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ABSTRACT

We present new radial velocity (RV) measurements of HAT-P-13, a star with two previously known companions:
a transiting giant planet “b” with an orbital period of 3 days and a more massive object “c” on a 1.2 yr, highly
eccentric orbit. For this system, dynamical considerations would lead to constraints on planet b’s interior structure,
if it could be shown that the orbits are coplanar and apsidally locked. By modeling the Rossiter-McLaughlin effect,
we show that planet b’s orbital angular momentum vector and the stellar spin vector are well aligned on the sky
(A = 1.9 & 8.6 deg). The refined orbital solution favors a slightly eccentric orbit for planetb (e = 0.0133 £ 0.0041),

although it is not clear whether it is apsidally locked with c’s orbit (Aw = 36*%%

) deg). We find a long-term

trend in the star’s RV and interpret it as evidence for an additional body “d,” which may be another planet or
a low-mass star. Predictions are given for the next few inferior conjunctions of c, when transits may happen.
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1. INTRODUCTION

Precise radial velocity (RV) measurements have revealed
more than 30 multiple-planet systems (Wright 2010). How-
ever, in only a few cases have transits been detected for any of
the planets in those systems. Those cases are potentially valu-
able because the transit observables—the times of conjunction,
orbital inclination, and projected spin—orbit angle, among oth-
ers—provide a much more complete description of a planetary
system, which may in turn give clues about its formation and
evolution. The Corot-7 system has two orbiting super-Earths,
one of which transits (Léger et al. 2009; Queloz et al. 2009).
The HAT-P-7 system has a transiting hot Jupiter in a polar or ret-
rograde orbit, as well as a longer-period companion that could
be a planet or a star (Pal et al. 2008; Winn et al. 2009; Narita et al.
2010). The HAT-P-13 system, the subject of this paper, features
a G4 dwarf star with two previously known orbiting compan-
ions (Bakos et al. 2009). The inner companion (HAT-P-13b, or
simply “b” hereafter) is a transiting hot Jupiter in a 2.9 day orbit.
The outer companion (“c”) has an eccentric 1.2 yr orbit and a
minimum mass (M, sini.) of about 15 Jupiter masses, although
its true mass (M.) and orbital inclination (i.) are unknown. In
particular, transits of companion ¢ have neither been observed
nor ruled out.

Batygin et al. (2009) and Mardling (2010) showed that it may
be possible to use the observed state of the system to determine
planet b’s Love number k;, a parameter that depends on the
planet’s interior density distribution. This would be of great
interest, as few other methods exist for investigating the interior
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structure of exoplanets. The method is based on the theoretical
expectation that tidal evolution has aligned the apsides of the
orbits of b and c. This method has not yet yielded meaningful
constraints on k, partly because of the large uncertainty in
the eccentricity of b’s orbit. Another relevant parameter is the
mutual inclination between the orbits, which is not known at all.

RV observations are usually powerless to determine mutual
inclinations, unless the planets are in a mean-motion resonance
(see, e.g., Correia et al. 2010). However, for a transiting planet
it is possible to assess the alignment between the orbit and the
stellar equator through the Rossiter—McLaughlin (RM) effect.
A system with mutually inclined planetary orbits might also be
expected to have large angles between the orbits and the stellar
equator. In particular, Mardling (2010) presented a formation
scenario for HAT-P-13 involving gravitational scattering by a
putative third companion, which could have caused large mutual
inclinations and a large stellar obliquity.

In this paper, we present new RV measurements of HAT-P-13
bearing on all these issues. The new data are presented in
Section 2. Our analysis is presented in Section 3, and includes
evidence for a third companion “d” (Section 3.1), refined
estimates of the eccentricity and apsidal orientation of b’s orbit
(Section 3.2), modeling of the RM effect (Section 3.3), and
updated predictions for the next inferior conjunction (possible
transit window) of companion c (Section 3.4). In Section 4, we
discuss the implications for further dynamical investigations of
HAT-P-13.

2. OBSERVATIONS

We observed HAT-P-13 with the High Resolution Spectro-
graph (HIRES; Vogt et al. 1994) on the Keck I 10 m telescope,
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Table 1

Relative Radial Velocity Measurements of HAT-P-13

WINN ET AL.

BID RV (ms~!) Error (ms™ 1)
2454548.80650 87.29 2.00
2454548.90850 70.55 1.44
2454602.73396 —77.76 1.49
2454602.84691 —77.84 1.72
2454603.73415 82.29 1.41
2454603.84324 102.65 2.05
2454633.77241 112.70 2.00
2454634.75907 —57.09 1.97
2454635.75475 86.55 2.12
2454636.74969 107.21 1.80
2454727.13850 117.62 1.90
2454728.13189 —58.37 1.66
2454778.07301 —57.70 1.40
2454779.08373 120.17 1.71
2454780.09368 —13.75 1.88
2454791.11129 92.67 1.64
2454809.99575 —114.15 2.39
2454839.06085 —225.51 1.54
2454865.02660 —448.40 1.49
2454867.90311 —488.00 2.88
2454928.83635 —289.10 1.44
2454955.86964 —186.54 1.63
2454956.86327 —5.48 1.90
2454963.85163 —119.86 1.62
2454983.74976 41.30 1.50
2454984.76460 —134.63 1.51
2454985.73856 19.77 1.50
2454986.76358 25.83 1.75
2454988.74066 50.77 1.68
2455109.11745 143.40 2.24
2455110.10818 —30.20 2.91
2455134.11719 48.56 1.55
2455135.13125 168.31 1.97
2455164.01155 181.07 2.06
2455172.12118 72.55 1.78
2455173.02454 172.95 1.73
2455188.04447 102.62 1.53
2455189.08587 —25.28 1.29
2455189.98539 140.26 1.30
2455191.11450 67.47 1.49
2455192.02847 —33.41 1.50
2455193.85943 105.31 1.49
2455193.86475 104.10 1.48
2455193.86961 97.82 1.49
2455193.94390 87.20 1.50
2455193.94850 84.10 1.68
2455193.95323 81.03 1.59
2455193.95775 81.95 1.49
2455193.96234 85.47 1.61
2455193.96702 73.88 1.69
2455193.97167 84.75 1.63
2455193.97628 79.58 1.59
2455193.98097 80.27 1.64
2455193.98536 85.58 1.44
2455193.98980 80.71 1.51
2455193.99433 79.41 1.42
2455193.99888 81.14 1.59
2455194.00354 73.98 1.60
2455194.00825 79.68 1.49
2455194.01271 72.95 1.60
2455194.01716 73.63 1.54
2455194.02147 71.22 1.49
2455194.02618 72.92 1.45
2455194.03098 64.82 1.55
2455194.03561 64.92 1.54
2455194.04057 66.44 1.55

Vol. 718
Table 1
(Continued)

BID RV (ms™1) Error (ms™1!)
2455194.04546 67.07 1.62
2455194.05048 64.00 1.51
2455194.05515 54.30 1.56
2455194.05976 56.32 1.60
2455194.06437 61.63 1.46
2455194.06915 51.66 1.52
2455194.07416 49.80 1.63
2455194.07901 50.00 1.50
2455194.08376 53.07 1.52
2455194.08858 46.90 1.47
2455194.09350 51.24 1.63
2455194.09842 51.69 1.50
2455194.10345 51.65 1.65
2455194.10848 54.47 1.68
2455194.11341 48.28 1.54
2455194.11813 43.50 1.59
2455194.12270 49.47 1.51
2455194.12732 47.17 1.63
2455194.13216 47.26 1.57
2455194.13716 41.20 1.51
2455194.17667 33.41 1.44
2455196.94719 59.88 1.29
2455197.94842 —36.39 2.02
2455229.08581 20.75 1.66
2455229.87780 —60.13 1.73
2455232.01621 22.91 1.52
2455251.92524 96.71 2.09
2455255.82341 —93.36 1.40
2455256.97046 54.58 1.47
2455260.85979 39.52 1.54
2455284.82534 —171.99 1.73
2455285.89491 —97.21 1.75
2455289.81794 —32.19 1.31
2455311.74995 —418.30 1.56
2455312.83027 —254.42 1.53
2455313.74879 —405.93 1.39
2455314.80031 —436.91 1.87
2455320.86712 —514.39 1.58
2455321.81620 —436.55 1.73

Notes. The RV was measured relative to an arbitrary template
spectrum; only the differences are significant. The uncertainty given
in Column 3 is the internal error only and does not account for
“stellar jitter.”

using the same instrument settings and observing protocols that
were used by Bakos et al. (2009) and are used by the California
Planet Search (Howard et al. 2009). In particular, we used the
iodine gas absorption cell to calibrate the instrumental point-
spread function and the wavelength scale. The total number of
new spectra is 75, which are added to the 30 spectra presented
by Bakos et al. (2009). Of the new spectra, 40 were obtained
on the night of 2009 December 27-28, spanning a transit of
HAT-P-13b, and were gathered to measure the RM effect. The
other 35 were obtained on arbitrary nights. They extend the
timespan of the data set by approximately 1 yr, and thereby help
to refine the orbital parameters.

The RV of each spectrum was measured with respect to an
iodine-free template spectrum, using the algorithm of Butler
et al. (1996) with subsequent improvements. All of the spectra
obtained by Bakos et al. (2009) were re-reduced, for consistency.
Measurement errors were estimated from the scatter in the fits to
individual spectral segments spanning 2 A. The RVs are given
in Table 1, and plotted as a function of time in Figures 1 and 2.
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Figure 1. RV variation of HAT-P-13. Top: measured RVs, and the best-fitting model. The model consisted of two Keplerian orbits and did not allow for any additional
acceleration (y = 0). Bottom: residuals. The poorness of the fit, and the pattern of residuals, are evidence for a third companion.
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Figure 2. RV variation of HAT-P-13. Top: measured RVs, and the best-fitting model, this time allowing for a constant radial acceleration () in addition to two
Keplerian orbits. The best-fitting value of y was 17.5 m s~ yr~!. Bottom: residuals.

The model curves appearing in those figures are explained in Our RM model was based on that of Winn et al. (2005),
Section 3. in which simulated spectra are used to calibrate the relation
between the phase of the transit and the measured RV. For this
3. ANALYSIS case, we used the relation
Our model for the RV data took the form v (0) >
Vere(t) = V(D) + Ve(D) + Vam(®) + 7 + 9 — 1), (1) AV(r) = —(vsini)() [0'9833 — 00356 (v in z;> } :
where V., is the calculated RV, V;, and V. are the RVs of 2)
non-interacting Keplerian orbits, Vgy is the transit-specific where v sin i, is the sky-projected stellar rotation speed, § is the
“anomalous velocity” due to the RM effect (Section 3.3), and fractional loss of light, and v, is the RV of the portion of the
{y,y.t} are constants. The first constant, y, specifies the stellar photosphere that is hidden by the planet. To calculate v,
velocity offset between the system barycenter and the arbitrary we assumed that the stellar photosphere rotates uniformly with
template spectrum that was used to calculate RVs. The second an angle A between the sky projections of the spin vector and the
constant, y, allows for a constant radial acceleration, and was orbital angular momentum vector (see, e.g., Ohta et al. 2005;
included because models with y = 0 did not fit the data Gaudi & Winn 2007).
(Section 3.1). We interpret y as the acceleration produced Since 6 depends on the planet-to-star radius ratio R,/R,,
by a newly discovered long-period companion “d.” The third orbital inclination i, and impact parameter by, all of which are
constant, f, is an arbitrary reference time that was taken to be more tightly bounded by observations of photometric transits

the time of the first RV datum (BJD 2,454,548.80650). than by the RM effect, we simultaneously fitted a composite i’-
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Figure 3. RV variation as a function of orbital phase. Left: RV variation as a function of the orbital phase of planet b after subtracting the calculated variation due to ¢
and d. Right: RV variation as a function of the orbital phase of c, after subtracting the calculated variation due to b and d.

band transit light curve based on the photometric data of Bakos
etal. (2009). For the photometric model we assumed a quadratic
limb-darkening law and used the analytic formula of Mandel
& Agol (2002), as implemented by Pal (2008). Because the
photometric data are not precise enough to constrain both of the
limb-darkening coefficients u; and u,, we fixed u, = 0.3251,
the value obtained by interpolating the Claret (2004) tables, and
allowed u; to vary freely.!” For the RM model, we used a linear
law with a fixed coefficient of 0.72, as appropriate for the V
band, the approximate spectral range from which the RV signal
is drawn.

All together there were 18 adjustable parameters, of which
12 were controlled almost exclusively by the RV data and 6 by
the photometric data. The data set had 105 RVs and 107 flux
data points. Thus, the total number of degrees of freedom was
194, of which 93 pertained to RVs and 101 to photometry.

We determined the best-fitting parameter values and their
68.3% confidence limits with a Monte Carlo Markov Chain
(MCMC) algorithm that we have described elsewhere (see,
e.g., Winn et al. 2007). Uniform priors were adopted for all
parameters except for b’s time of transit and orbital period,
for which we adopted Gaussian priors based on the ephemeris
of Bakos et al. (2009). We doubled the quoted errors in the
ephemeris, out of concern that systematic errors or transit-timing
variations have affected the results. The likelihood was taken to
be exp(—x2/2) with

= 1205: [vi(obs) - v,-(c:alc)]2

o
i=1 !

107 2
S| ST PR
J

j=1

where v;(obs) and o; are the RV data and associated uncertain-
ties, v;(calc) are the calculated RVs, f;(obs) and o are the flux
data and associated uncertainties, and f;(calc) are the calculated
fluxes.

Each flux uncertainty o; was taken to be the scatter in the
~16 data points contributing to each 4 minute time bin. Each
RV uncertainty o; was taken to be the quadrature sum of the
internally estimated measurement error and a “jitter” term of

10 The result, u; = 0.269 & 0.076, was consistent with the tabulated value of
0.3068.

Table 2
Model Parameters for HAT-P-13
Parameter Value
Star

Mass, M, (M) 122002
Radius, R, (Rp) 1.559 + 0.080
Projected stellar rotation rate, v sin i, (km s7h 1.66 + 0.37

Planet b
Mass, Mp, (Myup) 0.851 £ 0.038
Radius, Ry (Ryyp) 1.272 £ 0.065

Orbital period, Pj (days)
Planet-to-star radius ratio, R, /R,
Star-to-orbit radius ratio, R, /a
Orbital inclination, i (deg)
Impact parameter, by,

Time of midtransit, Ty, (BJD)
Orbital eccentricity, ep,

Argument of pericenter, w;, (deg)

2.916250 =+ 0.000015
0.08389 = 0.00081
0.1697 =+ 0.0072
83.40 + 0.68
0.679 =+ 0.043
2454779.92976 + 0.00075
0.0133 =+ 0.0041
210%%%

ep CoS wp —0.0099 + 0.0036

ep sin wy, —0.0060 £+ 0.0069

Velocity semiamplitude, K (m s7h 106.04 £+ 0.73

Projected spin—orbit angle, A (deg) 1.9 +£ 8.6
Companion ¢

Minimum mass, M, sinic (Mjup) 14.28 + 0.28

Orbital period, P, (days) 446.27 + 0.22

2455312.80 + 0.74
0.6616 £ 0.0054
175.29 £+ 0.35

Time of inferior conjunction, T¢on, . (BJD)
Orbital eccentricity, e,
Argument of pericenter, w. (deg)

€. COS W, —0.6594 + 0.0056

e sin w, 0.0543 £ 0.0038

Velocity semiamplitude, K. (m s7h 440 £+ 11
Other system parameters

Angle between apsides, w, — . (deg) 36J:2376

Velocity offset, y (ms~!) —100.3 £ 2.0

y (ms~hyr 1) 17.51 £ 0.90

3.4 m s~!. The jitter term was set by the requirement x2 = 93,
the relevant number of degrees of freedom, and is consistent
with the empirical jitter estimates of Wright (2005) for stars
similar to HAT-P-13. In the best-fitting model, X?- = 109.5 and

sz = 93.0, the rms photometric residual was 470 ppm and the
rms RV residual was 3.6 ms™!.
Table 2 gives the results for the parameter values. Figure 3

shows the RVs as a function of the orbital phases of b and
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Figure 4. Transit photometry and RV variation. Top: composite transit light curve based on the i’-band photometric data of Bakos et al. (2009). Also plotted are
the best-fitting model and the residuals. Bottom: apparent RV variation observed during the transit phase, after subtracting the calculated contributions due to orbital
motion. The observed variation is interpreted as the anomalous velocity due to the RM effect.

c, expressed in days. In the left panel, the RVs are plotted
as a function of the orbital phase of b, after subtracting the
calculated contributions to the RV from companions ¢ and d.
(The contribution due to d is a linear function of time.) Likewise,
the right panel of Figure 3 shows the RVs as a function of the
orbital phase of c, after subtracting the calculated contributions
from b and d. Figure 4 shows the data over a restricted time
range centered on b’s transit. The top panel shows the light
curve. The bottom panel shows the data after subtracting the
calculated orbital RV, thereby isolating the RM effect.

3.1. Evidence for a Third Companion

The extra acceleration, y, was included in the RV model
because a model consisting of only two Keplerian orbits gave
an unacceptable fit to the data. With y = 0, the RV-specific
portions of the data and model had x2 = 458.6 and 94 degrees of
freedom ( Xf /Ndot,» = 4.9). The pattern of residuals is displayed
in Figure 1. There are large and time-correlated residuals
that are not easily attributed to stellar jitter or underestimated
measurement eITors.

In contrast, when y was allowed to vary freely, the best-
fitting model had y = 17.5 m s~ yr !, and x2 = 93 with
93 degrees of freedom. The exact match between X3 and Nyof p 1S
not significant in itself, as it follows from our choice of 3.4 m s~!
for the jitter term. However, it is significant that an acceptable
fit was found for a choice of jitter term that is in line with
observations of similar stars. Even more significant is that the
correlated pattern of residuals vanished. As shown in Figure 2,
the residuals scattered randomly around zero.

The failure of the two-Keplerian model, and the success of a
model with an additional radial acceleration, is evidence for a
third companion to HAT-P-13 (“d”) with a long orbital period.

With the limited information available, though, the properties of
d are largely unknown. Assuming its orbit to be nearly circular,
and its mass to be much smaller than that of the star, we may set
y ~ GMgsiniy/a? to give an order-of-magnitude constraint

Mo sini 5
dSIIlld) ( aq ) ~ 98, @
My, ) \10AU

where a; is the orbital distance. By this standard, the newly
discovered object could be a 2.5 Mj,, planet at 5 AU, or a
10 My, planet at 10 AU, or a 90 My, (0.09 My) star at
30 AU, etc. The properties of d could be substantially different
depending on its eccentricity, argument of pericenter, and time
of conjunction. Orbits closer than ~5 AU would be subject to
additional constraints by the requirement of dynamical stability.

More information about d could be gleaned from any signif-
icant curvature in the RV signal, beyond the effects of the two
Keplerian orbits and a linear trend. We experimented with mod-
els that include a “jerk” parameter, /, finding this parameter to
be highly covariant with the mass, orbital period, and eccen-
tricity of c. More elaborate models and detailed constraints on
companion d will only be justified after another few years of ob-
serving, when the properties of companion ¢ will have been well
established. The uncertainties given in Table 2 must therefore
be understood as subject to the assumption that d is producing
no significant RV curvature.

3.2. Orbital Eccentricities

Figure 5 shows the results for the orbital eccentricities. Planet
c’s orbit is strongly eccentric, with e, = 0.6616 £ 0.0054.
Planet b’s orbit is nearly circular, with ¢, = 0.0133 £ 0.0041.
To assess the significance of the detection of eccentricity, it is
simpler to examine the components of the eccentricity vector
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The contours enclose 68%, 95%, and 99.73% of the MCMC samples. The dashed lines show the 99.73% confidence range for the apsidal orientation of ¢’s orbit; they

allow a visual assessment of the degree of apsidal alignment, and show that the limiting uncertainty in Aw is the large uncertainty in e, sin wy.

(A color version of this figure is available in the online journal.)

because they obey Gaussian distributions, while e obeys a
Rayleigh distribution (see, e.g., Shen & Turner 2008). We
found ¢, cosw, = —0.0099 £+ 0.0036 (i.e., nonzero with
2.80 significance) and e, sinw, = —0.0060 = 0.0069. The
eccentricity of b’s orbit is right on the edge of detectability.'!

Because of the low significance of this detection, it is
impossible to draw a firm conclusion about whether its orbit is
aligned with that of companion c. Our resultis Aw = wp —w, =
36%4. deg. The red dashed lines in Figure 5 show the 3o allowed
region for w,. The lines intersect the allowed region for planet
b, as shown in the right panel. Most of the uncertainty in Aw
arises from the poorly determined orientation of b’s orbit.!'?

The best way to check on the eccentricity of b’s orbit would be
to observe an occultation with the Spitzer Space Telescope. The
timing of occultations would allow e, cos wj, to be determined
with an accuracy of about 0.001, several times better than the RV
result. However, even after such an observation, considerable
uncertainty would remain in Aw because the accuracy in
ep sin w, would not be much improved.

3.3. The Rossiter—McLaughlin Effect

The RV data obtained during transits exhibit a prograde
RM effect: an anomalous redshift for the first half of the
transit, followed by an anomalous blueshift for the second half.
The fit to the data is shown in Figure 4, and the resulting
constraints on A and v sin i, are shown in Figure 6. The finding
of A = 1.9 £ 8.6 deg implies a close alignment between
the rotational angular momentum of the star, and the orbital
angular momentum of the planet, at least as projected on
the sky. Our result for the projected stellar rotation velocity,
vsini, = 1.66 &+ 0.37 km s~!, is about 1o smaller than the
result of 2.9 4 1.0 km s~! reported by Bakos et al. (2009).

3.4. Inferior Conjunction of Planet C

It is not yet known whether the inclination of c’s orbit is close
enough to 90° for transits to occur. Observations of transits
would reveal the mass and radius of the companion, allow a
more precise characterization of its orbit, and place constraints
on the mutual inclination of orbits b and c.

T For this reason, the results are also sensitive to the choice of priors for the
fitting parameters. The results described in this section and given in Table 2 are
based on uniform priors for e, cos @, and ep, sin wp,. If instead uniform priors
are adopted for e, and wp, then we find e, = 0.0119 £ 0.0040.

12 If we assume the orbits are apsidally locked, and repeat the fitting
procedure with the requirement Aw = 0, we find e¢;, = 0.0104 £ 0.0032.
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Figure 6. Results for the RM parameters, based on our MCMC analysis of
the RV data. The contours represent 68%, 95%, and 99.73% confidence limits,

and the one-dimensional (marginalized) posterior probability distributions are
shown on the sides of the contour plot.

Using our results we predicted the times of inferior con-
junctions of planet ¢, which is when transits would occur. The
accuracy of the predicted time is limited by correlations with
the uncertainties in ¢’s velocity semiamplitude and eccentricity
(see Figure 7). Table 3 gives the results. The quoted uncertain-
ties represent 1o (68.3%) confidence levels. It would be prudent
to keep the star under continuous photometric surveillance for
the entire 30 time range, at least. The maximum transit duration
is 14.9 hr.

4. DISCUSSION

HAT-P-13 was already a noteworthy system, as the first
known case of a star with a transiting planet and a second close
companion. We have presented evidence for a third companion
in the form of a long-term radial acceleration of the star. The
properties of the newly discovered long-period companion will
remain poorly known until additional RV data are gathered over
a significant fraction of its orbital period. Our analysis of the RM
effect shows that planet b’s orbital axis is aligned with the stellar
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Table 3
s [ 7 Predicted Times of Inferior Conjunction for HAT-P-13c
S | _
&+ - Year Month  Date  Hour (UT) Julian Date Uncertainty (days)
a i 2010 Apr 26 7.3 2,455,312.80 0.74
480 E 2011 Jul 16 13.9 2,455,759.08 0.85
= s0F = 2012 Oct 4 20.4 2,456,205.35 1.00
: E E 2013 Dec 25 3.0 2,456,651.62 1.17
— 440 - 2015 Mar 16 9.6 2,457,097.90 1.36
X C ]
420¢ E e . . .
200k ] mutual inclination should be considered plausible, or even likely,
given ¢’s high eccentricity. She proposed that b and ¢ began with
-0.64F ik nearly circular and coplanar orbits, but ¢’s orbit was strongly
3 -065F : perturbed by an interaction with a hypothetical outer planet.
§ —0.66F - Those same perturbations would likely have tilted c’s orbit.
& —067EF _ The relation, if any, between the newly discovered
_068E i HAT-P-13d and Mardling’s hypothetical outer planet is unclear.
_0.69 In her scenario, the outer planet is ejected from the system. This

9 10 " 12 13 14 15 16

BJD of inferior conjunction — 2,455,300
Figure 7. Results for the timing of the inferior conjunction of companion c,
based on our MCMC analysis of the RV data. The top panel shows the one-
dimensional (marginalized) posterior probability distribution. The lower two
panels illustrate the correlation with the other poorly determined parameters of
companion c. The contours represent 68%, 95%, and 99.73% confidence limits.

rotation axis, as projected on the sky. Our new data also agree
with the previous finding that the orbit of planet b is slightly
eccentric.

The latter two findings are relevant to the second reason why
HAT-P-13 is noteworthy: its orbital configuration may represent
an example of two-planet tidal evolution. In this scenario,
first envisioned by Wu & Goldreich (2002) and investigated
further by Mardling (2007), tidal circularization of the inner
planet’s orbit is delayed due to gravitational interactions with
the outer planet. The interactions drive the system into a state
of apsidal alignment, where it remains as both orbits are slowly
circularized. As it turned out, the specific planetary system that
inspired Wu & Goldreich (2002) was irrelevant to their theory,
because the “outer planet” was found to be a spurious detection
(Butler et al. 2002).

Batygin et al. (2009) welcomed HAT-P-13 as a genuine
system that followed the path predicted by Wu & Goldreich
(2002), and with the additional virtue that the inner planet is
transiting. For this interpretation to be valid, the apsides of
b and ¢ must be aligned, whereas we have found the angle
between the apsides to be 36*%; deg, differing from zero by
lo. We do not consider this result to be significant enough to
draw a firm conclusion, especially in light of the uncertainties
due to the ad hoc stellar jitter term and our simplified treatment
of the influence of companion d. Further RV monitoring and
observations of occultations are needed to make progress.

Batygin et al. (2009) also showed that the existence of transits
would allow for an empirical estimate of the tidal Love number
ky of planet b, as mentioned in Section 1. The requirement
that the apsidal precession rates of b and c are equal leads
to a condition on k,, because b’s precession rate is significantly
affected by its tidal bulge. Subsequent work by Mardling (2010)
showed that for a unique determination of k; it is necessary
for the mutual inclination Ai between orbits b and c to be
small. If instead the orbits are mutually inclined, then tidal
evolution drives the system into a state in which e, and Ai
undergo oscillations: a cycle in parameter space, instead of a
fixed point. Furthermore, Mardling (2010) argued that a large

seems important to the scenario, as otherwise d would continue
interacting with c, and interfere with the tidal evolution of b
and c. Thus, unless d’s pericenter was somehow raised to avoid
further encounters with c, it does not seem likely to have played
the role envisioned by Mardling (2010). Of course the scenario
could still be correct even if the third companion d was not the
scattering agent; a fourth (ejected) companion may have been
responsible.

Our study of the RM effect pertains to the angle v, ;, between
planet b’s orbit and the stellar equator, and has no direct
bearing on the angle Ai between the orbital planes of b and
c. However, there is an indirect connection, through the nodal
precession that would be caused by mutually inclined orbits.
As shown by Mardling (2010), planet b is far enough from the
star that its orbital precession rate is likely to be dominated
by the torque from c, rather than the quadrupole moment J,
of the star. The critical orbital distance inside which the stellar
torque is dominant is ~(2J,a>M,/M,)°? (Burns 1986), which
is 0.020 AU assuming J, = 2 x 1077 as for the Sun. This
is smaller than the actual orbital distance of 0.043 AU. Hence
if Ai were large, then b’s orbit would nodally precess around
¢’s orbital axis, which would cause periodic variations in ¥, ;.
Therefore, at any given moment in the system’s history, we
would be unlikely to observe a small value of v, ; unless Ai
were small. However, it is impossible to draw firm conclusions
about Ai because of the dependence on initial conditions, the
possible effects of companion d, and the fact that only the sky-
projected angle A is measured rather than the true obliquity
w*.b'

It may be possible to estimate Ai based on transit-timing
variations of planet b (Nesvorny & Beaugé 2010; Bakos et al.
2009). An even more direct estimate of Ai could be achieved if
transits of ¢ were detected. The existence of transits would show
that i, is nearly 90°, as is i,. This would suggest Ai is small,
although it would still be possible that the orbits are misaligned
and their line of nodes happens to lie along the line of sight. The
most definitive result would be obtained by observing the RM
effect during transits of ¢, and comparing c’s value of A with
that of planet b. In effect, the rotation axis of the star would be
used as a reference line from which the orientation of each orbit
is measured (Fabrycky 2009). This gives additional motivation
to observe HAT-P-13 throughout the upcoming conjunctions of
companion c.
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