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ABSTRACT

According to the no-hair theorem, all astrophysical black holes are fully described by their masses and spins.
This theorem can be tested observationally by measuring (at least) three different multipole moments of the
spacetimes of black holes. In this paper, we analyze images of black holes within a framework that allows us
to calculate observables in the electromagnetic spectrum as a function of the mass, spin, and, independently,
the quadrupole moment of a black hole. We show that a deviation of the quadrupole moment from the
expected Kerr value leads to images of black holes that are either prolate or oblate depending on the sign
and magnitude of the deviation. In addition, there is a ring-like structure around the black hole shadow with
a diameter of ∼10 black hole masses that is substantially brighter than the image of the underlying accretion
flow and that is independent of the astrophysical details of accretion flow models. We show that the shape
of this ring depends directly on the mass, spin, and quadrupole moment of the black hole and can be used
for an independent measurement of all three parameters. In particular, we demonstrate that this ring is highly
circular for a Kerr black hole with a spin a � 0.9 M , independent of the observer’s inclination, but becomes
elliptical and asymmetric if the no-hair theorem is violated. Near-future very long baseline interferometric
observations of Sgr A* will image this ring and may allow for an observational test of the no-hair theorem.

Key words: accretion, accretion disks – black hole physics – Galaxy: center – gravitation – gravitational lensing:
strong – stars: individual (Sgr A*)

1. INTRODUCTION

According to the no-hair theorem, the external spacetimes
of black holes are uniquely characterized by their masses
and spins (Israel 1967, 1968; Carter 1971, 1973; Hawking
1972; Robinson 1975). This theorem requires that the cosmic
censorship conjecture (Penrose 1969) holds and that the exterior
spacetime is free of closed time-like curves. Under these
assumptions, all astrophysical black holes should be fully
described by the Kerr metric (Kerr 1963).

It is widely accepted that the universe contains an abundance
of black holes as inferred from the observations of the centers
of nearby galaxies (e.g., Tremaine et al. 2002), of our own
Galactic center (Ghez et al. 2008; Gillessen et al. 2009),
and of many galactic binaries (e.g., McClintock & Remillard
2006). Nonetheless, the factual existence of an event horizon
is yet unproven and has only been inferred indirectly (e.g.,
Narayan et al. 1997, Narayan et al. 2001; Narayan & Heyl
2002; McClintock et al. 2004; see also Psaltis 2006). Alternative
explanations for the nature of these objects have been suggested,
which include naked singularities (Manko & Novikov 1992),
exotic stellar objects (Friedberg et al. 1987; Mazur & Mottola
2001; Barceló et al. 2008), as well as a breakdown of general
relativity itself on horizon scales (e.g., Yunes & Pretorius 2009;
cf. Psaltis et al. 2008).

A test of the no-hair theorem can both identify the observed
dark compact objects with Kerr black holes and verify the
validity of general relativity in the strong-field regime. Indeed,
within general relativity, if a compact object is not a Kerr black
hole, then its external spacetime will not satisfy the no-hair
theorem. Alternatively, if general relativity is not valid in the
strong-field regime, the external spacetime of a compact object
that is surrounded by a horizon may violate the no-hair theorem
(see, however, Psaltis et al. 2008). Mass and spin are the first

two multipole moments of a black hole spacetime. If the no-
hair theorem is correct, then all higher multipole moments only
depend on the mass and spin, and any deviation from the Kerr
moments has to be zero. Consequently, the no-hair theorem can
be tested by measuring (at least) three multipole moments of
such a spacetime (Ryan 1995).

In part I of this series of papers (Johannsen & Psaltis 2010,
hereafter Paper I), we investigated a framework for testing the
no-hair theorem with observations of compact objects in the
electromagnetic spectrum. Based on a quasi-Kerr spacetime that
contains an independent quadrupole moment (Glampedakis &
Babak 2006), we analyzed in detail the spacetime properties
that are critical for such observations as a function of the mass,
spin, and quadrupole moment. We showed that very moderate
changes of the quadrupole moment lead to significant alterations
of various quantities that determine observables. In particular,
we explored the effect of changing the quadrupole moment on
the locations of the innermost stable circular orbit (ISCO) and of
the circular photon orbit, as well as on the lensing and redshift
of photons.

There has been, already, substantial work on potential tests
of the no-hair theorem with observations of gravitational waves
from extreme mass-ratio inspirals (Ryan 1995, 1997a, Ryan
1995, 1997b; Barack & Cutler 2004, Barack & Cutler 2007;
Collins & Hughes 2004; Glampedakis & Babak 2006; Gair et al.
2008; Li & Lovelace 2008; Apostolatos et al. 2009; Vigeland &
Hughes 2010). In this series of papers, we show that observations
of black holes in the electromagnetic spectrum may also allow
for a clean test of the no-hair theorem. In particular, we identify
different observables that probe the quadrupole moments of the
spacetimes but depend very weakly on the usual astrophysical
complications, such as the flow geometry, the mode of emission,
and the variability of the accretion flows that generate the
photons we detect from black holes.
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Imaging observations of accreting black holes at
(sub-)millimeter wavelengths using very long baseline inter-
ferometry (VLBI) promise to enable unprecedented views of
the vicinities of black hole horizons. Recent VLBI observations
along only three baselines resolved Sgr A∗, the black hole in
the center of the Milky Way, on a scale comparable to its event
horizon and provided evidence for sub-horizon-scale structures
(Doeleman et al. 2008) as well as for the presence of an event
horizon (Broderick et al. 2009). Far greater resolution can be
achieved by adding either existing or planned telescopes lo-
cated at various places on the Earth (Fish & Doeleman 2009).
The black hole in the center of M87 (Broderick & Loeb 2009)
as well as a small number of other nearby supermassive black
holes (Psaltis 2008) offer additional targets for horizon-scale
imaging that can be utilized in the near future.

Imaging observations are expected to be able to resolve
the shadows of black holes and lead to the determination of
their spins and inclinations (Falcke et al. 2000; Broderick &
Loeb 2005, Broderick & Loeb 2006; Fish & Doeleman 2009).
Templates for images of accretion flows around Kerr black holes
within general relativity that are suitable to these observations
have been reported by a number of authors (Bardeen 1973;
Speith et al. 1995; Fanton et al. 1997; Falcke et al. 2000;
Takahashi 2004; Beckwith & Done 2004, Beckwith & Done
2005; Dexter & Agol 2009; Broderick & Loeb 2005, Broderick
& Loeb 2006; Yuan et al. 2009). Recently, Bambi & Freese
(2009) explored the possibility of using black hole images to
test whether black holes violate the Kerr bound a � M .

In this paper, we study the properties of the images of
compact objects that violate the no-hair theorem using the
quasi-Kerr formalism we developed in Paper I. We calculate
numerically the mapping between locations in the vicinity of a
black hole and positions in the observer’s sky using the mass,
spin, and quadrupole moment of the spacetime as independent
parameters. We investigate the impact of varying the quadrupole
moment on the properties of this mapping and show that the
images of the accretion flows around compact objects that
violate the no-hair theorem are expected to have prolate or oblate
geometries.

Measuring the spacetime moments from the images of an
accretion flow will be, of course, very model dependent and
limited by our lack of understanding of the intrinsic geometry
of the flow itself. For example, prolate images of the inner
accretion may be the result of resolving the formation region
of a jet and not of a violation of the no-hair theorem (see, e.g.,
Broderick & Loeb 2009). Moreover, a measurement of the spin
from an image of the shadow alone is difficult (e.g., Falcke
et al. 2000; Takahashi 2004) and might require complementary
observations such as a multiwavelength study of polarization
(Broderick & Loeb 2006; see also Schnittman & Krolik 2009,
2010).

Additionally, accretion flows are very turbulent and variable
at timescales much shorter than the rotation period of the
Earth, which sets the characteristic integration time for an
interferometric imaging observation. If this time variability is
produced by a highly coherent, orbiting inhomogeneity in the
accretion flow, it may allow us to measure the properties of the
compact object via non-imaging techniques (Doeleman et al.
2009). The variability, however, will limit and may prohibit
altogether the ability of obtaining a clean image of the accretion
flow.

The images of optically thin accretion flows around black
holes, however, reveal a characteristic bright ring at the pro-

jected radius of the circular photon orbit along null geodesics
(Beckwith & Done 2005) with properties that remain constant
even as the underlying accretion flows are highly variable. This
bright ring is the result of the light rays that orbit around the
black hole many times before they reach the distant observer
and, therefore, have a much larger path length through the opti-
cally thin accretion flow. These photons can make a significant
contribution to the total disk emission and produce higher-order
images (Cunningham 1976; Laor et al. 1990; Viergutz 1993; Bao
et al. 1994; Čadež et al. 1998; Agol & Krolik 2000; Beckwith
& Done 2005).

We use our formalism to show that the bright emission
ring is circular for a Schwarzschild black hole and remains
nearly circular for Kerr black holes. On the other hand, if
the quadrupole moment is left as an independent parameter,
the ring shape changes significantly and becomes asymmetric.
The degree of asymmetry is a direct measure of the violation
of the no-hair theorem. We show that the diameter of the ring
depends only very weakly on the spin and quadrupole moment
of the black hole and can be used to directly measure the mass
of the object. In addition, the ring is displaced off center in the
image plane in the case of rotating black holes (Beckwith &
Done 2005; see also Takahashi 2004), and we show that the
displacement is a direct measure of the object’s spin, modulo
the disk inclination.

In Section 2, we briefly review the framework for testing
the no-hair theorem with observations in the electromagnetic
spectrum. We simulate images of black holes and the photon
rings in Sections 3 and 4, respectively, and show how they
depend on the mass, spin, and quadrupole moment of a given
black hole. In Section 5, we quantify these dependencies
before we discuss our results and their implications for future
observations in Section 6.

2. TESTING THE NO-HAIR THEOREM WITH BLACK
HOLE IMAGES

The no-hair theorem establishes the claim that astrophysical
black holes are uniquely characterized by their mass M and spin
J, i.e., by only the first two multipole moments of their exterior
spacetimes (Israel 1967, 1968; Carter 1971, 1973; Hawking
1972; Robinson 1975). As a consequence of the no-hair theorem,
all higher-order moments are already fully determined and obey
the relation (Geroch 1970; Hansen 1974)

Ml + iSl = M(ia)l . (1)

Here, a ≡ J/M is the spin parameter, and the multipole
moments are written as a set of mass multipole moments Ml
which are nonzero for even values of l and as a set of current
multipole moments Sl which are nonzero for odd values of l.
The zeroth-order mass moment is equal to the mass of the black
hole, M0 = M , whereas the first-order current moment is its
angular momentum, S1 = J .

This theorem is based on two technical assumptions. First,
any spacetime singularity must be enclosed by an event horizon
(the cosmic censorship conjecture; Penrose 1969), and second,
there exist no closed time-like loops in the exterior domain of
the black hole.

The no-hair theorem can be tested by measuring (at least)
three different multipole moments, which have to be related by
expression (1) if this theorem is correct (Ryan 1995). In Paper
I, we investigated a framework for extracting three multipole
moments of a black hole spacetime with observations in the
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electromagnetic spectrum. We used a quasi-Kerr metric
(Glampedakis & Babak 2006), which incorporates an indepen-
dent quadrupole moment and parameterizes a potential deviation
from the Kerr quadrupole in terms of the parameter ε, i.e.,

Q = −M
(
a2 + εM2

)
. (2)

This reduces smoothly to the Kerr quadrupole moment in the
limit ε → 0 in accordance with relation (1).

If the no-hair theorem is valid, then ε = 0. If, however, a
nonzero value of the parameter ε is measured, then the compact
object cannot be a general-relativistic black hole. Within general
relativity, it may be a different type of star or an exotic
configuration of matter (see Collins & Hughes 2004; Hughes
2006). On the other hand, if the compact object is otherwise
known to possess an event horizon and a regular spacetime,
then a nonzero value of the parameter ε implies that the no-hair
theorem is incorrect and general relativity does not accurately
describe the near-horizon spacetimes of black holes.

In Paper I, we showed that the observable properties of this
quasi-Kerr spacetime significantly depend on the parameter ε
in the vicinity of the black hole. In particular, we demonstrated
that the radius of the ISCO increases by ∼20% for a value
of the quadrupolar correction ε = 0.5 at a spin a = 0.4 M .
Since the ISCO marks the inner edge of the accretion disk,
it critically impacts the high-energy part of the emitted disk
spectrum. Furthermore, we showed that the circular photon orbit
experiences a shift of similar magnitude and that the observed
redshift of a photon emitted by a particle on the ISCO decreases
by ∼25% for values of the quadrupolar parameter ε = 1.0 and
spin a = 0.4 M , respectively. In addition, we demonstrated the
effects of changing the quadrupole moment on the strong lensing
experienced by photons in the neighborhood of the black hole.

For nonzero values of the parameter ε, the quasi-Kerr metric
is a solution of the Einstein equations up to the quadrupole order
and, therefore, can only be used for values of the spin a � 0.4 M
and of the radius larger than a cutoff that depends on both the
spin and the quadrupole moment. For reasonable perturbations
of the quadrupole, however, the cutoff always lies inside of the
circular photon orbit and plays only a very minor role in our
analysis. The requirement that the spin is not near the maximal
Kerr value allows us to apply this method to images of Sgr A∗,
for which first, although uncertain, estimates from millimeter
VLBI observations indicate that the black hole is not spinning
rapidly (Broderick et al. 2009).

3. THE APPARENT SHAPE OF QUASI-KERR BLACK
HOLES

In this section, we calculate numerically the mapping between
different locations in the accretion flow around a quasi-Kerr
black hole and the observer’s sky and discuss its characteris-
tics. This mapping significantly depends on the value of the
parameter ε due to the modifications in the spacetime properties
discussed in Paper I, such as their effects on the light bending
and redshift experienced by photons, as well as on the location
of the ISCO and the photon orbit.

We developed an algorithm that maps any initial configuration
of photons around the black hole into the plane of the sky
viewed by a distant observer. We integrate the full second-order
geodesic equations in the quasi-Kerr spacetime via a fourth-
order Runge–Kutta method with adaptive stepsize. Figure 1
shows the geometry we use. The image plane is located at a
distance d away from the black hole, at an inclination angle i, and

Figure 1. Geometry we used for simulating black hole images, as projected
on a Euclidean space. The black hole is located at the origin of the Cartesian
coordinate system (x, y, z). The image plane of a distant observer is located at
a distance d from the black hole, at an inclination angle i, and with its center on
the x–z plane. Photon trajectories are integrated backward starting on the image
plane at coordinates (x′, y′) with uniform initial momentum vector �k0 = −k0ẑ

′
at a distance r0 from the black hole.

with its center on the x–z plane. We integrate photon trajectories
backward starting on the image plane and terminating at the
surface of last scattering in the accretion flow. Modeling the
thermodynamic properties of the accretion flow and integrating
the radiative transfer equation is beyond the scope of this paper.
In this section, we assume for simplicity that the last scattering
surface of the photons is in the equatorial plane around the
black hole, on the surface of an infinitesimally thin accretion
disk. In the next section, we will discuss the situation in which
the accretion flow is optically thin, as is expected to be the case
for Sgr A∗ at sub-millimeter wavelengths.

As an initial condition, we distribute the photons in a square
grid on the image plane with a spacing of Δr ′ = 0.025 M . We
set their initial 3-momentum vectors �k0 to be perpendicular to
the image plane and uniform (see the Appendix). In order to
visualize the mapping between the plane of the accretion disk
and the observer’s sky, we consider a set of concentric equatorial
target rings that extend from r = 2.6 M to r = 7.6 M in steps
of 1 M . Since the images are scale invariant with respect to the
mass of the black hole, we express all physical quantities in
units of mass. In all calculations, we have imposed a cutoff at
r = 2.6 M in accordance with the range of validity of the metric
(see Paper I), and we terminate the integration if a photon enters
the excluded region r < 2.6 M . We plot on the image plane only
those photons that reach one of the target rings in the accretion
disk.

In Figure 2, we plot images of black holes with spin a =
0.4 M viewed from a distant observer at an inclination angle
cos i = 0.25 for values of the quadrupolar parameter (from
left to right) ε = −0.5, 0.0, 0.5. The images consist of the
projection of the target rings onto the observer’s sky. The rings
are distorted by light bending. Gravitational redshift, Doppler
boosting, and beaming play no role in these images, because
we have not incorporated in our calculation the evolution of the
radiative intensity. In all images, the centers of the deformed
rings are shifted to the left due to frame dragging.

The effect of changing the quadrupole moment on the images
is only apparent at small radii. In Figure 3, we show explicitly
how violating the no-hair theorem alters the images of the
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Figure 2. Concentric rings on the equatorial plane around a black hole, as seen by a distant observer located at an inclination of cos i = 0.25. The spacetime of the
compact object has a spin of a = 0.4 M and a quadrupolar correction parameter (left) ε = −0.5, (center) ε = 0.0, and (right) ε = 0.5. In all cases, frame dragging
shifts the center of the images to the left. The effect of the quadrupolar correction is most apparent in the shape of the innermost ring. For ε = −0.5, the innermost
ring is more prolate compared to the Kerr black hole, while for ε = 0.5 it is more oblate.

Figure 3. Images of the innermost rings shown in Figure 2 for three values of the parameter ε. The top panel corresponds to a Schwarzschild black hole, whereas the
bottom panel corresponds to a Kerr black hole with a = 0.4 M . The inclination angle is set to cos i = 0.25 in both cases.

innermost rings we considered, i.e., the ones at r = 2.6 M ,
for a Schwarzschild black hole and a Kerr black hole with
a = 0.4 M . In both cases, we set the inclination to cos i = 0.25
and display the innermost ring for three values of the parameter
ε = −0.5, 0.0, 0.5. For the perturbed Schwarzschild black hole,
increasing the value of the parameter ε makes the projected ring
more oblate, because of the increased amount of gravitational
lensing experienced by the photons (see Paper I). In the case of
nonzero spin, a change in the quadrupole moment also affects
the left–right asymmetry of the image and especially its right
edge that corresponds to the receding part of the accretion disk.
Increasing the value of the parameter ε leads to a wider image.

4. PHOTON RINGS

The dependence of the black hole images on their quadrupole
moments that we investigated in the previous section allows us,
in principle, to use imaging observations to map the properties
of their spacetimes. In practice, however, the change in the
oblateness of even the closest rings to the black hole horizons is
very modest and can be masked by anisotropies in the emission
from the accretion flow and its variability. Unless an orbiting
density inhomogeneity (a “hot spot”) can be securely identified
and imaged throughout its orbit (e.g., Broderick & Loeb 2005),
time-averaged overall images of black hole accretion disks
may appear a priori not well suited for testing the no-hair
theorem. There is, however, an observable structure in the
images of optically thin accretion flows around black holes that
suffers only marginally from astrophysical complications and

carries very strong signatures of the quadrupole moments of the
underlying spacetimes.

Consider a geometrically thick accretion flow imaged at a
wavelength at which the emission is optically thin; this is the
case for Sgr A∗ at sub-millimeter wavelengths. The brightness
of the image at any given point in the observer’s sky will depend
on the length of the optical path along the corresponding light
ray that passes through the region of high emissivity in the
accretion flow. Most light rays that originate from the image
plane either emerge on the far side of the black hole, after
experiencing gravitational bending, or intercept the black hole
horizon. A small set of light rays, however, that approach the
event horizon orbit closely around the black hole several times
before they escape toward the far side and can, therefore, make
a significant contribution to the total flux (Cunningham 1976;
Laor et al. 1990; Viergutz 1993; Bao et al. 1994; Čadež et al.
1998; Agol & Krolik 2000; Beckwith & Done 2005). This is
illustrated in Figure 4, which shows the paths of a number of
light rays that approach the horizon of a black hole from the top
right corner at an inclination of cos i = 0.25 relative to the spin
axis z. These light rays orbit several times around the black hole
horizon at nearly constant radius (see also Bardeen 1973).

The integral of the emissivity along these light rays is very
large, compared to that along nearby light rays, and results in a
significant increase in the brightness at their footpoints on the
image plane. The locus of the footpoints of these light rays on
the image plane is a ring. This leads to the emergence of a ring
in images of optically thin accretion flows that is substantially
brighter than the background and whose shape and position in
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Figure 4. Light rays around a Schwarzschild black hole illustrating the
emergence of the bright emission ring. Several light rays approach the black hole
from the top right corner. If a ray reaches the photon ring with a 3-momentum
that is nearly tangential to the photon orbit, it orbits around the black hole several
times, while all other rays are either immediately scattered or captured by the
black hole. The footpoints of the orbiting light rays on the image plane will
be brighter than those of the nearby rays. The shaded region marks the event
horizon.

the image plane depend on the spin of the black hole and on
the inclination of the accretion disk (Beckwith & Done 2005).
Such bright rings of emission are clearly visible in the images of
all time-dependent general-relativistic simulations of accretion
flows reported to date (see, e.g., the right panel of Figure 5 in
Mościbrodzka et al. 2009; panels 1 and 3 in Figure 1 in Dexter
et al. 2009; Figure 1 in Shcherbakov & Penna 2010).

In this section, we demonstrate that the bright rings of emis-
sion (hereafter photon rings) carry an unmistakable signature
of the black hole spacetime and, in particular, of its quadrupole
moment. In order to study the sizes and shapes of these rings
in different configurations, in a way that is independent of the
physical conditions in the accretion flow, we use the following
working definition of the position of the bright photon rings on
the image plane: we identify them with the locus of footpoints
of those light rays that leave the observer perpendicular to the
image plane and cross the equatorial plane of the black hole at
least twice, before emerging on the opposite side.

We first consider the dependence of the position of the photon
rings on the spin of a Kerr black hole, i.e., of one that satisfies
the no-hair theorem. Figure 5 shows that increasing the spin
leads to a substantial displacement of the centroid of the photon
ring with respect to the geometric center of the spacetime. This
displacement is 	1 M for even moderate (a = 0.5 M) values
of the spin and can be as large as 	2 M for maximally rotating
black holes. The striking property of these rings, however, is the
fact that their shapes remain practically circular for values of
the spin a � 0.9 M , even though the geometry of the Kerr
spacetime is highly non-spherically symmetric. Only at the
maximum spin, the receding part of the photon ring becomes
asymmetric. Even in this extreme case, however, the maximum
difference between the major and minor axes of the ring is only
	1.5 M . Note here that, for the case a = 0.998 M , the radius
of the circular photon orbit almost coincides with the event
horizon, which introduces a noticeable numerical error on the
rightmost part of the ring; for this reason, we use a short-dashed
line to represent this uncertainty.

The symmetry of the photon rings changes significantly if
the no-hair theorem is violated and the quadrupole moment

Figure 5. Dependence of the bright photon ring seen by a distant observer on
the spin of a Kerr black hole. Increasing the spin leads to a displacement of the
photon ring with minimal deformation of its shape. In all cases, the inclination
of the observer corresponds to cos i = 0.25.

of the spacetime takes on a non-Kerr value. In Figure 6,
we show the photon rings for a (quasi-)Schwarzschild and a
(quasi-)Kerr black hole with spin a = 0.4 M and for three dif-
ferent values of the quadrupolar correction ε = −0.5, 0.0, 0.5.
As the degree of violation of the no-hair theorem increases, the
photon ring around a static black hole becomes oblate or prolate
(depending on the sign of the parameter ε), while its geometric
center remains the same. In the case of a spinning black hole,
frame dragging introduces an additional asymmetry between the
approaching and the receding parts of the ring. For the spinning
black holes with a value of the quadrupolar parameter ε = −0.5,
the rightmost part of the ring corresponds to photons that propa-
gate in a region of spacetime in which our perturbative approach
breaks down; we, therefore, indicated this uncertainty using a
long-dashed line.

In both cases shown in Figure 6, the difference between the
major and minor axes of the photon rings is 	1–2 M , even
for modest degrees of violation of the no-hair theorem. The
degree of asymmetry increases with increasing inclination and
vanishes when the black hole is viewed pole on. The oblateness
and asymmetry of the bright photon rings in the images of
accreting black holes carries, therefore, a quantitative measure
of the degree of violation of the no-hair theorem, modulo the
inclination of the observer. We systematically analyze the impact
of the mass, spin, quadrupolar parameter, and disk inclination
on the shape and position of the ring in the next section.

5. PHOTON RING PROPERTIES

In this section, we analyze in detail the dependence of the
image of the photon ring for a given black hole on its mass
M , spin a, disk inclination angle i, and quadrupolar correction
parameter ε.

In order to quantify the effect of changing this set of
parameters on the shape and location of a photon ring in the
image plane, we define the displacement and the asymmetry of
the ring in the following way. First, we define the horizontal
displacement D of the ring by the expression

D ≡
∣∣x ′

max + x ′
min

∣∣
2

, (3)

where x ′
max and x ′

min are the maximum and minimum abscissae
of the ring in the image plane, respectively. Due to the reflection
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Figure 6. Dependence of the bright photon rings on the degree of violation of the no-hair theorem, parameterized by the difference ε between the quadrupole moment
of the spacetime and its Kerr value. The top panel corresponds to a Schwarzschild black hole whereas the bottom panel corresponds to a Kerr black hole with
a = 0.4 M . In both cases, the inclination of the observer is cos i = 0.25. Violation of the no-hair theorem causes the ring to become ellipsoidal, if the black hole is
static, or even more asymmetric, if the black hole is rotating.

symmetry across the equatorial plane there is no displacement
in the vertical direction, whereas in the horizontal direction the
displacement can be as large as D 	 2 M for rapidly spinning
black holes.

Next, we define the average radius 〈R〉 of the ring by the
expression

〈R〉 ≡
∫ 2π

0 Rdα∫ 2π

0 dα
, (4)

where
R ≡

√
(x ′ − D)2 + y ′2 (5)

and

tan α = y ′

x ′ . (6)

We also define the ring diameter L by the expression

L ≡ 2〈R〉. (7)

Finally, we define the asymmetry A of the ring image by the
expression

A ≡ 2

√√√√
∫ 2π

0 (R − 〈R〉)2dα∫ 2π

0 dα
. (8)

We simulated ring images for various values of the spin a,
inclination i, and the parameter ε. In Figure 7, we plot the
ring displacement D for a Kerr black hole as a function of the
inclination angle i for different values of the spin. Triangles
denote the data points obtained from our simulation.

We found that the displacement depends primarily on the
spin and the disk inclination, but it depends only weakly
on the quadrupolar parameter ε. The displacement is well
approximated by the expression

D = 2a sin i(1 − 0.41ε sin2 i), (9)

where a � 0.7 M for a Kerr black hole whereas a � 0.4 M and
0 � ε � 0.5 for a quasi-Kerr black hole. From our simulations,
we find a slight deviation for rapidly spinning Kerr black holes
with a spin of a � 0.7 M leading to an additional displacement
of 0.12 a2 sin i.

For a Kerr black hole, the dependence of the displacement
on the spin and the inclination is reminiscent of the location
of the caustics in Kerr spacetime (Rauch & Blandford 1994;

Figure 7. Ring displacement vs. the disk inclination for a Kerr black hole with
spins (top to bottom) a = 0.7 M, 0.6 M, . . . , 0.1 M . The solid lines show the
functional form (9) with the parameter ε set to zero.

Bozza 2008; see also Bozza 2009 and references therein) and
provides an independent check of the nature of the central object.
Any deviation from this dependence necessarily implies that the
compact object is not a Kerr black hole. For nonzero values of
the parameter ε, the displacement is only moderately affected.

In Figure 8, we plot the ring asymmetry as a function of the
inclination angle for (top panel) a Kerr black hole with different
values of the spin and for (bottom panel) a quasi-Kerr black hole
with a spin of a = 0.4 M and different values of the quadrupolar
parameter ε. In the case of a Kerr black hole, we find that the
asymmetry is negligible for slowly spinning black holes. In the
case of a quasi-Kerr black hole, the asymmetry scales linearly
with the quadrupolar parameter ε. We fit the asymmetry with
the expression

A

M
=

[
0.84ε + 0.36

( a

M

)3
]

sin3/2 i (10)

which is valid for a Kerr with arbitrary spin and for a quasi-Kerr
black hole with values of the spin 0.0 � a/M � 0.4 and of the
parameter 0.0 � ε � 0.5, respectively.

The asymmetry strongly depends on the quadrupolar correc-
tion parameter ε and the disk inclination i whereas it depends
only weakly on the spin as long as the black hole does not spin
rapidly. Expression (10) implies that the maximum asymmetry
of a Kerr black hole is 	 0.36 M . In the event that an asymmetry
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Figure 8. Asymmetry of the photon ring as a function of the inclination angle for (top) a Kerr black hole with values of the spin (top to bottom)
a = 0.9 M, 0.8 M, 0.7 M, 0.6 M and (bottom) a quasi-Kerr black hole with a spin of a = 0.4 M and values of the parameter (top to bottom) ε = 0.5, 0.4, 0.3, 0.2.
The solid lines show the functional form (10) that describes these simulations.

Figure 9. Left: upper and lower limits of the ring diameter vs. the spin for inclinations 17◦ � i � 86◦ for a Kerr black hole (solid lines) and for a quasi-Kerr black hole
with a value of the parameter ε = 0.5 (dashed lines). The diameter is practically independent of the spin and has a constant value of 	10.4 M for a Kerr black hole. The
dependence on the parameter ε and the disk inclination is weak. A measurement of the ring diameter is a direct measure of the mass. Center: the displacement of the
photon ring as a function of a sin i for various values of the parameter 0 � ε � 0.5. The displacement is predominantly determined by the spin and the disk inclination
allowing for a direct measurement of the quantity a sin i. Right: the ring asymmetry vs. ε sin3/2 i for various inclinations 17◦ � i � 86◦ and 0.0 � a/M � 0.4. The
asymmetry depends only weakly on the spin and hence provides a direct measure of the quantity ε sin3/2 i.

larger than this value is detected, which is already possible for
moderate deviations of the quadrupole moment from the value
of a Kerr quadrupole moment (cf. Figure 8, bottom panel), then
the compact object cannot be a Kerr black hole.

In order to test the no-hair theorem, it is necessary to measure
(at least) three multipole moments of the spacetime (Ryan 1995).
In the following, we argue that a measurement of the diameter
of the ring determines the mass of the central object and that
for a given disk inclination the displacement and the asymmetry
of the ring directly measure the spin a and the parameter ε,
respectively. Therefore, the degree of asymmetry is a direct
measure of the violation of the no-hair theorem.

In Figure 9, we plot (left panel) the diameter of the photon
ring as a function of the spin a for values of the inclination
17◦ � i � 86◦. Dashed lines correspond to a quasi-Kerr black
hole with a value of the parameter ε = 0.5. The solid line
corresponds to a Kerr black hole. In all cases, the diameter is
practically independent of the spin a. For a Kerr black hole, the
diameter also depends only very weakly on the disk inclination
and is almost constant for spins in the range 0 � a/M � 0.4
with a value of

L = 10.4 M. (11)

Even for large values of the spin, the diameter depends only
weakly on the inclination angle causing a systematic uncertainty
of only 	2% for a value of the spin as large as a = 0.9 M . For a
quasi-Kerr black hole, the diameter is affected by the parameter
ε and the inclination which leads to a systematic uncertainty of

	5% if ε = 0.5. Therefore, a measurement of the ring diameter
directly measures the mass of the central object.

In Figure 9, we also plot (center panel) the ring displacement
of a quasi-Kerr black hole versus a sin i for values of the
inclination angle 17◦ � i � 86◦ and of the parameter 0 �
ε � 0.5. The solid lines in this figure represent the extreme
limits of the fit function given by expression (9) corresponding
to ε = 0 and ε = 0.5, sin i = 1, respectively. Finally, in Figure 9
(right panel), we show the ring asymmetry of quasi-Kerr black
holes versus ε sin3/2 i for values of the spin 0 � a/M � 0.4
and of the inclination angle 17◦ � i � 86◦. The solid line is
expression (10) evaluated at a = 0.0 M .

Thus, for a given disk inclination, an observation of the dis-
placement and the asymmetry directly leads to a measurement
of the spin a and quadrupolar correction parameter ε via the
expressions in Equations (9) and (10), respectively. A measure-
ment of the asymmetry allows for a test of the no-hair theorem.
In order to determine the displacement, it is necessary to mea-
sure the center of mass of the accretion flow around the black
hole. An estimate of the location of the center of mass may
perhaps be obtained from a (time-averaged) image of the outer
edges of the accretion flow.

6. CONCLUSIONS

In Paper I, we proposed a new framework for testing the no-
hair theorem with observations of black holes in the electromag-
netic spectrum. We formulated our tests based on a quasi-Kerr
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metric (Glampedakis & Babak 2006), which deviates smoothly
from the Kerr metric in the quadrupole moment. Since the no-
hair theorem admits exactly two independent multipole mo-
ments for a black hole, a measurement of these three moments
will allow us to test the no-hair theorem.

In this paper, we calculated numerically the mapping between
different locations in the accretion flow around a quasi-Kerr
black hole and positions in the image plane of a distant observer.
Our calculations allowed us to study the potential of using
imaging observations of black holes that will become available
in the near future in order to test the no-hair theorem.

We argued that the expected image of an accretion flow will
be characterized by a bright emission ring generated by light
rays that circle multiple times around the event horizon before
emerging toward the observer. We identified the ring diameter as
a direct measure of the mass of the black hole, and we quantified
the dependence of the displacement and the asymmetry of the
ring on the spin and the quadrupolar parameter as well as on the
disk inclination. For a given inclination angle, a measurement
of the displacement and the asymmetry directly measures the
spin and the quadrupolar parameter of the system, respectively.
The asymmetry itself provides a direct measure of the violation
of the no-hair theorem.

It is important to emphasize here that only the relative
displacement and asymmetry of the ring (i.e., measured in units
of the ring diameter) and not their absolute values are necessary
in inferring the spin and quadrupole moment of the black hole
spacetime. As a result, the outcome of such an observation does
not depend on the distance to the black hole, which might not be
known accurately. On the other hand, the angular diameter of the
photon ring is proportional to the mass of the black hole. This
can lead to an accurate measurement of the mass of the black
hole if the distance is known, or else of the distance to the black
hole, if its mass is known from, e.g., dynamical observations.

Sgr A*, the black hole in the center of the Milky Way, is
the ideal candidate for a test of the no-hair theorem due to its
high brightness, large angular size, and relatively unimpeded ob-
servational accessibility. Recent VLBI observations (Doeleman
et al. 2008) resolved Sgr A* on horizon scales. Incorporating
additional baselines to the VLBI network will lead to the first
images of Sgr A∗ within the next few years (Fish & Doeleman
2009). The emission from Sgr A∗ at sub-millimeter wavelengths
is optically thin, the size of the scattering ellipse is �1 M , and
the resolution of a VLBI image at this wavelength is also compa-
rable to 	1 M (Doeleman et al. 2008; Fish & Doeleman 2009).
The smearing of the images due to scattering and the finite res-
olution of the array will, therefore, not preclude measuring the
position and asymmetry of the photon ring to an accuracy that is
adequate in providing a quantitative test of the no-hair theorem.

Observations of the orbits of stars in the vicinity of the
black hole have provided an independent measurement of its
mass (Ghez et al. 2008; Gillessen et al. 2009). Perhaps more
importantly, the same observations may lead in the future to
an independent measurement of the spin and orientation of the
black hole as well as to a complementary test of the no-hair
theorem (Will 2008; Merritt et al. 2010).

We thank A. Broderick, S. Doeleman, V. Fish, K.
Glampedakis, S. Hughes, A. Loeb, D. Marrone, F. Özel, J.
Steiner, and R. Takahashi for many useful discussions. D.P.
thanks the Institute for Theory and Computations at Harvard
University for their hospitality. This work was supported by the
NSF CAREER award NSF 0746549.

APPENDIX

PHOTON INITIAL CONDITIONS

For the geometry in Figure 1, the initial conditions of the
photons in the image plane of a distant observer are better
expressed in spherical coordinates. The image plane is located
at a distance d from the black hole at an inclination angle i. Since
the observer is far away from the black hole, we can express the
initial conditions using standard Euclidean geometry.

First, we transform the image plane coordinates (x ′, y ′, z′)
into Cartesian coordinates (x, y, z) centered at the black hole.
We find

x = − y ′ cos i + z′ sin i + d sin i ,

y = x ′ ,

z = y ′ sin i + z′ cos i + d cos i . (A1)

We then convert the Cartesian black hole coordinates into
spherical coordinates by the usual transformation

r =
√

x2 + y2 + z2,

θ = arccos
z

r
,

φ = arctan
y

x
. (A2)

The initial conditions for a photon on the image plane at
(x ′, y ′) with uniform initial momentum �k0 = −k0ẑ

′ are then
given by

r0 =
√

x ′2 + y ′2 + d2,

θ0 = arccos
y ′ sin i + d cos i

r0
,

φ0 = arctan
x ′

d sin i − y ′ cos i
, (A3)

and

kr0 = − d

r0
k0,

kθ0 =
cos i − (y ′ sin i + d cos i) d

r2
0√

x ′2 + (d sin i − y ′ cos i)2
k0,

kφ0 = x ′ sin i

x ′2 + (d sin i − y ′ cos i)2
k0, (A4)

where r0, θ0, and φ0 are the initial coordinates of a given
photon and kr0 , kθ0 , and kφ0 are the components of its initial
3-momentum. The time component of the 4-momentum is
calculated from the 3-momentum �k0 so that its norm vanishes.
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