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ABSTRACT

We calculate the cosmic microwave background (CMB) bispectrum due to inhomogeneous reionization. We
calculate all the terms that can contribute to the bispectrum that are products of first-order terms on all scales
in conformal Newtonian gauge. We also correctly account for the de-correlation between the matter density and
initial conditions using perturbation theory up to third order. We find that the bispectrum is of local type as
expected. For a reasonable model of reionization, in which the universe is completely ionized by redshift zri ∼ 8
with optical depth to the last scattering surface τ0 = 0.087, the signal-to-noise ratio (S/N) for detection of the
CMB temperature bispectrum is S/N ∼ 0.1 and confusion in the estimation of primordial non-Gaussianity is
fNL ∼ −0.1. For an extreme model with zri ∼ 12.5 and τ0 = 0.14, we get S/N ∼ 0.5 and fNL ∼ −0.2.
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1. INTRODUCTION

Secondary anisotropies (Aghanim et al. 2008) in the cosmic
microwave background (CMB) can be used to probe the uni-
verse after recombination. It is also important to take them into
account when using CMB to learn about the initial conditions
of the universe. One important class of secondary anisotropies
arises due to the scattering of CMB photons by free electrons
during and after reionization. In this class, cosmologists have
so far concentrated on only one of the terms in the second-
order Boltzmann equation, the product of electron velocity and
electron number density (vene). It is known as the Sunyaev–
Zel’dovich effect when the source of electrons is hot gas in
galaxy clusters (Sunyaev & Zeldovich 1970). If instead of ther-
mal motion velocity due to the bulk motion of electrons is
considered, it is known as the Ostriker–Vishniac (OV) effect
(Ostriker & Vishniac 1986; Vishniac 1987) or the kinetic
Sunyaev–Zel’dovich (kSZ) effect. There are, however, addi-
tional terms in the full second-order equations (Bartolo et al.
2006, 2007; Pitrou 2009; Senatore et al. 2009a), which also
arise due to scattering of CMB photons by electrons and which
might be important. Most of the work on OV/kSZ effect has
focused on the CMB power spectrum. The CMB bispectrum
and trispectrum were calculated in Castro (2003, 2004); how-
ever they calculated the next to leading order term which is a
six-point correlation function of first-order terms for the bis-
pectrum. The leading order term in bispectrum is a four-point
correlation function of first-order terms. They also ignored the
de-correlation between the linear and the non-linear quantities
in their calculation.

The CMB bispectrum due to inhomogeneous recombination
was calculated in Khatri & Wandelt (2009b, hereafter referred
to as KW09; see Senatore et al. 2009b for a different approach,
also Khatri & Wandelt 2009a). The same equations need to
be solved for inhomogeneous reionization and we will follow
the treatment in KW09. We will model the inhomogeneous
reionization using the linear perturbation theory of Zhang et al.
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(2007, hereafter ZHH07). For the recombination case, the
Doppler terms that give rise to OV/kSZ effects were found
to be sub-dominant compared to the net contribution from the
quadrupole and higher order moments of the CMB. We will see
that this is also the case for reionization. For all calculations, the
gauge-dependent quantities are in conformal Newtonian gauge.
The cosmological parameters used are baryon density Ωb =
0.048, cold dark matter density Ωc = 0.252, cosmological
constant ΩΛ = 0.7, number of massless neutrinos Nν = 3.04,
Hubble constant H0 = 69, present CMB temperature TCMB =
2.725, primordial Helium fraction yHe = 0.24, spectral index of
primordial fluctuations ns = 0.95, and σ8 = 0.826.

2. INHOMOGENEOUS REIONIZATION

We will use the linear perturbation theory of ZHH07 to model
reionization. The results from this model are similar to the
bubble model of reionization (Furlanetto et al. 2004). Due to
the fact that reionization is sourced by non-linear physics, the
validity of any model will have to be tested with computer
simulations (see Trac & Gnedin 2009 for a recent review).
For our purpose, the analytical treatment of ZHH07, which
captures the essential features of reionization on linear scales, is
sufficient. We refer the reader to ZHH07 for details of the model
as well as for discussion on the validity of this approach. An
important input for this theory is a model for the distribution of
ionizing sources. We will use the same model used in ZHH07
which is based on the excursion set treatment of halo formation
(Press & Schechter 1974; Bond et al. 1991; Lacey & Cole 1993)
with the minimum mass of a halo given by virial temperature of
104 K corresponding to where hydrogen line cooling becomes
efficient. The spectrum of ionizing radiation is taken to be a
power law

γ (μ)dμ = ζ

Cβ

e(β+1)μdμ, (1)

where μ = ln ν − ln ν0, ν is the photon frequency, ν0 =
13.6 eV/2πh̄ is the ionization threshold for hydrogen, h̄ is
the Planck’s constant, γ (μ) is the number of ionizing photons
emitted at frequency ν per unit parameter μ per collapsed
hydrogen atom, β is the spectral index of ionizing radiation

1310

http://dx.doi.org/10.1088/0004-637X/711/2/1310
mailto:rkhatri2@illinois.edu
mailto:bwandelt@illinois.edu


No. 2, 2010 O-V-S-Z AND FRIENDS: NON-GAUSSIANITY FROM INHOMOGENEOUS REIONIZATION 1311

τ =0.0870τ =0.140

Figure 1. Reionization history for two models with optical depth to the last
scattering surface τ0 = 0.087, 0.14.

(A color version of this figure is available in the online journal.)

spectrum, ζ is the total number of ionizing photons emitted per
hydrogen atom, and Cβ = ∫ 10

0 e(β+1)μdμ is the normalization
constant with the spectrum cutoff at μ = 10. We take into
account Helium reionization by assuming that the first ionization
of Helium is identical to that of Hydrogen. Although not strictly
correct, it should introduce only a small error, unimportant
for us, since Helium will contribute only about 8% of the
total electrons. Second ionization of Helium is expected to
occur at much lower redshifts (Furlanetto & Oh 2008) and
will give a negligible contribution to the CMB bispectrum. We
will consider two different models of reionization arrived at
by choosing different values of parameter ζ in Equation (1)
with spectral index β = −3. For the first model, we choose
ζ = 70 to give the optical depth to the last scattering surface
τ0 = 0.087. For the second model, we choose ζ = 1000
resulting in τ0 = 0.14 which can be considered a reasonable
upper limit based on WMAP 5 year results (Komatsu et al. 2009).
Figure 1 shows the reionization history for these two models.
We use the RECFAST code (Seager et al. 1999) to calculate
the residual mean electron number density after recombination
switching to reionization code once the electron density due to
reionization exceeds the residual value from recombination. The
ratio of electron number density perturbation to matter density
perturbation for comoving wavenumber of k = 0.01 Mpc−1 is
plotted in Figure 2. We use the approximate solutions to the
perturbation equations given in ZHH07 and force the electron
bias be ≡ δe/δm = 1 once the universe is fully reionized. This
is a very good approximation to the exact equations of ZHH07
where the bias be goes smoothly to unity. The matter density and
hence the electron number density will be non-linear on small
scales and thus will de-correlate with the linear quantities, e.g.,
CMB, on these scales. We will use δe = beδm on all scales,
where be is calculated using linear theory but δm can be non-
linear. We will take the de-correlation into account using the
third-order perturbation theory. Note that the non-linearity will
be significant only at low redshifts for scales of interest when
the universe is fully reionized and δe = δm exactly. Also, for
the leading term in the bispectrum, we need to correlate CMB
with the electron number density perturbation. However, this
correlation will be small on scales much smaller than the horizon
size because CMB traces the perturbations at a much higher
redshift than that of reionization. Thus, the contributions to the
bispectrum from perturbations in the electron number density

Figure 2. be ≡ δe/δm for k = 0.01 Mpc−1 and optical depth to the last scattering
surface τ0 = 0.087, 0.14.

(A color version of this figure is available in the online journal.)

will be significant only for scales that are linear and where we
should expect the linear perturbation theory of reionization to
work well.

At low redshifts, a significant fraction of baryons are expected
to be in a diffuse phase called warm-hot intergalactic medium
(WHIM; Cen & Ostriker 1999, 2006). The perturbations in these
baryons are suppressed on small (non-linear) scales compared
to the dark matter and for these baryons the bias be should be
less than 1. However, the contribution to the bispectrum from
3 < z < 6 is ∼10% and contribution from z < 3 is ∼few %.
This is because of the absence of bias be ∼ 10 due to the
inhomogeneities in the reionization process once the universe is
completely reionized and the decreasing optical depth due to the
expansion of the universe. At 3 < z < 6, only a small percentage
of baryons are in WHIM (<10%). Thus, their contribution to
the bispectrum is less than 1% and the error in assuming be = 1
negligible. We neglect the ∼ few % contribution from z < 3 in
our numerical calculations.

3. CROSS-CORRELATION BETWEEN MATTER DENSITY
AND INITIAL CONDITIONS

We will need to calculate the correlation (PX) between the
electron number density and linear perturbation variables or
equivalently the cross-correlation between the non-linear matter
density (δm) and linearly evolved matter density (δL). We will
be interested in the CMB anisotropies on scales of angular
wavenumber 
 � 2500, corresponding to the smallest scales
predicted to be probed by the Planck mission.4 On these scales,
it is sufficiently accurate to calculate the next term in the
perturbation expansion which, for PX , means going to the third
order in perturbation theory for matter density perturbation
δm. For Einstein–De Sitter universe (Ωm = 1, ΩΛ = 0), the
solution for δm can be written as the following perturbation
series (Vishniac 1983; Goroff et al. 1986; Makino et al. 1992;
Jain & Bertschinger 1994; see Bernardeau et al. 2002 for a
review),

δm(k, η) =
∞∑

n=1

an(η)δn(k), (2)

4 http://www.rssd.esa.int/Planck
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where δ1 is the linear matter density perturbation at z = 0
and δn is of order δn

1 , k is the Fourier wavenumber, and η is
conformal time. The correlation between the linear and the non-
linear matter density is then given by

〈a(η)δ1(k)δm(k′, η)〉 = a2(η)〈δ1(k)δ1(k′)〉 + a4(η)〈δ1(k)

× δ3(k′)〉 + higher order terms = (2π )3δD(k + k′)
× [a2(η)P11(k) + a4(η)P13(k)], (3)

where P11(k) is the linear matter power spectrum at z = 0 and
P13 is the correction given by (Suto & Sasaki 1991)

P13(k) = 2πk2

504
P11(k)

∫ ∞

0

dq

(2π )3
P11(q)

[
12

k2
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− 1

)3 (
7
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+ 2

)
ln

(
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|k − q|
)]

. (4)

For a general cosmology replacing the scale factor a(η) with
the linear growth factor D(η) in the Einstein–De Sitter solution
gives an excellent approximation to the true result (Scoccimarro
et al. 1998; Bernardeau et al. 2002). Thus, we have

〈δL(k, η)δm(k′, η)〉 = (2π )3δD(k + k′)PX(k, η),

PX(k, η) = D2(η)P11(k) + D4(η)P13(k), (5)

where P13(k) is negative signifying de-correlation between the
linear and the non-linear density fields as expected.

We plot the ratio of cross power spectrum PX to linear power
spectrum Plin(k, η) ≡ D2(η)P11(k) in Figure 3. For 
 � 2500,
the CMB bispectrum will get contributions from Fourier modes
k � 0.4 Mpc−1. It is evident from Figure 3 that for k �
0.1 Mpc−1 the matter density perturbations become mildly non-
linear (i.e., 0.75 � PX/Plin � 1). On these scales, comparison
with N-body simulations shows that going up to third order
in perturbation theory is a very good approximation while on
smaller scales third-order perturbation theory underestimates
the cross-correlation between the linear and non-linear matter
density fields (Jeong & Komatsu 2006; Carlson et al. 2009).
Taking this de-correlation into account, results in replacing
the linear power spectrum Plin in the bispectrum expression
involving δe by the cross power spectrum PX . Equivalently, we
can define an effective transfer function that we can use in the
bispectrum expressions derived in KW09,

δeff
e ≡ δe

PX

Plin
. (6)

4. BISPECTRUM

The CMB bispectrum is given by

B
1
2
3
m1m2m3

= 〈
a

(1)

1m1

(x, η0)a(1)

2m2

(x, η0)a(2)

3m3

(x, η0)
〉

+ 2 permutations, (7)

where a
m(x, η0) is the spherical harmonic transform of CMB
temperature field and the superscript indicates the perturbation
order. Taking into account all terms that multiply δe in the
second-order Boltzmann equation for photons results in the
following expression for the angular averaged bispectrum (see

Figure 3. Ratio of cross power spectrum between linear and non-linear matter
density fields to linear matter power spectrum (PX/Plin) for different redshifts.

(A color version of this figure is available in the online journal.)

KW09 for details of the derivation),
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where g(η) is the visibility function, j
 is spherical Bessel
function, Θ(1)


 are the first-order CMB transfer functions, with
Θ(n) ≡ ΔT (n)/T the CMB temperature perturbation, the ma-
trices are Wigner 3-jm symbols, θb = ikVb, Vb is the baryon
velocity, θγ = 3kΘ(1)

1 , Π(1) = Θ(1)
2 + Θ(1)

P 0 + Θ(1)
P 2, where Θ(1)

P


are spherical harmonic transform coefficients of the polariza-
tion field. P (k) is the power spectrum of the initial gravitational
potential.
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Figure 4. BδΘ and contributions to BΘΘ from
∑


�2 Θ(1)

 , OV term θb − θγ titled “Slip” and Π(1) titled “Pol” multiplied by numerical factors as indicated to make

them more visible. Clearly the dominant contribution to BΘΘ comes from the
∑


�2 Θ(1)

 term. All quantities are plotted for η near the peak of the visibility function

before the universe is fully reionized for both models. Note that the sign of OV term is opposite to that of
∑


�2 Θ(1)

 term.

(A color version of this figure is available in the online journal.)

Figure 5. Visibility function g(η) for our models of reionization.

(A color version of this figure is available in the online journal.)

The θb − θγ term in Equation (10) is the OV/kSZ term
which has been the focus of extensive research so far. The
last term gives negligible contribution. The

∑

′′ Θ(1)


′′ term in
Equation (10) is the new term and it, we will find, dominates
over the OV/kSZ term. During recombination also, this term
was found to dominate over other terms in KW09. Recently,
Hernández-Monteagudo and Sunyaev have calculated the effect
of this term for the scattering of CMB photons in the galaxy
clusters (Hernández-Monteagudo & Sunyaev 2010).

5. NUMERICAL RESULTS

We use CMBFAST (Seljak & Zaldarriaga 1996) to calculate
all first-order quantities. All gauge-dependent first-order quan-
tities are in conformal Newtonian gauge. Figure 4 shows BδΘ
and contributions from different terms in BΘΘ. It is clear that∑


�2 Θ(1)

 gives the dominant contribution. Also the OV term

has a sign opposite to that of
∑


�2 Θ(1)

 term. We cutoff the

sum at 
 = 1500 which is sufficient for η � 7500 Mpc. The
contribution from η > 7500 Mpc (z � 3) to the bispectrum
is small (∼few %) because the visibility function is small as
evident from Figure 5 and also because the perturbation in the
ionization fraction is zero since the universe is fully ionized by
this time and we neglect it. Figure 6 shows the absolute value of
bispectrum for our two models of reionization for 
3 = 200. The
bispectrum is clearly of local type. It has, however, a different
shape than the primordial bispectrum of local type parameter-
ized by the parameter fNL. The confusion with the estimators
of the primordial bispectrum of local type can be quantified by
using the following statistic (Komatsu et al. 2005):
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∑
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3
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2
3
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3

	 fNL

∑
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2�
3
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B
1
2
3
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)2

C
1C
2C
3

.

(11)

Figure 6. Bispectrum for two models of reionization with 
3 = 200. The shape of the bispectrum is of local type.

(A color version of this figure is available in the online journal.)
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Figure 7. Confusion with the primordial non-Gaussianity of local type pa-
rameterized by fNL (see Equation (11)) as a function of maximum angular
wavenumber 
max.

(A color version of this figure is available in the online journal.)

Figure 8. S/N for our two reionization models assuming a CMB experiment
providing a cosmic variance limited measurement of the anisotropies up to 
max.
Also shown for comparison is the S/N for the local type primordial Gaussianity
with fNL = 1.

(A color version of this figure is available in the online journal.)

Solving Equation (11) for fNL gives the confusion that can be
expected if the effects of reionization on the bispectrum were
ignored. This is plotted in Figure 7. The Planck experiment
is expected to have error bars on fNL of ∼5. The confusion
due to the inhomogeneous reionization is much smaller and
thus can be safely ignored while looking for the primordial
non-Gaussianity. We also calculate the signal-to-noise ratio
(S/N) for the detection of the bispectrum due to inhomogeneous
reionization (Komatsu & Spergel 2001):

S

N
≡ 1√

F−1
rec

,

Frec =
∑


1�
2�
3�
max

(B
1
2
3 )2

Δ
1
2
3C
1C
2C
3

,

Δ
1
2
3 ≡ 1 + δ
1
2 + δ
2
3 + δ
3
1 + 2δ
1
2δ
2
3 . (12)

This is plotted in Figure 8 for our two reionization models
and for primordial non-Gaussianity with fNL = 1. For normal
reionization with optical depth τ0 = 0.087, the S/N for

max = 2500 is 0.1. For the extreme case with τ0 = 0.14, we
get S/N = 0.5, about 20% more than the primordial bispectrum
with fNL = 1.

6. CONCLUSIONS

We have calculated the leading term in the CMB bispectrum
due to inhomogeneous reionization. The bispectrum consists of
product of two terms in Equation (8), B


i

δΘB

j

ΘΘ, i, j = 1, 2, 3.
B


δΘ is due to the correlation of electron number density
perturbation with CMB. B


ΘΘ is the sum of two terms, the
correlation of CMB with the peculiar velocity of electrons
(the OV or the kSZ term) and the correlation of CMB with
all higher order moments of CMB. Since CMB traces the
perturbations at a much higher redshift, the correlation of
CMB with peculiar velocity in B


ΘΘ and the correlation of
CMB with electron number density in B


δΘ is small on small
scales. In particular, the correlation of CMB with CMB in
B


ΘΘ dominates over the peculiar velocity or OV/kSZ term.
We have found the bispectrum to be of squeezed triangle
type, i.e., it peaks where one 
 mode is much smaller than
the other two with the contribution to the small 
 (large
scale) mode coming from the correlation of δe with CMB
and to that of large 
 (small scale) modes coming from the
correlation of CMB with CMB. Note that there will be some
correlation of CMB with δe even on small scales due to Thomson
scattering.

If the correlations of CMB with itself are ignored as has
been done prior to this work, the leading term, which is a four-
point function of first-order terms and which we have calculated,
would be small. In that case, the next to leading order term will be
a six-point correlation of only the electron number densities and
velocities and may be expected to be comparatively important
since the electron number density and the velocity would be
strongly correlated with each other. This six-point term was
calculated in Castro (2003, 2004). However, in the regime where
density is slightly non-linear but velocity is linear, they will
get slightly de-correlated. This was ignored in Castro (2003,
2004) which might have resulted in overestimation of their S/N.
They also used an instantaneous reionization model which does
not include the enhancement in the electron number density
perturbation due to inhomogeneous reionization, be, which is
expected to be greater than one leading to underestimation of
their S/N.

The S/N that we get for the leading term including the
correlations of CMB with itself (Figure 8) is more than an order
of magnitude greater than what was found in Castro (2003, 2004)
for the next to leading order term. It is still below the detection
limit of Planck for the models considered here. Thus, if the
reionization occurs at even higher redshifts than our extreme
model or if the bias be = δe/δm is higher than what the model of
reionization we used predicts, then the imprint of reionization
in the CMB bispectrum may be seen by Planck or post-Planck
experiments. We would like to point out that there are additional
terms in the second-order Boltzmann equation, the second-order
electron velocity, CMB monopole, and quadrupole, that may
also give similar magnitude contributions to the reionization
bispectrum. The CMB polarization may also get important
contributions from reionization. However, the bispectrum is
so small, except in the extreme cases, that it is unlikely that
these additional terms would change our results significantly.
More important is the finding that even in extreme cases the
confusion with the primordial non-Gaussianity of local type
is much smaller than one (Figure 7). Thus, inhomogeneous
reionization should not be a cause of concern when looking
for non-Gaussianity in the initial conditions of the universe in
Planck data.
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