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ABSTRACT

The suprathermal tails on the distribution functions of ions in the solar wind are observed to have a common
spectral shape in many different circumstances: a power law in particle speed with spectral index of −5.
Three possible approaches for explaining these observations are considered: (1) the acceleration mechanism
of Fisk & Gloeckler in which energy is redistributed from a core particle population into the suprathermal
tail; (2) traditional stochastic acceleration in which particles are accelerated by damping turbulence; and (3)
the statistical approach introduced by Schwadron et al. in which the −5 spectrum is formed by averaging
over individual spectra. The acceleration mechanism of Fisk & Gloeckler has advantages: (1) it appears to
occur in conditions that are readily satisfied: compressive turbulence that is thermally isolated (no large-
scale spatial gradients), with a core distribution of particles with a sharp initial cutoff in particle speed,
above which particles can spatially diffuse; and (2) it yields spectra that are consistent with observations.
Traditional stochastic acceleration has the disadvantage that it is unlikely to yield spectral shapes consistent
with observations, and the spectra are dependent upon the plasma conditions and thus unlikely to be the same
in different circumstances. The statistical approach of Schwadron et al. can yield the −5 spectrum and is
consistent with the results of Fisk & Gloeckler when the assumed distribution functions for individual events
and the averaging technique are taken to be compatible with the assumptions and averaging in Fisk & Gloeckler.
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1. INTRODUCTION

One of the more interesting observations in heliospheric
physics in recent years has been the discovery that the suprather-
mal tails on the distribution functions of ions in the solar wind
tend to have the same spectral shape: a power law in parti-
cle speed with spectral index of −5 (Gloeckler et al. 2000;
Gloeckler 2003; Simunac & Armstrong 2004). Ongoing stud-
ies have revealed that the common spectral shape is observed
in the quiet solar wind and in the solar wind from the polar
coronal holes, where no local shocks are observed; in disturbed
conditions; in upstream and especially downstream of shocks;
and particularly in the heliosheath (e.g., Decker et al. 2005);
and when adequate statistics are available the common spectral
shape is observed on relatively short timescales, such as one
hour, corresponding to turbulent correlation lengths. Deviations
from the common spectral shape are observed particularly in
disturbed conditions. However, in all cases that can be studied
in detail, the deviations are accompanied by strong anisotropies,
even at low energies, suggesting that the particles are accelerated
elsewhere and propagate to the observing site. In all cases, the
spectra roll over at higher particle speeds, often as a relatively
gradual exponential. The location and shape of the exponential
rollover vary widely, and they clearly depend upon the plasma
conditions in the acceleration region and/or the time for accel-
eration. However, the spectral index of −5 at low particle speeds
is common to spectra in many circumstances, and thus largely
independent of the plasma conditions.

These observations demand an explanation, which should
have the following features: the spectral index of −5 should arise
naturally and be largely independent of the conditions where
the acceleration is occurring. Any form of shock acceleration is
unlikely, for the simple reason that the common spectra can be
observed far from shocks. We then need to focus on some form
of stochastic acceleration.

Fisk & Gloeckler, in a series of papers, have constructed an
acceleration theory, which has as its purpose to yield the −5
spectrum (Fisk & Gloeckler 2006, 2007, 2008, 2009). They
consider a core distribution of particles in compressive turbu-
lence, where the core undergoes adiabatic compressions and
expansions and the total system is thermally isolated. Parti-
cles above some threshold speed can undergo spatial diffusion.
In this situation, particles can be pumped up in energy and
out of the core, to form a suprathermal tail. Since the sys-
tem is thermally isolated, the tail will tend toward a state of
maximum entropy, which Fisk & Gloeckler show is a spec-
trum with spectral index of −5. The unique feature of this
acceleration mechanism is that the particles in both the core
and the tail experience only adiabatic compressions and expan-
sions, and there is no damping of the turbulence. The acceler-
ation mechanism simply redistributes energy from the core to
the tail.

An alternative acceleration mechanism is traditional stochas-
tic acceleration, in which particles diffuse in velocity space
due to their random interactions with turbulence. Countless pa-
pers have been written on this mechanism, and it is routinely
presented in basic plasma physics books (e.g., Bellan 2006).
The problem is that traditional stochastic acceleration does not
naturally yield a spectrum with spectral index of −5. Indeed,
power-law spectra are not common, and the spectral index that
results depends upon the plasma parameters.

Jokipii & Lee (2010) have recently drawn a similar con-
clusion about traditional stochastic acceleration. In a thorough
derivation of traditional stochastic acceleration in compressive
turbulence, they conclude that it is not possible through this
mechanism to have spectral indices steeper than −3, as opposed
to the required spectral index of −5. Jokipii & Lee (2010),
however, argue that density is not properly treated in the equa-
tion governing the acceleration mechanism of Fisk & Gloeckler,
a conclusion we will demonstrate is not correct.
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Recently, Schwadron et al. (2010), have introduced an inter-
esting concept. They point out that for reasonable choices of
the form of the distribution function for an individual acceler-
ation event, and for reasonable choices for the probability that
an acceleration event will occur with a given state, e.g., tem-
perature, it is possible to average the individual spectra together
and yield a kappa-function spectrum, which has a spectral index
of −5 for speeds well above the characteristic thermal speeds.
In this case, the exact value of the spectral index critically de-
pends upon the plasma properties of the individual acceleration
events. We show here that these properties are quite consistent
with the physical conditions required for the Fisk & Gloeckler
acceleration mechanism.

It is the purpose of this paper to compare and to contrast
the various stochastic acceleration theories that can be applied
to understand the common power-law spectrum with spectral
index of −5. We begin by describing, in more detail than has
previously been published, the acceleration mechanism of Fisk
& Gloeckler. We provide a simple qualitative explanation of
how this acceleration mechanism works, and we re-derive the
basic equations, showing all of the key assumptions. We then
use comparable techniques to derive the governing diffusion
equation for traditional stochastic acceleration, and discuss the
fundamental differences between the acceleration mechanism
of Fisk & Gloeckler and traditional stochastic acceleration. Fi-
nally, we show that one of the cases considered by Schwadron
et al. (2010), involving Gaussian distributions, can be inter-
preted as being compatible with the situation considered by
Fisk & Gloeckler; and thus these two approaches yield con-
sistent results. Finally, we discuss how these different physical
mechanisms can be tested observationally.

2. THE STOCHASTIC ACCELERATION MECHANISM OF
FISK & GLOECKLER

2.1. A Qualitative Description of the Acceleration Mechanism
of Fisk & Gloeckler

Figure 1 provides a schematic description of the basic prin-
ciples behind the acceleration mechanism of Fisk & Gloeckler.
Particle speed is plotted on the vertical axis and position on the
horizontal axis. There is a core distribution of particles with
speeds greater than the thermal speed of the bulk plasma, which
contains the mass, and with less than an upper threshold speed,
v � vth. The bulk thermal plasma contains random compres-
sions and expansions, which randomly and adiabatically com-
press and expand the particles shown in Figure 1. Particles with
speeds above the threshold speed vth are the tail particles. The
distinction between the core and the tail particles is that the tail
particles can diffuse spatially.

Consider then what happens in the compression shown in the
center of the figure. The core particles are compressed adiabati-
cally and energy and particles flow across the threshold bound-
ary from the core into the tail. The tail particles are also com-
pressed adiabatically, and raised in energy, as illustrated by the
extension in the compression region to higher particle speeds.

The opposite behavior occurs in the two expansion regions on
either side of the compression region. In the expansion regions,
particles and energy flow from the tail back into the core and
the energy of the tail particles is reduced, as is illustrated by the
reductions in the number of particles at higher particle speeds
in the two expansion regions.

Note the large spatial gradients that result at higher particle
speeds between the compression and the surrounding expansion
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Figure 1. Schematic description of the basic principles behind the acceleration
mechanism of Fisk & Gloeckler. Particle speed is plotted on the vertical axis
and position on the horizontal axis. There is a core distribution of particles
with speeds greater than the thermal speed of the bulk plasma and less than
an upper threshold speed, v � vth. The bulk thermal plasma contains random
compressions and expansions, which randomly and adiabatically compress and
expand the particles as shown. Particles with speeds above the threshold speed
vth are the tail particles. The distinction between the core and the tail particles
is that the tail particles can diffuse spatially.

regions. Tail particles are able to spatially diffuse, and so at
higher particle speeds, particles will diffuse in response to these
gradients out of the compression region into the surrounding
expansion regions.

Subsequently, the compression region will become an ex-
pansion region, and the process will be reversed. Particles and
energy will flow back into the core from the tail. However, since
particles have escaped from the tail by diffusion when it was a
compression region, there are fewer particles and less energy to
return to the core.

If the process of compressions and expansions is repeated
sequentially, then a suprathermal tail will form. The particles in
the tail and the energy they contain will systematically increase
in time. This is a classic pump mechanism. The combination of
adiabatic compressions and expansions, and spatial diffusion of
the tail particles, will pump particles out of the core to form a
suprathermal tail.

Note, in particular, that the basic mechanism of providing
energy to the tail is an adiabatic compression. The compressive
turbulence is not damped in this mechanism. Energy is simply
redistributed from the core into the tail.

2.2. Derivation of the Equations Describing the Acceleration
Mechanism of Fisk & Gloeckler

Based upon the physical description of the acceleration
mechanism of Fisk & Gloeckler in the previous section, as
illustrated in Figure 1, it is straightforward to derive an equation
that describes the time evolution of the suprathermal tail that
is being pumped out of the core distribution. This derivation
follows the general principles employed in Fisk & Gloeckler
(2008) but is simpler in its presentation.

We solve for the particle distribution function of the suprather-
mal tail, f(r, v, t), where r is position, v is particle speed, and
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t is time. We assume that at t = 0 there are only core particles
below a threshold speed, vth; the suprathermal tail develops at
t > 0. The definition of vth is when the tail begins to develop at
t > 0, core particles that are compressed and attain speeds above
vth are able to spatially diffuse out of a compression region on a
characteristic timescale τ that is less than the characteristic time
of a compression, i.e., less than λ/δu, where λ is the characteris-
tic scale size of a compression and δu is the average magnitude
of the velocity of the turbulence, δu. As we discuss in Section
2.4, the speed of the effective threshold will increase as the tail
develops to higher particle speeds.

We separate the distribution function f(r, v, t) of the tail
particles into two parts:

f (r, v, t) = fo (r, v, t) + δf (r, v, t) . (1)

Here, δf is the portion of the distribution function that is
subject to spatial diffusion. Note that both fo and δf each have a
dependence on position, particle speed, and time that will have
to be determined by the governing equations.

We assume that in each compression and expansion f behaves
according to the standard Parker transport equation, in which
we approximate the effects of spatial diffusion as a loss (gain)
term, −δf

/
τ , where again τ is the characteristic time to diffuse

out of (into) a compression (expansion), or

∂f

∂t
+ δu · ∇f = (∇ · δu)

3
v
∂f

∂v
− δf

τ
. (2)

We then substitute Equation (1) into Equation (2), or[
∂fo

∂t
− (∇ · δu)

3v4

∂

∂v
(v5δf ) + δu · ∇fo +

5

3
(∇ · δu) fo

]

+

[
δf

τ
− (∇ · δu)

3v4

∂

∂v

(
v5f0

)]

= −
[
∂δf

∂t
+ δu · ∇δf +

5

3
(∇ · δu) δf

]
, (3)

where we have regrouped and rewritten the terms.
The basic physics of the acceleration mechanism described

in the previous section and illustrated in Figure 1 is as follows:
each compression and expansion of the tail is adiabatic, which
requires that to first order the energy that flows in from the
core in a compression escapes by spatial diffusion, or, in an
expansion, the energy that flows in by spatial diffusion flows
back into the core. To achieve this physics, the second term in
square brackets in Equation (3) must be set to zero, or

δf

τ
= (∇ · δu)

3v4

∂

∂v

(
v5f0

)
. (4)

To show that Equation (4) ensures that the flow of energy into
and out of a compression or expansion balances to first order,
we integrate to find the behavior of the pressure of the tail

Pt = 4πm

3

∫ ∞

vth

v4f dv, (5)

where m is particle mass, or, Equation (4) becomes

− 4πm

9
(∇ · δu) v5f0

∣∣
v=vth

= 4πm

3

∫ ∞

vth

v4 δf

τ
dv. (6)

The term on the left is evaluated at v = vth and represents the
first order flow of energy across the threshold boundary. The

term on the right is the escape (source) of energy due to spatial
diffusion.

The pump mechanism described in the previous section and
illustrated in Figure 1 results in a second-order growth in the
tail, i.e., in addition to the tail particles undergoing first-order
adiabatic compressions and expansions, the tails will grow to
second order. To achieve this physics, the first term in square
brackets in Equation (3) must be set equal to zero, or substituting
in Equation (4),

∂fo

∂t
= 1

v4

∂

∂v

(
δu2

9κ
v

∂

∂v

(
v5f0

)) − δu · ∇fo − 5

3
(∇ · δu) fo,

(7)
where we have assumed that (∇ · δu)2 τ does not depend
strongly on position, and have replaced it with its average value,
which we define as in Fisk & Gloeckler (2008),

〈
(∇ · δu)2 τ

〉 ≈ δu2

λ2
τ ≡ δu2

κ
. (8)

Here, λ is the characteristic length scale for a compression or
expansion, and κ is the spatial diffusion coefficient for diffusion
in the same direction as λ is measured, i.e., κ is the cross-
field diffusion coefficient. This replacement of τ with κ is
strictly valid only when the spatial gradients in the distribution
function between a compression and an expansion region have a
characteristic length scale of λ, which, as can be seen in Figure 1,
occurs only in the high particle speed extensions of the tail. At
particle speeds below this, the spatial gradients will be smaller
or equivalently the characteristic length scales longer than λ. As
we shall see in Sections 2.3 and 2.4, τ and κ are in fact important
for the solutions of Equation (7) only in the high particle speed
extensions of the tail.

Equation (7) is the governing equation for the time evolution
of the tail that was derived by Fisk & Gloeckler (2008). To show
that it ensures that the tail undergoes adiabatic compressions and
expansions, and grows to second order by the pump mechanism,
we can again integrate to form an equation for the behavior of
the tail pressure (Equation (5)), or Equation (7) becomes

∂Pt,o

∂t
+ δu · ∇Pt,o +

5

3
(∇ · δu) Pt,o = −4πm

3

δu2

9κ
v

∂

∂v

(
v5f0

)∣∣∣∣
v=vth

.

(9)
The left side is the behavior of the pressure Pt,o associated with
fo in an adiabatic compression or expansion. The right side is
evaluated at the threshold v = vth and represents the average,
second-order flow of energy from the core to the tail.

With the first two terms in square brackets in Equation (3)
zero, we must also require that the third term in square brackets
be zero. This cannot result from setting (∇ · δu) δf to be zero
since this term is the same as the basic acceleration term in
Equation (7). Rather, we need to require that

∂δf

∂t
+ δu · ∇δf +

5

3
(∇ · δu) δf = 0. (10)

Or, with Equation (4), and expressing Equation (10) as a
continuity of density equation,

∂δf

∂t
+ ∇ · (δuδf ) = −2

9

(∇ · δu)2 τ

v4

∂

∂v
(v5fo). (11)

Thus, moving with the plasma, there is an inherent source or
sink term of particles. Note that δf can be either positive or
negative, i.e., this can be a source or a sink term.
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The presence of this source or sink term of particles is
necessary to ensure that the behavior of the density and the
behavior of the energy are consistent with each other. According
to Equation (4), the energy that flows out of (into) the core is
balanced by the energy that flows out of (is provided to) a volume
by spatial diffusion. In an adiabatic compression, the energy that
flows in from the core is in the form of low-energy particles;
the energy that escapes by spatial diffusion is in the form of
higher energy particles. Thus, in an adiabatic compression, more
particles flow in from the core than escape by spatial diffusion.
Conversely, in an adiabatic expansion, more particles flow out
to the core than enter by spatial diffusion.

The time-averaged behavior of the density of the tail will thus
be the result of two processes: the average of the flow of particles
into or out of the core and the average of the flow of particles
into or out of the volume by spatial diffusion. The effects of
these two processes can be seen by integrating the first term on
the right of Equation (7) to determine the long-term behavior of
the density of the tail,

nt,o = 4π

∫ ∞

vth

fov
2dv, (12)

or,

dnt,o

dt
= 4π

∫ ∞

vth

dv

v2

∂

∂v

(
δu2

9κ
v

∂

∂v
(v5fo)

)

= −4π
1

v

δu2

9κ

∂

∂v
(v5fo)

∣∣∣∣
v=vth

+ 8π

∞∫
vth

dv

v2

δu2

9κ

∂

∂v
(v5fo).

(13)
If we then average the source or sink term in Equation (11),
averaged in the same sense as the averaging to form〈(∇ · δu)2τ 〉,
or

∇ · 〈δuδf 〉 = −2

9

δu2

κ

1

v4

∂

∂v

(
v5fo

)
, (14)

we find that

dnt,o

dt
= −4π

1

v

δu2

9κ

∂

∂v
(v5fo)

∣∣∣∣
v=vth

− 4π

∞∫
vth

v2dv∇ · 〈δuδf 〉 .

(15)
As can be seen from Equation (9), the first term on the right of
Equation (15) is the average rate of increase in particles in the
tail due to the average flow of energy from the core to the tail.
The second term is the average rate of loss of particles due to
spatial diffusion.

It is required in any valid derivation that both energy and
number of particles be conserved. Since the energy is carried
by the particles, the requirement that energy be properly treated
in Equations (4) and (7) will ensure that the density is properly
treated. Equation (10) results from Equations (4) and (7), and
its average form, Equation (14), ensures that the behavior of the
density is consistent with the behavior of the energy.

Jokipii & Lee (2010) have criticized the presence of the
average source term in Equation (14) arguing that it shows
that particles are not properly conserved in the acceleration
mechanism of Fisk & Gloeckler (2008). Quite the contrary: this
term is necessary so that both particles and energy are conserved.

2.3. Solutions to the Acceleration Equation of Fisk & Gloeckler

The governing equation of the acceleration mechanism of
Fisk & Gloeckler, Equation (7),

∂fo

∂t
= 1

v4

∂

∂v

(
δu2

9κ
v

∂

∂v
(v5fo)

)
− δu · ∇fo − 5

3
(∇ · δu)fo

(7)

can be readily solved for the case where the spatial diffusion
coefficient is of the form

κ = κov
1+α. (16)

Here, the mean free path is a power law in rigidity, with exponent
α; κo contains the appropriate mass-to-charge dependence. The
resulting solution to Equation (7) is then

fo = fo,th

(
v

vth

)−5

exp

[
− 9κ

(1 + α)2 δu2

1

t

]
, (17)

where, fo,th is a normalization factor at v = vth and satisfies

∂fo,th

∂t
+ δu · ∇fo,th +

5

3
(∇ · δu) fo,th = 0. (18)

The suprathermal tail described by the solution is the result
of multiple compressions and expansions and is thus valid for
times long compared to a single compression or expansion, i.e.,
for t 	 λ

/
δu. It is also valid only for the tail, i.e., for v > vth.

The solution in Equation (17) meets our expectations.
The tail undergoes adiabatic compressions and expansions
(Equation (18)) and the spectrum at low particle speeds is a
power law with spectral index of −5, independent of the plasma
parameters. There is an exponential rollover at higher particle
speeds, where the rollover depends upon the plasma parameters
δu2 or κ , as well as the time required to accomplish the acceler-
ation. The solution in Equation (17) is consistent with the many
observations of suprathermal tails that are observed throughout
the heliosphere.

Note that in this treatment the tail in Equation (17), and the
particles and energy it contains, grow without limit in time. At
some point, a thermodynamic constraint will be encountered.
As discussed in Fisk & Gloeckler (2007), the energy of the
core and the tail is conserved, and as the tail develops the
system tends toward a state of maximum entropy. Assuming
that additional energy is not provided to the core, there must
be a thermodynamic constraint on how much energy and how
many particles can be pumped out of the core, without violating
the assumption that the entropy of the system must increase.
Fisk & Gloeckler (2007), in fact, develop a formula that relates
the maximum pressure in the tail to the pressure in the core and
find good agreement with observations.

Note also that there is a second solution to Equation (7) for the
form of κ in Equation (16): fo ∝ v−4+α . This solution, however,
is not physical and can be ignored. For all values of α + 1 � 0,
i.e., for other than an inverse dependence of the diffusion
coefficient on v, the distribution contains infinite energy and
cannot be created by pumping energy out of the core, as can be
seen in Equation (9).

2.4. Conditions in Which the Acceleration Mechanism of Fisk
& Gloeckler Should Apply

The suprathermal tail in the acceleration mechanism of Fisk
& Gloeckler is created by a series of adiabatic compressions and
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expansions, in which energy is pumped from a core distribution
of particles into the tail. Energy is conserved and thus the sum
of the energy in the core particles and the tail particles must be
constant. The acceleration mechanism of Fisk & Gloeckler is
thus a redistribution mechanism in which energy is redistributed
from the core to the tail.

The compressive turbulence, which is created by the thermal
plasma that has the mass, and which is responsible for the
adiabatic compressions and expansions of the tail, could in
principle be damped due to a back-pressure exerted by the core
and/or the tail. Suppose that the turbulence is not damped by
the back-pressure from the core, before the tail is created. In the
acceleration mechanism of Fisk & Gloeckler, it will then not
be damped by the development of the tail, since as far as the
thermal plasma is concerned, the pressure of the core plus the
tail at any location is the same as was the pressure in the initial
core. Thus, the creation of the tail in the acceleration mechanism
of Fisk & Gloeckler does not damp the turbulence.

Note also in Figure 1 that the spatial gradients are largest at
the higher particle speeds and that this is where the principal loss
or gain due to spatial diffusion occurs. This effect can be seen in
Equation (4) where the diffusion is strongest when the spectrum
deviates fromfo ∝ v−5, i.e., in the rollover region at higher
particle speeds for the solution in Equation (17). At particle
speeds below the rollover, wherefo ∝ v−5, the spatial gradients
between compression and expansion regions will be relatively
small, there is little loss of particles or energy due to spatial
diffusion, and the particles undergo adiabatic compressions and
expansions. Fisk & Gloeckler (2007) showed that a spectrum
of fo ∝ v−5 should be expected if the tail tends toward a state
of maximum entropy and is undergoing adiabatic compressions
and expansions.

At t = 0, there is only a core distribution, and no tail, i.e., there
is a sharp cutoff at the higher particle speeds, as, for example,
for interstellar pickup ions which have a distribution that does
not extend beyond the solar wind speed in the frame moving
with the solar wind. When the core distribution is compressed,
the core particles are raised in energy above the sharp cutoff,
and conversely, when they are expanded, the core particles are
lowered in energy below the sharp cutoff. The presence then of
an initial sharp cutoff in the core distribution, and compressions
and expansions, will introduce strong spatial gradients, and
spatial diffusion at particle speeds above the sharp cutoff will
occur. The initial threshold on the acceleration mechanism
of Fisk & Gloeckler, vth, above which particles can spatially
diffuse, should thus coincide with the initial sharp cutoff of the
core distribution.

As the tail develops, for t > 0, the particle speeds at which the
large spatial gradients occur, and spatial diffusion is important,
move to higher and higher values, into the rollover region of the
solution in Equation (17). The fo ∝ v−5 portion of the tail thus
becomes an extension of the core and undergoes only adiabatic
compressions and expansions, and limited spatial diffusion.
In that sense, the threshold speed, above which particles can
spatially diffuse, moves to higher particle speeds.

The conditions then for the acceleration mechanism of Fisk
& Gloeckler to work are a core distribution of particles with an
initial sharp cutoff in the presence of compressive turbulence.
It is also necessary, as discussed in Fisk & Gloeckler (2007,
2008), that the compressive turbulence is thermally isolated in
the sense that there are no large-scale spatial gradients that
would cause particles to spatially diffuse into the accelerating
region from elsewhere; i.e., it is assumed in the Fisk & Gloeckler

acceleration mechanism that the acceleration is being produced
by local compressive turbulence.

These conditions seem to be remarkably easy conditions to
satisfy. Plasmas are rarely in equilibrium. Indeed, as shown by
Parker (1972), it is not possible to have a plasma with a braided
and tangled magnetic field that has no unbalanced forces.
That being the case, in the absence of extensive reconnection,
we should expect a certain minimum level of compressive
turbulence. There are ample examples of core populations with
sharp initial cutoffs (e.g., interstellar pickup ions). And there are
many circumstances in the heliosphere where large-scale spatial
gradients are not significant, e.g., in the heliosheath where the
fo ∝ v−5 spectrum is most pronounced (e.g., Decker et al.
2005). It is perhaps not surprising then that spectra of the form
fo ∝ v−5 with a rollover at higher particle speeds occur so
commonly in the heliosphere.

3. THE TRADITIONAL FORM OF STOCHASTIC
ACCELERATION

We now apply comparable techniques, as in the previous sec-
tion, to derive the governing equation for traditional stochastic
acceleration, in which particles diffuse in velocity space. We do
this to compare and contrast the basic assumptions between tra-
ditional stochastic acceleration and the acceleration mechanism
of Fisk & Gloeckler.

We begin with the standard Parker transport equation for the
isotropic distribution function, f, in Equation (2):

∂f

∂t
+ δu · ∇f = (∇ · δu)

3
v
∂f

∂v
− δf

τ
. (2)

We then rearrange the terms as follows:

∂f

∂t
+ ∇ · (δuf ) = (∇ · δu)

3v2

∂

∂v

(
v3f

) − δf

τ
. (19)

We take f to have an ensemble-averaged value, fo, and a deviation
from the average of δf, or f = fo + δf, and we ensemble average
Equation (19) to find that

∂fo

∂t
= 1

3v2

∂

∂v

(
v3 〈(∇ · δu) δf 〉) − ∇ · 〈δuδf 〉 , (20)

where the angular brackets denote ensemble average.
We then make the key assumption in the derivation of the

governing equation for traditional stochastic acceleration and
require that

∇ · 〈δuδf 〉 = 0, (21)

on the grounds that the ensemble average is spatially homo-
geneous and there are no source/sink terms in the ensemble
average. Thus,

∂fo

∂t
= 1

3v2

∂

∂v
(v3〈(∇ · δu)δf 〉). (22)

We then subtract Equation (22) from Equation (19) and keep
only first-order terms, or

∂δf

∂t
+ ∇ · (δufo) = (∇ · δu)

3v2

∂

∂v

(
v3fo

) − δf

τ
. (23)

We assume that
1

τ
	

∣∣∣∣∇ · δu
3

∣∣∣∣ . (24)
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In which case,
δf

τ
≈ (∇ · δu)

3
v
∂fo

∂v
. (25)

Finally, we substitute Equation (25) into Equation (22), with the
result that

∂fo

∂t
= 1

v2

∂

∂v

(
δu2

9κ
v4 ∂fo

∂v

)
, (26)

where we have used the same definitions as in Equation (8).
Equation (26) describes the diffusion of particles in velocity

space, where the velocity diffusion coefficient is (δu2v2)/
(9κ). The solutions to Equation (26) are not naturally power-
law spectra with spectral indices of −5, as required by the
observations (e.g., Jokipii & Lee 2010). Also, the energy
provided to the particles to form the suprathermal tail, in
traditional stochastic acceleration, must be extracted from and
damp the compressive turbulence.

4. COMPARING THE ACCELERATION MECHANISM OF
FISK & GLOECKLER WITH TRADITIONAL

STOCHASTIC ACCELERATION

The governing equation of the acceleration mechanism of
Fisk & Gloeckler, Equation (7), is clearly different from the tra-
ditional stochastic acceleration equation, Equation (26). There
are a number of reasons for these differences.

First, the distribution function, fo (r, v, t), that Fisk &
Gloeckler solve for is valid in an individual compression or
expansion. The only averaging that occurs is that the quantity
(∇ · δu)2 τ is averaged in Equation (7), under the assumption
that this quantity, by itself, does not have strong spatial vari-
ations. The spatial variations in f between compressions and
expansions are explicitly retained. In contrast, in traditional
stochastic acceleration, the distribution function that is solved
for is an ensemble average, which is taken to be a spatially
homogeneous average over multiple compressions and expan-
sions, and no spatial gradients in f are retained.

Further, because Fisk & Gloeckler retain the spatial gradi-
ents, which are responsible for the spatial diffusion, there will
be apparent source terms in their equations, ∇ · 〈δuδf 〉 �= 0
(Equation (14)), which describe the average loss of parti-
cles to a volume due to spatial diffusion. As is discussed in
Section 2.2, these source terms are necessary so that both the
energy and the number of particles are conserved. In con-
trast, in traditional stochastic acceleration, ∇ · 〈δuδf 〉 = 0,
Equation (21), under the assumption that the distribution func-
tion that is being solved for is spatially homogenous.

Of most importance, the acceleration mechanism of Fisk &
Gloeckler, in contrast to traditional stochastic acceleration, is
not a Markovian process. Traditional stochastic acceleration is a
Markovian process in which it is assumed that the past history of
a particle does not matter. Each particle thus behaves separately
from any other particle, and in particular the behavior of particles
at different energies is unrelated. In contrast, the basic principle
of the acceleration mechanism of Fisk & Gloeckler is that
to first order each compression or expansion of the tail is
adiabatic, and that the energy that flows in from the core at
low particle speeds escapes by spatial diffusion at high particle
speeds. Thus, to conserve energy, the behavior of the particles at
different energies must be related, and the process is inherently
non-Markovian. The non-Markovian nature of the acceleration
mechanism of Fisk & Gloeckler is discussed in more detail in
Fisk & Gloeckler (2008).

4.1. Perturbations in the Solutions of the Fisk & Gloeckler
Acceleration Mechanism

It is interesting to consider perturbations in the solutions of
Fisk & Gloeckler (Equation (17)), and ask how such perturba-
tions will behave in time; i.e., are there any issues with stability
in this solution? A perturbation in fo at a specific energy could
result from particles being accelerated elsewhere and flowing
into the local region of compressive turbulence, or simply be
the result of some turbulence to which only particles at the
specific energy respond. Such a perturbation is not introduced
by, nor will its subsequent time behavior be governed by the
non-Markovian acceleration process of Fisk & Gloeckler. The
governing equation of Fisk & Gloeckler, Equation (7), is explic-
itly derived under the assumption that the behavior of particles
at different particle speeds are related, whereas the perturba-
tion particles are explicitly behaving independently of other
particles.

Rather, the subsequent time evolution of the perturbation
should be described by a standard stochastic acceleration equa-
tion (Equation (26)). The perturbation is introduced by a Marko-
vian process, and the time evolution of the perturbation should
be described by a Markovian equation. We should expect then
that any perturbation in the spectra that result from the accelera-
tion mechanism of Fisk & Gloeckler will dissipate by diffusion
in particle speed and not grow in time. Indeed, the observations
support this position, since the spectra fo ∝ v−5 are observed
to occur quite stably in the solar wind.

5. THE FORMATION OF −5 SPECTRA USING THE
APPROACH OF SCHWADRON ET AL.

Schwadron et al. (2010) point out that for reasonable choices
of the form of the distribution function for an individual
acceleration event, and for reasonable choices for the probability
that an acceleration event will occur, it is possible to average the
individual spectra together and yield a spectrum with spectral
index of −5. The spectra created in the Fisk & Gloeckler
acceleration mechanism are average spectra. Thus, if the choice
of the distribution function and the probability of occurrence
correspond to the circumstances and assumptions made in
the Fisk & Gloeckler acceleration mechanism, we can show
that the two approaches yield a consistent result.

One of the choices for the distribution function for an event
considered in Schwadron et al. (2010) is a Gaussian distribution,
which they note arises “by maximizing entropy subject to the
constraint of a fixed average energy of the distribution, which
is determined by the temperature.” The Gaussian distribution is
expressed in Equation (9) of Schwadron et al. as

f (v) = n

(
λ

π

)3/2

exp
(−λv2

)
. (27)

Here, n is density and λ = m
/

(2kT ), where T is temperature.
Schwadron et al. then require that the density n is proportional
to the temperature T, or n = noλo/λ, where λo is the average
value of λ and no is the reference density at λo.

Consider that Equation (27) applies only to the tail particles,
which we define as having particle speeds, λv2 	 1. With this
restriction, and with the density proportional to the temperature,
the distribution function in Equation (27) has features similar
to the tails created in the mechanism of Fisk & Gloeckler.
In particular, the tail described by Equation (27) is always
in a state of maximum entropy, which is one of the key
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assumptions of Fisk & Gloeckler. Also, density proportional
to temperature is consistent with the pumping mechanism
of Fisk & Gloeckler. Suppose that at time t = ti, there is
an initial Gaussian distribution with temperature To. Then
through a series of compressions and expansions, a suprathermal
tail is formed at times t > ti. As a result of the repeated
pumping, both the temperature and the density of the tail should
increase linearly in proportion to time. The density of tail
particles is

nt = 4πn

(
λ

π

)3/2 ∫ ∞

vth

exp(−λv2)v2dv = 0.572n, (28)

where vth = 1
/√

λ. Thus, for the distribution function in
Equation (27) to be consistent with a pumping mechanism of
Fisk & Gloeckler, n must increase in time, as does T, and thus n
is proportional to T.

Schwadron et al. (2010) argue that the probability of an
individual acceleration event behaving according to a Poisson
distribution is

P (λ) = λ

λ2
o

exp

(
− λ

λo

)
. (29)

The dependence on λ in Equation (29) is justified on the grounds
that the occurrence rate of an acceleration event is proportional
to 1/T, or equivalently λ. “The higher the temperature, the lower
the rate of the process that produced that temperature.”

The choice of the probability of an event occurrence in
Equation (29) is also consistent with Fisk & Gloeckler. They
define an acceleration event as starting at t = ti, and running
until time t. The temperature increases in proportion to time.
Thus, the occurrence rate varies inversely with the duration of
the event, and as a result inversely with temperature.

Finally, following Schwadron et al. (2010), the resulting
expression for the ensemble-averaged distribution function is

f̄ (v) =
∫ ∞

0
P (λ)f (ν, λ) dλ

= no

λo (π )3/2

∫ ∞

0
λ3/2 exp

(
− λ

λo

)
exp

(−λv2
)
dλ

=3no

2π

λ
3/2
o(

1 + λov2
)5/2

,

(30)

where nt ∝ T ∝ 1
/
λ, which yields a spectrum f̄ ∝

v−5, for λov
2 	 1, which is well in the tail region, where

Equation (27) is assumed to be valid. Note that Equation (30)
has the form of a kappa distribution (Vasyliunas 1968; Livadiotis
& McComas 2009), where the kappa is 3/2, and contains infinite
energy when extended to high particle speeds.

Schwadron et al. (2010) are concerned with the possibility that
the −5 spectrum results from an average over individual events,
each of which is presumably observable on a fine timescale.
The average performed is then effectively a spatial average,
over multiple regions of space. The method, however, should
apply equally well to a temporal average. In the statistical
treatment of Schwadron et al., the ergodic theorem should apply.
For sufficiently long periods of time, a spatial average over
the volume should be the same as a temporal average in one
location.

A temporal average is more appropriate for comparison with
the approach of Fisk & Gloeckler in which particles are spatially

diffusing into and out of a given volume. The particles present
in the volume thus have a variety of time histories, and so the
spectrum present in any volume is the average spectrum given
in Equation (30).

6. CONCLUDING REMARKS

We have considered three possible approaches for explaining
the observation that suprathermal tails on the distribution func-
tions of ions in the solar wind tend to have the same spectral
shape, a power law with spectral index of −5: (1) the accelera-
tion mechanism of Fisk & Gloeckler; (2) traditional stochastic
acceleration in which particles are accelerated by damping tur-
bulence; and (3) the statistical approach of Schwadron et al.
(2010) in which the −5 spectrum is formed by averaging over
individual spectra.

The acceleration mechanism of Fisk & Gloeckler has a num-
ber of advantages: (1) it appears to occur in conditions that
are readily satisfied: a plasma that is thermally isolated (no
large-scale spatial gradients), that is not in equilibrium (and
thus contains compressive turbulence), and that includes a core
distribution with an initial sharp cutoff, above which particles
can spatially diffuse; and (2) it yields spectra that are con-
sistent with observations, a spectral index of −5 independent
of the conditions in the plasma and an exponential rollover
that is dependent on the conditions. The acceleration mech-
anism of Fisk & Gloeckler, in which energy is redistributed
from a core particle population into the tail without damping
the turbulence, has particular advantages in the heliosheath,
where the energy in the turbulence is observed to be small
compared to the energy in the interstellar pickup ions (Fisk &
Gloeckler 2009).

A traditional stochastic acceleration mechanism, in which
particles diffuse and damp the turbulence, appears ill suited to
explain the −5 spectra, since such spectral shapes are either
unlikely to occur in this mechanism, or are dependent upon the
plasma conditions.

The statistical approach of Schwadron et al. (2010) can
yield the −5 spectra and is consistent with the results of
Fisk & Gloeckler when the assumed distribution functions for
individual acceleration events and the averaging technique are
taken to be compatible with the assumptions and averaging in
Fisk & Gloeckler.

The statistical approach of Schwadron et al. (2010) yields
a −5 spectrum in other cases besides the one where there is
an analog to the acceleration mechanism of Fisk & Gloeckler.
They find a −5 spectrum for different forms of the distribution
function of individual events and for averages over individual
events, i.e., spatial averages, as opposed to the temporal averages
of Fisk & Gloeckler. As we noted above, the spatial averages
in the statistical approach of Schwadron et al. (2010) should
be the equivalent of temporal averages. In fact, observations
made directly in the acceleration region appear to show that
the −5 spectrum is observed on the smallest relevant timescale.
This suggests that the −5 spectrum is not a spatial average
over many distinct events, but rather a temporal average in a
single location. If the appropriate average is temporal, it will
be difficult to determine what the spectra for the underlying
individual events were, and thus to evaluate whether there
is a physical mechanism, applicable to the conditions in the
solar wind, which is capable of generating such individual
spectra.

There is an intriguing observation that may lend itself to
the approach of Schwadron et al. (2010). At the termination
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shock of the solar wind observed by Voyager 1, the down-
stream suprathermal tails have the common spectral shape,
a spectral index of −5. Upstream the spectra are complex,
but when averaged yield the −5 spectral shape. Gloeckler
& Fisk (2006) demonstrate that if the downstream particles
leak upstream, and velocity dispersion modifies the spectra,
then an average of the spectra of the leaking particles will be
a −5 spectrum. The average upstream from the termination
shock is essentially a spatial average over individual events,
in which the −5 spectrum results. A proper treatment of this
average may need to follow the approach of Schwadron et al.
(2010).

This research benefited greatly from discussions that were
held at the meetings of the International Team, sponsored by
the International Space Science Institute in Bern, Switzerland,
devoted to understanding the −5 tails and ACRs. This research
has been supported in part by NSF grant ATM0632471, by the
Voyager Guest Investigation grant NNX07AH, and by NASA/
LWS grant NNX07AC14G.

REFERENCES

Bellan, P. M. 2006, Fundamentals of Plasma Physics (Cambridge: Cambridge
Univ. Press)

Decker, R. B., Krimigis, S. M., Roelof, E. C., Hill, M. E., Armstrong, T. P.,
Gloeckler, G., Hamilton, D. C., & Lanzerotti, L. J. 2005, Science, 309, 2020

Fisk, L. A., & Gloeckler, G. 2006, ApJ, 640, L79
Fisk, L. A., & Gloeckler, G. 2007, Proc. Natl. Acad. Sci., 104, 5749
Fisk, L. A., & Gloeckler, G. 2008, ApJ, 686, 1466
Fisk, L. A., & Gloeckler, G. 2009, Adv. Space Res., 43, 1471
Gloeckler, G. 2003, in AIP Conf. Proc. 679, Solar Wind Ten, ed. M. Velli, R.

Bruno, & F. Malara (New York: AIP), 583
Gloeckler, G., & Fisk, L. A. 2006, ApJ, 648, L63
Gloeckler, G., Fisk, L. A., Zurbuchen, T. H., & Schwadron, N. A. 2000, in AIP

Conf. Proc. 528, Acceleration and Transport of Energetic Particles Observed
in the Heliosphere, ed. R. A. Mewaldt, J. R. Jokipii, M. A. Lee, E. Möbius,
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