
The Astrophysical Journal, 710:903–923, 2010 February 20 doi:10.1088/0004-637X/710/2/903
C© 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW
AND HIGH REDSHIFT

Benjamin P. Moster
1
, Rachel S. Somerville

1,2
, Christian Maulbetsch

1
, Frank C. van den Bosch

1
, Andrea V. Macciò
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ABSTRACT

We use a statistical approach to determine the relationship between the stellar masses of galaxies and the masses
of the dark matter halos in which they reside. We obtain a parameterized stellar-to-halo mass (SHM) relation by
populating halos and subhalos in an N-body simulation with galaxies and requiring that the observed stellar mass
function be reproduced. We find good agreement with constraints from galaxy–galaxy lensing and predictions of
semi-analytic models. Using this mapping, and the positions of the halos and subhalos obtained from the simulation,
we find that our model predictions for the galaxy two-point correlation function (CF) as a function of stellar mass
are in excellent agreement with the observed clustering properties in the Sloan Digital Sky Survey at z = 0. We
show that the clustering data do not provide additional strong constraints on the SHM function and conclude that
our model can therefore predict clustering as a function of stellar mass. We compute the conditional mass function,
which yields the average number of galaxies with stellar masses in the range m ± dm/2 that reside in a halo of
mass M. We study the redshift dependence of the SHM relation and show that, for low-mass halos, the SHM ratio is
lower at higher redshift. The derived SHM relation is used to predict the stellar mass dependent galaxy CF and bias
at high redshift. Our model predicts that not only are massive galaxies more biased than low-mass galaxies at all
redshifts, but also the bias increases more rapidly with increasing redshift for massive galaxies than for low-mass
ones. We present convenient fitting functions for the SHM relation as a function of redshift, the conditional mass
function, and the bias as a function of stellar mass and redshift.

Key words: cosmology: theory – dark matter – galaxies: clusters: general – galaxies: evolution – galaxies: halos –
galaxies: high-redshift – galaxies: statistics – galaxies: stellar content – large-scale structure of universe

1. INTRODUCTION

In the standard cold dark matter (CDM) paradigm, the
formation of galaxies is driven by the growth of the large-scale
structure of the universe and the formation of dark matter halos.
Galaxies form by the cooling and condensation of gas in the
centers of the potential wells of extended virialized dark matter
halos (White & Rees 1978; Fall & Efstathiou 1980; Blumenthal
et al. 1984). In this picture, galaxy properties, such as luminosity
or stellar mass, are expected to be tightly coupled to the depth
of the halo potential and thus to the halo mass.

There are various different approaches to link the properties of
galaxies to those of their halos. A first method attempts to derive
the halo properties from the properties of its galaxy population
using, e.g., galaxy kinematics (Erickson et al. 1987; Zaritsky
et al. 1993; Carlberg et al. 1996; More et al. 2009a, 2009b),
gravitational lensing (Mandelbaum et al. 2005, 2006; Cacciato
et al. 2009), or X-ray studies (Lin et al. 2003; Lin & Mohr 2004).

A second approach is to attempt to model the physics that
shapes galaxy formation ab initio using either large numerical
simulations including both gas and dark matter (Katz et al. 1996;
Springel & Hernquist 2003) or semi-analytic models (SAMs) of
galaxy formation (e.g., Kauffmann et al. 1993; Cole et al. 1994;
Somerville & Primack 1999). In “hybrid” SAMs (e.g., Croton
et al. 2006; Bower et al. 2006), dark matter “merger trees” are
extracted from a dark matter only N-body simulation, and gas
processes are treated with semi-analytic recipes. An advantage
of this method is that high-resolution N-body simulations can
track the evolution of individual subhalos (Klypin et al. 1999;
Springel et al. 2001) and thus provide the precise positions
and velocities of galaxies within a halo. However, many of

the physical processes involved in galaxy formation (such as
star formation and various kinds of feedback) are still not
well understood, and in many cases simulations are not able
to reproduce observed quantities with high accuracy.

With the accumulation of data from large galaxy surveys
over the last decade, a third method has been developed,
which links galaxies to halos using a statistical approach. The
Halo Occupation Distribution (HOD) formalism specifies the
probability distribution for a halo of mass M to harbor N
galaxies with certain intrinsic properties, such as luminosity,
color, or type (e.g., Peacock & Smith 2000; Seljak 2000; White
2001; Berlind & Weinberg 2002). More complex formulations
of this kind of modeling, such as the conditional luminosity
function (CLF) formalism (Yang et al. 2003, 2004; van den
Bosch et al. 2003) have extended the HOD approach. These
methods have the advantage that they do not rely on assumptions
about the (poorly understood) physical processes that drive
galaxy formation. In this way, it is possible to constrain the
relationship between galaxy and halo properties (and thus,
indirectly, the underlying physics), and to construct mock
catalogs that reproduce in detail a desired observational quantity
(such as the luminosity function). One disadvantage of the
classical HOD approach was that one had to make assumptions
about the distribution of positions and velocities of galaxies
within their host halos. In addition, the results of the HOD
modeling can be difficult to interpret in terms of the underlying
physics of galaxy formation.

In recent years, HOD models have been introduced that make
use of information about the positions, velocities, and masses
of halos and subhalos extracted from a dissipationless N-body
simulation. The (sub)halo mass is then empirically linked to
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galaxy properties by requiring that a statistical observational
quantity (e.g., galaxy luminosity function and/or galaxy two-
point correlation function) is reproduced. This is either done by
assuming parameterized functions to relate galaxy properties
(such as luminosity) to halo mass or by assuming a non-
parametric monotonic relation. It has been shown that these
simple models reproduce galaxy clustering as a function of
luminosity over a wide range in redshift (Kravtsov et al. 2004;
Tasitsiomi et al. 2004; Tinker et al. 2005; Vale & Ostriker 2006;
Conroy et al. 2006; Shankar et al. 2006; Wang et al. 2006; Marı́n
et al. 2008).

Observationally, it is well known that galaxy clustering is a
function of spatial scale, galaxy properties (such as luminosity
and type), and redshift. Luminous (massive) galaxies are more
strongly clustered than less luminous (less massive) galaxies
(Norberg et al. 2001, 2002; Zehavi et al. 2002, 2005; Li et al.
2006). One can split the galaxy two-point correlation function
(2PCF) into two separate parts: the one-halo and the two-halo
terms. The one-halo term, which dominates on small scales,
depends strongly on the galaxy distribution within the halo
as well as the details of the HOD. The two-halo term, which
dominates on scales that are much larger than a typical halo, is
proportional to the auto-correlation of the halo population. In
general, the two terms are not expected to combine to produce
a featureless power law, but generally show a break or dip at
the scale where the transition from the one-halo to the two-halo
term occurs (Zehavi et al. 2004).

The extensive multi-wavelength spectrophotometric informa-
tion that is now available for large numbers of galaxies allows
us to estimate physical parameters of galaxies, such as stel-
lar masses, instead of relying on observational properties such
as magnitudes (Bell & de Jong 2001; Kauffmann et al. 2003;
Panter et al. 2004). These estimates can even be obtained—with
a proper measure of caution—for high-redshift galaxies. Stellar
mass estimates have been presented in the literature for galaxies
up to redshifts as high as z ∼ 6 (Yan et al. 2006; Eyles et al.
2007), and stellar mass function (SMF) estimates have been pre-
sented up to z ∼ 5 (Drory et al. 2005; Fontana et al. 2006; Elsner
et al. 2008). The goal of our paper is to develop a “Conditional
Stellar Mass Function” (CMF) formalism, which is the stellar
mass analog of the CLF. The CMF yields the average number of
galaxies with stellar masses in the range m ± dm as a function
of the host halo mass M and can be regarded as the SMF for
halos of mass M. We apply this formalism at low redshift and up
to the highest redshifts where reliable observational stellar mass
estimates are available (0.1 � z � 4). In this way, we derive a
parameterized relationship between dark matter halo mass and
galaxy mass as a function of redshift.

Using a parameterized relationship has several advantages.
First, it provides a convenient way for other researchers to make
use of our results and obtain an expression for stellar mass as a
function of halo mass. Second, it is straightforward to include
scatter in the relation, which is physically more realistic: one
just has to choose a number drawn from an assumed random
distribution and add that to the average relation. Finally, it is
straightforward to treat central and satellite galaxies separately
and assume different relations between stellar and halo mass
for those populations. However, here we make the assumption
that both populations follow the same relation, which has
consequences for the clustering predictions of our model.

Using the CMF derived only from constraints from the
observed SMF, we compute the predicted (projected) galaxy CF
at z ∼ 0 as a function of stellar mass, and find good agreement

with the observational results of Li et al. (2006). Furthermore,
we show that assuming central and satellite galaxies follow
the same relation between stellar and halo mass, adding the
clustering constraints does not tighten the constraints on our
model parameters; i.e., any model that satisfies the mass function
constraints will produce the correct clustering. Based on this
result, we use our redshift-dependent CMF results to predict
the clustering as a function of stellar mass and redshift. To
date, observational measurements of clustering as a function of
stellar mass have only been published for z � 1 (Meneux et al.
2008, 2009). We show that our model predictions agree very
well with these measurements. Very soon it will be possible
to test our predictions for redshifts beyond z = 1 with the
results from deep wide-field surveys (e.g., MUSYC, UKIDDS,
etc.). We again present convenient fitting functions for the
galaxy bias as a function of both stellar mass and redshift.
In a forthcoming companion paper (Moster et al. 2010), we
employ our estimates of galaxy bias in order to compute the
“cosmic variance,” the uncertainty in observational estimates
of the volume density of galaxies arising from the underlying
large-scale density fluctuations.

This paper is organized as follows. In Section 2, we describe
the N-body simulation, the halo finding algorithm that was
used to obtain a halo catalog and the treatment of “orphaned”
galaxies. Section 3 specifies our model: we motivate the form
of the stellar-to-halo mass (SHM) relation and constrain it by
requiring that the observed SMF is reproduced. The clustering
properties of galaxies are then inferred from those of the halo
population. We discuss the meaning of the parameters of the
SHM relation and demonstrate that clustering puts only weak
constraints on them. In Section 5, we introduce the CMF, which
describes how halos are occupied by galaxies, and compute the
occupation numbers. Section 6 gives a comparison between our
results and several other models and observations. In Section 7,
we apply our method to higher redshifts and determine the
redshift dependence of the SHM relation. We make predictions
of the stellar mass dependent galaxy CF at higher redshift, which
we use to compute the galaxy bias. Finally, we summarize our
methods and conclusions in Section 8.

Throughout this paper, we assume a ΛCDM cosmology with
(Ωm, ΩΛ, h, σ8, n) = (0.26, 0.74, 0.72, 0.77, 0.95). We employ
a Kroupa (2001) initial mass function (IMF) and convert all
stellar masses to this IMF. In order to simplify the notation, we
will use the capital M to denote dark matter halo masses and the
lower case m to denote galaxy stellar masses.

2. THE SIMULATION AND HALO CATALOGS

High-resolution dissipationless N-body simulations have
shown that distinct halos4 contain subhalos which orbit within
the potential of their host halo. These subhalos were distinct
halos in the past, and entered the larger halo via merging dur-
ing the process of hierarchical assembly. We will refer to the
galaxy at the center of a distinct halo as a central galaxy, and
the galaxies within subhalos as “satellites;” and we will use the
term “halo” to refer to the distinct halo for central galaxies and
to the subhalo in which the galaxy originally formed for satellite
galaxies.

Ab initio models of galaxy formation predict that the stellar
mass of a galaxy is tightly correlated with the depth of the
potential well of the halo in which it formed. For distinct halos,

4 We refer to virialized halos that are not subhalos of another halo as
“distinct.”
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the relevant mass is the virial mass at the time of observation.
Subhalos, however, lose mass while orbiting in a larger system
as their outer regions are tidally stripped. Stars are centrally
concentrated and more tightly bound than the dark matter,
however, and so the stellar mass of a galaxy which is accreted
by a larger system probably changes only slightly until most of
the dark matter has been stripped off. Therefore, the subhalo
mass at the time of observation is probably not a good tracer
for the potential well that shaped the galaxy properties. A better
tracer is the subhalo mass at the time that it was accreted by the
host halo, or its maximum mass over its history.5 This was first
proposed by Conroy et al. (2006).

The population of dark matter halos used in this work is
drawn from an N-body simulation run with the simulation
code GADGET-2 (Springel 2005) on a SGI AltixII at the
University Observatory Munich. The cosmological parameters
of the simulation are chosen to match results from WMAP-3
(Spergel et al. 2007) for a flat ΛCDM cosmological model:
Ωm = 0.26, ΩΛ = 0.74, h = H0/(100 km s−1 Mpc−1) = 0.72,
σ8 = 0.77, and n = 0.95. The initial conditions were generated
using the GRAFIC software package (Bertschinger 2001). The
simulation was done in a periodic box with side length 100 Mpc,
and contains 5123 particles with a particle mass of 2.8×108 M�
and a force softening of 3.5 kpc.

Dark matter halos are identified in the simulation using a
friends-of-friends (FoF) halo finder. Substructures inside the
FoF groups are then identified using the SUBFIND code
described in Springel et al. (2001). For the most massive
subgroup in a FoF group, the virial radius and mass are
determined with a spherical overdensity criterion: the density
inside a sphere centered on the most bound particle is required
to be greater than or equal to the value predicted by the spherical
collapse model for a tophat perturbation in a ΛCDM cosmology
(Bryan & Norman 1998). As discussed above, for subhalos we
use the maximum mass over its past history, which is typically
the mass when the halo was last a distinct halo and did not yet
overlap with its later host. Merger trees were constructed out of
the halo catalogs at 94 time steps, equally spaced in expansion
factor (Δa = 0.01), based on the particle overlap of halos at
different time steps.

Due to the finite mass resolution of the simulation
(Mmin,halo � 1010 M�), subhalos can no longer be identified
when their mass has dropped below this limit due to tidal strip-
ping. Since mass loss can be substantial (>90%) this is impor-
tant even for fairly massive subhalos. A special treatment of
these so-called “orphans” is necessary. We determine the orbital
parameters at the last moment when a subhalo is identified in
the simulation and use them in the dynamical friction recipe
of Boylan-Kolchin et al. (2008), which is applicable at radii
r < rvir. We also tried an alternate recipe in which we make no
explicit use of the subhalo information, but apply the dynami-
cal friction formula from the time when the satellites first enter
the host halo. We obtained very similar subhalo mass functions
and radial distributions with the alternate recipe, confirming the
self-consistency of the approach.

For the halo positions in the determination of CFs, we use the
coordinates of the most bound particle for distinct and subhalos.
For orphans, by definition, the position is not known, so we
follow the position of the most bound particle from the last time
step when a subhalo was identified. Since the dynamical friction

5 In an idealized situation, halo mass should increase monotonically with
time until the halo becomes a subhalo, at which point the mass begins to
decrease due to tidal stripping.

force vanishes in the dark matter only simulation after a subhalo
is dissolved, yet not in reality when a galaxy is present at the
center of the subhalo, the distance to the center of the host halo
might be slightly overestimated with this prescription.

3. CONNECTING GALAXIES AND HALOS

In this section, we describe how we derive the relationship
connecting the stellar mass of a galaxy to the mass of its dark
matter halo. In the standard picture of galaxy formation, gas can
only cool and form stars if it is in a virialized gravitationally
bound dark matter halo (White & Rees 1978). In this model, the
gas cooling rate, the star formation rate, and thus the properties
of the galaxy depend mainly on the virial mass of the host halo.
Thus, we expect the stellar mass of a central galaxy to be strongly
correlated with the virial mass of the halo in which the galaxy
formed. As we discussed in the last section, this corresponds to
the virial mass for central galaxies, and to the maximum mass
over the halo’s history for satellite galaxies. In the rest of this
work, unless noted otherwise, the halo mass M will represent:

M =
{
Mvir, for host halos
Mmax, for subhalos . (1)

Note that we have also experimented with instead using the
present mass for subhalos, and found that we were not able
to reproduce the galaxy clustering properties (see also Conroy
et al. 2006).

3.1. The Stellar-to-halo Mass Relation

In order to link the stellar mass of a galaxy m to the mass
of its dark matter halo M, we need to specify the SHM ratio.
A direct comparison of the halo mass function n(M) and the
galaxy mass function φ(m) helps to constrain the SHM function.
If we assume that every host (sub) halo contains exactly one
central (satellite) galaxy and that each system has exactly the
same SHM ratio m/M , the galaxy SMF can be derived trivially
from the halo mass function and has the same features. The
galaxy mass function derived for m/M = 0.05 is compared
to the observed Sloan Digital Sky Survey (SDSS) galaxy mass
function in Figure 1. The observed galaxy mass function is
steeper for high masses and shallower for low masses than the
one derived from the halo mass function. Thus, for a constant
SHM ratio there will inevitably be too many galaxies at the low
and high mass end.

This implies that the actual SHM ratio m/M is not constant,
but increases with increasing mass, reaches a maximum around
m∗ and then decreases again. Hence, we adopt the following
parameterization, similar to the one used in Yang et al. (2003):

m(M)

M
= 2

( m

M

)
0

[(
M

M1

)−β

+

(
M

M1

)γ
]−1

. (2)

It has four free parameters: the normalization of the SHM ratio
(m/M)0, a characteristic mass M1, where the SHM ratio is equal
to (m/M)0, and two slopes β and γ which indicate the behavior
of m/M at the low and high mass ends, respectively. We use
the same parameters for the central and satellite populations,
since—unlike luminosity—the stellar mass of satellites changes
only slightly after they are accreted by the host halo.

Note that though both β and γ are expected to be positive,
they are not restricted to be so. The SHM relation is therefore
not necessarily monotonic.
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Figure 1. Comparison between the halo mass function offset by a factor of 0.05
(dashed line), the observed galaxy mass function (symbols), our model without
scatter (solid line), and our model including scatter (dotted line).We see that
the halo and the galaxy mass functions are different shapes, implying that the
stellar-to-halo mass ratio m/M is not constant. Our four-parameter model for
the halo mass dependent stellar-to-halo mass ratio is in very good agreement
with the observations (both including and neglecting scatter).

3.2. Constraining the Free Parameters

Having set up the model, we now need to constrain the four
free parameters M1, (m/M)0, β, and γ . To do this, we populate
the halos in the simulation with galaxies. The stellar masses of
the galaxies depend on the mass of the halo and are derived
according to our prescription (Equation (2)). The positions
of the galaxies are given by the halo positions in the N-body
simulation.

Once the simulation box is filled with galaxies, it is straight-
forward to compute the SMF Φmod(m). As we want to fit this
model mass function to the observed mass function Φobs(m)
by Panter et al. (2007), we choose the same stellar mass range
(108.5 M�–1011.85 M�) and the same bin size. The observed
SMF was derived using spectra from the Sloan Digital Sky
Survey Data Release 3 (SDSS DR3); see Panter et al. (2004) for
a description of the method.

Furthermore, it is possible to determine the stellar mass
dependent clustering of galaxies. For this, we compute projected
galaxy CFs wp,mod(rp,mi) in several stellar mass bins which we
choose to be the same as in the observed projected galaxy CFs of
Li et al. (2006). These were derived using a sample of galaxies
from the SDSS DR2 with stellar masses estimated from spectra
by Kauffmann et al. (2003).

We first calculate the real space CF ξ (r). In a simulation, this
can be done by simply counting pairs in distance bins:

ξ (ri) = dd(ri)

Np(ri)
− 1, (3)

where dd(ri) is the number of pairs counted in a distance bin
and Np(ri) = 2πN2r2

i Δri/L
3
box, where N is the total number of

galaxies in the box. The projected CF wp(rp) can be derived
by integrating the real space correlation function ξ (r) along the

line of sight:

wp(rp) = 2
∫ ∞

0
dr||ξ

(√
r2
|| + r2

p

)
= 2

∫ ∞

rp

dr
rξ (r)√
r2 − r2

p

,

(4)
where the comoving distance (r) has been decomposed into
components parallel (r||) and perpendicular (rp) to the line
of sight. The integration is truncated at 45 Mpc. Due to the
finite size of the simulation box (Lbox = 100 Mpc), the
model correlation function is not reliable beyond scales of
r ∼ 0.1Lbox ∼ 10 Mpc.

In order to fit the model to the observations, we use Powell’s
directions set method in multidimensions (e.g., Press et al. 1992)
to find the values of M1, (m/M)0, β, and γ that minimize either

χ2
r = χ2

r (Φ) = χ2(Φ)

NΦ

(mass function fit) or

χ2
r = χ2

r (Φ) + χ2
r (wp) = χ2(Φ)

NΦ
+

χ2(wp)

Nr Nm

(mass function and projected CF fit) with NΦ and Nr the number
of data points for the SMF and projected CFs, respectively, and
Nm the number of mass bins for the projected CFs.

In this context, χ2(Φ) and χ2(wp) are defined as follows:

χ2(Φ) =
NΦ∑
i=1

[
Φmod(mi) − Φobs(mi)

σΦobs(mi )

]2

,

χ2(wp) =
Nm∑
i=1

Nr∑
j=1

[
wp,mod(rp,j , mi) − wp,obs(rp,j , mi)

σwp,obs(rp,j ,mi )

]2

,

with σΦobs and σwp,obs the errors for the SMF and projected CFs,
respectively. Note that for the simultaneous fit, by adding the
reduced χ2

r , we give the same weight to both data sets.

3.3. Estimation of Parameter Errors

In order to obtain estimates of the errors on the parameters,
we need their probability distribution prob(A|I ), where A is the
parameter under consideration and I is the given background
information. The most likely value of A is then given by:
Abest = max(prob(A|I )).

As we have to assume that all our parameters are coupled, we
can only compute the probability for a given set of parameters.
This probability is given by:

prob(M1, (m/M)0, β, γ |I ) ∝ exp(−χ2).

In a system with four free parameters A,B,C, and D one can
calculate the probability distribution of one parameter (e.g., A)
if the probability distribution for the set of parameters is known,
using marginalization:

prob(A|I ) =
∫ ∞

−∞
prob(A,B|I )dB

=
∫ ∞

−∞
prob(A,B,C,D|I )dBdCdD.

Once the probability distribution for a parameter is deter-
mined, one can assign errors based on the confidence intervals.
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Table 1
Fitting Results for Stellar-to-halo Mass Relationship

log M1 (m/M)0 β γ χ2
r (Φ) χ2

r (wp)

Best fit 11.884 0.02820 1.057 0.556 1.56 3.83
σ + 0.030 0.00061 0.054 0.010
σ− 0.023 0.00053 0.046 0.004

Notes. No scatter included. All masses are in units of M�.

This is the shortest interval that encloses a certain percentage X
of the area under the posterior probability distribution. For the
1σ error X = 68%, while for the 2σ error X = 95%. Assuming
that the probability distribution has been normalized to have
unit area we seek A1 and A2 such that∫ A1

0
prob(A|I )dA =

∫ ∞

A2

prob(A|I )dA = 1 − X

2
.

Finally, the parameter A is given as A = Abest
+σ+−σ− with

σ+ = A2 − Abest and σ− = Abest − A1. The errors derived
in this way only include sources that have been considered
when computing χ2. The calculation of the errors applies for
uncorrelated data points. Since in our case the data points are
correlated, the values of the errors are slightly modified. Also
errors caused by cosmic variance are not included.

4. FITTING RESULTS

Here we present the results we obtain by fitting to the SMF
only, and for the combined fit to the SMF and the projected CF.

4.1. The Stellar Mass Function Fit

First, we fit to the SDSS SMF and use the derived best-
fit parameters to calculate the model projected correlation
functions. Note that for now, we do not take into account any
possible scatter in the m(M) relation. We will consider scatter
in Section 4.5.

We see in Figure 1 that our fit produces excellent agreement
with the observed SMF. Using the approach described above
we also compute the errors on the parameters. The results are
summarized in Table 1.

Having derived the best-fit parameters, we can predict the
projected CFs. We present the results both including and not
including orphan galaxies, where we have fitted to the SMF for
each case.

Figure 2 shows a comparison between our model and the
SDSS projected correlation functions in five stellar mass bins
ranging from log m/M� = 9.0 to log m/M� = 11.5 with
a bin size of 0.5 dex. The correlation function that has been
derived without orphans is too low at small scales and can be
regarded as a lower limit. Neglecting these galaxies results in
an underprediction of satellite galaxy clustering. As on small
scales, the projected CF depends mainly on the one-halo term
this results in the underprediction of wp(rp). This effect weakens
for the clustering of more massive galaxies as they are more
likely to be central galaxies and thus not effected by tidal
stripping at all.

The agreement with the observationally derived wp(rp) for
the catalog including orphaned galaxies is very good, which is
also reflected in the low value of χ2

r (wp) = 3.83. Note that this
value has been calculated with the parameters from the mass
function fit given above and does not correspond to a fit to the
projected CFs.

Note that we plot the projected CFs only up to 20 Mpc. Be-
cause of the finite box size, the clustering of host halos and thus
central galaxies is underpredicted at large scales independent of
mass. Additionally, due to the lack of long-wavelength modes,
massive halos, and galaxies can be underproduced leading to an
underprediction of wp for the massive objects, independent of
scale. However, the latter effect is very small, since the abun-
dance of the massive halos in our simulation agrees very well
with the predicted average (Sheth & Tormen 1999).

As a test we also used the present mass instead of the
maximum mass for subhalos. We then found that the projected
CF was particularly underpredicted on small scales. This effect
is due to tidal stripping of subhalos and is thus strongest at small
scales where the subhalo contribution dominates.

4.2. The Combined Fit

We now investigate whether we can improve the agreement
between the model and the observed projected CFs by perform-
ing a combined fit as described above. We obtain the same
parameters as those we derived from the fit to the SMF alone.
This seems surprising, but on further inspection we find that
this is due to χ2(m) being a lot more sensitive to changes of
the parameters than χ2(wp). This means that if one changes the
parameters a little in order to improve the fit to the projected
correlation functions, one can get a slightly better agreement
between the model and the observed projected CFs only at the
cost of a large disagreement between the model and the ob-
served SMFs. In other words: χ2(wp) is much flatter around its
minimum than χ2(wp), as shown in Figure 3.

This means that, assuming that both central and satellite
galaxies follow the same SHM relation, the model that matches
the SMF can reproduce the correct clustering. However, if
subhalos have a different SHM ratio there is an infinite number
of solutions that match the SMF but produce very different
correlation functions. The only way to constrain the SHM
relations then is to take the clustering data into account.
By adopting different SHM relations for central and satellite
populations it is even possible to produce a slightly better fit to
the correlation functions (Wang et al. 2006).

On the other hand, if one wants to predict clustering as a
function of stellar mass (e.g., at higher redshift) then one has
to make an assumption about how the SHM ratios of central
and satellite galaxies are related. We made the very simple
assumption, that the relation between the stellar mass of central
galaxies and the virial mass of their host halo and the relation
between the stellar mass of satellite galaxies and the mass of
the subhalo at the time of accretion is the same, and have shown
that this leads to very good predictions for the mass dependent
clustering. We conclude that under this simple assumption we
can use our model to predict clustering as a function of stellar
mass.

4.3. The Resulting Stellar-to-halo Mass Relation

The upper panel of Figure 4 shows the derived stellar mass
as a function of halo mass. The light shaded area gives the
68% confidence interval, while the dark and light shaded areas
together give the 95% confidence interval. These have been
derived using a set of different models computed on a mesh, as
described in Section 3.3.

For the SHM ratio, we apply the same procedure. The result
is shown in the lower panel of Figure 4. We see that the SHM
ratio has the form we expected: it increases with increasing halo
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Figure 2. Comparison between the model (lines) and observed (symbols with error bars) projected correlation functions. We show the model results both including
(solid) and excluding (dashed) orphan galaxies. The models have been derived by fitting to the stellar mass function only.

Figure 3. Sketch of the probability distributions for a simultaneous fit. The
solid line corresponds to χ2(m) and the dotted line to χ2(wp). The dashed line
is the sum of both. Since χ2(wp) is flat at the minimum, χ2

tot follows χ2(m)
with an offset. The resulting probability distribution does not change (after
normalization).

mass, reaches its maximum value around M1 and then decreases
again.

4.4. Meaning of Parameters and Correlations

We now explore the effects of changing each parameter in
order to understand how they affect the SMF. If we keep M1,
β, and γ fixed and only vary (m/M)0, this corresponds to
changing the stellar mass of the galaxy that lives inside each
halo by a constant factor. This has no impact on the form of
the SMF. Its shape stays the same, while only the position on
the stellar mass axis changes. Due to the monotonic form of the
SMF, this directly determines the value of the normalization
φ∗. For a larger value of (m/M)0, we get a larger value
of φ∗.

Varying only M1, we find that the shape of the SMF changes
drastically. For a higher M1 than our best-fit value, we get too
many massive galaxies and too few low mass galaxies, while
for a lower value of M1 we get too few massive galaxies and too
many low mass galaxies. This is because M1 is the characteristic
mass corresponding to the highest SHM ratio. In the SMF, this
corresponds to the knee and we get a SMF which has its knee
at the stellar mass corresponding to M1. For a larger M1, the
knee is shifted to a higher stellar mass. Together, M1 and the
maximum SHM ratio (m/M)0 determine the normalization of
the SMF φ and the characteristic mass m∗.

Changing β affects mainly the low-mass slope of the SMF. For
larger values of β, the slope becomes shallower. As β influences
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Figure 4. Derived relation between stellar mass and halo mass. The light shaded
area shows the 1σ region while the dark and light shaded areas together show
the 2σ region. The upper panel shows the SHM relation, while the lower panel
shows the SHM ratio.

mainly the slope of the low mass end of the SMF, it is strongly
related to the parameter α of the Schechter function. A small
value of β corresponds to a high value of α.

If we change γ , this mainly impacts the slope of the massive
end of the SMF. For larger values of γ than for its best-fit value,
the slope of the massive end becomes steeper. As γ affects
mainly the slope of the massive end of the SMF, it is not coupled
to a parameter of the Schechter function though it is related to
the high-mass cutoff, assumed to be exponential in a Schechter
function.

Figure 5 shows the contours of the two-dimensional proba-
bility distributions for the parameters pairs. We see a correlation
between the parameters [M1, γ ] and [(m/M)0, γ ] and an anti-
correlation between [β, γ ], [β,M1], and [(m/M)0,M1]. There
does not seem to be a correlation between [β, (m/M)0].

4.5. Introducing Scatter

Up until now we have assumed that there is a one-to-one,
deterministic relationship between halo mass and stellar mass.
However, in nature, we expect that two halos of the same mass M
may harbor galaxies with different stellar masses, since they can
have different halo concentrations, spin parameters, and merger
histories.

For each halo of mass M, we now assign a stellar mass m
drawn from a lognormal distribution with a mean value given
by our previous expression for m(M) (Equation (2)), with a
variance of σ 2

m. We assume that the variance is a constant for
all halo masses, which means that the percent deviation from
m is the same for every galaxy. This is consistent with other

Figure 5. Correlations between the model parameters. The panels show contours
of constant χ2 (i.e., constant probability) for the fit including constraints from
the SMF only. The parameter pairs are indicated in each panel.

Table 2
Fitting Results for Stellar-to-halo Mass Relationship

log M1 (m/M)0 β γ χ2
r (Φ) χ2

r (wp)

Best fit 11.899 0.02817 1.068 0.611 1.42 4.21
σ + 0.026 0.00063 0.051 0.012
σ− 0.024 0.00057 0.044 0.010

Notes. Including scatter σm = 0.15. All masses are in units of M�.

halo occupation models, SAMs and satellite kinematics (Cooray
2006; van den Bosch et al. 2007; More et al. 2009b).

Assuming a value of σm = 0.15 dex and fitting the SMF only,
we find the values given in Table 2. These values lie within the
(2σ ) error bars of the best-fit values that we obtained with no
scatter. The largest change is on the value of γ , which controls
the slope of the SHM relation at large halo masses. The SMF
and the projected CFs for the model including scatter are shown
in Figures 1 and 2, respectively, and show very good agreement
with the observed data.

In Figure 6, we compare our model without scatter with the
model including scatter. We have also included the relation
between halo mass and the average stellar mass. Especially
at the massive end scatter can influence the slope of the SMF,
since there are few massive galaxies. This has an impact on γ
and as all parameters are correlated scatter also affects the other
parameters. We thus see a difference between the model without
scatter and the most likely stellar mass in the model with scatter
in Figure 6.
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Figure 6. Stellar mass as a function of halo mass with σm = 0.15 dex. The
solid line corresponds to our model without scatter, while the points represent
the model with scatter (note that only 20% of the total number of objects are
plotted). The relation between halo mass and the average stellar mass for the
model with scatter is shown by the dashed line.

5. THE CONDITIONAL MASS FUNCTION

In the previous section, we derived a model that specifies
the stellar mass of a central galaxy as a function of the virial
mass of its host halo and the stellar mass of a satellite galaxy
as a function of the maximum mass of the subhalo in which it
lives. It has become common to represent the population of host
halos by the HOD. This includes the halo occupation function
P (N |M) which is the probability distribution that a halo of
mass M contains N galaxies (of a specific type). A close relative
of the HOD is the “CLF” (e.g., Yang et al. 2003, 2004; van
den Bosch et al. 2007). It extends the halo occupation function
P (N |M) (which gives only information about the total number
of galaxies per halo in a given luminosity range) and yields
the average number of galaxies with luminosities in the range
L ± dL/2 as a function of the virial mass M of their host halo.

We define its analog, the “conditional mass function” (CMF),
or the average number of galaxies with stellar masses in the
range m ± dm/2 as a function of the virial mass M of their host
halo. This provides a direct link between the SMF Φ(m) and the
host halo mass function dn(M)/dM:

Φ(m) =
∫ ∞

0
Φ(m|M)

dn(M)

dM
dM. (5)

A host halo of mass M can contain a whole population of galaxies
with different stellar masses m. If we count the number of
galaxies living in host halos with a virial mass in the range
M ∈ [M1,M2], we can compute the SMF of the halo bin
[M1,M2]:

Φ̃(m) =
∫ M2

M1

Φ(m|M)
dn(M)

dM
dM ≈ Φ(m|M̄)Δn. (6)

The tilde over a function represents the fact that it is computed
in a halo mass bin. We have replaced the integral by a “tophat”
with a width of Δn (number of host halos in the bin) and a height
of Φ(m|Mm), where M̄ is the geometric mean of the minimum
and maximum halo masses bracketing the bin.

This equation allows us to put constraints on Φ(m|M) by
calculating Φ̃(m)/Δn. We can then choose an adequate param-
eterization of Φ(m|M) and fit these parameters to Φ̃(m)/Δn in
every halo mass bin. Finally, we can investigate the halo mass
dependence of the parameters.

5.1. Parameterization

In order to specify the CMF Φ(m|M), we divide the galaxy
population into a central and a satellite part, as in the updated
CLF formalism (Zheng et al. 2005; Zehavi et al. 2005; Cooray
2006; Yang et al. 2008; Cacciato et al. 2009). The central part is
Φc(m|M) and the satellite part is Φs(m|M). Then the total CMF
is the sum of both parts:

Φ(m|M) = Φc(m|M) + Φs(m|M). (7)

Note that both Φc(m|M) and Φs(m|M) are statistical func-
tions and should not be regarded as the mass functions of galax-
ies living in a given individual halo.

For the central population, we expect the CMF to have a peak
around the stellar mass mc that corresponds to the host halo’s
virial mass M in the SHM relation (Equation 2). Due to the
halo mass bin size this distribution gets smeared out, because
halos in the interval [M1,M2] contain central galaxies of stellar
masses m ∈ [m1(M1),m2(M2)]. Thus, Φ̃(m)/Δn will be finite
inside the interval [m1(M1),m2(M2)] and zero elsewhere with
a normalization such that the number of central galaxies per
halo equals one. This can be regarded as scatter σbin due to the
binning. If we add intrinsic scatter σm to Equation (2), we expect
Φc(m|M) to be a lognormal with a maximum around mc(M)
and a variance of σ 2

m. To this scatter, the binning scatter σbin
adds in quadrature (assuming that σbin and σm are uncorrelated),
resulting in a total scatter of σ 2

c = σ 2
m + σ 2

bin. For both cases
(σm = 0 and σm �= 0), we use a lognormal distribution:

Φc(m|M) = 1√
2π ln 10 m σc

exp

[
− log 2(m/mc)

2σ 2
c

]
, (8)

where the mean mc(M) and width σ 2
c (M) are parameterized

functions of the halo mass M.
For the satellite population, we adopt a Schechter function

with a steeper slope for the massive end. This is done by squaring
the argument of the exponential function in the Schechter
function:

Φs(m|M) = Φ∗
s

ms

(
m

ms

)αs

exp

[
−

(
m

ms

)2
]

. (9)

Also here the parameters Φ∗
s (M), ms(M), and αs(M) are

functions of the host halo mass M. They are the normalization,
the characteristic mass, and the low-mass slope of the satellite
population of host halos of mass M.

5.2. Constraining the Conditional Mass Function

We populate the halos and subhalos in our simulation
with central and satellite galaxies according to the prescrip-
tion in Section 3. Then we choose halo mass bins between
log M/M� = 10.2 and log M/M� = 15.0 with a bin size
of ΔM = 0.4 dex. In every halo mass bin, we seek all galaxies
which live in a host halo with a mass in that bin, which we divide
between central and satellite galaxies. For these populations, we
then compute two separate SMFs which we normalize such that
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the number of central galaxies per host halo equals one. This
procedure then yields for every halo mass bin a central and a
satellite distribution (dñg/d log M)Δnh.

Using Equation (6), we can now relate the SMF in a halo
mass bin to the CMF:

dñg(m)

d log M

1

Δnh

= ln 10

Δnh

M
dñg(m)

dM

= ln 10 M
Φ̃(m)

Δnh

≈ ln 10 M Φ(m|M). (10)

Now we can fit the five parameters mc(M), σc(M), ms(M),
Φ∗

s (M), and αs(M) to the SMFs in each halo bin. We compute
and fit the central and the satellite parts separately.

The left panels of Figure 7 show the CMF in a subsample of
halo mass bins running from log M/M� = 10.2±0.2 to 15.0±
0.2, where we have not included intrinsic scatter in the SHM
relation. For the satellite part, only galaxies with a mass above
the completeness limits for each halo mass bin (as indicated in
Figure 7) have been used in the fit.

In low-mass halos (log M/M� < 11.0), the contribution
from satellite galaxies is very small and the central contribu-
tion dominates until log M/M� = 12.0. For massive halos
(log M/M� > 13.0), the satellite contribution dominates by
number. The mean of the lognormal fit to the central contribu-
tion also increases with halo mass as stipulated by the model
derived in Section 3. The characteristic mass scale of the satel-
lite contribution also increases with halo mass meaning that the
most massive satellite galaxies have a mass which is comparable
to the mass of the central galaxy.

The scatter of the central contribution σc(M) decreases with
halo mass. As we did not include any scatter in the model, this
scatter reflects the width (0.4 dex) of the halo mass bins (σbin).
The halo mass dependence of σc(M) arises because a fixed halo
mass bin is mapped to a smaller galaxy mass bin for larger halo
mass due to the shape of the SHM relation. Another feature
of the CMF is the slope for low mass satellite galaxies αs(M)
which becomes shallower with increasing halo mass.

5.3. The Parameters of the Conditional Mass Function

In this section, we investigate the halo mass dependence of the
five parameters of the CMF: mc(M), σc(M), ms(M), Φ∗

s (M), and
αs(M). They have been fixed by fitting to the SMFs in each halo
mass bin. We introduce a parameterization in order to describe
the dependence on halo mass and constrain these by a fit to each
parameter. The results are presented in Table 3. This provides a
complete description of the CMF.

As we have already determined the mean relation between
the stellar mass of a galaxy and the mass of its halo, the form
of mc(M) has to be the same and can thus be described by
Equation (2):

mc(M) = 2 M
(mc

M

)
0

[(
M

M1c

)−βc

+

(
M

M1c

)γc

]−1

. (11)

This yields four parameters (mc/M)0, M1c, βc, and γc.
In the upper left panel of Figure 8, mc(M) is plotted as a

function of halo mass. Note that by construction, it has the same
form as the SHM relation.

The scatter of the central galaxy contribution is high for low
halo masses and decreases for more massive halos. The middle

Table 3
Parameters of the CMF

Parameter σm = 0.0 σm = 0.15

log M1c 11.9347 ± 0.0257 11.9008 ± 0.0119
(mc/M)0 0.0267 ± 0.0006 0.0297 ± 0.0004
βc 1.0059 ± 0.0332 1.0757 ± 0.0097
γc 0.5611 ± 0.0065 0.6310 ± 0.0121

log M2 11.9652 ± 0.1118 11.8045 ± 0.0458
σ∞ 0.0569 ± 0.0052 0.1592 ± 0.0030
σ1 0.1204 ± 0.0191 0.0460 ± 0.0029
ξ 6.3020 ± 3.0720 4.2503 ± 0.9945

log M1s 12.1988 ± 0.0878 12.0640 ± 0.0931
(ms/M)0 0.0186 ± 0.0012 0.0198 ± 0.0015
βs 0.7817 ± 0.0629 0.8097 ± 0.0971
γs 0.7334 ± 0.0452 0.6910 ± 0.0390

− log Φ0 11.1622 ± 0.2874 10.8924 ± 0.4615
λ 0.8285 ± 0.0215 0.8032 ± 0.0367

log M3 12.5730 ± 0.1351 12.3646 ± 0.0260
−α∞ 1.3740 ± 0.0066 1.3676 ± 0.0043
−α1 0.0309 ± 0.0076 0.0524 ± 0.0051
ζ 4.3629 ± 2.6810 9.5727 ± 6.8240

Notes. The second and third columns give the CMF parameters and their errors
for a model without scatter while the fourth and the fifth columns give the CMF
parameters and their errors for a model with a scatter of σm = 0.15. All quoted
masses are in units of M�.

left panel of Figure 8 shows σc(M) as a function of halo mass.
As one can see, σc(M) goes to a constant value both for low
and high halo masses while it decreases with halo mass. We
therefore choose the following parameterization:

σc(M) = σ∞ + σ1

[
1 − 2

π
arctan

(
ξ log

M

M2

)]
. (12)

This yields four more parameters σ∞, σ1, ξ , and M2. Here, σ∞
sets the high mass limit of σc(M) while σ1 sets the difference
between the low and high mass limits of σc(M). The parameter
M2 determines the mass scale at which the transition occurs and
ξ sets the strength. For a large (small) value of ξ , the transition
occurs in a small (large) interval around M2.

The specific shape of σc(M) can be explained by the form of
the SHM relation (Equation (2)). As we have not included any
scatter in this relation (σm = 0), the width of the lognormal
function of the central galaxy distribution arises from the
width of the halo mass bin (σc = σbin). A halo mass interval
[M1,M2] contains only central galaxies with stellar masses
of m ∈ [m1(M1),m2(M2)]. The lower left panel of Figure 8
illustrates this by showing how halo mass bins affect the bin
size of the stellar mass. If we choose the same bin size for low
and high mass halos, we get different bin sizes for low and high
mass galaxies, due to the changing slope of m(M). Therefore,
the transition occurs where the slope of m(M) changes which is
around M1, so the value of M2 is very close to that value.

As Figure 7 shows that the satellite contribution falls off
around the mean mass of the central galaxy, we expect the
characteristic mass of the modified Schechter function ms(M)
to follow mc(M). We therefore describe ms(M) with the same
function we used for the parameterization of mc(M):

ms(M) = 2 M
(ms

M

)
0

[(
M

M1s

)−βs

+

(
M

M1s

)γs

]−1

. (13)

This function yields four parameters (ms/M)0, M1s , βs , and γs .
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Figure 7. Conditional mass function (CMF) predicted by our model at z = 0. We plot the derived SMFs (dñg/d log m) in a subsample of halo mass bins. The left
panels show the CMF for a model without scatter, while the right panels show the CMF with scatter of σm = 0.15. The label in each panel is the range of host halo
mass log M/ M�. The stellar mass functions are normalized such that a host halo contains exactly one central galaxy. The total CMF consists of a central galaxy
part (crosses) and a satellite part (diamonds). The central part is described by a lognormal distribution (solid line) and the satellite part is described by a truncated
Schechter function (dashed line) using the parameters that were derived by a fit to the CMF. The dotted line shows the completeness limit used in the fit to the satellite
contribution.

The upper right panel of Figure 8 plots ms(M) as a function of
halo mass. We see that the shape is similar to that of mc(M). Note

that ms(M) is always lower than mc(M), while the deviation
increases with increasing halo mass. This implies that for high
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Figure 8. Five parameters of the conditional mass function as a function of halo mass. The crosses were derived from a fit to the CMF in every halo mass bin (assuming
no scatter in stellar-to-halo mass relation). The solid line is a fit to the crosses using the respective parameterization. The CMF parameters derived with a scatter of
σm = 0.15 in the stellar-to-halo mass relation are given by the diamonds. The left panels show the central contribution: mc(M) (top panel), σc(M) (middle panel),
and an illustration of the behavior of σc(M) (bottom panel). The right panels show the satellite contribution: ms (M) (top panel), Φ∗

s (M) (middle panel), and αs (M)
(bottom panel). The dashed line in the top right panel indicating mc(M) has been added for comparison.

halo masses the satellite contribution to the CMF falls off before
the mean mass of the central galaxy.

The normalization of the modified Schechter function is small
for low halo masses and increases with the mass of the host halo.
The middle right panel of Figure 8 shows Φ∗

s (M) as a function
of halo mass. We see that Φ∗

s (M) can be described by a power
law and choose the following parameterization:

Φ∗
s (M) = Φ0

(
M

M�

)λ

. (14)

We get two more parameters, Φ0 and λ. The normalization of
Φ∗

s (M) is given by Φ0 and the slope by λ. The shape of Φ∗
s (M)

implies that the probability for a host halo to harbor satellite
galaxies (in a given stellar mass range) increases with increasing
halo mass.

The slope of the modified Schechter function for the satellite
contribution becomes shallower for more massive halos. The
lower right panel of Figure 8 shows αs(M) as a function of halo
mass and shows that αs(M) goes to a constant value for both
low and high halo masses. Similar to σc(M), we choose the
parameterization:

αs(M) = α∞ + α1

[
1 − 2

π
arctan

(
ζ log

M

M3

)]
. (15)

This yields four more parameters α∞, α1, ζ , and M3. Here, α∞
sets the high mass limit of αc(M) while α1 sets the difference
between the low and high mass limits of αc(M). The mass scale
at which this transition occurs is determined by M3 and ζ sets its
strength. The transition occurs in a small (large) interval around
M3 for a large (small) value of ζ .

5.4. The Impact of Scatter

Until now, we have used the SHM Equation (2) without any
intrinsic scatter. In this section, we investigate how the CMF and
the parameters change if we include a scatter σm as described
in Section 4.5. This scatter is again assumed to be constant with
host halo mass.

The right panels of Figure 7 show the resulting CMF in
a subsample of halo mass bins for an intrinsic scatter of
σm = 0.15. The central part is now no longer near-constant
in the interval [m(M − ΔM/2),m(M + ΔM/2)] as in the left
panels of Figure 7 (where σm = 0.0) but has the form of a
lognormal with a broader distribution for bigger σm. As the
scatter has been taken from a lognormal distribution, the central
galaxy contribution to the CMF is distributed in the same way.
Hence, σc(M) changes with respect to the model that does not
include artificial scatter. We notice that at the massive end the
binning scatter σ 2

bin and the intrinsic scatter σ 2
m add to the total

scatter σ 2
tot. At the low mass end, however, the total scatter is less
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Figure 9. Occupation numbers as function of halo mass in stellar mass bins, derived using the conditional mass function. The left, middle, and right panels show the
average number of central, satellite, and total galaxies per halo, respectively.

than what has been obtained by using no intrinsic scatter. This
shows that the two forms of scatter do not add in quadrature and
indicates that they are correlated.

We compare mc(M), σc(M), ms(M), Φ∗
s (M), and αs(M) for

σm = 0 and σm = 0.15 and show the resulting parameters in
Table 3 (Columns 4 and 5) and in Figure 8. The mean mass of the
central galaxy mc(M) does not change much if artificial scatter
is introduced. The most likely stellar mass of a central galaxy
is still given by the SHM relation, so the mean of the Gaussian
in logarithmic space stays the same. Also the parameters of the
satellite population (ms(M),Φ∗

s (M), and αs(M)) do not change
significantly.

5.5. The Occupation Numbers

In order to compare our results to other HOD models, it is
useful to compute the average number of galaxies per halo 〈N〉,
as this is the main prediction of the HOD approach. To compute
〈N〉(M) from the CMF, we simply integrate Φ(m|M) over the
desired stellar mass range:

〈N〉(M) =
∫ m2

m1

Φ(m|M)dm. (16)

As we have divided Φ(m|M) into a central galaxy contribution
Φc(m|M) and a satellite galaxy contribution Φs(m|M), we can
compute separate occupation numbers for central and satellite
galaxies:

〈N〉(M) =
∫ m2

m1

Φc(m|M)dm +
∫ m2

m1

Φs(m|M)dm

= 〈Nc〉(M) + 〈Ns〉(M).

The average number of central galaxies per halo 〈Nc〉(M) is
given by

〈Nc〉(M) = 1
2 [erf(η2) − erf(η1)] , (17)

with the error function erf(x) and the integration boundaries

η1 = log (m1/mc)√
2σc

and η2 = log (m2/mc)√
2σc

.

The average number of satellite galaxies per halo 〈Ns〉(M) is

〈Ns〉(M) = Φs

2

[
Γ

(
αs

2
+

1

2
, κ1

)
− Γ

(
αs

2
+

1

2
, κ2

)]
, (18)

with the upper incomplete gamma function Γ(a, x) and the
integration boundaries

κ1 = (m1/ms)
2 and κ2 = (m2/ms)

2 .

Figure 9 shows the resulting occupation numbers for the
values of the CMF parameters that were derived in Section 5.3
(using a scatter of σm = 0.15). The five lines in each panel
correspond to different stellar mass bins.

The left panel shows the average number of central galaxies
per halo 〈Nc〉(M) as a function of halo mass. In the middle panel,
the average number of satellite galaxies per halo 〈Ns〉(M) as a
function of halo mass is shown. The right panel plots the average
number of all galaxies per halo 〈Ntot〉(M) as a function of halo
mass. A galaxy of a low stellar mass can thus either be a central
galaxy of a low-mass halo, or a satellite galaxy of a massive
halo. It is not likely to live in a halo of intermediate mass.

As it is common in the literature to plot occupation numbers
not for stellar mass intervals, but for galaxy samples with a
mass above a given threshold, we need to adjust Equations (17)
and (18). The stellar mass threshold is then given by m1 while
m2 → ∞. This yields for the average number of central galaxies

〈Nc〉(M,m1) = 1

2

[
1 − erf

(
log (m1/mc)√

2σc

)]
, (19)

since erf(x → ∞) → 1, and for the average number of satellite
galaxies

〈Ns〉(M,m1) = Φs

2
Γ

[
αs

2
+

1

2
,

(
m1

ms

)2
]

, (20)

since Γ(a, x → ∞) → 0.
Figure 10 shows occupation numbers for different stellar mass

thresholds. The left panel shows the average number of central
galaxies per halo 〈Nc〉(M) as a function of halo mass. The
middle panel plots the average number of satellite galaxies per
halo 〈Ns〉(M) as a function of halo mass. It is similar to the
middle panel of Figure 9, while it is larger at a given halo mass.
In the right panel, the average number of all galaxies per halo
〈Ntot〉(M) as a function of halo mass is shown.
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Figure 10. Occupation numbers as function of halo mass for galaxy samples with a stellar mass above a given threshold. The left, middle, and right panels show the
average number of central, satellite, and total galaxies per halo, respectively.

Table 4
Comparison Between Different Models

Model log M1 (m/M)0 β γ

Our model 11.884 0.0282 1.06 0.556
Non-parametric 11.766 0.0324 1.43 0.565
Wang et al. (2006) 11.845 0.0319 1.42 0.710
Somerville SAM 11.888 0.0276 0.98 0.629
Croton SAM 11.742 0.0405 0.92 0.610
Yang GC 12.067 0.0384 0.71 0.698

Note. All quoted masses are in units of M�.

6. COMPARISON

6.1. Other HOD Models

Numerous variations on halo occupation models have been
presented in the literature. In this section, we describe some of
the most popular ones and compare them to our model. As many
authors use different IMFs and definitions of halo masses, we
convert all results to the conventions that we have used in this
work (Kroupa IMF and virial overdensity).

In the non-parametric model (Vale & Ostriker 2006; Conroy
et al. 2006; Shankar et al. 2006), galaxy properties, such as
luminosity and stellar mass, are monotonically related to the
mass of dark matter halos. Using the observed galaxy SMF, the
most massive halo is matched to the most massive galaxy:

ng(> mi) = nh(> Mi). (21)

In this way, the observed SMF is automatically reproduced.
Applying this procedure and fitting the parameters of the SHM
relation to the result, we have derived the values given in Table 4.
These are in good agreement with the parameters of our model,
except for β. We find that this is due to the shape of the SHM ratio
for low masses. For the non-parametric model, m(M < M1)
cannot be perfectly described by a single power law, as is
assumed in our model.

Adding an additional parameter and assuming a fitting func-
tion with five free parameters, we are able to fit the SHM relation
predicted by the non-parametric model quite precisely. The fifth
parameter accounts for the deviation from the power law at high

Figure 11. Comparison of the stellar-to-halo mass relation m(M) between
our model (solid line), models from other authors and galaxy–galaxy lensing
(symbols). The blue areas are the 1σ and 2σ levels and the error bars on the
symbols are the 2σ levels of the halo mass.

Table 5
Fit Parameters for Equation (22)

log m0 log M1 γ1 γ2 β

10.864 10.456 7.17 0.201 0.557
±0.043 ±0.211 ±1.16 ±0.018 ±0.031

Note. All masses are in units of M�.

and low masses. Using the parameterization

m(M) = m0
(M/M1)γ1[

1 + (M/M1)β
](γ1−γ2)/β , (22)

we determine the values given in Table 5. Figure 11 shows
the results of four- and five-parameter fits to the SHM relation
derived via the non-parametric method, compared with our usual
model. In the range where we applied the mass function fit, the
non-parametric model lies within our error bars.
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In Wang et al. (2006), a model similar to ours is used
to constrain the SHM ratio. The halo catalog is taken from
the Millennium simulation (Springel et al. 2005); halos are
identified using a FoF group finder while substructure is found
using the SUBFIND algorithm of Springel et al. (2001). As
observational constraints, the authors use a SMF which they
compute from the SDSS DR2 data using the mass estimates of
Kauffmann et al. (2003) and the projected CFs of Li et al. (2006).

The parameterization they use is similar to ours, with four
free parameters that can easily be converted to M1, (m/M)0, β,
γ , and an unconstrained scatter. These are fixed by generating
a grid of models and the best-fit model is defined as the one
for which χ2 = χ2(Φ) + χ2(wp) is minimal. They find that
their fit improves if they take a different set of parameters for
central and satellite galaxies. In Table 4, we compare our best-fit
parameters with their central galaxy best-fit parameters which
have been updated in Wang et al. (2007). We show these results
in Figure 11.

The values of M1 and (m/M)0 are in very good agreement
with our values, but the slopes are both higher, resulting in
fewer massive and fewer low mass galaxies. The reason for the
difference in the low mass end is the different simulation used.
As the resolution of the simulation in our model is higher, the
low mass end can be constrained more tightly. For the massive
end, the difference in γ can be explained by the additional
unconstrained scatter that is used in Wang et al. (2006). As
the mass function is steep at high masses and shallow for low
masses, a change in the scatter will influence the number of
massive galaxies strongly, while it will have only a small effect
on the low mass end. As the other three parameters, M1, (m/M)0,
and β, are coupled to the Schechter function parameters, there
are two parameters to constrain the slope of the massive end of
the SMF. This degeneracy can cause the difference in γ between
the two models. The fact that in the Millennium simulation the
cosmology is different to that of our simulation also affects the
value of the parameters.

6.2. Gravitational Lensing

The relation between stellar mass and halo mass can be ob-
servationally constrained using galaxy–galaxy lensing. Gravi-
tational lensing induces shear distortions of background objects
around foreground galaxies, allowing the mass of the dark matter
halo to be estimated. Mandelbaum et al. (2005, 2006) have used
SDSS data to calibrate the predicted signal from a halo model
which has been derived from a dissipationless simulation. They
have extracted the mean halo mass as a function of stellar mass.
The lensing data for combined early- and late-type galaxies
(R. Mandelbaum 2008, private communication) are shown in
Figure 11 and are in excellent agreement with our model.

6.3. Semi-analytic Models

As we discussed in the introduction, SAMs of galaxy forma-
tion attempt to predict the relationship between dark halo mass
and stellar mass by a priori modeling of physical processes, such
as the growth of structure, cooling, star formation, and stellar
and active galactic nucleus (AGN) feedback. We compare our
results with predictions from the latest version of the SAMs of
Somerville & Primack (1999); see Somerville et al. (2008). For
this, we compute the mean stellar mass of central galaxies as
a function of the mass of the host halo in halo mass bins. The
results are shown in Figure 11 and are in good agreement with
our model. This is not surprising, as the physical parameters in

the model of Somerville et al. (2008) have been tuned to match
the observed SMF at z = 0.

In Wang et al. (2006), the authors use the SAM of Croton
et al. (2006) and link galaxy properties, such as the stellar mass,
to the mass of the halo in which the galaxy was last a central
object Minfall. They fit the same four-parameter function that
they used for their empirical model (described above) to obtain
the parameter estimates from the SAM. We summarize these
results in Table 4, and show them in Figure 11.

The two slopes are in very good agreement with our results.
However, the normalization in the Croton et al. (2006) SAM is
∼25% higher and the characteristic mass is ∼25% lower than
what we found and what Wang et al. (2006) found for their
model. This is because the SAM of Croton et al. (2006) does
not produce a perfect fit to the observed SMF.

6.4. SDSS Group Catalog

Another direct way of studying galaxy properties as a function
of halo mass is using the SDSS group catalog presented in Yang
et al. (2007). In this approach, galaxies are first linked together
into “groups” using a FoF algorithm. Each group is then assigned
a total halo mass by matching to the theoretical dark matter halo
mass function. Yang et al. (2008) present the relation between
the mean stellar mass of the central galaxy and the host halo
mass. We fit the parameters of Equation (2) to their relation and
present the results in Table 4.

We note that the characteristic mass and the normalization
derived from the group catalog are both higher than our model
parameters. The high-mass slope of the SHM relation in the
group catalog is shallower than that of our model. The low-
mass slope is also shallower, however, the constraints on the
low-mass slope in the group catalog are weak, since the lowest
halo masses are log(M/M�) ∼ 11.7. This can also be seen in
Figure 11 where we show the SHM relation of the group catalog
for comparison.

7. HIGH REDSHIFT

The discussion in the previous sections has focussed solely
on the present day universe. In this section, we extend our
analysis to higher redshifts and derive the redshift dependence
of the SHM relation. Having chosen a particular observed SMF
at a given redshift, we can investigate how the parameters
of the SHM ratio change with time. This allows us to learn
about the evolution of galaxies. Also, with this information,
we can populate the N-body simulation snapshots with galaxies
at different redshifts using the appropriate redshift-dependent
SHM relation, and then use the spatial information from the
simulation to compute the stellar mass dependent correlation
functions.

Since at the present time there are no high-redshift (z � 1)
clustering data as a function of stellar mass available, we fit the
four parameters of Equation (2) to the observed SMFs at a given
redshift. We argued in Section 4.2 that, under the assumption
that central and satellite galaxies follow the same SHM relation,
the SMFs provide much stronger constraints on the SHM ratio
than the clustering data. Thus, we should be able to use our
model to predict clustering as a function of stellar mass at any
redshift.

7.1. Which Survey for Which Redshift

In order to constrain the SHM relation, we have to first select
observational SMFs at the redshifts we want to investigate.
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Because of the trade-off between surveying large areas and
obtaining deep samples, measurements of the SMF at high
redshift tend to suffer from limited dynamic range. Therefore,
it is important to think about how the constraints on our four
SHM function parameters arise from the observations.

The characteristic mass M1 and the maximum SHM ratio
(m/M)0 mostly depend on galaxies and halos of intermediate
mass. The high-mass slope γ is fixed by the number of massive
galaxies since these live in the massive halos. On the other hand,
the low-mass slope β is set by the number of low mass galaxies
since these live in the low-mass halos.

For a survey with a fixed area on the sky, the observed volume
is smaller for low redshifts (z � 1) than for high redshifts. In
order to compute the SMF at high galaxy masses, the observed
volume has to be relatively large, as massive galaxies are rare.
Thus for low redshifts, one has to choose a wide survey (large
area) to determine the SMF for massive galaxies and properly
constrain γ . Constraining the SMF at the low mass end requires
a high level of completeness for low mass galaxies, which are
very faint objects. Hence, we have to choose a deep survey that
can detect faint galaxies in order to constrain β.

Taking these considerations into account, we choose the
SMFs presented in Drory et al. (2004) to constrain the parame-
ters M1, (m/M)0, and γ at low redshifts. The authors derive the
SMFs using MUNICS which is a wide area, medium-deep sur-
vey selected in the K band. The detection limit is K ≈ 19.5 and
the subsample the authors use covers 0.28 deg2. We apply our
method using these mass functions and take the three parameters
from that analysis.

However, the MUNICS survey is not deep enough to detect
galaxies that are fainter than the characteristic mass of the SMF
(the knee) and thus is not sufficient to constrain the parameter
β. To constrain β, we choose the SMFs derived in Fontana et al.
(2006). This work is based on the GOODS-MUSIC sample, a
multicolor catalog extracted from the survey conducted over the
Chandra Deep Field South. The catalog is selected in the z850
and K bands, covers an area of 143.2 arcmin2, and is complete
to a typical magnitude of K ≈ 23.5. We apply our method using
the SMFs computed with the z850 band selected sample and take
the parameter β from that analysis.

For high-redshift (z � 1), we use the SMFs presented in
Fontana et al. (2006) to constrain all four parameters. For high
redshifts, the volume of a redshift bin becomes large enough
to sample massive galaxies, and therefore the GOODS-MUSIC
sample is sufficient to constrain γ .

We convert all SMFs which use a Salpeter IMF to the Kroupa/
Chabrier IMF.

7.2. Evolution of the Parameters

Having selected the observational SMFs for a set of different
redshifts, we fit the four free parameters M1, (m/M)0, β, and γ
to the observations. The errors on the parameters are derived in
a similar way as explained in Section 3.3, but instead of using
confidence intervals we have fitted a Gaussian to the probability
distributions of M1, (m/M)0, and γ and a lognormal to the
probability distribution of β.

Figure 12 shows the observed and the model SMFs for
different redshifts (indicated at the top of each panel). The
values of the resulting four parameters for the different redshifts
are shown in Table 6 and the redshift evolution is plotted in
Figure 13. The characteristic mass M1 grows with increasing
redshift, while the normalization of the SHM ratio (m/M)0

Table 6
Stellar-to-halo Mass Ratio Parameters for Different Redshifts

z log M1 ± (m/M)0 ± β − + γ ±
0.0 11.88 0.02 0.0282 0.0005 1.06 0.05 0.05 0.56 0.00
0.5 11.95 0.24 0.0254 0.0047 1.37 0.22 0.27 0.55 0.17
0.7 11.93 0.23 0.0215 0.0048 1.18 0.23 0.28 0.48 0.16
0.9 11.98 0.24 0.0142 0.0034 0.91 0.16 0.19 0.43 0.12
1.1 12.05 0.18 0.0175 0.0060 1.66 0.26 0.31 0.52 0.40
1.5 12.15 0.30 0.0110 0.0044 1.29 0.25 0.32 0.41 0.41
1.8 12.28 0.27 0.0116 0.0051 1.53 0.33 0.41 0.41 0.41
2.5 12.22 0.38 0.0130 0.0037 0.90 0.20 0.24 0.30 0.30
3.5 12.21 0.19 0.0101 0.0020 0.82 0.72 1.16 0.46 0.21

Notes. For M1, (m/M)0, and γ the errors are drawn from a Gaussian and thus
are symmetric (indicated by the symbol ±). For β, the errors are drawn from a
lognormal distribution and thus there is a lower error (indicated by the symbol
−) and an upper error (indicated by the symbol +). All quoted masses are in
units of M�.

becomes smaller with increasing redshift. This means that there
is less stellar content in a halo of a given mass at a higher
redshift.

The high-mass slope γ can be constrained only weakly. This
is due to the limitation of the available galaxy surveys. As the
area of the survey is small, the volume in which galaxies are
detected is limited, and thus massive galaxies are very rare.
This results in large error bars for the SMF for massive galaxies
which propagate into the error bars of γ . The situation improves
slightly for higher redshifts as the volume of higher redshift
bins is larger and thus more massive galaxies can be observed.
The value of γ decreases with increasing redshift. For higher
redshifts (z > 1), the error bars on γ become very large because
of the limited area covered by the available deep surveys (in
this case, GOODS). We leave it up to the reader to assess the
reliability of our results at z > 1 based on our quoted error bars.

The low-mass slope β seems to increase with redshift until
z ≈ 2 and then drops to a low value. However, as the redshift
increases it becomes more and more difficult to observe low
mass galaxies which are very faint. Thus, the high-redshift
values for β are not very well constrained and perhaps not to be
fully trusted. We therefore assume that β grows with increasing
redshift.

As we explained in Section 4.4, β is strongly related to
the parameter α of the Schechter function. A small value of
β corresponds to a large absolute value of α, while a large value
of β results in a low absolute value of α. This would mean
that for higher redshifts the SMF would become shallower, in
contradiction with observations (e.g., Fontana et al. 2006 show
that the absolute value of α increases with redshift). However,
one has to remember that the halo mass function also changes
with redshift and becomes steeper. Thus, the halo mass function
steepens more than the SMF, so β has to increase in order to
compensate.

With the derived parameter values, it becomes possible to
interpolate and find the SHM ratio at any redshift. This is done by
choosing a redshift parameterization for each of the parameters.

As M1 and (m/M)0 do not change much above a redshift of
z > 1.5, we choose power laws for the redshift dependence:

log M1(z) = log M1|z=0 · (z + 1)μ (23)

and ( m

M

)
0

(z) =
( m

M

)
z=0

· (z + 1)ν (24)
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Figure 12. Comparison between the model and the observed stellar mass functions for different redshifts. The observed stellar mass functions are taken from Drory
et al. (2004; for z � 0.9) and Fontana et al. (2006; for z � 1.1) and are represented by the symbols. The model stellar mass functions have been fitted to the
observations and are represented by the solid lines. The dashed lines are the theoretical mass function we obtain from the redshift-dependent parameterization. The
redshift is indicated at the top of each panel.

with the normalizations M0 and (m/M)z=0 and the slopes μ
and ν.

To parameterize γ over redshift, a linear dependence would
lead to a negative γ at a certain redshift. Though this is not
forbidden, it leads to a SHM ratio which would be increasing
monotonically with halo mass which is inconsistent with feed-
back processes at the massive end. Hence, we also choose a
power-law parameterization for γ :

γ (z) = γ0 · (z + 1)γ1 (25)

with the normalization γ0 and the slope γ1.
From Figure 13, we are not able to infer whether β converges

to a constant value. Thus, we adopt a simple linear parameteri-
zation:

β(z) = β1 · z + β0 . (26)

Note that we have also tried other parameterizations (constant
β, decreasing β) but could not reproduce the observed SMFs.
Using the linear parameterization for β and the power laws for

Table 7
Parameters for Redshift-dependent Stellar-to-halo Mass Relation

M1|z=0 μ (m/M)z=0 ν γ0 γ1 β0 β1

11.88 0.019 0.0282 −0.72 0.556 −0.26 1.06 0.17
±0.01 ±0.002 ±0.0003 ±0.06 ±0.001 ±0.05 ±0.06 ±0.12

Note. All quoted masses are in units of M�.

the other parameters, we were able to compute SMFs that are in
good agreement with the observed ones.

A fit to the derived values presented in Table 6 yields the
parameters given in Table 7. As we do not fully trust the derived
values of β for z � 2, we neglect these two values and fit a line
to the remaining values of β.

7.3. The Stellar-to-halo Mass Relation for Different Redshifts

Having developed a redshift-dependent model of the SHM
relation, we now test this model by computing interpolated
SMFs for different redshifts. For this, we use the method
described in Section 3. However, now we do not use the
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Figure 13. Evolution of the stellar-to-halo mass relation parameters with redshift. The symbols correspond to the derived values while the solid line is a fit to the data.
For M1, (m/M)0, and γ this is a power law, while for β it is a straight line.

parameters that have been derived at each redshift by fitting
the model to the observations, but we use the eight parameters
of the redshift-dependent SHM relation that have been derived
in the previous section.

The resulting interpolated SMFs are compared to the observa-
tions (and the fitted mass functions) in Figure 12. For z � 2, we
see excellent overall agreement, the interpolated mass functions
mostly overlap with the error bars of the observations.

The SMFs for the high-redshifts z � 2 are too low. The
deviations are largest at the low mass end. However, if we look
at Figure 12, we see that β is higher than the derived value for
the two highest redshifts which results in a low-mass slope that
is too shallow.

To compare the relation at different redshifts, we use the
redshift-dependent SHM relation with the eight parameters that
have been derived in the previous section. Figure 14 plots stellar
mass versus halo mass for different redshifts. The plot shows
that at a fixed low halo mass (e.g., M = 1011 M�), galaxies that
live in such halos are more massive at low redshift (m ∼ 109 M�
for z = 0) than galaxies that live in a halo of the same mass
at a higher redshift (m ∼ 108 M� for z = 2). In contrast,
massive halos contain more massive galaxies at high redshift,
while at low redshifts the galaxies in massive halos have less
mass. However, as halos also become more massive over time,
one cannot identify a halo of a certain mass at high redshifts with
a halo of the same mass at low redshifts. Thus, the fact that at a
given (high) halo mass the mass of the central galaxy is lower at
present than at an earlier epoch does not imply that individual
galaxies lose mass during their evolution. This only means that
large halos accrete dark matter faster than large galaxies grow
in stellar mass, while the growth of low-mass halos is slower
than that of the central galaxies they harbor (see also Conroy &

Figure 14. Stellar mass as a function of halo mass for different redshifts. The
solid lines show different redshifts, which are indicated at the top of the panels.

Wechsler 2009). Because of its statistical nature, our model is
not suitable for following the evolution of an individual galaxy
through cosmic time. We also note that the SHM relation at the
massive end (M � 1013 M�) undergoes very little evolution,
which has also been found by Brown et al. (2008).

7.4. Clustering at Higher Redshift

Having determined the SHM relation as a function of redshift,
we are now able to populate halos with galaxies at any redshift.
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Figure 15. Correlation functions as a function of stellar mass at high redshift. The different panels correspond to different redshifts, which are given at the bottom of
each panel. The different lines are correlation functions for six stellar mass bins, which are given in the upper left panel. The error bars on the most massive sample
are from Poisson statistics. The correlation function of dark matter particles (thick solid line) at the respective redshifts is also shown for comparison. At high redshift,
the correlation function of the massive samples is only shown on large scales, since there is no relevant one-halo term.

We choose a set of redshifts and populate the halos with galaxies,
deriving the stellar masses from the redshift-dependent SHM
relation. We divide these galaxies into six samples of different
stellar mass between log m/M� = 8.5 and 11.5. For each of
these samples, we compute the real space CF ξ (r) by counting
pairs in distance bins (Equation (3)). This leads to six CFs for
every selected redshift.

Figure 15 shows the CFs for six different redshifts as a
function of stellar mass. We also plot the correlation function
of dark matter at the respective redshifts for comparison. For
all redshifts, we see that massive galaxies are clustered more
strongly than low mass galaxies. The higher the redshift, the
more the CFs for different stellar masses differ. For high redshift,
there are very few massive galaxies in our limited volume
simulation box, and so the error bars become larger.

At low redshift (z � 1), observational measurements of stellar
mass dependent galaxy clustering have recently been published
using the VIMOS-VLT Deep Survey (VVDS) and the zCOS-
MOS Survey (Meneux et al. 2008, 2009). In order to compare
our model predictions to these data, we compute correlation
functions for the same stellar mass bins and thresholds and
convert these to projected correlation functions as described in
Section 3.2. Figure 16 plots the observed projected correlation
functions (symbols) and the model predictions (lines) for differ-
ent stellar mass bins or thresholds in three redshift bins for the
zCOSMOS Survey and one redshift bin for the VVDS. There is
good general agreement between the model and observations.

Figure 16. Comparison between the model (lines) and observed (symbols)
projected correlation functions at 0.2 < z < 1.2. The upper and the left panels
show the zCOSMOS data in three redshift bins, while the lower right panel
shows the VVDS data. The different lines and symbols in each panel are for
different stellar mass bins and thresholds as indicated in the panels.
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Figure 17. Galaxy bias at a fixed scale (≈ 6 Mpc) as a function of redshift for
different stellar masses. The symbols have been derived by averaging the bias
over a distance interval while the lines are fits to the symbols.

The zCOSMOS clustering amplitude agrees very well with the
model for rp < 1 Mpc, but for z < 0.8 deviates at larger dis-
tances and becomes higher than the prediction. As suggested by
Meneux et al. (2009), this may be because the COSMOS field
represents an overdense volume at these redshifts. In contrast,
the VVDS clustering amplitudes are lower than those predicted
by our model, leading to the speculation that perhaps the VVDS
represents an underdense region.

7.5. The Galaxy Bias

The bias of any object may be defined as the square root of
the ratio between the CF of the object ξo(r) and the CF of dark
matter particles ξdm(r):

b(r) =
√

ξo(r)

ξdm(r)
. (27)

Here, we focus on the galaxy two-point CF ξgg(r,m, z), which
in addition to the distance between the galaxies also depends on
the redshift and the stellar mass of the galaxies:

b(r,m, z) =
√

ξgg(r,m, z)

ξdm(r, z)
. (28)

From our predicted galaxy CFs, we compute the bias for every
redshift and stellar mass by averaging between r = 2 Mpc
and 10 Mpc, where b(r) is roughly a constant (as one can
see from Figure 15, the scale dependence of the bias is quite
weak). Figure 17 shows the redshift dependence of the bias. The
symbols represent the averaged value of the bias, while the solid
lines correspond to a fit to the symbols. For this, we have used
a power-law form:

b(z) = b0(z + 1)b1 + b2 , (29)

where the parameters b0, b1, and b2 are functions of stellar mass.
The fit parameters are given in Table 8.

Table 8
Galaxy Bias Fit Parameters

log mg b0 b1 b2

8.5–9.0 0.062 ± 0.017 2.59 ± 0.18 1.025 ± 0.062
9.0–9.5 0.074 ± 0.008 2.58 ± 0.26 1.039 ± 0.028
9.5–10.0 0.042 ± 0.003 3.17 ± 0.05 1.147 ± 0.021
10.0–10.5 0.053 ± 0.014 3.07 ± 0.17 1.225 ± 0.077
10.5–11.0 0.069 ± 0.014 3.19 ± 0.13 1.269 ± 0.087
11.0–11.5 0.173 ± 0.035 2.89 ± 0.20 1.438 ± 0.061

Note. All quoted masses are in units of M�.

This shows that the bias at a fixed stellar mass increases with
increasing redshift. Massive galaxies are biased more strongly
than galaxies of lower mass at any redshift. We find that the
bias of massive galaxies evolves more rapidly than that of low
mass ones (cf. White et al. 2007; Brown et al. 2008). Since
the bias of massive halos evolves more rapidly than that of low
mass galaxies, this seems to be a feature of any model in which
the SHM relation is monotonically increasing (i.e., the most
massive galaxies reside in the most massive halos).

8. CONCLUSIONS

The goal of this paper is to characterize the relationship
between the stellar masses of galaxies and the masses of the
dark matter halos in which they live at low and high redshift, and
to make predictions of stellar mass dependent galaxy clustering
at high redshift.

We used a high-resolution N-body simulation and identified
halos and subhalos. Halos and subhalos were populated with
central and satellite galaxies using a parameterized SHM rela-
tion. For host halos, the mass was given by the virial mass Mvir
while for subhalos we used the maximum mass of the halo over
its history Mmax since we expect the stellar mass of the satellite
galaxy to be more tightly linked to this quantity.

We described the ratio between stellar and halo mass by
a function with four free parameters, a low-mass slope β, a
characteristic mass M1, a high-mass slope γ , and a normalization
(m/M)0. We fit for the values of these parameters by requiring
that the observed galaxy SMF is reproduced. We find that the
SHM function has a characteristic peak at M1 ∼ 1012 M�,
and declines steeply toward both smaller mass (β ∼ 1) and
less steeply toward larger mass halos (γ ∼ 0.6). The physical
interpretation of this behavior is the interplay between the
various feedback processes that impact the star formation
efficiency. Supernova feedback is more effective at reheating
and expelling gas in low-mass halos, while AGN feedback is
more effective in high mass halos (e.g., Shankar et al. 2006;
Croton et al. 2006; Bower et al. 2006; Somerville et al. 2008).
In this picture, the characteristic mass M1 is the halo mass where
the efficiency of these two processes crosses.

We have thoroughly discussed the meaning of the parameters.
We have also investigated the effects on the SHM relation that
arise from introducing scatter to the relation. To do this, we have
added scatter drawn from a lognormal distribution with a typical
variance of σm = 0.15 to the SHM function. We showed that
the impact of such a scatter on three of the four parameters is
negligible, with a small but significant impact on the high-mass
slope γ .

We showed that adding constraints from stellar mass depen-
dent galaxy clustering did not change the values of our best-fit
parameters. Put another way, the likelihood (here χ2) function
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for the clustering constraint is much “flatter” than that for the
mass constraint, so adding the clustering constraint does not sig-
nificantly change the distribution for the most likely (best-fit)
parameter values. Fitting to the SMF only, we found that the
observed projected CFs of galaxies for five samples of different
stellar mass were reproduced well. This means that the clus-
tering properties of galaxies are predominantly driven by the
clustering of the halos and subhalos in which they reside. From
this, we concluded that our model can predict clustering as a
function of stellar mass at any redshift.

In order to describe how galaxies of different masses pop-
ulate host halos, we introduced the conditional mass function
Φ(m|M), which yields the average number of galaxies with stel-
lar masses in the range m ± dm/2 that live in a distinct halo
of mass M. It is described by five parameters which are func-
tions of halo mass. We divided the conditional mass function
into a contribution from central galaxies (described by a log-
normal distribution) and a contribution from satellite galaxies
(described by a modified Schechter function). We computed the
SMF in different halo mass bins and fitted the five parame-
ters in each bin. Introducing halo mass dependent functions for
every parameter and fitting these to the derived values of the
parameters in the halo mass bins, we determined the halo mass
dependence of the five parameters and thus fully described the
conditional mass function. We also computed the occupation
numbers of halos which give the average number of galaxies of
a given stellar mass that live inside a halo of mass M.

We compared the results for our SHM function with those that
have been derived using other approaches. These include other
halo occupation type models, gravitational lensing, and SAMs.
We showed that all methods yield consistent SHM relations.

Using SMFs at higher redshifts, we applied our model at
earlier epochs of the universe. We thus constrained the SHM
relation at a given set of redshifts between z = 0 and z ∼ 4.
This allowed us to study how the four parameters of the SHM
function depend on redshift. For each parameter, we introduced
a redshift-dependent function. We found that the characteristic
mass increases with redshift while the normalization decreases
with redshift. This indicates that there is less stellar content in
halos at higher redshifts. As the halo mass function steepens
more with redshift than the SMF, the low-mass slope increases
with redshift. We present an eight parameter fitting function
describing the redshift-dependent SHM relation.

Using the SHM relation that we derived in this way, along
with spatial information for halos from the N-body simulation,
we predicted the high-redshift real space CFs for five stellar
mass intervals. We find that for all redshifts, massive galaxies
are more clustered than galaxies of lower mass. Using the real
space CF of dark matter, we calculated the galaxy bias as a
function of distance, redshift, and stellar mass. Averaging over
spatial scale in an interval around r ≈ 6 Mpc, we demonstrated
that the galaxy bias increases with redshift, and presented fitting
formulae for the galaxy bias as a function of stellar mass and
redshift. In a forthcoming companion paper (Moster et al. 2010),
we use these bias results to present predictions for the cosmic
variance σc for galaxies of different stellar mass.
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