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ABSTRACT

We compute the effect of primordial non-Gaussianity on the halo mass function, using excursion set theory.
In the presence of non-Gaussianity, the stochastic evolution of the smoothed density field, as a function of
the smoothing scale, is non-Markovian and beside “local” terms that generalize Press–Schechter (PS) theory,
there are also “memory” terms, whose effect on the mass function can be computed using the formalism
developed in the first paper of this series. We find that, when computing the effect of the three-point correlator
on the mass function, a PS-like approach which consists in neglecting the cloud-in-cloud problem and in
multiplying the final result by a fudge factor �2, is in principle not justified. When computed correctly in
the framework of excursion set theory, in fact, the “local” contribution vanishes (for all odd-point correlators
the contribution of the image Gaussian cancels the PS contribution rather than adding up), and the result
comes entirely from non-trivial memory terms which are absent in PS theory. However it turns out that, in
the limit of large halo masses, where the effect of non-Gaussianity is more relevant, these memory terms give
a contribution which is the same as that computed naively with PS theory, plus subleading terms depending
on derivatives of the three-point correlator. We finally combine these results with the diffusive barrier model
developed in the second paper of this series, and we find that the resulting mass function reproduces recent
N-body simulations with non-Gaussian initial conditions, without the introduction of any ad hoc parameter.
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1. INTRODUCTION

In the first two papers of this series (Maggiore & Riotto
2010a, 2010b, Papers I and II in the following), we have studied
the mass function of dark matter halos using the excursion set
formalism. The halo mass function can be written as

dn(M)

dM
= f (σ )

ρ̄

M2

d ln σ−1(M)

d ln M
, (1)

where n(M) is the number density of dark matter halos of mass
M, σ (M) is the variance of the linear density field smoothed on a
scale R corresponding to a mass M, and ρ̄ is the average density
of the universe. Analytical derivations of the halo mass function
are typically based on Press–Schechter (PS) theory (Press &
Schechter 1974) and its extension (Peacock & Heavens 1990;
Bond et al. 1991) known as excursion set theory (see Zentner
2007 for a recent review). In excursion set theory, the density
perturbation evolves stochastically with the smoothing scale,
and the problem of computing the probability of halo formation
is mapped into the so-called first-passage time problem in the
presence of a barrier. With this method, for Gaussian fluctuations
one obtains

fPS(σ ) =
(

2

π

)1/2
δc

σ
e−δ2

c /(2σ 2) , (2)

where δc � 1.686 is the critical value in the spherical collapse
model. This result can be extended to arbitrary redshift z by
reabsorbing the evolution of the variance into δc, so that δc in
the above result is replaced by δc(z) = δc(0)/D(z), where D(z)
is the linear growth factor. Equation (2) is only valid when the
density contrast is smoothed with a sharp filter in momentum
space. In this case, the evolution of the density contrast δ(R) with
the smoothing scale is Markovian, and the probability that the

density contrast reaches a given value δ at a given smoothing
scale satisfies a Fokker–Planck equation with an “absorbing
barrier” boundary condition. From the solution of this equation,
one obtains Equation (2), including a well-known factor of 2
that Press and Schecther were forced to add by hand.

However, as is well known, a sharp filter in momentum space
is not appropriate for comparison with experimental data from
upcoming galaxy surveys, nor with N-body simulations, because
it is not possible to associate unambiguously a mass M to the
smoothing scale R used in this filter. Rather, one should use
a top-hat filter in coordinate space, in which case the mass
associated to a smoothing scale R is trivially (4/3)πR3ρ. If one
wants to compute the halo mass function with a top-hat filter in
coordinates space, one is confronted with a much more difficult
problem, where the evolution of δ with the smoothing scale is
no longer Markovian (Bond et al. 1991). Nevertheless, in Paper
I we succeeded in developing a formalism that allows us to
compute perturbatively these non-Markovian effects and, for
Gaussian fluctuations, we found that, to first order, Equation (2)
is modified to

f (σ ) = (1−κ)

(
2

π

)1/2
δc

σ
e−δ2

c /(2σ 2) +
κ√
2π

δc

σ
Γ

(
0,

δ2
c

2σ 2

)
,

(3)
where

κ(R) ≡ lim
R′→∞

〈δ(R′)δ(R)〉
〈δ2(R′)〉 − 1 � 0.4592 − 0.0031 R , (4)

R is measured in Mpc h−1, Γ(0, z) is the incomplete Gamma
function, and the numerical value of κ(R) is computed using a
top-hat filter function in coordinate space and a ΛCDM model
with σ8 = 0.8, h = 0.7, ΩM = 1−ΩΛ = 0.28, ΩB = 0.046, and
ns = 0.96, consistent with the Wilkinson Microwave Anisotropy
Probe (WMAP) 5-year data release.
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This analytical result reproduces well the result of a Monte
Carlo realization of the first-crossing distribution of excursion
set theory, obtained by integrating numerically a Langevin equa-
tion with a colored noise, performed in Bond et al. (1991) and
in Robertson et al. (2009). This is a useful test of our technique.
Still, neither Equation (2) nor Equation (3) performs well when
compared to cosmological N-body simulation, which means that
some crucial physical ingredient is still missing in the model.
This is not surprising, since the spherical (or ellipsoidal) col-
lapse model is a very simplified description of the process of
halo formation which, as shown by N-body simulations, is much
more complicated, and proceeds through a mixture of smooth
accretion and violent encounters leading to merging as well as to
fragmentation (see Springel et al. 2005 and the related movies at
http://www.mpa-garching.mpg.de/galform/millennium/). Fur-
thermore, the very operative definition of what is a dark matter
halo is a subtle issue. Real halos are not spherical. They are at
best triaxial, and often much more irregular, especially if they
experienced recent mergers. Searching for them with a spherical
overdensity (SO) algorithm therefore introduces further statis-
tical uncertainties. Similar considerations hold for friends-of-
friends (FOF) halo finders.

In Paper II, we have discussed in detail these uncertainties
and we have proposed that at least some of the complications
intrinsic to a realistic process of halo formation (as well as the
statistical uncertainties related to the details of the halo finder)
can be accounted for, within the excursion set framework, by
treating the critical value for collapse as a stochastic variable. In
this approach, all our ignorance of the details of halo formation is
buried into the variance of the fluctuations of the collapse barrier.
The computation of the halo mass function is then mapped into a
first-passage time process in the presence of a diffusing barrier,
i.e., a barrier whose height evolves according to a diffusion
equation. For Gaussian fluctuations, we found that Equation (3)
must be replaced by

f (σ ) = (1 − κ̃)

(
2

π

)1/2
a1/2δc

σ
e−aδ2

c /(2σ 2)

+
κ̃√
2π

a1/2δc

σ
Γ

(
0,

aδ2
c

2σ 2

)
, (5)

where

a = 1

1 + DB

, κ̃ = κ

1 + DB

, (6)

and DB is an effective diffusion coefficient for the barrier. A
first-principle computation of DB appears difficult, but from
recent studies of the properties of the collapse barrier in
N-body simulations (Robertson et al. 2009) we deduced a value
DB � (0.3δc)2. Using this value for DB in Equation (6) gives
a � 0.80, so √

a � 0.89 . (7)

We see that the net effect of the diffusing barrier is that, in the
mass function, δc is replaced by a1/2δc, which is the replacement
that was made by hand, simply to fit the data, in Sheth & Tormen
(1999) and Sheth et al. (2001).

The above result was obtained by considering a barrier that
fluctuates over the constant value δc of the spherical collapse
model. More generally, one should consider fluctuations over
the barrier B(σ ) given by the ellipsoidal collapse model. Since
the latter reduces to the former in the small σ limit (i.e., for
large halo masses), Equation (5) is better seen as the large
mass limit of a more accurate mass function obtained from a

barrier that fluctuates around the average value B(σ ) given by the
ellipsoidal collapse model. When κ = 0, Equation (5) reduces
to the large mass limit of the Sheth–Tormen mass function. So,
Equation (5) generalizes the Sheth–Tormen mass function by
taking into account the effect of the top-hat filter in coordinate
space, while Equation (6) provides a physical motivation for the
introduction of the parameter a.

Equation (5) is in excellent agreement with the N-body
simulations for Gaussian primordial fluctuations; see Figures 6
and 7 of Paper II. We stress that our value a � 0.80 is not
determined by fitting the mass function to the data. We do have
an input from the N-body simulation here, which is however
quite indirect, and is the measured variance of the threshold for
collapse, which for small σ is determined in Robertson et al.
(2009) to be ΣB � 0.3σ . Our diffusing barrier model of Paper II
translates this information into an effective diffusion coefficient
for the barrier, DB = (0.3δc)2, and predicts a = 1/(1 + DB).
We refer the reader to Paper II for details and discussions of the
physical motivations for the introduction of a stochastic barrier.

The above results refer to initial density fluctuations which
have a Gaussian distribution. In this paper, we attack the
problem of the effect on the halo mass function of non-
Gaussianities in the primordial density field. Over the last
decade, a great deal of evidence has been accumulated from
the cosmic microwave background (CMB) anisotropy and
large-scale structure (LSS) spectra that the observed structures
originated from seed fluctuations generated during a primordial
stage of inflation. While standard one-single field models of
slow-roll inflation predict that these fluctuations are very close
to Gaussian (see Acquaviva et al. 2003; Maldacena 2003), non-
standard scenarios allow for a larger level of non-Gaussianity
(see Bartolo et al. 2004, and references therein). Deviations from
non-Gaussianity are usually parameterized by a dimensionless
quantity fNL (Bartolo et al. 2004) whose value sets the magnitude
of the three-point correlation function. If the process generating
the primordial non-Gaussianity is local in space, the parameter
fNL in Fourier space is independent from the momenta entering
the three-point correlation function; if instead the process is non-
local in space, like in models of inflation with non-canonical
kinetic terms, fNL acquires a dependence on the momenta. It
is clear that detecting a significant amount of non-Gaussianity
and its shape either from the CMB or from the LSS offers
the possibility of opening a window into the dynamics of the
universe during the very first stages of its evolution. Current
limits on the strength of non-Gaussianity set the fNL parameter
to be smaller than O(100) (Komatsu et al. 2009).

Non-Gaussianities are particularly relevant in the high-mass
end of the power spectrum of perturbations, i.e., on the scale
of galaxy clusters, since the effect of non-Gaussian fluctuations
becomes especially visible on the tail of the probability distribu-
tion. As a result, both the abundance and the clustering properties
of very massive halos are sensitive probes of primordial non-
Gaussianities (Matarrese et al. 1986, 2000; Grinstein & Wise
1986; Lucchin et al. 1988; Moscardini et al. 1991; Koyama et al.
1999; Robinson & Baker 2000; Robinson et al. 2000), and could
be detected or significantly constrained by the various planned
large-scale galaxy surveys, both ground based (such as DES,
PanSTARRS, and LSST) and on satellite (such as EUCLID and
ADEPT) see, e.g., Dalal et al. (2008) and Carbone et al. (2008).
Furthermore, the primordial non-Gaussianity alters the cluster-
ing of dark matter halos inducing a scale-dependent bias on large
scales (Dalal et al. 2008; Matarrese & Verde 2008; Slosar et al.
2008; Afshordi & Tolley 2008) while even for small primordial
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non-Gaussianity the evolution of perturbations on super-Hubble
scales yields extra contributions on smaller scales (Bartolo et al.
2005).

At present, there exist already various N-body simulations
where non-Gaussianity has been included in the initial condi-
tions (Kang et al. 2007; Grossi et al. 2007; Dalal et al. 2008;
Desjacques et al. 2008; Pillepich et al. 2008; Grossi et al. 2009)
and which are useful to test the accuracy of the different theo-
retical predictions for the dark matter halo mass function with
non-Gaussianity.

Various attempts at computing analytically the effect of
primordial non-Gaussianities on the mass function exist in the
literature, based on non-Gaussian extensions of PS theory (Chiu
et al. 1997; Robinson & Baker 2000; Matarrese et al. 2000;
LoVerde et al. 2008). However, for Gaussian fluctuations, in the
large mass regime PS theory is off by 1 order of magnitude. It is
clear that, by computing non-Gaussian corrections over a theory
that, already at the Gaussian level, in the relevant regime is off by
an order of magnitude, one cannot hope to get the correct mass
function for the non-Gaussian case. What is typically done in the
recent literature is to take the ratio RNG(M) of the non-Gaussian
halo mass function to the Gaussian halo mass function, both
computed within the framework of PS theory, hoping that even
if neither the former nor the latter are correct, still their ratio
might catch the main modifications due to non-Gaussianities.
The full non-Gaussian halo mass function is then obtained by
taking a fit to the data in the Gaussian case, such as the Sheth
and Thormen mass function (Sheth & Tormen 1999; Sheth et al.
2001), and multiplying it by RNG(M). With this philosophy, the
result of Matarrese et al. (2000) reads4

RNG(σ ) = exp

{
δ3
c S3(σ )

6σ 2

} ∣∣∣∣
× 1

6

δc√
1 − δcS3(σ )/3

dS3

d ln σ
+

√
1 − δcS3(σ )/3

∣∣∣∣, (8)

where

S3(σ ) = 〈δ3(S)〉
〈δ2(S)〉2

(9)

is the (normalized) skewness of the density field and, as usual,
S = σ 2 is the variance. Since σ = σ (M), we can equivalently
consider RNG as a function of M.5

With a similar philosophy, but a different expansion tech-
nique, namely, the Edgeworth expansion, LoVerde et al. (2008)
propose

RNG(σ ) = 1 +
1

6

σ 2

δc

[
S3(σ )

(
δ4
c

σ 4
− 2δ2

c

σ 2
− 1

)
+

dS3

d ln σ

(
δ2
c

σ 2
− 1

)]
.

(10)
In the limit σ/δc � 1, Equation (10) becomes

RNG(σ ) = 1 +
δ3
cS3(σ )

6σ 2
. (11)

The same result is obtained from Equation (8) expanding first
to linear order in S3(σ ), and then retaining the leading term of
the expansion for small σ/δc. The two formulae differ instead

4 We thank S. Matarrese for pointing out to us a typo in Matarrese et al.
(2000).
5 We do not write explicitly the dependence of RNG(σ ) on redshift z, which
enters through the variance σ 2 and, as usual, can be reabsorbed into the height
δc of the critical value for collapse. The normalized skewness must instead be
taken at z = 0, see Grossi et al. (2009).

at the level of the terms subleading in the expansion for small
σ/δc. In Grossi et al. (2009), in order to fit the data of N-body
simulations, it was suggested to modify both Equations (8) and
(10), by making the replacement

δc → δeff = √
a δc , (12)

with a value
√

a � 0.86 obtained from the fit to the data,
very close to our prediction given in Equation (7).6 In the
Gaussian case, we have shown in Paper II that this replacement,
which in the previous literature was made ad hoc just to fit
the data, actually follows from the diffusive barrier model, see
Equation (5), and that the precise value of a depends, among
other things, on the details of the halo finder in the simulation,
so (slightly) different values of a are obtained from N-body
simulations with different halo finders. Below we will see how
the results of Paper II generalize to the non-Gaussian case.

In Grossi et al. (2009) it is shown that, after performing
the replacement (Equation (12)), both Equations (8) and (10)
are in good agreement with the result of N-body simulations
with non-Gaussian initial conditions, which a posteriori can be
seen as a justification of the procedure used in their derivation.
However, it is clear that taking the ratio of two results that, in the
interesting mass range, are both known to be off by 1 order of
magnitude, in order to get a fine effect such as the non-Gaussian
corrections, can only be considered as a heuristic procedure.
First of all, PS theory by itself produces a wrong exponential
factor, since it would give a = 1. Here, one might argue that
the Gaussian and non-Gaussian mass functions have the same
exponential behavior, so this effect cancels when considering
the ratio RNG, and is anyhow accounted for by the heuristic
prescription (Equation (12)). Still, a further source of concern is
that the derivation of the PS mass function in Bond et al. (1991)
requires that the density field δ evolves with the smoothing
scale R (or more precisely with S(R)) in a Markovian way. Only
under this assumption, one can derive Equation (2) together
with the correct factor of 2 that Press and Schechter were forced
to introduce by hand. As we have discussed at length in Paper
I, this Markovian assumption is broken by the use of a filter
function different from a sharp filter in momentum space and,
of course, it is further violated by the inclusion of non-Gaussian
corrections. When studying non-Gaussianities, it is therefore
particularly important to perform the computation including the
effect of the filter, otherwise one would attribute to primordial
non-Gaussianities effects on the mass functions which are due,
more trivially, to the filter.

The formalism that we have developed in Papers I and II,
however, allows us to attack the problem. First of all, in Paper I
we have set up a “microscopic” approach which is in principle
exact.7 With this formalism, we computed the non-Markovian

6 As discussed in Paper II, the value of the diffusion constant of the barrier
DB, and hence our prediction for a, depends on the halo finder. The value
DB � 0.25, which leads to

√
a � 0.89, has been deduced from the simulation

of Robertson et al. (2009), that uses a spherical overdensity (SO) halo finder
with Δ = 200, while Grossi et al. (2009) use a friends-of-friends (FOF) halo
finder with link length 0.2. In the Gaussian case, the mass functions obtained
from these two finders are very close to each other. However, in order to
perform an accurate numerical comparison of our prediction with N-body
simulations with non-Gaussian initial conditions, it would be necessary to
determine both DB and the mass function with the same halo finder.
7 By exact we mean that, given the problem of halo formation as it is
formulated within excursion set theory, the path integral technique developed
in Paper I is an exact way of attacking the mathematical problem of the first
passage of a barrier by trajectories performing a non-Markovian stochastic
motion (at least order by order in the non-Markovian corrections). Of course,
one should not forget that excursion set theory itself gives only an approximate
description of the physics involved.
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corrections due to the filter function, which are given by the
terms proportional to κ in Equation (3). This is important
because it allows us to subtract, from a measurement of the
halo mass function, the “trivial” effect due to the filter, and
to remain with the effects due to genuine non-Gaussianities.
Second, putting together the corrections due to the filter with
the model of a diffusing barrier, we ended up with a halo
mass function which works very well in the Gaussian case, see
Figures 6 and 7 of Paper II, and which therefore is a meaningful
starting point for the inclusion of non-Gaussian perturbations.
Finally, the formalism developed in Paper I can be applied,
with simple modifications, to the perturbative computation of
the non-Gaussian corrections. This will be the subject of the
present paper.

This paper is organized as follows. In Section 2, extending
to the non-Gaussian case the results presented in Paper I, we
show how to formulate the first-passage time problem for non-
Gaussian fluctuations in terms of a path integral with boundaries,
and we recall the basic points of the computation of non-
Markovian corrections performed in Paper I. In Section 3, we
compute the non-Gaussian corrections with the excursion set
method, and we present our results for the halo mass function.
We will see that, in the approximation in which the three-point
correlator at different times is replaced by the corresponding
cumulant, we recover Equation (10) exactly, including the
replacement (Equation (12)), except that now this replacement
is not performed ad hoc to fit the N-body simulations, but is the
consequence of the diffusing barrier model of Paper II, which
also predicts

√
a � 0.89, in remarkable agreement with the

findings of Grossi et al. (2009).8 We will see, however, that
this result comes out in a rather unexpected way. In fact, the
“local” term that, in excursion set theory, is supposed to give
back the PS result multiplied by the appropriate factor of 2,
actually vanishes, because for the three-point correlator (as well
as for all odd-point correlators) the contribution of the image
Gaussian cancels the PS contribution rather than adding up. The
result (10) comes entirely from non-trivial memory terms that
have no correspondence in the naive PS approach.

We will then go beyond the approximation in which the
three-point correlator at different times is replaced by the
corresponding cumulant, by computing explicitly the mass
function at next-to-leading order and at next-to-next-to-leading
(NNL) order in the small parameter σ 2/δ2

c . We will then find
further corrections, which depends on the derivative of the
correlator, and which, with respect to the small parameter
σ 2/δ2

c , are of the same order as the subleading terms given
in Equation (10).

Finally, in Section 4 we present our conclusions, summarizing
the findings of this series of three papers.

The focus of this paper is on the generalization of ex-
cursion set theory to non-Gaussian fluctuations. However, in
Appendix A we examine, with our path integral formalism, the
generalization of naive PS theory to non-Gaussian fluctuations,
and we will contrast it with the generalization of excursion set
theory.

We have attempted to write this paper in a reasonably self-
contained manner, but the reading of this paper will certainly be
facilitated by a previous acquaintance with the first two papers
of this series, in particular with Paper I.

8 The parameter that we denote by a is the same as the parameter q of Grossi
et al. (2009).

2. PATH INTEGRAL APPROACH TO STOCHASTIC
PROBLEMS: NON-GAUSSIAN FLUCTUATIONS

2.1. General Formalism

In this section, we extend to non-Gaussian fluctuations the
path integral approach that we developed in Section 3 of Paper
I for Gaussian fluctuations. Our notation is as in Paper I. In
particular, we consider the density field δ smoothed over a
radius R with a top-hat filter in coordinate space. We denote
by S the variance of the smoothed density field and, as usual
in excursion set theory, we consider δ as a variable evolving
stochastically with respect to the “pseudotime” S (see, e.g.,
Section 2 of Paper I). The statistical properties of a random
variable δ(S) are specified by its connected correlators

〈δ(S1) . . . δ(Sp)〉c , (13)

where the subscript c stands for “connected.” We will also use
the notation

〈δp(S)〉c ≡ μp(S) , (14)

when all arguments S1, S2, . . . are equal. The quantities μp(S)
are also called the cumulants. As in Paper I, we consider an
ensemble of trajectories all starting at S0 = 0 from an initial
position δ(0) = δ0 (we will typically choose δ0 = 0 but the
computation can be performed in full generality) and we follow
them for a “time” S. We discretize the interval [0, S] in steps
ΔS = ε, so Sk = kε with k = 1, . . . n, and Sn ≡ S. A trajectory
is then defined by the collection of values {δ1, . . . , δn}, such that
δ(Sk) = δk .

The probability density in the space of trajectories is

W (δ0; δ1, . . . , δn; Sn) ≡ 〈δD(δ(S1) − δ1) . . . δD(δ(Sn) − δn)〉 ,
(15)

where δD denotes the Dirac delta. As in Paper I, our basic object
will be

Πε(δ0; δn; Sn) ≡
∫ δc

−∞
dδ1 . . .

∫ δc

−∞
dδn−1 W (δ0; δ1, . . . , δn−1, δn; Sn).

(16)
The usefulness of Πε is that it allows us to compute the
first-crossing rate from first principles, without the need of
postulating the existence of an absorbing barrier. In fact, the
quantity ∫ δc

−∞
dδn Πε(δ0; δn; Sn) (17)

gives the probability that at “time” Sn a trajectory always stayed
in the region δ < δc, for all times smaller than Sn. The rate
of change of this quantity is therefore equal to minus the rate
at which trajectories cross the barrier for the first time, so the
first-crossing rate is

F(Sn) = − ∂

∂Sn

∫ δc

−∞
dδn Πε(δ0; δn; Sn) . (18)

The halo mass function is then obtained from the first-crossing
rate using Equation (1) together with (see Equation (33) of
Paper I)

f (σ ) = 2σ 2F(σ 2), (19)

where S = σ 2. For comparison, it is also useful to introduce

ΠPS,ε(δ0; δn; Sn) ≡
∫ ∞

−∞
dδ1 . . . dδn−1 W (δ0; δ1, . . . , δn−1, δn; Sn).

(20)
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So, ΠPS,ε(δ0; δn; Sn) is the probability density of arriving in δn

at time Sn, starting from δ0 at time S0 = 0, through any possible
trajectory, while Πε(δ0; δn; Sn) is the probability density of
arriving in δn at time S, again starting from δ0 at time S0 = 0,
through trajectories that never exceeded δc. Observe that in both
cases the final point δn ranges over −∞ < δn < ∞. Inserting
Equation (15) into Equation (20) and carrying out the integrals
over dδ1 . . . dδn−1 we see that

ΠPS,ε(δ0; δn; Sn) = 〈δD(δ(Sn) − δn)〉 . (21)

Therefore ΠPS,ε can depend only on the correlators
(Equation (13)) with all times equal to Sn, i.e., on the cumu-
lants μp(Sn). In contrast, Πε(δ0; δn; Sn) is a much more compli-
cated object that depends on the multi-time correlators given in
Equation (13).

Furthermore, we see that ΠPS,ε is actually independent of ε,
since the integration over the intermediate positions has been
carried out explicitly, and the result depends only on δn and
Sn. Thus, we will write ΠPS,ε simply as ΠPS. In contrast, Πε

depends on ε, and we keep this ε dependence explicit. We are
finally interested in its continuum limit, Πε=0, and we have
already seen in Paper I that taking the limit ε → 0 of Πε is non-
trivial. So, despite their formal similarity, Πε and ΠPS are two
very different objects. The distribution function ΠPS has a trivial
continuum limit, and depends only on the cumulants, while Πε

depends on the full correlation functions (Equation (13)), and its
continuum limit is non-trivial. All the complexity enters in Πε

through the presence of a boundary in the integration domain,
since the variables δi are integrated only up to δc.

The use of ΠPS generalizes to non-Gaussian fluctuations the
original PS theory, since we are integrating over all trajectories,
including trajectories that perform multiple up- and down-
crossings of the critical value δc, and therefore suffers from the
same cloud-in-cloud problem of the original PS theory. In the
literature (Chiu et al. 1997; Robinson & Baker 2000; Matarrese
et al. 2000; LoVerde et al. 2008), this density functional has
then been used together with the ad hoc prescription that we
must multiply the mass function derived from it by a “fudge
factor” that ensures that the total mass of the universe ends
up in virialized objects. For Gaussian fluctuations this is the
well-known factor of 2 of Press and Schechter, while for non-
Gaussian theories it is different, although typically close to 2.

In contrast, Πε generalizes to non-Gaussian fluctuations the
approach of the excursion set method, where the “cloud-in-
cloud” problem is cured focusing on the first-passage time of
the trajectory, and no ad hoc multiplicative factor is required.
So, Πε is the correct quantity to compute. From the comparison
of Πε and ΠPS performed above, we understand that the
difference between the two is not just a matter of an overall
normalization factor. As we have seen above, in ΠPS all the
information contained in the correlators at different “times” get
lost, since it depends only on the cumulants. The correlators at
different time contain, however, important physical information.
Recalling that the role of “time” is actually played by S(R), the
correlators at different time are actually correlators between
density fields at different smoothing scales R1, R2, etc., and
therefore carry the information on the dependence of halo
formation on the environment and on the past history. This
information is intrinsically non-Markovian, which is the reason
why Πε is much more difficult to compute. However, these
correlations are physically very important, especially when we
study the non-Gaussianities, and are completely lost in the
extension of PS theory based on ΠPS. For this reason, our real

interest is in computing the distribution function Πε , while ΠPS
will only be considered as a benchmark against which we can
compare the results provided by Πε .

The first problem that we address is how to express
ΠPS(δ0; δ; S) and Πε(δ0; δ; S), in terms of the correlators of
the theory. Using the integral representation of the Dirac delta

δD(x) =
∫ ∞

−∞

dλ

2π
e−iλx , (22)

we write Equation (15) as

W (δ0; δ1, . . . , δn; Sn) =
∫ ∞

−∞

dλ1

2π
. . .

dλn

2π
ei

∑n
i=1 λi δi 〈e−i

∑n
i=1 λi δ(Si )〉 .

(23)
We must therefore compute

eZ ≡ 〈e−i
∑n

i=1 λiδ(Si )〉 . (24)

This is a well-known object both in quantum field theory and in
statistical mechanics, since it is the generating functional of the
connected Green’s functions, see, e.g., Stratonovich (1967). To
a field theorist, this is even more clear if we define the “current”
J from −iλ = εJ , and we use a continuous notation, so that

eZ = 〈ei
∫

dS J (S)δ(S)〉 . (25)

Therefore,

Z =
∞∑

p=2

(−i)p

p!

n∑
i1=1

. . .

n∑
ip=1

λi1 . . . λip 〈δi1 . . . δip 〉c

= − 1

2
λiλj 〈δiδj 〉c +

(−i)3

3!
λiλjλk 〈δiδj δk〉c

+
(−i)4

4!
λiλjλkλl 〈δiδj δkδl〉c + . . . , (26)

where δi = δ(Si) and the sum over i, j, . . . is understood. This
gives

W (δ0; δ1, . . . , δn; Sn) =
∫

Dλ

× exp

⎧⎨
⎩i

n∑
i=1

λiδi +
∞∑

p=2

(−i)p

p!

n∑
i1=1

. . .

n∑
ip=1

λi1 . . . λip 〈δi1 . . . δip 〉c

⎫⎬
⎭ ,

(27)

where ∫
Dλ ≡

∫ ∞

−∞

dλ1

2π
. . .

dλn

2π
, (28)

so

ΠPS(δ0; δn; Sn) =
∫ ∞

−∞
dδ1 . . . dδn−1

∫
Dλ

× exp

⎧⎨
⎩i

n∑
i=1

λiδi +
∞∑

p=2

(−i)p

p!

n∑
i1=1

. . .

n∑
ip=1

λi1 . . . λip 〈δi1 . . . δip 〉c

⎫⎬
⎭ ,

(29)

and

Πε(δ0; δn; Sn) =
∫ δc

−∞
dδ1 . . . dδn−1

∫
Dλ

× exp

⎧⎨
⎩i

n∑
i1=1

λiδi +
∞∑

p=2

(−i)p

p!

n∑
i=1

. . .

n∑
ip=1

λi1 . . . λip 〈δi1 . . . δip 〉c

⎫⎬
⎭ .

(30)
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2.2. Perturbation over the Markovian Case

As it was found in the classical paper by Bond et al. (1991),
when the density δ(R) is smoothed with a sharp filter in
momentum space it satisfies the equation

∂δ(S)

∂S
= η(S) , (31)

where here S = σ 2(R) is the variance of the linear density field
smoothed on the scale R and computed with a sharp filter in
momentum space, while η(S) satisfies

〈η(S1)η(S2)〉 = δ(S1 − S2) . (32)

Equations (31) and (32) are formally the same as a Langevin
equation with a Dirac-delta noise η(S). In this case, as discussed
in Paper I,

〈δ(Si)δ(Sj )〉c = min(Si, Sj ) , (33)

and for Gaussian fluctuations, where all n-point connected
correlators with n � 3 vanish, the probability density W can
be computed explicitly,

W gm(δ0; δ1, . . . , δn; Sn) = 1

(2πε)n/2
exp

{
− 1

2ε

n−1∑
i=0

(δi+1 − δi)
2

}
,

(34)
where the superscript “gm” (Gaussian–Markovian) reminds that
this value of W is computed for Gaussian fluctuations, whose
dynamics with respect to the smoothing scale is Markovian.
Using this result, in Paper I we have shown that, in the continuum
limit, the distribution function Πε=0(δ; S), computed with a
sharp filter in momentum space, satisfies a Fokker–Planck
equation with the boundary condition Πε=0(δc, S) = 0, and
we have therefore recovered, from our path integral approach,
the standard result of excursion set theory,

Πgm
ε=0(δ0; δ; S) = 1√

2πS

[
e−(δ−δ0)2/(2S) − e−(2δc−δ0−δ)2/(2S)

]
.

(35)
For a top-hat filter in coordinate space, we have found in Paper I
that Equation (33) is replaced by

〈δ(Si)δ(Sj )〉c = min(Si, Sj ) + Δ(Si, Sj ) , (36)

where S is now the variance of the linear density field computed
with the top-hat filter in coordinate space. We found that (for
the ΛCDM model used in Paper I) Δ(Si, Sj ) is very well
approximated by the simple analytic expression

Δ(Si, Sj ) � κ
Si(Sj − Si)

Sj

, (37)

where Si � Sj (the value for Si > Sj is obtained by
symmetry, since Δ(Si, Sj ) = Δ(Sj , Si)), and κ(R) is given in
Equation (4). The term min(Si, Sj ) in Equation (36) would
be obtained if the dynamics were governed by the Langevin
equation Equation (31), written with respect to the variance S
computed with the top-hat filter in coordinate space, and with
a Dirac-delta noise, and therefore describes the Markovian part
of the dynamics. The term Δ(Si, Sj ) ≡ Δij is a correction
that reflects the fact that, when one uses a top-hat filter in
coordinate space, the underlying dynamics is non-Markovian.
Observe that the full two-point correlator (Equation (36)) cannot
be obtained from an underlying Langevin equation and, as a

consequence, the probability distribution Πε(δ0; δn; Sn) does not
satisfy any local generalization of the Fokker–Planck equation;
see the discussion below, Equation (83) of Paper I. However,
the formalism developed in Paper I allowed us to compute
Πε(δ0; δn; Sn) directly from its path integral representation,

Πε(δ0; δn; Sn) =
∫ δc

−∞
dδ1 . . . dδn−1

∫
Dλ exp

{
iλiδi − 1

2

× [min(Si, Sj ) + Δ(Si, Sj )]λiλj

}
, (38)

by expanding perturbatively in Δ(Si, Sj ). The zeroth-order term
simply gives Equation (35), i.e., the standard excursion set
result, with the variance of the filter that we are using. The
first correction is given by

ΠΔ1
ε (δ0; δn; Sn) ≡

∫ δc

−∞
dδ1 . . . dδn−1

1

2

n∑
i,j=1

Δij ∂i∂j

×
∫

Dλ exp

⎧⎨
⎩i

n∑
i=1

λiδi − 1

2

n∑
i,j=1

min(Si, Sj )λiλj

⎫⎬
⎭

= 1

2

n∑
i,j=1

Δij

∫ δc

−∞
dδ1 . . . dδn−1 ∂i∂jW

gm(δ0; δ1, . . . , δn; Sn),

(39)

where we used the notation ∂i = ∂/∂δi and the identity
λeiλx = −i∂xe

iλx . This quantity has been computed explicitly
in Section 5.3 of Paper I, and the corresponding result for the
halo mass function is given by Equation (3). In this paper, we
will perform a similar computation for the correction induced
by the three-point function.

3. EXTENSION OF EXCURSION SET THEORY TO
NON-GAUSSIAN FLUCTUATIONS

If in Equation (30), we only retain the three-point correlator,
and we use the top-hat filter in coordinate space, we have

Πε(δ0; δn; Sn) =
∫ δc

−∞
dδ1 . . . dδn−1

∫
Dλ

× exp

{
iλiδi − 1

2
[min(Si, Sj ) + Δij ]λiλj

+
(−i)3

6
〈δiδj δk〉λiλjλk

}
. (40)

Expanding to first order, Δij and 〈δiδj δk〉 do not mix, so we must
compute

Π(3)
ε (δ0; δn; Sn) ≡ −1

6

n∑
i,j,k=1

〈δiδj δk〉
∫ δc

−∞
dδ1 . . . dδn−1∂i∂j ∂kW

gm ,

(41)
where the superscript (3) in Π(3)

ε refers to the fact that this is
the contribution linear in the three-point correlator. In prin-
ciple, the expression given in Equation (41) can be com-
puted using the formalism that we developed in Paper I.
In the continuum limit the triple sum over i, j, and k in
Equation (41) becomes a triple integral over intermediate time
variables dSi, dSj and dSk , each one integrated from zero to
Sn, so the full result is given by a triple time integral involving
〈δ(Si)δ(Sj )δ(Sk)〉, which is not very illuminating.
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Fortunately, such a full computation is not necessary either.
Remember in fact that the non-Gaussianities are particularly
interesting at large masses. Large masses correspond to small
values of the variance S = σ 2(M). Each of the integrals over
dSi, dSj , and dSk must therefore be performed over an interval
[0, Sn] that shrinks to zero as Sn → 0. In this limit, it is
not necessary to take into account the exact functional form
of 〈δ(Si)δ(Sj )δ(Sk)〉. Rather, to lowest order we can replace
it simply by 〈δ3(Sn)〉. More generally, we can expand the
three-point correlator in a triple Taylor series around the point
Si = Sj = Sk = Sn. We introduce the notation

G
(p,q,r)
3 (Sn) ≡

[
dp

dS
p

i

dq

dS
q

j

dr

dSr
k

〈δ(Si)δ(Sj )δ(Sk)〉
]

Si=Sj =Sk=Sn

.

(42)
Then,

〈δ(Si)δ(Sj )δ(Sk)〉 =
∞∑

p,q,r=0

(−1)p+q+r

p!q!r!
(Sn − Si)

p(Sn − Sj )q

× (Sn − Sk)rG(p,q,r)
3 (Sn). (43)

We expect (and we will verify explicitly in the following) that
terms with more and more derivatives give contributions to the
function f (σ ), defined in Equation (1), that are subleading in
the limit of small σ , i.e., for σ/δc � 1. So, we expect that
the leading contribution to the halo mass function will be given
by the term in Equation (43) with p = q = r = 0. At next-
to-leading order, we must also include the contribution of the
terms in Equation (43) with p + q + r = 1, i.e., the three
terms (p = 1, q = 0, r = 0), (p = 0, q = 1, r = 0), and
(p = 0, q = 0, r = 1), at NNL order we must include the
contribution of the terms in Equation (43) with p + q + r = 2,
and so on.

Observe that, in a general theory, the functions G
(p,q,r)
3 (Sn)

with different values of (p, q, r) are all independent of each
other; for instance,

G
(1,0,0)
3 (Sn) =

[
d

dSi

〈δ(Si)δ
2(Sn)〉

]
Si=Sn

(44)

is in general not the same as

1

3

[
d

dS
〈δ3(S)〉

]
S=Sn

, (45)

so G
(1,0,0)
3 (Sn) cannot be written as a derivative of G

(0,0,0)
3 (Sn).

The terms G
(p,q,r)
3 (Sn) in Equation (43) must all be treated as

independent functions that characterize the most general non-
Gaussian theory (except, of course, for the fact that G

(p,q,r)
3 (Sn)

is symmetric under exchanges of p, q, and r). However, for the
purpose of organizing the expansion in leading term, subleading
terms, etc., we can reasonably expect that, for small Sn

G
(p,q,r)
3 (Sn) ∼ S−(p+q+r)

n 〈δ3(Sn)〉 , (46)

i.e., each derivative ∂/∂Si , when evaluated in Si = Sn, gives
a factor of order 1/Sn. This ordering will be assumed when
we present our final result for the halo mass function below.
However, our formalism allows us to compute each contribution
separately, so our results below can be easily generalized in
order to cope with a different hierarchy between the various
G

(p,q,r)
3 (Sn).

3.1. Leading Term

The leading term in Π(3) is

Π(3,L)
ε (δ0; δn; Sn) = −〈δ3

n〉
6

n∑
i,j,k=1

∫ δc

−∞
dδ1 . . . dδn−1∂i∂j ∂kW

gm ,

(47)
where the superscript “L” stands for “leading.” This expression
can be computed very easily by making use of a trick that
we already introduced in Paper I. Namely, we consider the
derivative of Πgm

ε with respect to δc (which, when we use the
notation Πgm

ε (δ0; δn; Sn), is not written explicitly in the list of
variables on which Πgm

ε depends, but of course enters as the
upper integration limit in Equation (16)). The first derivative
with respect to δc can be written as (see Equation (B8) of Paper I)

∂

∂δc

Πgm
ε (δ0; δn; Sn) =

n−1∑
i=1

∫ δc

−∞
dδ1 . . . dδn−1 ∂iW

gm , (48)

since, when ∂/∂δc acts on the upper integration limit of the
integral over dδi , it produces W (δ1, . . . , δi = δc, . . . , δn; Sn),
which is the same as the integral of ∂iW with respect to dδi

from δi = −∞ to δi = δc. Similarly,

∂2

∂δ2
c

Πgm
ε (δ0; δn; Sn) =

n−1∑
i,j=1

∫ δc

−∞
dδ1 . . . dδn−1 ∂i∂jW

gm ,

(49)
see Equations (B9) and (B10) of Paper I. In the same way, we
find that

∂3

∂δ3
c

Πgm
ε (δ0; δn; Sn) =

n−1∑
i,j,k=1

∫ δc

−∞
dδ1 . . . dδn−1 ∂i∂j ∂kW

gm .

(50)
The right-hand side of this identity is not yet equal to the quantity
that appears in Equation (47), since there the sums run up to n
while in Equation (50) they only run up to n−1. However, what
we need is not really Π(3)

ε (δ0; δn; Sn), but rather its integral over
dδn, which is the quantity that enters in Equation (18). Then,
we consider∫ δc

−∞
dδn Π(3,L)

ε (δ0; δn; Sn) = − 1

6
〈δ3

n〉
n∑

i,j,k=1

∫ δc

−∞
dδ1 . . .

× dδn−1dδn∂i∂j ∂kW
gm , (51)

and we can now use the identity

n∑
i,j,k=1

∫ δc

−∞
dδ1 . . . dδn−1dδn ∂i∂j ∂kW

gm

= ∂3

∂δ3
c

∫ δc

−∞
dδ1 . . . dδn−1dδn W gm

= ∂3

∂δ3
c

∫ δc

−∞
dδn Πgm

ε (δ0; δn; Sn) , (52)

so∫ δc

−∞
dδn Π(3,L)

ε (δ0; δn; Sn) = −〈δ3
n〉

6

∂3

∂δ3
c

∫ δc

−∞
dδn Πgm

ε (δ0; δn; Sn) .

(53)
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From Equation (35), setting for simplicity δ0 = 0,

Πgm
ε=0(δ0 = 0; δn; Sn) = 1√

2πSn

[
e−δ2

n/(2Sn) − e−(2δc−δn)2/(2Sn)
]

. (54)

Inserting this into Equation (53), we immediately find the result
in the continuum limit,∫ δc

−∞
dδn Π(3,L)

ε=0 (0; δn; Sn) = 〈δ3
n〉

3
√

2π S
3/2
n

(
1 − δ2

c

Sn

)
e−δ2

c /(2Sn) .

(55)
We now insert this result into Equations (18) and (19) and we
express the result in terms of the normalized skewness

S3(σ ) ≡ 1

S2
〈δ3(S)〉 . (56)

Putting the contribution of Π(3,L) together with the Gaussian
contribution, we find

f (σ ) =
(

2

π

)1/2
δc

σ
e−δ2

c /(2σ 2)

{
1 +

σ 2

6δc

[
S3(σ )

(
δ4
c

σ 4
− 2δ2

c

σ 2
− 1

)

× +
dS3

d ln σ

(
δ2
c

σ 2
− 1

)]}
. (57)

Remarkably, this agrees exactly with the result obtained by
LoVerde et al. (2008), performing an Edgeworth expansion of
the non-Gaussian generalization of PS theory, see Equation (10).

However, the fact that a naive non-Gaussian generalization of
PS theory gives the same result that we have obtained from the
non-Gaussian generalization of excursion set theory (at least
to leading order for small σ/δc; we will see below that the
subleading term gets corrections) is somewhat accidental, as
can be realized from the following. In the sum over i, j, k of
∂i∂j ∂k in Equation (47), it is useful to separate the contribution
with i = j = k = n from the rest. Recall that in PS theory
the upper integration limit for the variables dδ1, . . . , dδn−1 is
+∞ rather than δc (which reflects the fact that in PS theory one
looks at the probability that, at a given smoothing radius, the
smoothed density is above threshold, regardless of whether it
was already above threshold for some larger smoothing radius).
If in Equation (47), we replaced the upper integration limit δc

with +∞, a derivative ∂i with i < n would integrate by parts
to zero. The terms where at least one of the indices i, j , or k
is strictly smaller than n therefore have no counterpart in PS
theory. The term where all indices i, j, . . . are equal to n, in
contrast, are local terms, which depends only on the cumulants
rather than on the correlators at different points, and that can
have a correspondence with PS theory. In the Gaussian case, it is
just such a local term that gives back the PS result, together with
the factor of 2 that in PS theory was added by hand. Formally,
this comes from the fact that, in the Gaussian case, the excursion
set probability distribution is the difference between the original
PS Gaussian and an “image” Gaussian, and these two terms give
contributions that add up when computing the first-crossing rate.

In the case of the three-point correlator, the situation is
however different. Denoting by Π(3,La) the contribution to Π(3,L)

obtained by setting i = j = k = n in Equation (47), we have

Π(3,La)
ε=0 (0; δn; Sn) = −1

6
〈δ3

n〉∂3
nΠgm

ε=0(0; δn; Sn) , (58)

and therefore∫ δc

−∞
dδn Π(3,La)

ε=0 (0; δn; Sn) = −1

6
〈δ3

n〉
[
∂2

nΠgm
ε=0(0; δn; Sn)

]
δn=δc

= 0 .

(59)

This result is in a sense surprising. Since PS theory gives a wrong
normalization factor, missing a factor of 2 in the Gaussian case,
and a factor close to 2 in the non-Gaussian case, what is done
in the literature when one uses PS theory is to take the PS result
and multiply it by hand by a factor of 2 (or, for non-Gaussian
fluctuations, close to 2), assuming that this would come out
from a proper treatment of the cloud-in-cloud problem, i.e.,
from excursion set theory. We see however that this is not at
all the case. In excursion set theory, Πgm

ε=0 is a difference of
two Gaussians, see Equation (35), so all its derivatives with
respect to δn of odd order, evaluated in δn = δc, are twice as
large as for a single Gaussian, but the function itself, as well as
all its derivatives with respect to δn of even order, evaluated in
δn = δc, are zero, i.e., the contribution from the second Gaussian
cancels the first contribution, rather than adding up. Since in
Equation (59) appears the second derivative of Πgm

ε=0 in δn = δc,
this term vanishes. We therefore see that the logic behind the
use of PS theory for non-Gaussian fluctuations, namely, (1)
compute with a naive extension of PS theory to non-Gaussian
fluctuations and (2) multiply the result by hand by a “fudge
factor” �2, assuming that it would come out from a solution of
the cloud-in-cloud problem, is not justified. For the contribution
linear in the three-point correlator 〈δ3

n〉, this “fudge factor” is
actually zero, and the result comes entirely from terms with at
least one derivative ∂i with i < n, which have no counterpart
in a non-Gaussian extension of PS theory. Above we have
computed the excursion set theory result performing at once
the sum over i, j, and k, using the trick given in Equation (52).
In Appendix B, we compute separately the terms in the sum
over i, j, and k with one or more indices equal to n, and we
check that they give back Equation (55).

In Sections 3.2 and 3.3, we will compute the corrections to
Equation (57) to next-to-leading and to NNL order. We also
need to take into account that the barrier must be treated as
diffusing, see Paper II, and we must include the corrections due
to the top-hat filter in coordinate space. This will be done in
Section 3.4.

Before leaving this section we observe that, in the approxi-
mation in which the correlators are replaced by the cumulants,
the effects of the higher-order correlators can also be computed
very simply. For instance, the effect of the four-point function
〈δ4

n〉 is obtained using

n∑
i,j,k,l=1

∫ δc

−∞
dδ1 . . . dδn−1dδn ∂i∂j ∂k∂lW

gm

= ∂4

∂δ4
c

∫ δc

−∞
dδn Πgm

ε (δ0; δn; S) . (60)

3.2. The Next-to-leading Term

Using Equations (41) and (43), at next-to-leading order we
get

∫ δc

−∞
dδn Π(3,NL)

ε (δ0; δn; Sn) = 1

2
G

(1,0,0)
3 (Sn)

n∑
i=1

(Sn − Si)
n∑

j,k=1

×
∫ δc

−∞
dδ1 . . . dδn−1dδn∂i∂j ∂kW

gm,

(61)

where the superscript “NL” in Π(3,NL)
ε stands for next-to-leading,

and we used the fact that the three terms (p = 1, q = 0, r = 0),
(p = 0, q = 1, r = 0), and (p = 0, q = 0, r = 1) give
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the same contribution. We now use the same trick as before to
eliminate

∑n
j,k=1 ∂j ∂k in favor of ∂2/∂δ2

c ,

∫ δc

−∞
dδnΠ(3,NL)

ε (δ0; δn; Sn) = 1

2
G

(1,0,0)
3 (Sn)

n∑
i=1

(Sn − Si)
∂2

∂δ2
c

×
∫ δc

−∞
dδ1 . . . dδn−1dδn∂iW

gm.

The remaining path integral can be computed using the tech-
nique developed in Paper I, namely, we write

∫ δc

−∞
dδ1 . . . dδn−1dδn ∂iW

gm =
∫ δc

−∞
dδ1 . . . dδn−1dδn W

× (δ0; δ1, . . . , δi = δc, . . . , δn; Sn),

(62)

and we use

W gm(δ0; δ1, . . . , δi−1, δc, δi+1, . . . , δn; Sn)

= W gm(δ0; δ1, . . . , δi−1, δc; Si)W
gm(δc; δi+1, . . . , δn; Sn − Si) ,

(63)

so∫ δc

−∞
dδ1 . . . dδi−1

∫ δc

−∞
dδi+1 . . . dδn−1dδn

× W gm(δ0; δ1, . . . , δi−1, δc; Si)W
gm(δc; δi+1, . . . , δn; Sn − Si)

= Πgm
ε (δ0; δc; Si)

∫ δc

−∞
dδn Πgm

ε (δc; δn; Sn − Si) . (64)

Recalling from Paper I that

Πgm
ε (δ0; δc; S) = √

ε
1√
π

δc − δ0

S3/2
e−(δc−δ0)2/(2S) + O(ε) (65)

and

Πgm
ε (δc; δn; S) = √

ε
1√
π

δc − δn

S3/2
e−(δc−δn)2/(2S) + O(ε) , (66)

we see that the factors
√

ε in Πgm
ε (δ0; δc; S) and in Πgm

ε (δc; δn; S)
combine with

∑
i to produce an integral over dSi, and

∫ δc

−∞
dδn Π(3,NL)

ε (δ0; δn; Sn) = 1

2π
G

(1,0,0)
3 (Sn)

×
∫ Sn

0
dSi

1

S
3/2
i (Sn − Si)1/2

× ∂2

∂δ2
c

[
δce

−δ2
c /(2Si )

∫ δc

−∞
dδn

× (δc − δn) exp

{
− (δc − δn)2

2(Sn − Si)

}]
.

(67)

The integral over dδn is easily performed writing

(δc − δn) exp

{
− (δc − δn)2

2(Sn − Si)

}
= (Sn − Si)∂n exp

{
− (δc − δn)2

2(Sn − Si)

}
,

(68)

so it just gives (Sn −Si). Carrying out the second derivative with
respect to δc and the remaining elementary integral over dSi, we
get

∫ δc

−∞
dδn Π(3,NL)

ε (δ0; δn; Sn) = 1√
2π

G
(1,0,0)
3 (Sn)

S
1/2
n

e−δ2
c /(2Sn) .

(69)
We now define

U3(σ ) ≡ 3G
(1,0,0)
3 (S)

S
, (70)

where as usual S = σ 2. When the ordering given in
Equation (46) holds, U3(σ ) is of the same order as the nor-
malized skewness S3(σ ) given in Equation (56). Computing the
contribution to f (σ ) from Equation (69) and putting it together
with Equation (57), we finally find

f (σ ) =
(

2

π

)1/2
δc

σ
e−δ2

c /(2σ 2)

[
1 +

σ 2

6δc

hNG(σ )

]
, (71)

where

hNG(σ ) = δ4
c

σ 4
S3(σ ) − δ2

c

σ 2

(
2S3(σ ) + U3(σ ) − dS3

d ln σ

)

−
(
S3(σ ) + U3(σ ) +

dS3

d ln σ
+

dU3

d ln σ

)
. (72)

We have ordered the terms in hNG(σ ) according to their
importance in the limit of small σ/δc assuming, according to
Equation (46), that U3(σ ) is of the same order as S3(σ ). The
leading order is given by (δc/σ )4S3(σ ) and, as we have seen, it
comes only from Π(3,L). The next-to-leading order in hNG(σ ) is
given by the terms proportional to (δc/σ )2, and we see that it is
affected by the terms with p + q + r = 1 in the expansion of
Equation (43). The terms in hNG(σ ) which are O(1) with respect
to the large parameter δc/σ are NNL order corrections and, if we
wish to include them, we must for consistency include also the
contribution from the terms with p + q + r = 2 in the expansion
of Equation (43). We compute them in the next subsection.

Observe also that typically S3 depends very weakly on the
smoothing scale R and hence on σ . For instance, in fNL-theories
it changes only by a factor �3 as R is changed by a factor
100, from 0.1 Mpc h−1 to 10 Mpc h−1, see Matarrese et al.
(2000). Therefore, even if parametrically dS3/d ln σ has the
same power-law behavior as S3, its prefactor will typically be
numerically small.

3.3. The Next-to-next-to-leading Term

Using Equations (41) and (43) and keeping the terms with
p + q + r = 2, we find two kind of contributions. The first
has (p = 2, q = r = 0), with a combinatorial factor of
3 and the second has (p = q = 1, r = 0), again with a
combinatorial factor of 3. We denote the contribution to Π(3)

at NNL order by Π(3,NNL), and the two separate contributions
with (p = 2, q = r = 0) and with (p = q = 1, r = 0) as
Π(3,NNLa) and Π(3,NNLb), respectively. Thus,∫ δc

−∞
dδn Π(3,NNLa)

ε (δ0; δn; Sn) = −1

4
G

(2,0,0)
3 (Sn)

×
n∑

i=1

(Sn − Si)
2

n∑
j,k=1

∫ δc

−∞
dδ1 . . . dδn−1dδn∂i∂j ∂kW

gm,

(73)
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and ∫ δc

−∞
dδn Π(3,NNLb)

ε (δ0; δn; Sn) = −1

2
G

(1,1,0)
3 (Sn)

×
n∑

i,j=1

(Sn − Si)(Sn − Sj )
n∑

k=1

∫ δc

−∞
dδ1 . . . dδn−1

× dδn∂i∂j ∂kW
gm. (74)

The first term is straightforward to compute. We use again the
trick of eliminating

∑n
j,k=1 ∂j ∂k in favor of ∂2/∂δ2

c , and we
proceed just as in Section 3.2. The result is

∫ δc

−∞
dδn Π(3,NNLa)

ε (δ0; δn; Sn) = − 3

4π
G

(2,0,0)
3 (Sn)

×
[√

2π S1/2
n e−δ2

c /(2Sn) − πδc Erfc

(
δc√
2Sn

)]
, (75)

where Erfc is the complementary error function.
The computation of Equation (74) is more complicated, but

can be performed with the formalism that we have developed
in Paper I; see in particular Appendix B of Paper I. The factor∑n

k=1 ∂k is eliminated as usual in favor of ∂/∂δc. We also observe
that, in Equation (74), the terms with i = n or j = n do not
contribute, because of the factor (Sn − Si)(Sn − Sj ), and we
separate the sum over i, j into the term with i = j and twice
the term with i < j . The first term is

I1 ≡ − 1

2
G

(1,1,0)
3 (Sn)

n−1∑
i=1

(Sn − Si)
2

× ∂

∂δc

∫ δc

−∞
dδ1 . . . dδn−1dδn∂

2
i W gm , (76)

and the second is

I2 ≡ − G
(1,1,0)
3 (Sn)

n−2∑
i=1

n−1∑
j=i+1

(Sn − Si)(Sn − Sj )

× ∂

∂δc

∫ δc

−∞
dδ1 . . . dδn−1dδn∂i∂jW

gm . (77)

As we discussed in detail in Paper I, quantities such as the
right-hand side of Equation (74) are finite in the continuum
limit ε → 0, as it is obvious physically, and as we checked
explicitly in solvable examples in Paper I. However, when we
split the sum over the indices i, j into two separate parts, such
as those given in Equations (76) and (77), these are separately
divergent in the continuum limit, and the divergence cancels
when we sum them up. It is therefore necessary to regularize
them carefully, and separate them into a divergent part and the
finite part. Since we know that the divergent terms must cancel,
we can simply extract from each term the finite part, disregarding
the divergences. This is the finite part prescription discussed and
tested in detail in Paper I. We will denote by FP this procedure
of extracting the finite part from terms such as Equations (76)
and (77).

The computation of the finite part of Equation (76)
is basically identical to the one that we already per-
formed in Appendix B of Paper I, see in particular
Equations (B13)–(B15) and (B29) there, and the result is that

this term diverges as 1/
√

ε with no finite part, so

FP

n−1∑
i=1

(Sn − Si)
2 ∂

∂δc

∫ δc

−∞
dδ1 . . . dδn−1dδn∂

2
i W gm = 0.

(78)

The computation (Equation (77)) is also completely analo-
gous to the computation of the “memory-of-memory” term per-
formed in Appendix B of Paper I, see in particular Equations
(B17)–(B28) and (B30) there, except that we now have a factor
(Sn − Si)(Sn − Sj ) in the integrals over dSi and dSj. We can
then repeat basically the same steps as detailed in Appendix B
of Paper I, and we find

FP [I2] = − G
(1,1,0)
3 (Sn)

π
√

2π
FP

∫ Sn

0
dSi

(Sn − Si)

S
3/2
i

(
1 − δ2

c

Si

)

× e−δ2
c /2Si

∫ Sn

Si

dSj

(Sn − Sj )1/2

(Sj − Si)3/2

× exp

{
− a2

2(Sj − Si)

}
, (79)

where a = √
αε and α is a numerical constant which appears

when the sum over j is replaced by an integral over dSj; see
Equations (B20)–(B24) of Paper I. The integral over dSj can be
computed writing tn = Sn − Si , tj = Sj − Si , and using the
identity∫ tn

0
dtj

(tn − tj )1/2

t
1/2
j

exp

{
− a2

2tj

}
=

√
2π

2a

[
2t1/2

n e−a2/(2tn)

− a
√

2π Erfc

(
a√
2tn

)]
,

(80)

which is proved in the same way as Equations (115) and (116)
of Paper I. In this equation, a = √

αε goes to zero in the
continuum limit. In the limit a → 0, the above result displays
a term divergent as 1/a, i.e., as 1/

√
ε, which must cancel the

divergence coming from Equation (76), plus a term which is
finite as a → 0, which can be extracted from Equation (80)
recalling that Erfc(0) = 1, so

FP

∫ Sn

Si

dSj

(Sn − Sj )1/2

(Sj − Si)3/2
exp

{
− a2

2(Sj − Si)

}
= −π . (81)

Computing the remaining integral over dSi, which is finite and
elementary, we find∫ δc

−∞
dδn Π(3,NNLb)

ε (δ0; δn; Sn) = − 2

π
G

(1,1,0)
3 (Sn)

×
[√

2π S1/2
n e−δ2

c /(2Sn) − πδc Erfc

(
δc√
2Sn

)]
. (82)

Putting together this result and Equation (75), we end up with∫ δc

−∞
dδn Π(3,NNL)

ε (δ0; δn; Sn)

= − 1

2π

(
3

2
G

(2,0,0)
3 (Sn) + 4G

(1,1,0)
3 (Sn)

)

×
[√

2π S1/2
n e−δ2

c /(2Sn) − πδc Erfc

(
δc√
2Sn

)]
. (83)
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We now introduce the function

V3(σ ) ≡ 9

2
G

(2,0,0)
3 (S) + 12G

(1,1,0)
3 (S) . (84)

According to Equation (46), V3(σ ) is parametrically of the same
order as S3(σ ) and U3(σ ), as σ → 0. We can now compute
the contribution of this term to the function hNG(σ ) using
Equations (18), (19), and (70). Retaining only the terms that
contribute up to O(1) in δc/σ , we find that the function hNG(σ )
is modified to

hNG(σ ) = δ4
c

σ 4
S3(σ ) − δ2

c

σ 2

(
2S3(σ ) + U3(σ ) − dS3

d ln σ

)

−
(
S3(σ ) + U3(σ ) − V3(σ ) +

dS3

d ln σ
+

dU3

d ln σ

)

+ O
(

σ 2

δ2
c

)
. (85)

This is the complete result for the halo mass function, up to
NNL order in the small parameter σ 2/δ2

c .

3.4. The Effects of the Diffusing Barrier and of the Filter

Until now we have worked with a barrier with a fixed height
δc and we neglected the corrections due to the filter. We now
include the modifications due to the fact that the height of the
barrier diffuses stochastically, as discussed in Paper II, and also
the corrections due to the filter.

To compute the non-Gaussian term proportional to the three-
point correlator with the diffusing barrier we recall, from
Paper II, that the first-passage time problem of a particle
obeying a diffusion equation with diffusion coefficient D = 1,
in the presence of a barrier that moves stochastically with
diffusion coefficient DB, can be mapped into the first-passage
time problem of a particle with effective diffusion coefficient
(1 + DB), and fixed barrier. This can be reabsorbed into a
rescaling of the “time” variable S → (1 + DB)S = S/a,
and therefore σ → σ/

√
a. At the same time, the three-point

correlator must be rescaled according to 〈δ3
n〉 → a−3/2〈δ3

n〉
since, dimensionally, 〈δ3

n〉 is the same as S3/2 (if we perform
dimensional analysis as discussed below Equation (A10) of
Paper I), which means that S3 → a1/2S3, and similarly for the
functions U3 and V3.9 Then, Equations (71) and (85) become

f (σ ) =
(

2

π

)1/2
a1/2δc

σ
e−aδ2

c /(2σ 2)

[
1 +

σ 2

6a1/2δc

hNG(σ )

]
,

(86)
where

hNG(σ ) = a2δ4
c

σ 4
S3(σ ) − aδ2

c

σ 2

(
2S3(σ ) + U3(σ ) − dS3

d ln σ

)

−
(
S3(σ ) + U3(σ ) − V3(σ ) +

dS3

d ln σ
+

dU3

d ln σ

)

+ O
(

σ 2

δ2
c

)
. (87)

9 In principle, we should also shift the argument σ of S3, U3, and V3.
However, S3 depends very weakly on the smoothing scale R and hence on σ .
For instance, in fNL-theories it changes only by a factor �3 as R is changed by
a factor 100, from 0.1 Mpc h−1 to 10 Mpc h−1, see Matarrese et al. (2000). In
most situations, we can then neglect the rescaling of the argument of S3, and
we expect that the same holds for U3 and V3.

We see that the terms depending on the skewness S3(σ ) and
its derivative coincide with those given in Equation (10), if we
identify δeff with a1/2δc. Observe, from Equation (7), that our
prediction a1/2 � 0.89 is in remarkable agreement with the
value a1/2 � 0.86 proposed by Grossi et al. (2009) from the fit
to the N-body simulations (see, however, footnote 6).

We have therefore derived, from a first-principle computation,
Equation (10), which was proposed in LoVerde et al. (2008) and
in Grossi et al. (2009) using a mixture of heuristic theoretical
arguments (the use of a non-Gaussian extension of PS theory,
rather than of the excursion set theory) and a calibration of
parameters from the fit to the data of the N-body simulations (the
replacement δc → 0.86δc), and we have improved it including
the effect of the functions U3(σ ) and V3(σ ), which are absent in
LoVerde et al. (2008) and cannot be obtained from any naive
extension of PS theory, which from the beginning contains
only the cumulants, rather than the full correlation functions
at different smoothing radii.

The term in Equation (87) which is dominant for small σ is
the same as that of both Equations (8) and (10), and appears to
fit well the data of the N-body simulations (Grossi et al. 2009).
Given the size of the error bars of the non-Gaussian N-body
simulations (see, e.g., Figures 6 and 7 of Grossi et al. 2009), it is
probably difficult for the moment to test the subleading terms in
Equation (87), and in particular to see the effect of the functions
U3(σ ) and V3(σ ).

As a final ingredient, we must add the effect of the top-hat
filter function in coordinate space. When the non-Gaussianities
are not present, these are given by Equation (5). More generally,
even the non-Gaussian corrections must be computed using the
propagator [min(Si, Sj )+Δij ] in Equation (40), so we will apply
the same correction factor found for the Gaussian part also to
the non-Gaussian term, and we end up with

f (σ ) = (1 − κ̃)

(
2

π

)1/2
a1/2δc

σ
e−aδ2

c /(2σ 2)

[
1 +

σ 2

6a1/2δc

hNG(σ )

]

+
κ̃√
2π

a1/2δc

σ
Γ

(
0,

aδ2
c

2σ 2

)
, (88)

with hNG(σ ) still given by Equation (87). More generally,
also the term proportional to the incomplete Gamma function
could get non-Gaussian corrections, which in principle can be
computed evaluating perturbatively a “mixed” term proportional
to

Δij 〈δkδlδm〉∂i∂j ∂k∂l∂m (89)

in Equation (40). However, we saw in Paper I that in the
large mass limit, where the non-Gaussianities are important,
the term proportional to the incomplete Gamma function is
subleading, so we will neglect the non-Gaussian corrections to
this subleading term.10

The relative weight of the correction due to the filter pro-
portional to the incomplete Gamma function, and of the non-
Gaussian corrections depends on the value of σ and, of course,
on the value of the three-point correlator, i.e., of S3. In fNL-
theory, S3 increases very weakly with the mass, i.e., as σ → 0.
In the low-σ (i.e., large mass) limit we can use the asymp-
totic expansion of the incomplete Gamma function for large
z, Γ(0, z) � z−1e−z, and we see that, asymptotically, the

10 Furthermore, one must be aware of the fact that the term proportional to
hNG(σ ) might in general receive corrections from the top-hat filter that do not
have exactly the same form as that of the Gaussian term. Again, in principle,
these can be obtained by computing the term proportional to
Δij 〈δkδlδm〉∂i∂j ∂k∂l∂m in the expansion of the path integral.
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term in the second line of Equation (88) depends on σ as
σ exp{−aδ2

c /(2σ 2)}, and therefore is small compared to both
the leading and next-to-leading term in the non-Gaussian correc-
tions, which overall behaves as σ−3S3(σ ) exp{−aδ2

c /(2σ 2)} and
σ−1S3(σ ) exp{−aδ2

c /(2σ 2)}, respectively. When this asymp-
totic behavior sets in depends, of course, on the numerical value
of S3 so, in fNL-theory, on the value of the fNL parameter. In any
case, given a measure of f (σ ), either from galaxy surveys or
from N-body simulations with non-Gaussian initial conditions,
the prediction (Equation (88)) allows us to disentangle the ef-
fects due to the filter from the physically interesting effects due
to primordial non-Gaussianities.

4. CONCLUSIONS

To conclude this series of three papers, we summarize the
main results that we obtained and, at the price of some repetition,
we collect here the most important formulae that are scattered
in the text. Our aim was to compute the halo mass function, i.e.,
the number density n(M)dM of dark matter halos with mass
between M and M + dM, both for Gaussian and non-Gaussian
primordial density fluctuations. This can be written as

dn(M)

dM
= f (σ )

ρ̄

M2

d ln σ−1(M)

d ln M
, (90)

and the issue is to compute the function f (σ ). Our final result
can be written as

f (σ ) = (1 − κ̃)

(
2

π

)1/2
a1/2δc

σ
e−aδ2

c /(2σ 2)

[
1 +

σ 2

6a1/2δc

hNG(σ )

]

+
κ̃√
2π

a1/2δc

σ
Γ

(
0,

aδ2
c

2σ 2

)
, (91)

where Γ(0, z) is the incomplete Gamma function. Three distinct
physical effects are taken into account in this result.

One is the fact that we have treated the threshold for
gravitational collapse as a stochastic variable that fluctuates
around an average value, which is δc � 1.686 for the spherical
collapse model, and is a rising function of σ for the ellipsoidal
collapse model. As discussed in Paper II, this is a way of taking
into account, at least at an effective level, part of the complexity
of a realistic process of halo formation, which is missed in the
simple spherical or ellipsoidal collapse model. Furthermore, the
stochasticity of the barrier reflects uncertainties in the operative
definition of what is a dark matter halo. The inclusion of a
diffusing barrier gives rise to the constant a in the above result.
This constant enters also in the exponential, thereby modifying
dramatically the behavior predicted by PS theory. Our prediction
is a � 0.80, i.e.,

√
a � 0.89, which gives a remarkable

agreement with the data from N-body simulations. For instance,
Grossi et al. (2009), from the fit to the N-body simulation, find√

a � 0.86.
A second effect included in Equation (91) is that we have

properly accounted for the fact that the comparison with the data,
whether observational or from N-body simulations, requires
the use of a top-hat filter function in coordinate space. In the
classical paper of Bond et al. (1991), using a top-hat filter in
momentum space, the computation of f (σ ) was reduced to a
first-passage time problem for a quantity that obeys a Langevin
equation, and therefore the underlying dynamics is Markovian.

When one considers a different filter function, the dynamics
becomes non-Markovian and therefore the problem is much
more complicated. Basically, this is the issue that for a long time
blocked further analytical progress on this problem. In Paper I of
this series, we have developed a formalism in which the problem
is formulated in terms of a path integral with boundaries, and
non-Markovian corrections can be computed perturbatively. In
Equation (91), this effect enters through the constant κ̃ , defined
as κ̃ = aκ with κ given by Equation (4).

The third effect, which was the subject of the present paper,
is the inclusion of the non-Gaussianities. These are contained
in the function hNG(σ ). Using the path integral technique
developed in Paper I, we have computed it to leading, next-to-
leading, and NNL order in the parameter σ 2/δ2

c , which is small
for large halo masses, where one can hope to see the effect of
non-Gaussianities on the halo mass function. Our result is

hNG(σ ) = a2δ4
c

σ 4
S3(σ ) − aδ2

c

σ 2

(
2S3(σ ) + U3(σ ) − dS3

d ln σ

)

−
(
S3(σ ) + U3(σ ) − V3(σ ) +

dS3

d ln σ
+

dU3

d ln σ

)

+ O
(

σ 2

δ2
c

)
. (92)

The functions S3(σ ), U3(σ ), and V3(σ ) are defined in terms
of the three-point correlator of the smoothed density field
〈δ(S1)δ(S2)δ(S3)〉 and of its derivatives, as follows,

S3 = 1

S2
〈δ3(S)〉 , (93)

U3 = 3

S

[
d

dS1
〈δ(S1)δ2(S)〉

]
S1=S

, (94)

V3 = 9

2

[
d2

dS1
〈δ(S1)δ2(S)〉

]
S1=S

+ 12

[
d

dS1

d

dS2
〈δ(S1)δ(S2)δ(S)〉

]
S1=S2=S

, (95)

and we prefer to write them as functions of σ = √
S.

Our result has passed to a good accuracy various comparisons
with numerical results. First of all, one can study numerically
what happens in the excursion set theory, with a fixed (rather
than diffusing) barrier and a top-hat filter in coordinate space,
by performing a Monte Carlo realization of the first-crossing
distribution of excursion set theory, obtained by integrating
numerically a Langevin equation with a colored noise. This
was recently performed in detail in Robertson et al. (2009; see
also Bond et al. 1991). In this limit, our analytical result is
obtained from Equation (91) setting a = 1 (since the barrier is
taken as fixed in the Monte Carlo simulation) and hNG(σ ) = 0,
i.e., we are testing the effect of κ . Comparing our results in
Paper I with Figure 4 of Robertson et al. (2009), we find very
good agreement. This is a first useful test of our technique.

Using Equation (91) with a � 0.80 (obtained by reading the
diffusion coefficient of the barrier DB from N-body simulations,
and using our prediction a = 1/(1 + DB)) and with κ given
in Equation (4), and setting hNG(σ ) = 0, we can compare
our result with the mass function found in N-body simulations
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with Gaussian initial conditions. The comparison is shown in
Figures 6 and 7 of Paper II. For all values of σ−1 � 0.3, the
discrepancy between our analytic result and the Tinker et al.
fit to the same N-body simulation is smaller than 20%, and
for σ−1 � 1 it is smaller than 10%. Considering that our result
comes from an analytic model of halo formation with no tunable
parameter (the parameter a is fixed once DB is given, and we
do not have the right to tune it), while the Tinker et al. fitting
formula is simply a fit to the data with four free parameters,
we think that this result is quite encouraging. The numerical
accuracy is actually the best that one could have hoped for,
considering for instance that we have neglected second-order
non-Markovian corrections.

Finally, our prediction for the function hNG(σ ) can be tested
against N-body simulations with non-Gaussian initial condi-
tions. To leading order in the small σ limit, our result reduces to
that proposed by LoVerde et al. (2008) and Matarrese et al.
(2000) using non-Gaussian extensions of PS theory, and it
has been found in Grossi et al. (2009) that this formula re-
produces very well the data; see in particular their Figures 6
and 7. The size of the error bars is probably still too large
for discriminating between different forms of the subleading
term.

We thank Sabino Matarrese for useful discussions, and the
anonymous referees of the first two papers of this series for
providing extremely useful comments. The work of M.M. is
supported by the Fond National Suisse. The work of A.R. is
supported by the European Community’s Research Training
Networks under contract MRTN-CT-2006-035505.

APPENDIX A

EXTENSION OF PRESS–SCHECHTER THEORY TO
NON-GAUSSIAN FLUCTUATIONS

As we repeatedly emphasized, the really interesting quantity
for comparison with experimental data from galaxy surveys,
and with N-body simulations, is the distribution function Πε ,
that generalizes excursion set theory to non-Gaussian fluctu-
ations. The function ΠPS defined in Equation (20), where the
integrations over the variables dδi run up to +∞ rather than up
to δc, not only suffers from the fact that it predicts that only
a fraction of the total mass of the universe finally ends up in
virialized objects (the infamous factor of 2 that PS were forced
to introduce by hand) but also misses all the subtle correlations
between different scales which are just one of the characteris-
tic features of non-Gaussianities. For this reason, in the body
of this paper we concentrated on the computation of Πε . Still,
it is interesting to see how our path integral formalism repro-
duces PS theory and generalizes it to non-Gaussian theories.
We discuss the issue in this appendix. In particular, we will see
that, even in the non-Gaussian case, ΠPS satisfies a differential
equation which is local in “time,” the Kramers–Moyal (KM)
equation, and which generalizes the Fokker–Planck equation. It
is interesting to contrast this result with what happens for Πε

which instead, as discussed in Paper I, does not satisfy any local
diffusion-like equation.

With our “microscopic” formalism based on the path integral,
it is very easy to derive PS theory and to extend it to non-
Gaussian fluctuations. Simply, in Equation (29) each integral
over dδi , with 1 � i � n − 1, produces a factor 2πδD(λi),

which allows us to perform trivially all the integrals over dλi

with i < n. Denoting the residual variable λn by λ and setting
for notational simplicity δ0 = 0 (the general result is recovered
with δ → δ − δ0), Equation (29) becomes

ΠPS(δ0 = 0; δ; S) =
∫ ∞

−∞

dλ

2π
exp

⎧⎨
⎩iλδ +

∞∑
p=2

(−iλ)p

p!
μp(S)

⎫⎬
⎭ .

(A1)
When all μp with p � 3 vanish, the integral gives a Gaussian
and we get back the standard PS result,

ΠPS(δ0 = 0; δ; S) = 1

(2πS)1/2
e−δ2/2S , (A2)

since, by definition μ2(S) = S, where S is the variance computed
with the filter function of our choice. Equation (A1) generalizes
PS theory to arbitrary non-Gaussian theories.11 Observe that
Equations (A1) and (A2) hold independently of the filter
function used, and the μp are the cumulants computed with
the filter function in which one is interested.

Equation (A1) is a well-known result in the theory of stochas-
tic processes (see, e.g., Risken 1984), and it was applied
to fNL-theory in Matarrese et al. (2000). Using this expres-
sion, the usual strategy in the literature is to compute F(S)
using

FPS(S) = ∂

∂T

∫ ∞

δc

dx ΠPS(δ0; δ; S) , (A3)

and to multiply by hand by a fudge factor �2 to ensure the
proper normalization. As we have shown in the discussion
below Equation (59), this multiplication by a fudge factor is
not justified for non-Gaussianities. Still, let us discuss from the
mathematical point of view the properties of the function ΠPS, in
order to contrast them with the excursion set theory distribution
function Πε .

First of all, it is instructive to rederive the expression (A1)
for ΠPS, with generic filter and generic non-Gaussian theory in
an alternative way, using the technique developed in Paper I
for computing the effect of the correction Δij to the two-point
function, see Equations (38) and (39). To compute ΠPS(δ0; δ; S)
when the two-point correlator 〈δiδj 〉c is generic, rather than
equal to min(Si, Sj ), and in the presence of the higher-order
correlators, we write

〈δiδj 〉c = min(Si, Sj ) + [〈δiδj 〉c − min(Si, Sj )] ≡ εAij + εBij .
(A4)

11 A word of caution is necessary when one considers Equation (A1) with
correlators μp with p � 4. For instance, keeping only μ2, μ3, and μ4, one is
faced with an integral that diverges, since μ4(S) = 〈δ4(S)〉 > 0. The correct
statement is that ΠPS(δ0; δ; S) is given, order by order, by the expansion of
Equation (A1) in powers of μ4. However, the expansion in powers of μ4 is
only an asymptotic series, which can be used to approximate the true result up
to a finite order in μ4, but diverges if we keep an infinite number of terms. If
instead, the highest cumulant that we include in Equation (A1) is μ6, the
integral converges because (−i)6μ6 = −μ6 < 0, while the integral diverges
again if the highest cumulant that we include in Equation (A1) is μ8, since
(−i)8μ8 = +μ8 > 0, and so on. Anyhow, the whole issue of the full
resummation of the contributions of the μ4 or higher-order correlators is
physically irrelevant. These correlators are in general computed using
phenomenological parameterization of the non-Gaussianities, such as
fNL-theory, that are meant to be a useful description of the true
non-Gaussianities only to leading, and at most next-to-leading order in fNL, so
in general only the first few terms in the series make sense physically.
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Observe that εBnn = μ2(S) − S = 0. We then expand the
exponential in Equation (29) in powers of εBij and of the higher-
order correlators,

ΠPS(δ0; δn; Sn) =
∫ ∞

−∞
dδ1 . . . dδn−1

∫
Dλ

×
[

1 − 1

2

n∑
i,j=1

λiλj εBij +
(−i)3

3!

×
n∑

i,j,k=1

λiλjλk 〈δiδj δk〉c + . . .

]

× ei
∑n

i=1 λiδi− 1
2

∑n
i,j=1 λiλj εAij

=
∫ ∞

−∞
dδ1 . . . dδn−1

[
1 +

1

2

n∑
i,j=1

εBij ∂i∂j

− 1

3!

n∑
i,j,k=1

〈δiδj δk〉c ∂i∂j ∂k + . . .

]

×
∫

Dλ ei
∑n

i=1 λiδi− 1
2

∑n
i,j=1 λiλj εAij , (A5)

where ∂i = ∂/∂δi . The derivatives ∂i contribute only when the
index i = n, otherwise we have a total derivative with respect
to an integration variable, and the corresponding boundary
terms at δ = ±∞ term vanish. Here, it is crucial that one
integrates up to +∞. When we rather consider Πε , instead
of ΠPS, the upper integration limit is δc and we remain with
complicated and non-local boundary terms; compare, e.g., with
Equation (83) of Paper I. For ΠPS however this boundary term
is absent and

ΠPS(δ0; δn; Sn) =
[

1 − 1

3!
〈δ3

n〉c ∂3
n + . . .

] ∫ ∞

−∞
dδ1 . . . dδn−1 W gm

× (δ0; δ1, . . . , δi , . . . , δn; Sn)

=
[

1 − 1

3!
〈δ3

n〉c ∂3
n + . . .

]
Π0,gau(δ0; δ; S) . (A6)

Since the derivative ∂n = ∂/∂δn does not act on the correlators
〈δp

n 〉 (which are functions of Sn, but not of δn), the expansion
in the square brackets can be exponentiated back, and we can
write

ΠPS(δ0; δ; S) = eK̂NG Π0,gau(δ0; δ; S) , (A7)

where (using now δ0 generic)

Π0,gau(δ0; δ; S) = 1

(2πS)1/2
e−(δ−δ0)2/(2S) , (A8)

and the differential operator K̂NG is given by

K̂NG =
∞∑

p=3

(−1)p

p!
μp(S)

∂p

∂δp
. (A9)

To prove the equivalence of Equations (A7) and (A1), we write
Equation (A1) as

ΠPS(δ0 = 0; δ; S) =
∫ ∞

−∞

dλ

2π
exp

{
iλδ − 1

2
μ2(S)λ2 + WNG(λ)

}
,

(A10)
with

WNG(λ) =
∞∑

p=3

(−iλ)p

p!
μp(S) , (A11)

and we expand the exponential in powers of WNG(λ). Using
λpeiλx = (−i∂x)peiλx we see that WNG(λ)eiλx = W (−i∂x)eiλx ,
and the same holds for any power of WNG(λ), so

exp{WNG(λ)}eiλx = exp{WNG(−i∂x)}eiλx = eK̂NGeiλx .
(A12)

Therefore, Equation (A10) becomes

ΠPS(δ0 = 0; δ; S) = eK̂NG

∫ ∞

−∞

dλ

2π
exp

{
iλδ − 1

2
μ2(S)λ2

}
,

(A13)
which agrees with Equation (A7). So, the distribution function
ΠPS that gives the extension of the PS formalism to non-
Gaussian fluctuations can be written equivalently in the integral
form (Equation (A1)) or in the differential form (Equation (A7)),
with K̂NG given by Equation (A9).

It is interesting to observe that the function ΠPS(δ0 = 0; δ; S)
obeys a local differential equation, both in the Gaussian and in
the non-Gaussian case. Consider first a Gaussian theory with a
generic filter function, so μp(S) = 0 for p � 3. In order to see
exactly where the difference enters between integrating up to δc,
as in Πε and integrating up to +∞, we start from the definition

ΠPS(δ0; δn; Sn) =
∫ ∞

−∞
dδ1 . . . dδn−1

∫
Dλ eiλiδi− 1

2 〈δi δj 〉λiλj ,

(A14)
where the sum over i, j = 1, . . . , n is understood, and we derive
a differential equation satisfied by ΠPS, by taking the derivative
with respect to Sn,

∂ΠPS

∂Sn

=
(

−1

2

∂〈δkδl〉c
∂Sn

)∫ ∞

−∞
dδ1 . . . dδn−1

×
∫

Dλ λkλl exp

{
iλiδi − 1

2
〈δiδj 〉λiλj

}
. (A15)

Again, using λ exp{iλx} = −i∂x exp{iλx}, inside the integral
we can replace λk → −i∂k and λl → −i∂l . Since we integrate
over dδ1, . . . dδn−1, but not over dδn, if k 
= n the term ∂k ,
when integrated over dδk , is a total derivative and gives zero,
because at the boundaries δk = ±∞ the integrand vanishes
exponentially, and the only contribution comes from k = n.
Similarly, also ∂l contributes only when l = n. This is the step
that does not go through for Πε , when the integration is only up
to δc, and a complicated boundary term arises; see Equation (83)
of Paper I. Therefore, since 〈δ2

n〉 = Sn, we get a Fokker–Planck
equation

∂ΠPS

∂S
= 1

2

∂2ΠPS

∂δ2
, (A16)

whose solution, on the line −∞ < δ < ∞, is indeed given by
Equation (A2). Equation (A16) can be generalized to the non-
Gaussian case using the integral form of the solution (A1) and
taking the time derivative,

∂

∂S
ΠPS =

∞∑
p=2

μ̇p(S)

p!

∫ ∞

−∞

dλ

2π
(−iλ)p exp

⎧⎨
⎩iλδ +

∞∑
q=2

(−iλ)q

q!
μq (S)

⎫⎬
⎭ ,

(A17)
where μ̇p = dμp/dS. Inside the integral, we can replace
(iλ)peiλx by ∂

p
x eiλx , so
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∂ΠPS

∂S
=

∞∑
p=2

(−1)p

p!
μ̇p(S)

∂pΠPS

∂δp
. (A18)

This equation is called the KM equation or “the stochastic
equation,” and is well known in the theory of stochastic
processes (Stratonovich 1967; Risken 1984).

In conclusion we have seen that, independently of choice of
filter function, ΠPS satisfies a local differential equation both in
the Gaussian and in the non-Gaussian case. In the Gaussian case,
it satisfies the Fokker–Planck Equation (A16), while in the non-
Gaussian case it satisfies the KM Equation (A18). As we already
saw in Paper I, this is not true for the distribution function Πε of
the excursion set formalism, unless one use a sharp filter in mo-
mentum space and the theory is Gaussian. Already for Gaussian
theory and a different filter, we saw in Equation (83) of Paper I
that the equation satisfied by Πε , besides the Fokker–Planck
operator, contains complicated non-local terms, coming from
boundary terms at the upper integration limit δc. The same hap-
pens, of course, when we include the non-Gaussianities.

APPENDIX B

TERM-BY-TERM COMPUTATION OF Π(3,L)

In Section 3.1, we showed that

∫ δc

−∞
dδn Π(3,L)

ε=0 (0; δn; Sn) = 1

3

〈δ3
n〉√

2π S
3/2
n

(
1 − δ2

c

Sn

)
e−δ2

c /(2Sn) .

(B1)
Our derivation used the fact that we could replace the sum over
i, j, k of ∂i∂j ∂k in Equation (47) by ∂3/∂δ3

c . It is instructive
to reproduce this result by evaluating separately the various
terms in the sum, and using the perturbative formalism of
Paper I. We then split

∑n
i,j,k=1 into the following terms: (a)

i = j = k = n. (b) i < n, j = k = n. (c) i = j < n, k = n.
(d) i < j < n, k = n. (e)

∑n−1
i,j,k=1, each one with its own

combinatorial factor. We denote the corresponding contributions
to Π(3,L) as Π(3,La), Π(3,Lb), etc. and, for simplicity, we also use
the notation

I (a) =
∫ δc

−∞
dδn Π(3,La)

ε=0 (0; δn; Sn) , (B2)

and so on. As in the computation of the term proportional to
Δij ∂i∂j in Paper I, we find that the various contributions in this
computation can be separately divergent in the continuum limit
ε → 0, while their sum is finite, as is clear physically, and as
we already know from our derivation in Section 3.1. Indeed, the
great virtue of the derivation performed in Section 3.1, using
the trick of replacing the sum over ∂i∂j ∂k with derivatives with
respect to δc as in Equation (53), is that it directly gives the
sum over all combination of indices, thus providing directly the
total finite result, and bypassing all problems of divergences
that appear if one compute separately the terms corresponding
to different combination of indices.

The separate terms can however be computed using the
technique developed in Paper I, with the finite part prescription.
The term I (a) has already been computed in Equation (59),
and we have seen that it vanishes. The term (b) is obtained
setting j = k = n in Equation (47), and taking into account
a combinatorial factor of 3 corresponding to the three ways of

choosing which index, among (i, j, k), is not equal to n, so

Π(3,Lb)
ε (δ0; δn; Sn) = − 〈δ3

n〉
2

n−1∑
i=1

∂2
n

∫ δc

−∞
dδ1 . . . dδn−1∂iW

gm

= − 〈δ3
n〉
2

n−1∑
i=1

∂2
n

[
Πgm

ε (δ0; δc; Si)Πgm
ε

× (δc; δn; Sn − Si)

]
.

(B3)

Using Equations (65) and (66),

I (b) = − 〈δ3
n〉

2π

[
∂n

∫ Sn

0
dSi

δc(δc − δn)

S
3/2
i (Sn − Si)3/2

× exp

{
− δ2

c

2Si

− (δc − δn)2

2(Sn − Si)

}]
δn=δc

= 〈δ3
n〉√

2π S
3/2
n

(
1 − δ2

c

Sn

)
e−δ2

c /(2Sn). (B4)

The term (c) gives

Π(3,Lc)
ε (δ0; δn; Sn) = −〈δ3

n〉
2

n−1∑
i=1

∂n

∫ δc

−∞
dδ1 . . . dδn−1∂

2
i W gm ,

(B5)
so

I (c) = −〈δ3
n〉
2

n−1∑
i=1

[
∂i

(
Πgm

ε (δ0; δc; Si)Πgm
ε (δc; δn; Sn − Si)

)]
δn=δc

.

(B6)
This expression is analogous to the one that has already been
computed in Equations (B13)–(B16) of Paper I, and it is purely
divergent as 1/

√
ε, with no finite part, so FP [I (c)] = 0.

The term (d) is slightly more complicated, since it requires
the α regularization described in Appendix B of Paper I for
extracting the finite part. Setting i < j < n, k = n in
Equation (47) and taking into account a combinatorial factor
of 6, we obtain

Π(3,Lc)
ε (δ0; δn; Sn) = − 〈δ3

n〉∂n

n−2∑
i=1

n−1∑
j=i+1

Πgm
ε (δ0; δc; Si)Πgm

ε

× (δc; δc; Sj − Si)Πgm
ε (δc; δn; Sn − Sj ).

(B7)

We use Equations (65) and (66), together with Πgm
ε (δc; δc; S) =

ε/(
√

2π S3/2), see Equation (112) of Paper I, and we get

I (d) = − 〈δ3
n〉

π
√

2π
lim

δn→δ−
c

∫ Sn

0
dSi

∫ Sn

Si

dSj

× δc(δn − δc)

S
3/2
i (Sj − Si)3/2(Sn − Sj )3/2

× exp

{
− δ2

c

2Si

− A2

2(Sj − Si)
− (δc − δn)2

2(Sn − Sj )

}
, (B8)

where A2 = αε regularizes the integral over dSj when Sj → S+
i ,

and we want to extract the finite part as A → 0. Observe also that
here one must be careful not to interchange the limit δn → δ−

c

(which comes from the fact that the integral over dδn from −∞
to δc of Π(3,Lc)

ε is performed integrating by parts of the derivative
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∂n that appears in Equation (B7)) with the integrals over dSi and
dSj. The integrals can be carried out using the identity given in
Equation (A5) of Paper I, and we get

I (d) = − 2√
2π

〈
δ3
n

〉 1

S
3/2
n

(
δc

A
+ 1

)
exp

{
− (δc + A)2

2Sn

}
. (B9)

This has a part divergent as 1/A, i.e., as 1/
√

ε, that will combine
with the similar divergences from the other terms, a part finite
as A → 0, plus terms O(A) that vanish in the continuum limit.
Extracting the finite part, we get

FP [I (d)] = −2

〈
δ3
n

〉
√

2π S
3/2
n

(
1 − δ2

c

Sn

)
e−δ2

c /(2Sn) . (B10)

Finally, the term (e) can be computed with the by now usual

trick of replacing
∑n−1

i,j,k=1 with ∂3/∂δ3
c , and we get

Π(3,Le)
ε (δ0; δn; Sn) = −

〈
δ3
n

〉
6

n−1∑
i,j,k=1

∫ δc

−∞
dδ1 . . . dδn−1∂i∂j ∂kW

gm

= −
〈
δ3
n

〉
6

∂3

∂x3
c

Πgm
ε (δ0; δc; Sn)

=
〈
δ3
n

〉
6

4
√

2√
π

(2δc − δn)
1

S
5/2
n

[
3 − (2δc − δn)2

Sn

]

× exp

{
− (2δc − δn)2

2Sn

}
, (B11)

and from this we find

I (e) = 4

3

〈
δ3
n

〉
√

2π S
3/2
n

(
1 − δ2

c

Sn

)
e−δ2

c /(2Sn) . (B12)

Summing up Equations (B4), (B10), and (B12), we get back
Equation (B1), as we should.
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