnitude. The values given in Table 2 of Hagenaar et al. (2008)
represented the correct magnitudes for the emergence rates, and a corrected
revision of their Figure 5 was presented by Hagenaar et al. (2010). Our fits to
these observations utilized a multiplicative correction factor of 5 to the
numbers shown in their original Figure 5(b), which is consistent with the
updated version shown by Hagenaar et al. (2010).
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value for the average flux per bipole, 〈Φ〉 = 9 × 1018 Mx (see
below). Thus, Nem = EAΔt/〈Φ〉. In general, this does not yield
an integer number of bipoles. For a given non-integer value of
Nem that falls between the two integers n and n + 1, we used the
fractional remainder of Nem (in excess of n) to determine the
statistical chance that the resulting number of bipoles is either
n or n + 1. For example, if Nem = 10.22, there is a 22% chance
that there will be 11 bipoles, and a 78% chance that there will
be 10 bipoles. A new random number is generated in each time
step to determine whether there will be n or n + 1 new bipoles.

For each of the emerging bipoles, the BONES code deter-
mines its total absolute flux by drawing from an empirically
constrained probability distribution of the form

PE(Φ) =
{

(Φ − Φmin) exp [−(Φ − Φmin)/Φ0] /Φ2
0 , Φ � Φmin

0 , Φ < Φmin
,

(4)
where the mean flux is given by 〈Φ〉 = Φmin + 2Φ0.2 The
measurements shown in Figure 3 of Hagenaar et al. (2008)
provided constraints on the functional form of Equation (4), as
well as values for Φmin = 2 × 1018 Mx and 〈Φ〉 = 9 × 1018 Mx.
These values uniquely specify the value of the exponential slope
Φ0 = 3.5 × 1018 Mx.

In order for the code to sample from the above distribution, we
computed the cumulative probability distribution by integrating
Equation (4) numerically. A parameterized functional fit to the
inverse of the cumulative distribution was then found which
allows a uniform random variable (between 0 and 1) to be
mapped into a proper sampling of PE(Φ). Once a random
value of Φ has been chosen in this way from the distribution,
we divided the absolute flux equally between the two poles.
We note that because the sampling from the distribution is
random, and because Nem has been truncated to be an integer,
the exact same amount of flux does not emerge in each time
step. However, over many time steps, the specified emergence
rate E is maintained on average.

For each emerging bipole, the x and y positions of the positive
pole are determined randomly. The position of the negative pole
is displaced from the positive pole by a horizontal distance
D and a random orientation angle. The separation D must be
large enough that the poles will not immediately cancel one
another out. We assume that D scales with the size of the flux
element rc, such that D = 1.5rcp, where p is the dimensionless
proximity factor that sets the scale for merging and cancellation
(see Section 3.4). Since D > rcp, the poles are constrained to
be noninteracting. For this calculation, we use the total flux in
the entire bipole in the definition of rc (Equation (1)), so for
the mean 〈Φ〉, the mean separation D is 6.8 Mm. This value of
D is within the rather wide observational range of separations
for newly emerged ER bipoles (approximately 2–10 Mm), as
summarized by Hagenaar (2001). Note that Hagenaar (2001)
found that D ∝ Φ0.18, which is a weaker dependence than what
we assumed (D ∝ Φ0.5) by using Equation (1).

3.3. Horizontal Motions of Flux Elements

Magnetic flux concentrations are observed to move around
on the solar surface in response to plasma flows that occur on
scales ranging from narrow intergranular lanes (0.05–0.1 Mm)
up to the supergranular network (∼30 Mm). Our models were
designed to test the assumption that much of the structuring on
the largest scales is a natural by-product of smaller-scale motions

2 The shape of this distribution is illustrated in Figure 4.

(see also Crouch et al. 2007). Thus, the motions of flux elements
are assumed to be of a diffusive character and dominated by
granule-scale (1–2 Mm) horizontal step sizes. This stands in
contrast to other Monte Carlo models of the magnetic carpet
(e.g., Parnell 2001; Simon et al. 2001) in which the motions of
the elements are influenced by an imposed supergranular flow
pattern.

For each time step Δt , we describe the horizontal motion
of a flux element as a linear trajectory with speed v and a
random orientation angle in the x–y plane. The orientation angle
is recomputed in each time step with no memory of its previous
value, so that the long-term trajectory of an element is essentially
a “random walk.” Observationally, the horizontal speeds are
known to depend on the absolute fluxes in the elements, with
higher-flux concentrations tending to move with lower speeds.
Thus, we used a standard exponential fit for the mean speed v0,

v0 = vweak exp

(
− |Φ|

3 × 1019 Mx

)
, (5)

where the constant of 3 × 1019 Mx in the denominator is
consistent with observations (Hagenaar et al. 1999) and earlier
models (Schrijver 2001). The constant vweak is the mean speed
in the limiting case of |Φ| → 0, and it is a key free parameter
in these models. The BONES code computes the instantaneous
speed v for each flux element by sampling a random number
from a normal distribution having a mean value of v0 and a
standard deviation of 0.3v0 about the mean (see Parnell 2001).
When the horizontal motion is imposed on the x and y positions
of each flux element, the code assumes periodic boundary
conditions along the edges of the (200 Mm)2 photospheric box.
This is designed to take account of elements that enter and leave
the box via diffusive motions.

If the horizontal motions were classically diffusive in charac-
ter, the spatial step size Δr could be expressed as

Δr =
√

4D Δt, (6)

where the diffusion coefficient D is a constant that should
not depend on the time step Δt (see Schrijver 2001). The
instantaneous velocity over a single time step would just be
v = Δr/Δt . Solar observations have given rise to a large
range of values for D, from 50 to 100 km2 s−1 on granular
scales to 200–2000 km2 s−1 on larger scales (e.g., Berger et al.
1998; Hagenaar et al. 1999; Giacalone & Jokipii 2004). For our
adopted time step of Δt = 300 s, the above range gives values
of v between about 0.8 and 5 km s−1.

On granular scales, there is evidence that the horizontal
motions do not obey classical diffusion. Cadavid et al. (1999)
found that, for displacement times Δt between about 0.1 and
22 minutes, the mean-squared displacement Δr2 does not scale
linearly with Δt , but instead

Δr2 ≈ 57,500

(
Δt

1 minute

)0.76

km2 . (7)

For Δt = 5 minutes, this corresponds to an effective velocity v ≈
1.5 km s−1. However, as one examines smaller displacement
times, the instantaneous velocity is larger. For Δt = 0.1 minute,
v increases up to 16.7 km s−1. The observed “subdiffusive”
character of the horizontal motions is believed to be related
to the constraint that flux elements must follow the narrow
intergranular lanes. Thus, it is not completely valid to model
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the motions as a random walk in a two-dimensional plane
that ignores the existence of coherent granules. In reality, the
elements are constrained to a fractal dimension between 1 and
2 (Cadavid et al. 1999). Even the choice of a single value for
v may not fully reflect the end product of unresolved motions
taking place within a time step.

In any case, it is useful to choose a representative value for
the parameter vweak that can best reproduce the net dispersal of
granule-scale magnetic flux over many time steps. The above
analysis gives a broad range of plausible choices for vweak
between about 0.5 and 20 km s−1. Several trial runs of the
BONES code were produced with velocities in this range and a
final optimized value of vweak = 6 km s−1 was found to produce
the most realistic solar conditions. Section 4 discusses the results
of models constructed with this parameter choice.

3.4. Merging and Cancellation

In each time step of the simulation, the horizontal distance
between every unique pair of flux elements is computed. If the
inter-element distance for a pair is less than a prescribed critical
value, we assume the flux elements coalesce together or cancel
one another out. In a computational sense, mergings (for like
polarities) and cancellations (for opposite polarities) are treated
in the same way. The flux in the single remaining element
is given by the sum of the two signed fluxes in the original
elements. The position of this remaining element is given by
the position of the original element that had the larger absolute
flux. If an exact cancellation takes place between elements with
equal-and-opposite fluxes, then both elements are assumed to
disappear from the simulation.

In order to compute the critical distance between a given
pair of elements, each element is assumed to have a “radius of
influence” given by rcp, where the constant p is a dimensionless
proximity factor and rc is defined in Equation (1). The critical
distance is the sum of the two radii of influence for a pair of
elements.

The proximity factor p is another key free parameter of our
Monte Carlo simulations. Parnell (2001) essentially assumed
that p ≈ 2.3 based on an empirical Gaussian profile of field
strength across each flux element. Schrijver (2001) estimated
the critical mean-free path for interactions between average
flux concentrations (in quiet network) to be about 4.2 Mm.
In order to compute a radius of influence consistent with this
mean separation (i.e., rcp = 2.1 Mm), we can assume that the
two elements each have a mean flux 〈Φ〉 = 9 × 1018 Mx and
then use Equation (1) to solve for p ≈ 4.6. A series of trial runs
of the BONES code gave rise to an optimal value of p = 10 that
produced the most realistic solar conditions (i.e., absolute flux
densities and number distributions of flux elements that agree
with the observations discussed in Sections 4.1 and 4.2). Thus,
for the mean element with 〈Φ〉 = 9 × 1018 Mx, its radius of
influence in the models is 4.5 Mm.

The BONES code imposes lower and upper limits on the
radii of influence for the weakest and strongest flux elements,
respectively. For elements with very low fluxes, the radius of
influence is not allowed to become smaller than a typical gran-
ule size of 1 Mm. We assume that the smallest intergranular
flux tubes can easily traverse the intergranular lanes and inter-
act in ways that are not resolved explicitly here (Kubo et al.
2010). For the strongest flux elements, the radius of influence
is not allowed to become larger than 10 Mm. Observation-
ally, there do not appear to be any mergings or cancellations
that occur on spatial scales larger than this (see, e.g., Livi

et al. 1985). Practically, though, the imposition of this upper
limit prevents the occurrence of “long-range” interactions that
would be inconsistent with the existence of the supergranular
network.

Note that the actual rate of cancellation cannot be specified
explicitly in these simulations. As described by Parnell (2001),
the overall cancellation rate is the eventual result of how rapidly
the flux elements emerge, move around, and interact with one
another. In a steady state, the cancellation rate eventually comes
into dynamical equilibrium with the rate of emergence E. Thus,
our use of the larger values of E from Hagenaar et al. (2008)
implies much more rapid cancellation than was found in earlier
models such as Parnell (2001) and Simon et al. (2001).

3.5. Spontaneous Fragmentation

Observations have shown that magnetic flux elements often
split up spontaneously into several pieces (e.g., Berger &
Title 1996). Convective overturning motions on granular scales
may exert stress on the (usually intergranular) flux elements
and pull them apart. The physical processes responsible for
fragmentation are not yet understood, but magnetic reconnection
may be occurring at some stage of the process (Ryutova et al.
2003). There appears to be an observed relationship between the
rate of fragmentation and the total flux in an element (Schrijver
et al. 1997). However, this applies only for relatively small
concentrations with absolute fluxes below about 1020 Mx. Larger
concentrations that give rise to pores and sunspots tend to survive
for longer times, which suggests that the fragmentation rate
saturates for |Φ| 
 1020 Mx (Schrijver 2001). In our models,
we estimated the probability of fragmentation PF (per unit time)
to be

PF(Φ) dt = k0|Φ| dt√
1 + (|Φ/Φth|)2

, (8)

where the threshold flux for saturation is given by Φth =
3×1019 Mx. This is a slightly simpler version of the parameter-
ization given by Equation (A6) of Schrijver (2001). The mean
time between fragmentations is given by P −1

F . In the limit of
the largest fluxes, the mean time approaches a constant value of
(k0Φth)−1.

Schrijver et al. (1997) and Schrijver (2001) used a combi-
nation of measurements and models to find values for k0 be-
tween 4 × 10−25 and 6 × 10−25 Mx−1 s−1. However, these
were based on the same long-cadence magnetogram observa-
tions that led to significant underestimates in the emergence
rate E (see Section 3.2). Thus, we decided to increase k0 by
approximately the same relative amount that E was increased
from the earlier values. The models presented below all use a
value of k0 = 3.5 × 10−24 Mx−1 s−1.

We recompute the probabilities of fragmentation for all flux
elements in each time step of the BONES code. For cases when
a uniform-deviate random number (between 0 and 1) is less
than the probability PFΔt , the code splits the flux element into
two pieces. The original element keeps a random fraction of its
original flux (constrained to be between 0.55 and 0.999), and the
new element gets the remainder of the flux. The position of the
original element stays the same, and the new one is positioned a
distance D away, with a random orientation angle. This distance
D is the same value discussed in Section 3.2, and it is large
enough to prevent subsequent merging between the two new
flux elements.
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4. PHOTOSPHERIC FIELD EVOLUTION: RESULTS

In this section, we present results from a series of models
for the photospheric magnetic field as computed by the BONES
code. A series of tests was first performed to make sure the code
was actually evolving the flux elements as desired. Once the
tests verified that each individual process was being modeled
correctly, runs were performed that included all of the processes
together. We created a basic set of 11 models with the main
adjustable parameter being the flux imbalance ratio ξ . The input
values of Bnet for each of these models were iterated until the
final models had steady-state values of ξ equal to the desired
input values of 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and
0.99 (see Equation (2)). Each model used a different integer as
a unique seed for the random number generator.

As described above, our final Monte Carlo models contained
a much larger emergence rate E than did the earlier simula-
tions of Parnell (2001) and Simon et al. (2001). If all other ad-
justable parameters had been kept the same as in those models,
a much larger time-steady magnetic flux would have accumu-
lated in the simulation box over time; i.e., the averaged flux
densities would have been much larger than the typical values
of 3–10 Mx cm−2 observed in quiet regions and coronal holes.
In order to keep the flux density low, magnetic concentrations
need to be destroyed as rapidly as they are injected from be-
low. This is why the BONES code was run with more rapid
horizontal diffusion (vweak = 6 km s−1), more sensitive merg-
ing and cancellation (p = 10), and more rapid fragmentation
(k0 = 3.5×10−24 Mx−1 s−1) than were used in the earlier mod-
els. Time will tell if these parameters accurately represent the
real Sun, but as long as the emergence rate is high, the models
need to facilitate a similarly high rate of cancellation in order to
produce a realistic steady state.

Below we present results concerning the overall time-steady
photospheric magnetic fields in the simulations (Section 4.1), the
statistical number distributions of flux elements (Section 4.2),
and the natural production of supergranular magnetic structures
from the smaller-scale granular motions (Section 4.3).

4.1. General Properties of the Models

The BONES models were evolved in time, using a step size
of Δt = 300 s, for a total simulation time usually exceeding
100 days and sometimes exceeding 1000 days (i.e., 104–
105 time steps). Over the first 10–20 days of a simulation,
sufficient magnetic flux is injected so that the initial conditions
are completely “forgotten” and the magnetic field reaches a
state of time-steady dynamic equilibrium. Thus, whenever we
calculate quantities that are meant to represent the time-steady
parts of a simulation (e.g., means and standard deviations),
we take only t � 30 days. In the simulated area A, the total
number of flux elements in the time-steady state tends to average
between 100 and 200. Although the mean absolute flux per
injected flux element was 〈Φ〉/2 = 4.5 × 1018 Mx, the eventual
mean flux per element in the steady state ended up being about
a factor of 2 larger (see below).

Figure 1 shows simulated magnetogram images for represen-
tative time snapshots in two of the models: one for a region of
balanced magnetic flux (ξ = 0) and one for a large degree of
imbalance (ξ = 0.8). The continuous magnetic field strength
at the photosphere (z = 0) was calculated using the multi-
ple monopole model described in Section 5.1. A medium gray
shade denotes Bz ≈ 0, and the saturation to white and black
is imposed at Bz = +100 and −100 G, respectively. For the

Figure 1. Simulated photospheric magnetograms for random time steps in a
quiet-Sun simulation with ξ = 0 (top) and a coronal hole simulation with
ξ = 0.8 (bottom). Positive polarities are shown as white, negative polarities are
shown as black (each saturated at |Bz| = 100 G), and the locations of magnetic
neutral lines (where |Bz| = 0) are overplotted as white dotted curves.

balanced case, the neutral line meanders through the domain
stochastically and splits the region into two roughly equal areas.
For the imbalanced case, the neutral lines surround and confine
the regions of minority polarity.

The balanced “quiet-Sun” model shown in Figure 1(a) has an
average total number of flux elements N = 163, with roughly
equal numbers of positive and negative elements and an average
absolute flux per element of 8.9 × 1018 Mx. The imbalanced
“coronal hole” model shown in Figure 1(b) has an average total
N = 122, with approximately 81 of the elements being positive
and 41 being negative. Note that if the absolute flux per element
was equal for the positive and negative populations, we would
have expected that N (1 + ξ )/2 = 110 elements would be
positive, and N (1 − ξ )/2 = 12 elements would be negative.
Since the number of positive (negative) elements is smaller
(larger) than predicted, it is clear that the two populations
must have different average absolute fluxes. In fact, for the
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ξ = 0.8 model, the average fluxes per element in the positive
and negative sets were 2.3 × 1019 Mx and 5.1 × 1018 Mx,
respectively.

In Figure 2, we plot the time dependence of several statisti-
cal quantities for the ξ = 0 and ξ = 0.8 cases. These models
reached dynamical equilibrium in only about 5 days of sim-
ulation time, and only the first 40 days are shown.3 After a
stochastic steady state has been established, the level of con-
tinuing temporal variability appears similar in character to the
simulations of Parnell (2001) and Crouch et al. (2007). Note
that the imbalance ratio ξ does not approach a rigidly constant
value, but instead fluctuates with a standard deviation that is
typically 2%–10% of its mean value.

Comparing Figures 2(a) and (b), we see that as ξ increases
the mean of the absolute flux density 〈Babs〉 increases and its
variance decreases. Larger values of ξ correspond to lower
rates of flux emergence (see Equation (3)), so that a typical
flux element in the large-ξ simulation tends to have a longer
lifetime before it is destroyed. However, the functional form
of E(ξ ) is not the only reason for the increase in Babs with
increasing ξ . It is possible to illustrate such an increase with a
simple analytic model that assumes a constant emergence rate.
If the emergence rate E is fixed, but the box-averaged rate of
cancellation is assumed to be proportional to the product of
the positive and negative flux densities present in the box, then
their time evolution can be approximated to be a simple balance
between these two effects, with

∂B+

∂t
= ∂|B−|

∂t
= E − CB+|B−| . (9)

In a steady state, the time derivatives can be ignored and we can
solve for E = CB+|B−|. The individual values of the constants
E and C do not need to be specified explicitly, but let us assume
their ratio E/C is a known constant called B2

0 . Thus, it becomes
possible to solve for the absolute flux density in closed form,

Babs = B+ + |B−| = 2B0√
1 − ξ 2

. (10)

The above expression shows how Babs must increase with an
increasing imbalance ratio ξ , even in the case where E is
independent of ξ .

Figure 3 shows how the time-steady values of 〈Babs〉 from the
simulations vary as a function of ξ . The error bars on these model
points show ±3 standard deviations around the mean values. To
ensure that specific realizations of the random number sequences
did not affect the results, the means and standard deviations for
each value of ξ were computed from three independent runs of
the BONES code. Each run used a different random seed, and
each run was performed for a total of 400 days of simulation
time. The modeled absolute flux densities generally fall between
the observationally expected limiting values of about 3 and
10 Mx cm−2. Figure 3 also shows two curves that illustrate
the functional dependence of the simple analytic estimate of
Equation (10) above. The two curves, which were computed
using the arbitrary normalization constants B0 = 1.4 and 2.1 G,
appear to bracket the modeled points surprisingly well.

3 By “dynamical equilibrium” we mean that there appears to be a time-steady
mean state existing together with substantial variations about that mean. It also
seems clear that no single ingredient in the photospheric flux evolution model
is responsible for determining these time-steady mean properties. This state is
a complex, nonlinear dynamic balance between emergence, merging,
cancellation, diffusion, and fragmentation.

Figure 2. Time evolution of statistical quantities in the (a) ξ = 0 and (b) ξ = 0.8
photospheric models. The temporal variability of the box-averaged absolute flux
density Babs, the total number N of flux elements in the simulation (divided by
100 to keep the curve in the same plotting domain as the other curves), and the
flux imbalance ratio ξ are shown as labeled.

In Figure 3, we also plotted measurements made by the
Vector SpectroMagnetograph (VSM) instrument of the Synoptic
Optical Long-term Investigations of the Sun (SOLIS) facility
(Keller et al. 2003). We used publicly available full-disk
longitudinal magnetograms taken in the Fe i 6301.5 Å line.
Over the time period from 2003 August to 2009 November, we
obtained one magnetogram per month for a total of 73 individual
full-disk maps. For each magnetogram, we generated a grid of
“macropixels” covering the central part of the solar disk (out
to 0.7 R� from disk-center). Each macropixel was defined to
be 100 × 100 magnetogram pixels, or 113′′ square (see also
Hagenaar et al. 2008). For each macropixel, we measured the
average flux densities of the positive and negative polarities, B+
and B−, and computed Babs and ξ as defined in Section 3.1.
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Figure 3. Steady-state dependence of absolute flux density Babs on the flux
imbalance ratio ξ . Mean results from the BONES simulations (filled circles, with
±3σ error bars) are compared with observational data computed from SOLIS
full-disk magnetograms (gray points), and with the analytic approximation given
by Equation (10) (dashed curves).

A total of 8264 individual measured data points are shown in
Figure 3.

The bulk of the low field-strength SOLIS data shown in
Figure 3 appear to follow the same general increasing trend
with ξ as do the modeled points and analytic curves. The “long
tail” in the data points that extends upward to 10–100 Mx cm−2

represents times when the macropixels covered parts of active
regions. Points on the upper-left of the plot represent active
regions that were mostly centered in the macropixel, and points
on the upper-right represent times when only one dominant
polarity of an active region was in the macropixel. The models
presented in this paper are generally meant to be simulations of
quiet-Sun and coronal hole regions, which are sampled by the
majority of weak-field data points in the lower part of Figure 3.

4.2. Number Distributions of Flux Elements

An additional way to verify that the BONES simulations
produce magnetic fields similar to those on the real Sun is
to examine the probability distributions of element fluxes
and compare them with observed distributions. Because the
simulations typically have only 100–200 elements in them at
any one time, we sampled the distributions a number of times
in order to accumulate statistics appropriate for a large number
of uncorrelated patches of the Sun. In the models, the time
cadence for this sampling was fixed at 30 days. This time
cadence was found to be more than adequate for the requirement
that any given distribution of flux elements must be completely
recycled from (i.e., uncorrelated with) the distribution at the
previous sampling time. For each case discussed below, the
simulations were run until the total number of collected flux
elements exceeded 105.

Figure 4 shows example distributions for the two models
discussed above (ξ = 0 and 0.8). The distributions of positive
and negative polarity elements are plotted separately. For

Figure 4. Statistical number distributions of flux elements as a function of their
absolute fluxes in the (a) ξ = 0 and (b) ξ = 0.8 models. The time-steady
distributions in the numerical simulations are shown separately for positive
(solid curves) and negative (dashed curves) polarities, and both are compared
with the imposed distribution of emerging flux elements (dotted curves). For
plotting convenience, both the fluxes themselves and the normalized probability
distributions were divided by 1018.

comparison, the analytic distribution of emerging flux elements
given by Equation (4) is also shown. This latter distribution has
been scaled down in flux by a factor of two (i.e., shifted to the
left in the plot) to show the distribution of fluxes in the individual
poles of the emerging bipoles, not the total absolute flux in the
bipoles as specified by Equation (4). For ease of comparison
with observations, these plots are shown in the same general
format as Figures 4 and 6 of Parnell (2002) and Figures 2 and 3
of Hagenaar et al. (2008).

The time-steady distributions shown in Figure 4 are sub-
stantially “flatter” than the initial distribution of emerging flux
elements. In other words, the fluxes have spread out from the rel-
atively narrow range of injected fluxes (roughly 1018–1019 Mx)
to both lower and higher values (see Parnell 2002). Most notice-
ably, the populations of flux elements with |Φ| � 3 × 1019 Mx
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are hugely enhanced with respect to the distribution of injected
flux elements. These stronger flux elements must be the result of
mergings between smaller elements of like polarity. In addition,
the existence of this enhanced strong-flux tail is the reason that
the mean flux per element is larger than the mean flux in a newly
emerged flux element (see Section 4.1).

Although it is difficult to see in the plots, there is also a
significant number of elements in the simulations with fluxes
below the minimum emergent flux per element (Φmin/2 =
1018 Mx). These weakest flux elements must be the result of
fragmentation and partial cancellation. For the ξ = 0 case, 22%
of the flux elements have fluxes less than this threshold value.
Because of their small fluxes, however, these account for only
about 2.7% of the total absolute flux in the simulation. For the
ξ = 0.8 case, 18% of the flux elements have fluxes below the
emerging threshold value, and they account for 1.2% of the total
absolute flux.

Figure 4(b) shows the difference between the distributions
of positive and negative elements for the imbalanced case of
ξ = 0.8. Overall, the majority polarity has a flatter distribution
than does the minority polarity, but there is an excess of minority
polarity elements for the weakest fluxes (|Φ| � 1019 Mx). This is
in good agreement with the observational conclusions of Zhang
et al. (2006) for coronal holes. Also, the differences in shape
shown in Figure 4(b) are highly reminiscent of the flux element
distributions shown in Figure 2 of Hagenaar et al. (2008) for
coronal holes.

4.3. Naturally Occurring Supergranular Scales

The resemblance between the cellular pattern of solar granu-
lation and that of the larger-scale supergranulation has long been
interpreted as evidence that both phenomena are manifestations
of the Sun’s convective instability (e.g., Leighton et al. 1962;
Roxburgh & Tavakol 1979; Simon & Weiss 1991; Rieutord &
Rincon 2010). However, because the flow patterns in the su-
pergranular network are weak and intermittent, it has not been
possible to definitively prove their convective origin. It may
be that multiple interactions between granule-scale structures
produce a distributed network of downflows that in turn seeds
horizontal supergranular flows and the aggregation of strong
network fields (Rast 2003; Goldbaum et al. 2009). Alternately,
the opposite may be the case; i.e., it may be the aggregation
of small-scale magnetic fields that gives rise to the weak super-
granular flows (Crouch et al. 2007). In this section, we show that
the BONES simulations provide some evidence for the initial
magnetic-field aggregation described in the latter scenario.

How are the spatial scales of supergranulation measured? It is
well known that the dominant cell sizes are of order 10–30 Mm,
but different types of measurement give different answers.
Simon & Leighton (1964) found cell diameters around 32 Mm
by interpreting autocorrelation functions of chromospheric
Dopplergrams. Singh & Bappu (1981) traced the cells manu-
ally, based on Ca ii K-line intensity images, and found diame-
ters of ∼22 Mm. Wang (1988) and Wang et al. (1996) applied
the autocorrelation technique to magnetograms and found scale
sizes between 10 and 25 Mm, depending on the precise diag-
nostic techniques used. Finally, De Rosa & Toomre (2004) and
Hagenaar et al. (1997) used a range of sophisticated algorithms
to trace and characterize supergranular boundaries and found
average diameters of only ∼15 Mm.

Because the BONES simulations predict only the properties
of the magnetic field—and neither the chromospheric emission
nor the Doppler velocities—we decided that the most straight-

Figure 5. (a) Example of a simulated magnetogram autocorrelation function for
a slice across the ξ = 0 model, plotted as a function of the lag parameter x′ (see
Equation (11)). (b) Results for modeled mean values of FWHM (filled circles)
and SM (open circles) plotted as a function of ξ , with error bars denoting ±1σ

in the simulated distributions of values, and the observed ranges of FWHM and
SM values from Wang (1988; gray regions).

forward comparison to make would be with the measured mag-
netogram autocorrelation functions of Wang (1988). First, a
random time step from each of the 11 models was used to create
simulated magnetograms similar to those shown in Figure 1.
Then, for each y row in the magnetogram, we computed a series
of one-dimensional autocorrelation functions in the x-direction
for the scalar value of Bz, i.e.,

AC(x ′, y) =
∫ +∞

−∞
Bz(x, y) Bz(x + x ′, y) dx , (11)

which was then normalized such that AC(0, y) = 1. Figure 5(a)
shows an example autocorrelation function from the ξ = 0
simulation, plotted as a function of the lag parameter x ′. Similar
results were found when the roles of the x and y coordinates
were reversed.

We characterized the model autocorrelation functions by
finding both the full-width at half-maximum (FWHM) of the
central peak and the distance between the central peak and the



834 CRANMER & VAN BALLEGOOIJEN Vol. 720

next secondary maximum (SM). Doing this for each value of
y gave rise to ensembles of values for FWHM and SM in each
of the 11 simulations. Figure 5(b) shows the mean values for
each of these ensembles, along with error bars that show ±1
standard deviations about the means. There is no significant
ξ dependence in the modeled values. For all 11 simulations,
the average model FWHM is 4.48 Mm and the average SM
distance is 25.1 Mm. These values compare favorably to the
solar observations reported by Wang (1988; shown as gray bars
in Figure 5), who found FWHM values between 4 and 6 Mm,
and SM distances of 15–20 Mm.

The benefit of making a direct comparison between simu-
lated and observed FWHM and SM values is that there is no
need to interpret these quantities in terms of arbitrarily defined
cell diameters.4 The models appear to succeed in roughly repro-
ducing the observed autocorrelation properties of the network.
It may be possible to explain this success by invoking processes
of diffusion-limited aggregation as suggested by Crouch et al.
(2007). In this picture, time-steady magnetic structures “collect”
on specific scales that depend on the combined emergence, dif-
fusion, and cancellation of flux elements. Supergranular flows
may then occur as a result of the magnetic structuring. Crouch
et al. (2007) performed tests with a Monte Carlo model that var-
ied several of the discrete step sizes and interaction distances,
and found that the resulting supergranular scale size does not de-
pend on these input parameter choices. Instead, it is the overall
level of flux emergence and horizontal diffusion, which in turn
drives the cancellation rate, that sets the time-steady distance
between network concentrations.

5. CORONAL FIELD EVOLUTION

One of the major goals of this paper is to explore how the
complex photospheric fields in the magnetic carpet connect with
time-variable open flux tubes and closed loops in the extended
corona. Thus, here we describe how the field lines are traced
upward and are evolved in time (Section 5.1), we summarize
the resulting open and closed fields as a function of the flux
imbalance ratio ξ (Section 5.2), we compute relevant timescales
for the opening up of closed flux tubes (Section 5.3), we estimate
the amount of magnetic energy that emerges in the form of
bipoles (Section 5.4), and we compare it to the energy released
into the solar wind by magnetic reconnection (Section 5.5).

5.1. Field-line Extrapolation Method

As summarized in Section 2, we compute the vector magnetic
field B above the photospheric surface by assuming the field
is derivable from a scalar potential. In other words, each flux
element is assumed to act as a monopole-type source, with

B(r) =
∑

i

Φi

2π

r − ri

|r − ri |3 , (12)

where the coordinates ri = (xi, yi, zi) specify the locations of
each flux element i, and the field point r = (x, y, z) can be
located anywhere at or above the photosphere (z � 0). Φi is
the signed magnetic flux in each element (see, e.g., Wang 1998;
Close et al. 2003).

To avoid singularities at the solar surface, all elements are
assumed to be “submerged” below the photosphere (Seehafer

4 See, however, Figure 8 for a more intuitive way of visualizing the naturally
occurring “supergranular network” in these simulations.

1986; Longcope 2005). For simplicity, we assumed that all flux
elements are at a constant depth. We chose an optimum value of
zi = −1 Mm on the basis of the following considerations. The
peak magnetic field strength Bpeak in the photosphere, due to a
single flux element, occurs right over the point itself at x = xi ,
y = yi , and z = 0. Thus,

Bpeak = Φi

2πz2
i

. (13)

We want to ensure that |Bpeak| is less than the equipartition field
strength Bmax for all elements in the simulation (see Section 3.1).
Because we do not model pores and sunspots, we can apply this
constraint to elements up to a maximum flux of |Φ| ≈ 1020 Mx.
Thus, applying the condition |Bpeak| � Bmax to Equation (13)
for this value of the flux gives rise to |zi | � 1.1 Mm. On the
other hand, observations have shown that the field strength in
a recently emerged ER is at least a few hundred Gauss (Martin
1988). For the average flux in one pole of an emerging ER (i.e.,
〈Φ〉/2 ≈ 4.5×1018 Mx), we apply the condition Bpeak � 100 G
and obtain an upper limit |zi | � 0.85 Mm. The two above
constraints on the magnitude of zi are formally incompatible
with one another, but the value ∼1 Mm appears to be a likely
compromise between the two.

The BONES code contains a subroutine that can either trace
field lines up from the photospheric surface or down from a
larger height. The incremental path length Δs for numerical
steps taken along the field varies with height, from a minimum
value of 0.03 Mm at the photosphere to a maximum value of
10 Mm at a height of z = 200 Mm. At intermediate heights,

Δs = (0.03 Mm)1−ζ (10 Mm)ζ , (14)

where ζ = z/(200 Mm). Field lines that begin at the photo-
sphere are traced until they either curve back down to intersect
the z = 0 plane again (and are called “closed”) or they climb
past a maximum height of 200 Mm (and are called “open”). As
discussed in Section 2, on the real Sun, it is possible that many
flux tubes that reach higher than 200 Mm may eventually be
closed back down in the form of large-scale helmet streamers.
Whether this occurs or not depends on the global distribution
of magnetic flux across the entire solar surface. In any case, it
is likely that some plasma that reaches large heights in stream-
ers also interacts with the accelerating solar wind (Wang et al.
2000), so it may not be too erroneous to classify these field lines
as open.

When the Monte Carlo simulation of the photospheric field
settles into a dynamical steady state (defined here as t �
50 days), we begin tracing field lines in order to compute the
coronal vector field in each time step. This essentially assumes
that any temporal changes occur “instantaneously;” i.e., with
a timescale shorter than Δt = 5 minutes. In similar kinds of
potential-field simulations, Regnier (2009) found that the actual
delay between a given photospheric impulse and the response
higher up in the corona is only of order 2 minutes. Thus, our
assumption that B(r) can be recomputed from each time step’s
new lower boundary condition appears to be reasonable.

In order to quantify the changes that occur in the magnetic
field from one time step to the next, we trace a set of field
lines that is associated with the N flux elements on the surface.
The general idea is to compare the open/closed topology of flux
tubes that can be identified unambiguously both at the beginning
of a time step and at the end (see also Close et al. 2005). If a
flux element moves around on the surface and does not undergo
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(a) ξ = 0.2

(b) ξ = 0.8

Figure 6. Traced magnetic field lines at example time steps in BONES models
having (a) ξ = 0.2 and (b) ξ = 0.8. Open and closed field lines are plotted
in black and gray, respectively. In both panels, the horizontal box outlines
the (200 Mm)2 photospheric simulation domain. The vertical scaling has been
stretched by about a factor of 2, such that the uppermost tips of the field lines
are at a height of z ≈ 110 Mm.

substantial merging, cancellation, or fragmentation, then we can
say that it has “survived” that time step, and thus it makes sense
to evaluate how its open/closed connectivity may have changed.
In cases where the merging, cancellation, or fragmentation
makes only a minor change to an original element’s flux, we
also consider that element to have survived when the element’s
flux changes by less than a specified fractional threshold δ. In
most runs of the BONES code presented below, δ = 0.1. This
means that if a flux element ends the time step with a flux that is
within 10% of its original flux, it is classified as being the same
element. Flux elements that cannot be tagged in this way are
not counted. We discuss the effects of varying the δ parameter
below.

Rather than just trace one field line from each flux element,
we instead chose to more finely resolve the coronal magnetic
field by tracing seven field lines from each element. The initial
footpoints of these seven field lines are arranged in a hexagonal
pattern with respect to each flux element’s circular “patch” on
the surface. One field line is centered on the flux element. The

other six are arranged in a ring around the central point with
an angular separation of 60◦, each at a horizontal distance of
rc(1 + p)/2 from the central point. This distance is halfway
between the flux element’s intrinsic radius rc and its critical
interaction distance as defined in Section 3.4. At the beginning
of each time step, the BONES code traces 7N field lines and
tags each footpoint with a unique (nonzero) numerical identifier.
Each of the flux tubes associated with element i is assigned an
equal magnetic flux Φi/7. During the progress of each time step,
new flux elements that emerge are given an identifier of zero.
Also, if merging, cancellation, or fragmentation changes the flux
in an element to a degree greater than the relative threshold δ, its
numerical identifier is reset to zero. At the end of each time step,
the coronal field is traced again for the subset of surviving flux
elements that have nonzero numerical identifiers. The magnetic
flux in those elements is grouped into four bins that are defined
by whether the flux tubes were open or closed at the beginning
of the time step, and whether they are open or closed at the end.
Section 5.2 discusses the distributions of magnetic flux in those
four bins.

We note that our method of accounting for the open and
closed magnetic flux has several potential shortcomings. By not
counting either the newly emerged flux elements or those that
undergo substantial merging, cancellation, or fragmentation, we
run the risk of not seeing fields that may be releasing lots of
energy via magnetic reconnection. We will see below, though,
that the magnetic-carpet evolution is not so vigorous that these
flux elements represent a significant fraction of the total number.
In fact, for most models, the fraction of magnetic flux that is
missed by not counting these “rapid evolvers” is only of order
5%–15%. Another possible limitation of our method is that we
trace the identities of individual flux tubes for only one time
step. If we wanted to measure more accurate timescales for
flux reconfiguration, it may have been advantageous to follow
field lines for more than just one time step. However, since the
magnetic carpet keeps evolving, the number of flux tubes that
would become uncountable (i.e., missed by virtue of exceeding
the threshold δ) increases for each additional time step over
which flux-tube survival would be traced. Following field lines
only over the course of one time step, with Δt = 5 minutes,
gave the best balance of time resolution and flux capturing.

5.2. General Results

Figure 6 illustrates a selection of field lines for BONES
models with a mostly balanced lower boundary (ξ = 0.2)
and a highly imbalanced lower boundary (ξ = 0.8). The
three-dimensional field lines are shown projected into a two-
dimensional plane that is defined by an observer viewing the
scene at an inclination angle 82◦ from the normal to the
photosphere. Two different shades denote closed versus open
field lines. Models with more imbalanced fields (i.e., higher
values of ξ ) have both a larger fraction of open flux and a
smaller vertical extent for the closed loops. Both of these trends
are examined quantitatively below.

We studied the statistical properties of the closed loops in the
simulations by tracing large numbers of field lines from random
starting locations (x, y, 0) in the photosphere. Example time
snapshots from the 11 models (with varying ξ values) were used
to trace at least 5000 loops in each model. For the six models with
ξ � 0.5, for which there were fewer open field lines, we were
able to compute at least 20,000 loops. The maximum heights of
these loops were collected into 11 statistical distributions, one
for each model. Although the means and standard deviations
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Figure 7. Variation of percentile intervals of the sorted statistical distributions
of loop heights, shown as a function of ξ . Percentiles at the 25%, 50%, 75%, and
95% levels (solid curves) are compared with the mean loop height 〈H 〉 (dashed
curve) and with observationally inferred values from Wiegelmann & Solanki
(2004) for quiet-Sun (QS) and coronal hole (CH) regions (gray boxes).

of these distributions were computed, the distributions were
far from Gaussian in shape. Thus, we quantified them further
by computing percentile intervals Hn of the sorted cumulative
distributions of heights. For example, 25% of the loops have
heights less than the quartile height of H25, and 50% of the
loops have heights less than the median height of H50. We also
computed H75 and H95, with the latter being an approximate
indicator of the largest loops (without being dependent on the
statistically insignificant tail of the very largest loops).

Figure 7 shows how the percentile intervals vary as a function
of the flux imbalance ratio ξ . On the smallest spatial scales (i.e.,
for granule-sized loops characterized by H25 and H50), there
does not appear to be a significant dependence on ξ . However,
the longest loops follow the trend that is visually apparent in
Figure 6; i.e., the more balanced the photospheric field, the
larger the loops. This trend is apparent not only in H75 and H95,
but also in the mean height 〈H 〉 that is weighted more strongly
by the longest loops.

Figure 7 also shows approximate observational ranges of
mean loop heights for quiet-Sun (QS) and coronal hole (CH)
regions as determined by Wiegelmann & Solanki (2004). These
loop-height calculations were similar to ours in that they were
based on potential-field extrapolations from photospheric lower
boundary conditions, but Wiegelmann & Solanki (2004) used
observed magnetograms from the Michelson Doppler Imager
(MDI) instrument on SOHO (see also Close et al. 2003; Tian
et al. 2010; Ito et al. 2010). The overall agreement with the
modeled ξ dependence of 〈H 〉 is good. The general trend for
high-ξ CH regions to have shorter loops than low-ξ QS regions
is also consistent with the trend pointed out by Feldman et al.
(1999) and Gloeckler et al. (2003) for the source regions of
fast solar wind to be correlated with short loops and the source
regions of slow wind to be correlated with long loops.

A representative illustration of the footpoints of open field
lines is given in Figure 8 for the ξ = 0.8 model. This plot shows

Figure 8. Photospheric locations of footpoints of “open” magnetic field lines
traced down from an evenly spaced grid at a height of z = 200 Mm, for one
time snapshot of the ξ = 0.8 model.

the locations of the photospheric footpoints of 104 field lines
that were traced down from an evenly spaced grid at the top
(z = 200 Mm). In order to account for the horizontal flaring
of potential field lines from the finite-sized simulation box, the
grid of 100 × 100 starting points had an overall horizontal size
of 1800 × 1800 Mm in the x and y directions (centered on
the 200 × 200 Mm simulation box). The overall appearance of
Figure 8 is highly reminiscent of the observed supergranular
network. The apparent “cell diameters” tend to be between
20 and 40 Mm as on the real Sun. Note also the appearance
of thin channels, stretched between smaller knots of closed-
field regions, that appear to support the connectivity theorems
described by Antiochos et al. (2007).

All of the 104 open field lines with footpoints shown in
Figure 8 are of positive polarity. This is the dominant po-
larity as specified by the initial conditions of the BONES
code (see Section 3.1). All negative polarities end up con-
nected to positive polarities in closed loops, and thus there
are no “open funnels” with the non-dominant polarity. Of
course, this is also a highly simplified situation when com-
pared to the real Sun, for which there are often network con-
centrations of both polarities even in strongly unipolar coronal
holes.

As described above, at the beginning of each time step there
is a set of field lines traced from each of the flux elements. These
7N field lines are used to estimate the instantaneous fractions
of absolute unsigned flux that are either open or closed. The
fraction of flux that is open is denoted by fopen, and in Figure 9
we show its mean value as a function of the ξ imbalance ratio.
This fraction is never exactly the same from one time step to
the next, and the error bars show ±1 standard deviations about
the mean values. On average, fopen is roughly equal to ξ itself.
In other words, models with balanced fields tend not to have
much open flux, but when there is an increase in the unbalanced
component of the field there is a corresponding increase in the
fraction of open flux. Figure 9 also compares the modeled values
of fopen with observational determinations of this quantity from
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Figure 9. Various dimensionless flux fractions shown as a function of ξ : mean
values of fopen (filled circles) and mean values of ψ (open circles), both with
their ±1σ spreads shown as error bars, and observational estimates of fopen from
Wiegelmann & Solanki (2004) in QS (triangles) and CH (squares) regions.

Wiegelmann & Solanki (2004), and there is a similar trend of
direct proportionality, with fopen ≈ ξ .

5.3. Comparison of Relevant Timescales

We studied the time evolution of magnetic topology in the
BONES simulations by following the opening and closing of
flux tubes from the beginning to the end of each time step.
For comparison, we also computed the recycling timescale for
flux to emerge from below the photospheric surface (see also
Section 3.2). We defined this quantity as

τem = 〈Babs〉
E

. (15)

For our models, we took 〈Babs〉 from Figure 3 and E from
Equation (3), and we found that the emergence timescale τem
tends to have values around 1–2 hr (see Hagenaar et al. 2008).
Regions of extreme flux imbalance undergo slower emergence,
with τem exceeding 10–20 hr when ξ � 0.9. Figure 10(a) shows
the ξ dependence of this timescale.

Next, we used the flux tubes traced in our simulations to
investigate the timescales for magnetic field evolution in the
corona. Close et al. (2005) performed a similar study in the
limit of a balanced field, with ξ = 0. They computed a so-
called coronal flux recycling time that is meant to characterize a
local rate of change of the coronal field. This rate is driven both
by reconnection and by topological evolution of the complex
“hierarchical tree” of footpoint domains in the magnetic carpet.
Because changes in the coronal field can take place even without
any flux emergence or cancellation, Close et al. (2005) found
that coronal flux recycling times can be significantly shorter
than photospheric flux recycling times. Changes in topological
connections can occur purely as a result of the horizontal
motions of flux elements (e.g., Edmondson et al. 2009, 2010).
Close et al. (2005) used an older photospheric flux recycling time

of τem ≈ 15 hr, but they found that the coronal flux recycling
time can be as short as 1.4 hr. When emergence and cancellation
were suppressed, the coronal timescale was approximately a
factor of 2 larger (∼3 hr) but still much more rapid than τem.
Our models differ from those of Close et al. (2005) in that our
photospheric emergence timescale is now of the same order of
magnitude as their coronal recycling timescale.

Below we describe how we estimate how long it takes for
just the open flux to recycle itself in the corona. We do not
track the (possibly more numerous) changes in topology that
do not involve open flux tubes. As summarized in Section 5.1,
over the course of a time step, some of the flux in the model
is unaccounted for because it has either emerged since the
last time step or it has evolved beyond recognition as the
same flux element. The remaining fraction of total absolute
flux—i.e., which survives the time step unaltered—is called ψ ,
and Figure 9 shows how its mean value increases steadily from
about 0.82–0.95 as ξ increases from 0 to 1. A larger choice for
the relative tolerance parameter δ would give a larger survival
fraction ψ (see below), but it can be argued that too much
tolerance would give rise to errors in how flux tubes are identified
and tracked.

For flux tubes that survive a time step relatively unchanged,
we compared the endpoints of the field lines traced at the
beginning and end of the time step. The fluxes in these field
lines are summed into four separate bins that are defined by
their connectivity. The four bins correspond to four fractions of
the total surviving absolute flux: foo (starts open, ends open),
foc (starts open, ends closed), fco (starts closed, ends open), and
fcc (starts closed, ends closed). Because the overall magnetic
configuration of the system does not vary strongly over a single
time step, we found that foo ≈ fopen. Also, the two fractions that
denote change (foc and fco) both tend to be small contributors
to the total. The mean values of fco in the models tend to vary
between about 0.005 and 0.025, with the largest values occurring
for intermediate imbalance ratios of ξ ≈ 0.5 and the smallest
values occurring at the extremes of ξ = 0 and 0.99. We also note
that the time averages of fco and foc are always roughly equal to
one another (as should be required for a time-steady dynamical
equilibrium). For all 11 models, the time averages of these two
fractions never differ from one another by more than about 2%.

At any one time, we define the amount of open (absolute) flux
density as Bopen = fopenBabs. We computed the instantaneous
rate of opening in each time step Δt as(

dB

dt

)
co

= fcoBabs

Δt
. (16)

Note that the above definition makes the implicit assumption
that fco is the fraction of the total absolute flux density in the
simulation that opens up in one time step. However, this fraction
is only approximately ψ times the total absolute flux that opens
up. We assumed that the small fraction (1 − ψ) that was not
counted contributes in the same way as the larger fraction ψ
that was counted. (This assumption is tested below.) Thus, the
mean timescale for the opening up of closed flux tubes is

τco = 〈Bopen〉
〈(dB/dt)co〉 = 〈fopen〉 Δt

〈fco〉 . (17)

Because the quantities fco and (dB/dt)co can be quite variable
from time step to time step, we realized that care should be
taken in computing the averages in Equation (17). We ended up
computing these averages in two independent ways. First, we
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Figure 10. Comparison of timescales for various models. (a) For the Monte Carlo models of the magnetic carpet, the recycling time for flux emergence (dotted curve)
is compared with the timescale for flux opening (filled circles and solid curve). (b) For the Cranmer et al. (2007) solar wind models, we plot acceleration times τwind
up to heights of 25 Mm (dashed curve), 50 Mm (dotted curve), 100 Mm (solid curve), and 200 Mm (dot-dashed curve) vs. the outflow speeds at 1 AU. Also shown
is an approximate region of parameter space that corresponds to upper heights z that exceed 2–3 times the maximum heights of closed loops in the corresponding
BONES models (gray box).

took simple arithmetic averages of the time series for (dB/dt)co
and the other quantities. Second, we integrated the rate defined
in Equation (16) as a function of time to build up the cumulative
amount of flux density that is opened up over the course of
the simulation. This is a monotonically increasing function, but
its increase with time is intermittent because different amounts
of flux are opened up in each time step. We fit the cumulative
growth of opened flux density with a linear function, and then
used the slope of this linear fit as the mean value of (dB/dt)co.
These two methods gave results that agreed with one another
to within about 10%, and we used the latter technique for all
values reported below.

Figure 10(a) compares the above timescales with one another.
It is clear that τco ≈ τem in these models. In other words, the
timescale for the replacement of the photospheric flux—via
emergence from below—is the same as the timescale for
replacement of the open flux that feeds the solar wind. At
first glance, this appears to be a simple requirement for a
time-steady equilibrium, in the same way that fco ≈ foc is
required to maintain a steady state. However, one can imagine
situations where the rate of flux evolution in the corona is not
so strongly coupled to the emergence rate of new flux from
below (e.g., Close et al. 2005). In our case, it is the use of
potential fields—which are remapped during each time step with
no allowance for the storage of free energy in the corona—that
demands τco ≈ τem. In other words, the BONES models
reproduce the case of highly efficient magnetic reconnection,
where the corona “processes” the flux as quickly as it is driven
(stressed or injected) from below. One can imagine that in a full
MHD simulation the efficiency of magnetic reconnection may
not be so high, and thus the resulting non-potential, current-filled
corona should exhibit τco > τem.

Note that Figure 10(a) does not show the value of τco for
the ξ = 0 model. As Equation (17) makes clear, in this case
both the numerator and denominator are numbers that should
approach zero. Ideally, there should be no open fields at all in
a perfectly balanced potential field. The BONES models do, in
fact, give slightly nonzero values for 〈fopen〉 and 〈fco〉, but these
are believed to be numerical artifacts arising from the discrete

nature of the field-line tracing technique. We reiterate that we
do not compute the timescale for all of the coronal flux to be
recycled. That recycling time should be nonzero even for the
balanced ξ = 0 model (Close et al. 2005). In all models with
ξ � 0, the full coronal recycling time is likely to be significantly
shorter than τco.

In order to study the dependence of our results on the
assumptions made about flux-tube identification, we varied the
threshold flux identification parameter δ away from its default
value of 0.1, in a range between 0 and 0.5. This parameter
sets the relative tolerance for the classification of evolving
flux elements over a time step. Table 1 shows several resulting
parameters of the test simulations, which were all performed for
ξ = 0.4. As we expected, the flux survival fraction ψ increases
monotonically with increasing δ. However, there does not seem
to be any definitive trend with δ in the fraction of flux that opens
up (fco), the related timescale for flux opening (τco), or the energy
flux released by reconnection into open-field regions (〈Fco〉,
see Section 5.5). This suggests that the topological changes
resulting from flux-tube opening are adequately resolved in the
simulations. Thus, we retain the standard value δ = 0.1 for the
remainder of the paper.

It is worthwhile to compare the timescale for flux opening
to the timescale for solar wind acceleration along the open
flux tubes. If a significant amount of solar wind plasma flows
out during the time it takes the open field to reorganize itself
via reconnection, then the reconnection processes themselves
probably are not responsible for producing the majority of
the solar wind. The RLO idea depends on the plasma in open
flux tubes coming from the opening up of closed loops. Thus,
we want to determine whether or not a large amount of mass
accelerates out in the open flux tubes over the time it would take
for significant mass to be processed via loop-opening.

The timescale for wind acceleration from a lower height zTR
in the solar transition region (TR) to an arbitrary upper height z
is

τwind(z) =
∫ z

zTR

dz′

u(z′)
, (18)
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Table 1
Variation of Mean Magnetic Properties (ξ = 0.4 Model) with δ

δ ψ 〈fco〉 τco 〈Fco〉
(hr) (erg cm−2 s−1)

0.00 0.759 0.0199 1.403 1.50 × 104

0.10a 0.839 0.0220 1.222 1.77 × 104

0.25 0.901 0.0219 1.273 1.65 × 104

0.38 0.926 0.0245 1.160 1.80 × 104

0.50 0.938 0.0226 1.233 1.70 × 104

Note. a Standard value used in all other models discussed below.

where u(z) is the radial wind speed. The TR was chosen as the
height to start the integration because that is where the mass flux
of the wind is thought to be determined (see, e.g., Hammer 1982;
Withbroe 1988; Hansteen & Leer 1995). We used the one-fluid
solar wind models of Cranmer et al. (2007) to compute τwind,
and we defined zTR as the height at which the temperature in a
wind model first reaches 105 K.

Figure 10(b) shows the wind acceleration timescales for
several representative upper heights z, and for a range of models
of the fast and slow wind that have speeds at 1 AU between 400
and 750 km s−1 (see Cranmer et al. 2007). Two side-by-side
plots are necessary in Figure 10 because there is not a unique
one-to-one correspondence between the flux imbalance ratio ξ
and the wind speed at 1 AU. We do know, however, that there
is some association between slow wind streams and QS regions
on the surface (ξ ≈ 0) and between fast wind streams and CH
regions on the surface (ξ ≈ 1). Thus, the overall left-to-right
variations in the two panels can be roughly associated with one
another.

The slow solar wind models shown in Figure 10(b) have the
shortest acceleration timescales. Given Equation (18), this is
potentially counterintuitive. However, we note that the slow
wind models from Cranmer et al. (2007) often have local
maxima in u(z) of order 100 km s−1 in the low corona that are
not present in the more steadily accelerating fast wind models
(see also Figure 7(a), Cranmer 2010). These regions correspond
to enhanced magnetic fields that were included to simulate open
fields at the edges of streamers and active regions. Observations
are beginning to show hints of such rapid outflows as well (Harra
et al. 2008; Subramanian et al. 2010; Bryans et al. 2010).

When comparing the timescales for flux opening and solar
wind acceleration, we can use the loop heights illustrated in
Figure 7 as an order-of-magnitude guide for the maximum
height z to use when computing τwind(z). For example, when
parcels of solar wind exceed a height that is 2–3 times H95, it
can be safely assumed that the wind has left behind virtually
all interactions with closed loops and should be considered to
be freely accelerating. This allows us to compare the timescales
between panels in Figure 10 for the two general types of solar
wind.

1. For slow wind streams rooted in balanced QS regions (i.e.,
ξ ≈ 0), the height at which the wind flows “free and clear”
of loops is of order 50–100 Mm. Figure 10(b) shows that
this height corresponds to τwind ≈ 0.1–0.3 hr. This is a
shorter timescale than the representative flux-opening time
τco ≈ 1 hr that corresponds to the left side of Figure 10(a),
but it is still of the same order of magnitude. Thus, it is
possible that RLO processes could be important for slow
wind acceleration.

2. For fast wind streams rooted in unbalanced CH regions
(i.e., ξ ≈ 1), the height corresponding to 2–3 times H95

is only of order 5–15 Mm. The fast wind accelerates to
this range of heights in less than about 0.3 hr, but the flux-
opening recycling time in coronal holes can be as long as
3–10 hr. This is a larger discrepancy than in the case of
the slow wind, and it implies that it is unlikely that RLO
processes are important in accelerating the bulk of the fast
wind. (Of course, it still may be the case that RLO processes
produce a highly intermittent or episodic injection of mass
and energy into the fast wind in coronal holes—just not
enough to affect the majority of the accelerating plasma.
The polar jets discussed further in Section 6 may be a
prime example of this intermittency.)

The gray box in Figure 10(b) shows the approximate range
of wind acceleration timescales that correspond to maximum
heights z exceeding about 2–3 times H95 as discussed above.
The shape of the gray region is roughly independent of wind
speed and ξ . This is because, as one goes from left to right in
the plot, the increase in τwind (for constant z) is offset by the fact
that the relevant value of z decreases (because H95 decreases;
see Figure 7).

Finally, we reiterate that the values of τco shown in
Figure 10(a) are likely to just be lower limits to the actual
timescales of flux opening. As discussed above, our models as-
sume a succession of potential fields that are consistent with the
assumption of rapid magnetic reconnection. If the true MHD
state of the corona exhibits less efficient magnetic reconnec-
tion, then the photospheric footpoint stressing will build up
non-potential fields and current sheets in the corona and thus
give rise to larger net values of τco. In this case, it is even more
certain that τco 
 τwind, and our conclusion that RLO processes
are unimportant in accelerating the solar wind is strengthened.

5.4. Poynting Flux in Emerging Bipoles

Our primary reason for constructing the BONES simulations
was to estimate how much energy is deposited into the solar wind
by the evolving magnetic carpet. First, though, it is necessary
to compute how much magnetic energy is being injected into
the system from below the photosphere. It is not obvious that
all (or even most) of this energy is able to be converted into
forms that supply heat or momentum to the accelerating solar
wind. Since, on small scales, much of the injected magnetic
energy is in the form of compact bipoles, it may be difficult for
much of this energy to become “liberated” into the open-field
regions when these bipoles evolve and interact with one another.
Thus, in this section, we discuss the total magnetic energy that is
potentially available; and in the following section, we estimate
what fraction of it is actually released by reconnection into the
open-field regions.

The relevant quantity to compute when considering the rate
of injection of magnetic energy from below the photosphere is
the Poynting flux, which is defined as

S = c

4π
E × B ≈ − 1

4π
[(v × B) × B] , (19)

and where the latter approximation assumes the ideal condition
of MHD flux freezing. In the Cartesian system studied in this
paper, the most relevant component of the Poynting flux is the
z component, with

Sz = 1

4π

[
B2

⊥vz − (v⊥ · B⊥)Bz

]
, (20)
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where B⊥ and v⊥ are the components of the magnetic field
and velocity in the horizontal (x–y) plane. The two terms on
the right-hand side of Equation (20) represent components
associated with flux emergence and surface flows, respectively.
For simplicity, though, in the remainder of this section we
will endeavor only to estimate the overall magnitude S of
the Poynting flux. This gives a reliable upper limit that is
independent of the adopted geometry and topology of the
emerging flux elements.

Observationally, the Poynting flux can be estimated from var-
ious measured proxies (e.g., Welsch et al. 2009), but there exist
ambiguities in the data that give rise to significant uncertainties.
Fisk et al. (1999) estimated the magnitude of S to be about
5 × 105 erg cm−2 s−1 in source regions of the solar wind.
Martı́nez González et al. (2010) used vector magnetic fields
measured by Hinode/SOT to estimate that small-scale emerg-
ing loops provide something like 106–2 × 107 erg cm−2 s−1 to
the low chromosphere in quiet regions.

We estimated the magnitude of the Poynting flux for the
Monte Carlo models developed above in two independent ways.
Figure 11(a) shows that the two methods gave rise to similar
ranges of Poynting flux (both of order 106 erg cm−2 s−1) with
a relatively weak dependence on ξ . These two methods are
described below.

First, we note that the emergence rate E (Equation (3)) already
describes how much magnetic flux is driven up from below
the photosphere, per unit area and per unit time (i.e., its units
are Mx cm−2 s−1). What we want to know is how much magnetic
energy emerges, in units of erg cm−2 s−1. Thus, if we can relate
the flux in an emerging bipole to its magnetic energy, we can
convert easily from E to S. Treating a pair of equal-and-opposite
emerging flux elements as an ideal (but partially submerged)
magnetic dipole, we can specify its field strength as

B = ΦiD

2πr3

√
1 + 3 cos2 θ, (21)

where Φi is the absolute flux in each pole, D is the horizontal
separation between the two poles, r is the distance measured
from the center of the dipole, and θ is the polar angle measured
from the (horizontal) dipole axis. Assuming the dipole is
submerged at a depth |zi |, it is possible to integrate the magnetic
energy Umag over the full coronal volume V (i.e., over all x and
y, and all z > 0) analytically. We thus found

Umag =
∫

dV
B2

8π
= Φ2

i D
2

128π2|zi |3 . (22)

Note that the magnetic energy above the photosphere is ex-
tremely sensitive to the submerged depth |zi |. Once the mag-
netic energy due to a given bipole is known, we can estimate the
magnitude of the Poynting flux as

S ≈ E
〈Umag〉
〈Φ〉 , (23)

where the angle brackets denote the properties of the “average”
emerging bipole as discussed in Section 3.2. Figure 11(a) shows
this quantity for the 11 models as a function of ξ , and for two
reasonable choices of |zi | (0.8 and 1.2 Mm). For typical values
of E = 10−3 Mx cm−2 s−1, 〈Φ〉 = 9 × 1018 Mx, D = 6.8 Mm,
and |zi | = 1 Mm, we find that S ≈ 8 × 105 erg cm−2 s−1.

The second way to estimate S was proposed by Fisk et al.
(1999). Here, we compute the total magnetic energy in the

system (per unit surface area) and divide it by the flux recycling
time. In other words,

S ≈ 1

τem

∫
dz

B2

8π
. (24)

Here, the value of B at the photospheric surface is essentially
the time-averaged absolute flux density (i.e., B� ≈ 〈Babs〉). It
is the height-dependence of B, for z > 0, that is the major
source of uncertainty in evaluating Equation (24). However, it is
straightforward to follow Fisk et al. (1999) and assume a vertical
falloff that depends on a power of heliocentric radius. Thus,

B ≈ B�

(
R�
r

)n

(25)

(where r = z + R�), and then

S ≈ B2
�R�

8πτem(2n − 1)
. (26)

At large distances above the photosphere, the exponent n
approaches a value of 2, but it is believed to take on larger
values closer to the surface (see, e.g., Banaszkiewicz et al.
1998). For a typical value of B� = 4 G and τem = 1 hr, we
can estimate an upper limit on S by assuming n = 2, and
thus obtain S = 4 × 106 erg cm−2 s−1. For a more realistic
coronal value of n ≈ 8, we have S ≈ 6 × 105 erg cm−2 s−1.
Figure 11(a) shows how S varies as a function of ξ when the
modeled variations in 〈Babs〉 and τem are used, and when the two
above values of n = 2 and 8 are assumed to define the lower and
upper limiting cases. Given the uncertainties, the two alternate
methods of estimating S give numerical values that are quite
consistent with one another.

5.5. Energy Release in Loop-Opening Events

We used the output of the BONES simulations to estimate the
amount of energy released by magnetic reconnection for cases
of closed flux tubes turning into open flux tubes (and vice versa).
It is important to note that there are also expected to be many
other sites of reconnection and energy release that do not involve
open flux tubes. For example, in a balanced QS region there may
be a large number of small-scale “footpoint-swapping” events
that start with a configuration of closed loops and end with a
slightly different topological distribution of closed loops (Priest
et al. 2002; Close et al. 2005). In this paper, we explicitly ignore
the energy release in the closed–closed events in order to focus
on only the subset of events that can input mass and energy into
the solar wind.

The basic geometrical picture for a flux-opening event is
the “anemone” type structure that is believed to exist at the
footpoints of many X-ray bright points, coronal jets, and polar
plumes (e.g., Syrovatskii 1982; Shibata et al. 1992, 2007;
Filippov et al. 2009; Shimojo & Tsuneta 2009). In this picture,
a small bipolar magnetic field either emerges or advects into
the presence of a larger-scale open field. Magnetic reconnection
is believed to occur roughly above the end of the bipole with
the opposite polarity as the open field (Edmondson et al. 2009,
2010). The newly opened flux may take the form of a jet or plume
(Wang 1998), and the newly closed flux may “subduct” and
provide heating to the underlying chromosphere (Guglielmino
et al. 2008). In one of these interchange-reconnection type
events, the amount of closed magnetic flux that opens up should
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Figure 11. Comparison of energy fluxes for various models. (a) Estimated flux 〈Fco〉 in loop-opening events (filled circles and solid curves) computed with two choices
for θLCL. Also shown are approximate Poynting fluxes S for photospheric flux emergence, with the dotted region showing estimates from Equation (23) and the gray
region showing estimates from Equation (26). The dashed curve shows a linear scaling 〈Fco〉 ∝ ξ . (b) Total dissipated solar wind energy flux Fwind from the WTD
models of Cranmer et al. (2007).

be the same as the amount of pre-existing open flux that becomes
closed (i.e., fco ≈ foc).

Because we model the evolution of the coronal magnetic
field as a succession of potential fields (see Section 2), we
use the quasi-static “MCC” model to estimate the energy loss
due to reconnection (Longcope 1996; Longcope & Kankelborg
1999; Beveridge & Longcope 2006). In this model, the mean
energy flux released in closed-to-open reconnection events is
proportional to the rate (dB/dt)co at which magnetic flux is
opened up (see Equation (16)). For our simulations, we derived
the MCC energy flux to be

Fco = θLCL
Φ1

〈d〉
∣∣∣∣dB

dt

∣∣∣∣
co

, (27)

where Φ1 is the mean absolute flux per element, 〈d〉 is the mean
separation between elements in the simulation, and θL and CL
are dimensionless constants. The Appendix presents a detailed
derivation of Equation (27) for anemone-type reconnection
events, including a discussion of the most likely numerical
values for θL and CL.

It is important to clarify that the energy flux given by
Equation (27) is meant to be an order-of-magnitude representa-
tion of the magnetic “free energy” released by reconnection. The
MCC model depends on an estimate of the current that builds
up and is dissipated along an idealized separator, and truly non-
potential MHD simulations are needed to verify whether these
estimates are valid. Also, the MCC model does not specify
how the energy is partitioned into other forms such as ther-
mal energy, bulk kinetic energy, waves, MHD turbulence, and
energetic particles. Determining this partitioning is a complex
problem—one definitely beyond the scope of this paper—that
often requires the use of fully kinetic simulations. However, it
has been found that many forms of particle energization that
occur rapidly and locally in reconnection regions may eventu-
ally become unstable to dissipation that randomizes the velocity
distributions (Bhattacharjee 2004; Fujimoto & Machida 2006;
Yamada 2007). Thus, much of the energy that initially goes into,
e.g., waves or supra-Alfvénic beams may end up released in the

form of heat. This will be our implicit assumption when com-
paring Fco with the energy fluxes required to heat the corona
and accelerate the solar wind along open flux tubes.

Figure 11(a) shows the time-averaged quantities 〈Fco〉 for 10
of the standard BONES models as a function of ξ (excluding
the case ξ = 0). See below for a discussion of how Fco varies
in time. The lower and upper sets of points were computed
by assuming the product of the two dimensionless constants
θLCL to be 0.003 and 0.011, respectively (see the Appendix).
For nearly all of the models, 〈Fco〉 is significantly smaller than
the available Poynting flux S. For the lowest values of ξ , the
resulting “efficiency” of energy release in open-field regions
(i.e., 〈Fco〉/S) may be as low as 0.001–0.01. This means that
in QS regions, only a tiny fraction of the magnetic energy that
enters the system ends up being available for driving the solar
wind via RLO processes.

For most values of ξ , the computed values of 〈Fco〉 are
significantly lower than the canonical heat fluxes (i.e., 3 ×
105–106 erg cm−2 s−1) that Withbroe & Noyes (1977) estimated
are needed to maintain QS and CH regions on the Sun. However,
for the most unbalanced CH regions (ξ � 0.95), the modeled
energy fluxes do appear to approach both the empirically
required heating rates and the empirically constrained Poynting
fluxes. Observed coronal holes, however, exhibit values of ξ over
a much wider range of values (Wiegelmann & Solanki 2004;
Abramenko et al. 2009), so the models still have a problem with
explaining CH coronal heating in general.

Figure 11(a) also shows a curve that represents a linear
dependence with the flux imbalance ratio; i.e., 〈Fco〉 ∝ ξ .
For 0.2 � ξ � 0.9, this linear relationship appears to fit the
variation in the modeled energy fluxes. Because we also know
that fopen ∝ ξ (see Figure 9), this tells us that the heating rate
in flux-opening events is roughly proportional to how much of
the time-averaged magnetic field remains open.

As was done in Section 5.3 above, we can also compare the
results from the BONES simulations with earlier models of
solar wind acceleration along open flux tubes. We would like
to assess how much energy flux needs to be deposited in open-
field regions in order to produce the solar wind. We used the
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one-fluid WTD-type models of Cranmer et al. (2007) to estimate
this quantity. These models involved finding a self-consistent
description of the volumetric heating rate Q = |∇ · F| (in units
of erg cm−3 s−1) that was able to maintain time-steady corona
and solar wind. In order to derive the total energy flux |F| that
was dissipated in one of these models, we had to integrate over
the entire radial grid, which extended from the photosphere
to the heliosphere. The Cranmer et al. (2007) models were
computed along magnetic flux tubes that have a radially varying
cross-sectional area Atube(z). Thus, the radial integral of the
product QAtube gives the total power dissipated (in erg s−1) in a
flux tube. To express this quantity as an energy flux and compare
it to the quantities shown in Figure 11(a), we normalized
the area function Atube(z) to the area of the simulation box
(A = [200 Mm]2) at a height corresponding to the low corona,
at which the supergranular funnels have expanded to fill the
“canopy” volume. For the Cranmer et al. (2007) models, this
height corresponds to z ≈ 0.04 R� ≈ 28 Mm. Then the energy
flux can be computed by dividing the total power by the box
area A, and

Fwind = |F| = 1

A

∫ ∞

0
dz Atube(z) Q(z). (28)

Figure 11(b) shows how Fwind depends on the wind speed at
1 AU for the same models that were shown in Figure 10(b).
We point out that Fisk et al. (1999) were correct to conclude
that the energy flux needed to accelerate the solar wind is of the
same order of magnitude as the emerging Poynting flux S (see
also Leer et al. 1982; Schwadron & McComas 2003). However,
Figure 11(a) shows that RLO-type flux-opening events do not
appear to be able to release the required energy flux into the
open flux tubes.

A key result of many coronal heating models—including
the MCC models of Longcope (1996)—is that the energy
dissipation process should be highly intermittent. This occurs
in the BONES simulations as well. Figure 12 shows a snapshot
of the time dependence of the quantity Fco for the ξ = 0.2 and
0.8 models. These heating rates were computed with the upper-
limit value of the product θLCL = 0.011. Thus, the time averages
of these quantities correspond to the upper set of solid points in
Figure 11(a). For the majority of the models (0.2 � ξ � 0.9),
the standard deviation of Fco is approximately half of its mean
value. For the extreme models with the lowest and highest values
of ξ , the standard deviations increase to be about equal to their
means. Such a scaling would be expected if the energy fluxes
were sampled from an exponential distribution similar in form to
that of the emerging bipole fluxes (Equation (4)). In any case, the
variability of the predicted heating rates may be just as useful
as the mean values when attempting to distinguish between
different coronal heating models (see, e.g., Parker 1988; Walsh
& Galtier 2000; Buchlin & Velli 2007).

It is worthwhile to list some of the ways in which the above
models may be incomplete or incorrect. For example,

1. The assumption of a succession of potential fields is likely
to limit the verisimilitude of the models. It is clear that
time-dependent, three-dimensional MHD models—which
contain currents, resistivity, and finite-pressure effects—
would shed more light on the dynamics and energetics of
this system. If the gas pressure in localized reconnection
regions begins to exceed the magnetic pressure (i.e., β � 1),
there may be additional ways for the flux tubes to “break
open” that were not accounted for here.

Figure 12. Time evolution of the energy flux Fco released by reconnection
into open-field regions, for BONES models having ξ = 0.2 (gray curves) and
ξ = 0.8 (black curves). Time averages for both cases are denoted by dashed
lines.

2. Even within the confines of a succession of potential fields,
the assumptions of the MCC model may be too simplistic.
For example, it is known that in three-dimensional recon-
nection there are both spatial and temporal variations of
the current along separators, which our implementation of
MCC does not include (e.g., Galsgaard & Parnell 2005;
Parnell et al. 2010).

3. Our assumption of θL = 1 in Equation (27) may be too
large, and thus our resulting estimate for the energy flux
released by reconnection may be too high.

4. The simple three-pole magnetic geometry discussed in
the Appendix did not consider realistic asymmetries in
either the footpoint locations or the magnitudes of the flux
sources. When such asymmetries are included (Al-Hachami
& Pontin 2010), the resulting range of values for CL would
likely be different. It is unclear whether CL would be larger
or smaller than the values estimated in the Appendix.

5. The use of the mean flux element separation 〈d〉 in
Equation (27) is only a rough approximation. Since there
may be significant energy release when one flux element
gets very close to another, it may be better to use a mean
distance that is smaller than 〈d〉. In that case, our estimate
for the heating rate could be too low.

6. As we mentioned in Section 5.1 above, many of the flux
tubes that are classified as “open” may in fact be closed in
the form of hydrostatic helmet streamers. In reality, then,
the energy flux that escapes out into the solar wind could
be even lower than the values of 〈Fco〉 that were shown in
Figure 11(a). It is also possible that large-scale interchange
reconnection could eventually open up these flux tubes
(Wang et al. 2000; Fisk 2005; Antiochos et al. 2010;
Edmondson et al. 2010), but modeling those processes is
beyond the scope of this paper.

Roughly speaking, there appear to be just as many reasons
why our results for the rates of RLO heating and flux opening
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may be overestimates as there are reasons why they may be
underestimates. Despite the approximate nature of these models,
however, we believe that the main result (i.e., 〈Fco〉 � S for
most values of ξ ) is not likely to be wrong by many orders of
magnitude.

6. DISCUSSION AND CONCLUSIONS

The primary aim of this paper was to begin testing the
conjecture that the opening up of closed flux in the Sun’s
magnetic carpet is responsible for driving the solar wind.
First, we created Monte Carlo simulations of the complex
photospheric sources of the solar magnetic field. The resulting
time-averaged properties of the models appeared to agree well
not only with observations of the flux density and the flux
imbalance ratio, but also with observed probability distributions
for the flux elements and autocorrelation functions of the
field strength. A supergranular pattern of network magnetic
concentrations appeared spontaneously in the models, despite
the lack of any imposed supergranular motions. Then, armed
with some degree of confidence that the model photosphere is
an adequate reflection of reality, we then computed the coronal
magnetic field. Assuming that the coronal field evolves as a
succession of potential-field extrapolations, we were able to
estimate both the timescales and energy fluxes associated with
RLO-type flux-opening events.

From the simulations, we found that the Poynting flux in
emerging magnetic elements (which could be a proxy for
the maximum energy flux available for coronal heating) is
typically around 106 erg cm−2 s−1. However, for quiet regions
(ξ � 1), only a tiny fraction of the available Poynting flux
was found to be released in flux-opening events via magnetic
reconnection. A similar situation was found to exist in mixed-
polarity regions that can correspond to either quiet Sun or
coronal holes (ξ � 0.8). For the most unbalanced coronal hole
regions (ξ ≈ 1), the fraction of Poynting flux released in flux-
opening events may approach unity. In these regions, however,
the timescale for flux opening was found to be significantly
longer than the solar wind travel time from the coronal base
to heights far above the tops of loops. Thus, it appears that a
significant amount of mass accelerates out into the solar wind
over the time that it would take for the plasma to be processed via
RLO-type mechanisms. From the above estimates of timescales
and MCC energetics, we conclude that it is unlikely that the solar
wind is driven by reconnection and loop-opening processes in
the magnetic carpet.

Despite the negative conclusion regarding the solar wind as
a whole, we believe that the physical processes modeled in this
paper are likely to be relevant in many other ways. For example,
it is possible that more can be learned about the energetics
of polar jets with the methodology developed here. Soft X-ray
observations can be used to estimate the energy flux released due
to jet eruptions. These jets are believed to span several orders of
magnitude in the total amount of energy released; i.e., between
about 1026 and 1029 erg (Shimojo et al. 1998; Chifor et al. 2008;
Pariat et al. 2009; Morita et al. 2010). Let us take a canonical
value of Ejet ≈ 4 × 1028 erg from the model of Shimojo et al.
(1998). Recently, Savcheva et al. (2007) identified 104 jets with
the Hinode X-Ray Telescope (XRT) over a time span of 44 hr
in a polar coronal hole, which gives a mean time between jets
(for the observed area) of τjet ≈ 1500 s. The area examined by
Savcheva et al. (2007) was approximately the “front half” of the
polar cap, viewed from the side, which extended down to about
25◦ colatitude and thus covered about Ajet ≈ 1.5 × 1021 cm2.

Thus, we estimate the mean energy flux released in jets to
be Fjet ≈ Ejet/(Ajetτjet) ≈ 2 × 104 erg cm−2 s−1. This
agrees reasonably well with the predicted energy fluxes (for
ξ ≈ 0.6–0.9) shown in Figure 11(a).

The flux-opening events modeled in this paper may also
be relevant to understanding the small eruptions seen in quiet
regions (Innes et al. 2009; Schrijver 2010) that may be related to
CMEs. However, it is not guaranteed that every jet-like eruption
observed in the corona releases material that accelerates up into
the solar wind. There is observational evidence that at least
some coronal jets contain plasma that falls back down because
it failed to reach the escape speed (Baker et al. 2008; Scullion
et al. 2009). This may put some jets into the same category as
spicules, which are known to carry orders of magnitude more
mass up (and down) than is needed to feed the solar wind (e.g.,
Sterling 2000; De Pontieu et al. 2009).

A potentially valuable set of observational diagnostics of the
processes discussed in this paper are the elemental abundances
and ionization states of different particle species that escape into
the solar wind (Zurbuchen 2007). The closed-to-open reconnec-
tion events that we have modeled may inject some plasma with a
distinctly “closed” composition signature into regions that have
signatures otherwise dominated by flux tubes that remain open.
It is worth noting, however, that there remains disagreement
about exactly what kinds of abundance and ionization signatures
signal the presence of closed loops, and which do not. Cranmer
et al. (2007) showed that a range of WTD-type open-flux-tube
models can produce values of the commonly measured O7+/O6+

and Fe/O ratios that agree reasonably well with in situ measure-
ments (see also Pucci et al. 2010). Thus, we question the pop-
ular assertion that the charge-state and first-ionization-potential
(FIP) properties measured in the slow solar wind can only be ex-
plained by the injection of plasma from closed-field regions on
the Sun.

Whether or not the solar wind energy budget is accounted
for by RLO processes, the inherent variability in the mag-
netic carpet is likely to cause some kind of MHD fluctua-
tions to propagate up into the corona. The response of the
coronal field to the evolving footpoints may result in Alfvén
waves with periods of order τem ≈ τco (see Figure 10). In
fact, Hollweg (1990, 2008) suggested that “flux cancellation”
events in the corona may be the most likely source of the
long-period (i.e., 0.5–10 hr) Alfvén waves that dominate in
situ measurements. The statistical properties of these low-
frequency fluctuations may also be consistent with an ori-
gin in the motions of coronal field-line footpoints (Matthaeus
& Goldstein 1986; Giacalone & Jokipii 2004; Nicol et al.
2009).

In order to further test the applicability of RLO-type pro-
cesses to accelerate the solar wind, the models need to evolve
beyond the approximate potential-field “skeleton” and to incor-
porate MHD effects. Multi-dimensional MHD simulations (e.g.,
Gudiksen & Nordlund 2005; Moreno-Insertis et al. 2008; von
Rekowski & Hood 2008; Edmondson et al. 2009) illustrate the
aspects of coronal reconnection that are—and are not—mod-
eled well by potential fields, and future studies need to account
for these effects more consistently. Also, analytic models of the
micro-scale kinetic physics should be developed further in order
to complement the coarser-gridded numerical simulations. Ideas
such as stochastic growth theory (Cairns & Robinson 1998) or
non-modal stability (Camporeale et al. 2010) may be useful
ways to understand the partitioning of energy within reconnec-
tion regions.
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Additional work should be done to refine and test the idea that
the supergranular network is the natural by-product of smaller-
scale granular activity (Rast 2003). Our success in reproducing
the measured autocorrelation patterns in magnetograms (see
Figure 5) does not necessarily imply that there is no convective
component to supergranulation. However, our results do appear
to provide evidence that at least some of the 10–30 Mm magnetic
structure on the Sun can be built up from ∼1 Mm granulation
effects via a kind of diffusion-limited aggregation (see also
Crouch et al. 2007).

Another topic that requires further study is the coupling be-
tween waves and flux emergence in the granular convective
flows at the photospheric lower boundary. Cranmer & van
Ballegooijen (2005) estimated that the surface-averaged en-
ergy flux of Alfvén waves in the low corona is of or-
der 106 erg cm−2 s−1 (see Figure 12 of Cranmer & van
Ballegooijen 2005). It is probably not a coincidence that this
is of the same order of magnitude as the Poynting flux S due to
the emergence of ERs. The interplay between convective over-
turning motions, colliding granular cells, and thin flux tubes may
give rise to a rough equipartition between these different sources
of energy. By constructing models that contain the seeds of both
WTD and RLO processes, we can better determine their relative
contributions to coronal heating and solar wind acceleration.
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APPENDIX

AN IDEALIZED APPLICATION OF LONGCOPE’S MCC
MODEL FOR ANEMONE-TYPE EVENTS

In this section, we show how the Longcope (1996) MCC
model can be applied to the results of the BONES simulations
described above. In this model, the motions of discrete flux
sources on the solar surface give rise to stresses in the coro-
nal field that are concentrated at topological boundaries (i.e.,
separatrix surfaces and separator field lines). Electric currents
are assumed to form along the separators, and then dissipate as
magnetic reconnection occurs in response to the evolution of the
flux domains. Longcope (1996) found that the power dissipated
in a single flux transfer event must be choppy and intermittent,
but its time average can be written as

P̄ = θL
I ∗

2c

∣∣∣∣dΦ
dt

∣∣∣∣ , (A1)

where dΦ/dt is the time derivative of magnetic flux that is in
the process of transferring its connectivity, I ∗ is a characteristic
current that is assumed to flow along the separator, θL is a
dimensionless threshold constant describing the intermittency
of reconnection, and c is the speed of light in vacuum.

In the double-bipole configuration of Longcope (1996), the
transfer of magnetic flux (dΦ/dt) occurred because a fraction of
the flux from the positive pole of one bipole became reconnected
with the negative pole of the other bipole. In our model, we
consider the transfer of flux from a closed flux tube to an open
flux tube, or from open to closed. Equation (B9) of Longcope

(1996) gave the characteristic current used in Equation (A1)
above. Correcting a typographical error in Longcope (1996),
this current is given by

I ∗ = cB̄ ′
⊥L2s

8π2
, (A2)

where L is the length of the separator field line, s is a
dimensionless geometrical constant (with s = 1 corresponding
to a circularly shaped separator field line), and B̄ ′

⊥ is an average
value of the Jacobian-like perpendicular derivative of the vector
field at the separator,

B ′
⊥ =

√
−det (∇⊥B⊥). (A3)

In the above, the perpendicular direction is defined relative to
the separator field line.

For a given magnetic configuration, the above equations let us
estimate the power emitted from the loss of magnetic free energy
via reconnection. However, it would be too computationally
intensive to locate and trace all of the separator field lines
during every time step of the BONES simulation. Thus, we
aim to simplify the application of Equation (A1) by creating a
characteristic “building block” for the magnetic geometry in a
typical (anemone-type) opening/closing event. These building
blocks can then be assembled together in a statistical way to
account for the total amount of evolving flux in each time step
of the Monte Carlo simulations.

Wang (1998) described a simple model of plume/jet events
in coronal holes that involved only three discrete flux sources:
two that form a localized bipole and a third that represents a
unipolar source of open field. As discussed in Section 5.5, the
energy release that is assumed to occur in this system happens
when some of the flux in the bipole reconnects with the unipolar
region, giving rise to an equal amount of opening and closing
of flux (fco = foc). For geometric simplicity, let us assume
that all three flux sources are collinear along the x-axis, with
a negative source in between two positive sources. The flux
evolution occurs as the negative pole of the bipole moves away
from its original positive partner and toward the positive source
of open field. We want to evaluate the properties of this system
at a representative time in the middle of its evolution, so let us
posit an additional symmetry; i.e., we assume that the negative
pole sits at the origin (x = 0) and the two positive poles
are both equidistant from the origin (x = ±d) and of equal
positive flux. This may be an extreme simplification, since
it is known that many details of three-dimensional null-point
reconnection do depend on whether the geometry is symmetric
or asymmetric (Al-Hachami & Pontin 2010). However, the
other uncertainties in the order-of-magnitude MCC model are
probably not outweighed by this issue.

To evaluate the coronal magnetic field arising from this three-
pole system, we set the flux in the positive poles to Φ+ > 0 and
flux in the negative pole at the origin to Φ− < 0. The two free
parameters that constrain the topology of the field lines are the
pole separation d and the ratio of negative to positive fluxes
m = |Φ−/Φ+|. Thus, Equation (12) gives

Bx(x, y, z) = Φ+

2π

{
x + d

[(x + d)2 + y2 + z2]3/2

+
x − d

[(x − d)2 + y2 + z2]3/2
− mx

[x2 + y2 + z2]3/2

}
,

(A4)
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By(x, y, z) = Φ+

2π

{
y

[(x + d)2 + y2 + z2]3/2

+
y

[(x − d)2 + y2 + z2]3/2
− my

[x2 + y2 + z2]3/2

}
,

(A5)

Bz(x, y, z) = Φ+

2π

{
z

[(x + d)2 + y2 + z2]3/2

+
z

[(x − d)2 + y2 + z2]3/2
− mz

[x2 + y2 + z2]3/2

}
.

(A6)

We will consider values of the flux ratio m between about 0.5
and 2. For m > 2, the central source “breaks out” with its own
open field of negative polarity, which is a situation that we are
not considering here.

Figure 13(a) illustrates a few representative field lines for
the case m = 0.8. For simplicity, we assume the poles are at
z = 0. The coronal volume (z > 0) can be separated into four
distinct domains according to the field-line topology: (1) a set
of open field lines that originates from the left-hand positive
pole, (2) a set of open field lines that originates from the right-
hand positive pole, (3) a set of closed field lines that connects
the left and center poles, and (4) a set of closed field lines that
connects the center and right poles. There are two separatrix
surfaces that delineate the boundaries between these domains:
a vertical surface that spans the y–z plane and is defined by
the condition x = 0, and the upper half of a prolate spheroidal
surface centered on the origin. The separator field line is the
intersection of the two separatrix surfaces, and for this model it
is a semicircle in the y–z plane.

In order to solve Equation (A3), we need to evaluate the
exact position of the separator. First, we locate its maximum
height z0 by looking for the height of the magnetic null point
along the vertical line denoted by x = 0 and y = 0. We
use Equations (A4)–(A6) to solve for the magnitude of the
magnetic field strength, but we do not worry about its absolute
normalization. Along the vertical line in question, Bx = By = 0,
and we find that

Bz ∝ 2

(d2 + z2)3/2
− m

z3
. (A7)

We set Bz = 0 and search for a nontrivial solution for z0 > 0.
This is a cubic polynomial equation, and Figure 13(b) shows
the numerical solution for the ratio z0/d as a function of m.
Solutions exist only for m < 2. Due to the symmetry in our
assumed system, the separator field line is confined to the plane
x = 0, and it subtends a semicircular shape for y �= 0. Thus,
the separator obeys y2 + z2 = z2

0, its length is L = πz0, and we
can use the geometrical factor s = 1 in Equation (A2).

We estimate the average value of B̄ ′
⊥ along the separator by

just computing its value at the maximum height (x = y = 0,
z = z0). At this point, the field’s parallel direction points along
the y axis, so Equation (A3) can be written

B̄ ′
⊥ =

√∣∣∣∣∂Bx

∂x

∂Bz

∂z
− ∂Bz

∂x

∂Bx

∂z

∣∣∣∣. (A8)

(a)

(b)

Figure 13. Properties of the simple three-pole geometry used to estimate several
factors in the MCC model. (a) Three-dimensional projection of selected field
lines (gray curves), shown along with the two positive poles (filled circles) and
the negative pole (open circle) on the surface, the separator field line (black solid
curve), and outlines of the locations of the separatrix surfaces (dotted curves).
(b) Plot that shows how the null-point height z0/d (dashed curve), the magnetic
Jacobian factor (|CxxCzz|)1/2 (dotted curve), and the constant CL (solid curve)
depend on the flux imbalance ratio m. The range of values for CL, used when
analyzing the results of the BONES models, is shown as a gray band.

The cross-derivatives in the second term are found to be zero,
and it can be shown that

B̄ ′
⊥ = Φ+

πd3

√
|CxxCzz|, (A9)

where

Cxx = x − 2

(x + 1)5/2
− m

2x3/2
, (A10)

Czz = 1 − 2x

(x + 1)5/2
+

m

x3/2
, (A11)

and x = (z0/d)2. The two dimensionless factors given in
Equations (A10) and (A11) are related to Equation (A8) via

∂Bx

∂x
= Φ+

πd3
Cxx,

∂Bz

∂z
= Φ+

πd3
Czz. (A12)

Figure 13(b) shows the dimensionless factor (|CxxCzz|)1/2 as a
function of the flux imbalance ratio m.
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The above model gives us the ability to write the average
power dissipated (Equation (A1)) as

P̄ = θLCL
Φ+

d

∣∣∣∣dΦ
dt

∣∣∣∣ , (A13)

where the dimensionless factors dependent on m have been
collected into a single constant

CL = 1

16π

√
|CxxCzz|

(z0

d

)2
. (A14)

Figure 13(b) shows that CL varies less strongly as a function of
m than either of its components. In our models, we will not keep
track of the individual m imbalance ratios for each reconnection
event. Instead, we adopt a range of values for CL that spans
the majority of the variation for many likely m values. The gray
region in Figure 13(b) shows this range of values; the lower limit
is 0.003, and the upper limit is the maximum value of 0.011.

The other dimensionless constant in Equation (A1) is θL.
This parameter is a threshold ratio of the instantaneous current
density to the characteristic current I ∗, and in the MCC model
it is assumed that plasma instabilities (e.g., the ion-acoustic
instability or tearing-mode instabilities) will limit the growth
of the current to some fraction of I ∗. Longcope (1996) argued
that θL � 1 was reasonable to expect, and he ended up using
θL = 0.15 in the initial MCC models. However, Longcope &
Silva (1998) and Longcope & Kankelborg (1999) found that
some situations appear to demand larger values of order θL ≈ 1.
We will use the latter value, but we will keep in mind that the
resulting heating rate may be an upper limit.

To apply the heating rate derived above to our Monte Carlo
models, we note that Equation (16) gives the time derivative
of magnetic flux that is being opened up in the simulation
box, during each time step. In order to solve Equation (A13),
however, we also need to know the characteristic fluxes in the
elements that are interacting, as well as their inter-element
distances. Since many reconnection events may be occurring
simultaneously in each time step, we must use averages taken
over the box area. We also divide both sides of Equation (A13)
by A in order to express the heating rate per unit area in terms
of the variations in magnetic flux density. Thus,

〈Fco〉 = θLCL
Φ1

〈d〉
∣∣∣∣dB

dt

∣∣∣∣
co

, (A15)

where Φ1 = Φabs/N is the mean absolute flux per element in
the simulation box, and

〈d〉 =
√

4A

πN
(A16)

is the mean separation between flux elements. This is the form
of the MCC energy flux used for the BONES results presented
in Section 5.5.
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